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SUMMARY

Wedevelop a stochastic epidemic model progressing over dynamic networks, where infection rates are het-
erogeneous andmay varywith individual-level covariates. The joint dynamics aremodeled as a continuous-
time Markov chain such that disease transmission is constrained by the contact network structure, and
network evolution is in turn inûuenced by individual disease statuses. To accommodate partial epidemic
observations commonly seen in real-world data, we propose a stochastic EM algorithm for inference,
introducing key innovations that include eûcient conditional samplers for imputing missing infection
and recovery times which respect the dynamic contact network. Experiments on both synthetic and real
datasets demonstrate that our inference method can accurately and eûciently recover model parameters
and provide valuable insight at the presence of unobserved disease episodes in epidemic data.

KEYWORDS: contact tracing; data-augmented inference; SEIR models; stochastic EM; stochastic epi-
demic models.

1. INTRODUCTION

Modern epidemiological studies seek to understand disease dynamics, evaluate intervention
strategies and diûerentiate between population level and individual level eûects. A traditional
approach tomodeling infectious diseases relies onmechanistic compartmental models, where only
the summary of disease statuses of individuals in the population plays a role in understanding
the disease dynamics. Examples of such mechanistic compartmental models abound in the
epidemiology and mathematical biology literature, e.g. the susceptible-infectious-recovered (SIR)
model (Kermack andMcKendrick 1927). The majority of these summarize disease transmission
as a population-level process, and are poised to answer questions related to aggregate dynamics
(e.g. <what is the eûective reproduction number?,= <will the outbreak end?=). However, they cannot
address ûner grainedheterogeneity given individual characteristics and contact behavior (e.g. <what
is my risk of infection?,= <does social distancing help me?=). This is exempliûed by the well-mixed
assumption that underpins many of these models, which posits that any infectious individual can
transmit to any susceptible individual, and that all individuals within the same compartment are
interchangeable. However, it is clear that the contact network plays an integral role in disease
transmission, and that interventions on individual behavior can change the overall dynamics
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of an outbreak (Eames and Keeling 2003; Kiss et al. 2006; Lunz et al. 2021). These social and
behavioral aspects are highlighted in recent works that emerged during the SARS-CoV-2 pandemic
(e.g. Ferguson et al. 2020; Soriano-Arandes et al. 2021; Ball and Britton 2022; see Supplementary
Section 1 for a detailed discussion on related works).

In this paper, we develop a mechanistic stochastic model and a likelihood-based inferential
framework that can account for individual heterogeneity in disease transmission. We speciûcally
consider two main aspects of individual heterogeneity: people have diûerential contact patterns4
characterized by a dynamic contact network that can adapt to disease transmission4 and baseline
characteristics (such as hygiene and immunization) which associate with diûerential risks of
infection. We propose a continuous-time Markov chain (CTMC) model that jointly captures the
dynamics of epidemic and contact network processes, buildingon an individualized stochastic SEIR
model, where the Exposed (E) compartment accounts for incubation periods. These contributions
are motivated by emerging infectious disease studies that collect high-resolution contact tracing
data and surveys on individual health and social behavior (Aiello et al. 2016).

A key challenge arises from partial observations of the process. Even with high resolution
contact tracing, individual-level infection times and recovery times are o�en unavailable, due
to incubation periods and lack of follow-up. We address this by developing a data-augmented
inference algorithm under the stochastic expectation3maximization (sEM) framework (Nielsen
2000) that accommodates and leverages contact network dynamics. The data augmentation steps
in our iterative algorithm eûciently sample unobserved infection and recovery times via carefully
designed conditional samplers amenable to parallel implementation (Section 3.2). Our approach
is much more computationally tractable than exact inference using the marginal likelihood of ob-
served data, which is numerically challenging and delicate even without the complexity of contact
networks (Ho et al. 2018b,a; Ju et al. 2021). Given the high-dimensional latent space containing all
individual-level, time-varyingdisease statuses in our context, an sEMapproach is alsomore eûcient
andnumerically stable than simulation-basedmethods relying onmatching summary statistics with
observed trajectories (He et al. 2010; Andrieu et al. 2010; Pooley et al. 2015). Compared to recent
data-augmented Markov chain Monte Carlo (MCMC) approaches (Bu et al. 2020; Rose et al.
2020; Fintzi et al. 2022; Morsomme and Xu 2022; Wang andWalker 2023), an sEM framework
enables substantially faster convergence and reduced computing time, while established results
admit uncertainty quantiûcation through conservative variance estimation (Nielsen 2000).

2. MODEL FRAMEWORK

We adopt a stochastic compartmental model for epidemics, where all members of the target popu-
lation are divided into non-overlapping subsets related to their disease statuses, and themechanism
of disease spread is described by the transition between disease statuses for each individual.We base
our epidemic model on the SEIR model with four disease statuses: S (susceptible), E (exposed), I
(infectious), and R (recovered or removed). An S individual may get exposed (and thus become an
E person) upon contact with an I individual, and an infectious (I) person will eventually recover
and transition to the R status. In this model, the E status resembles an incubation period that does
not entail transmissibility, and a recovered person acquires immunity to the disease and therefore
no longer contributes to more infections.

These disease spread dynamics evolve as a continuous-time Markov chain (CTMC) deûned
through exponentially distributed waiting times between consecutive events (Guttorp 2018). This
implies that the disease process progresses as a series of competing Poisson processes at the
individual level. For example, suppose ³ij is the rate of exposure between an I person i and an S
person j who are in contact at time t. Then the probability of j getting exposed (thus becoming an
E person) at time t + h for h > 0 is

Pr(j gets exposed by i by t + h | i, j in contact at t) = ³ijh + o(h). (2.1)
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Figure 1.Diagram of the epidemic process: an extension of the stochastic SEIR model, with
heterogeneous exposure rates and two sub-types of infectives. Disease transmission (exposure) is
conditioned on pairwise contact status in the dynamic contact network.

Since the contact structure of the population also changes in time, we extend the CTMCmodel
to the dynamic contact network setting. For any pair of individuals i and j, at time t > 0, they
either share an undirected contact link (<connected=) or they do not (<disconnected=). The contact
network at time point t can thus be represented by a binary symmetric matrix Wt called the
adjacency matrix. Its dynamics are described at the pairwise level, where each entryWij,t evolves
as a CTMC that takes values in {0, 1}. For example, if individuals i and j are disconnected at time t,
the probability of them engaging in contact by time t + h (h > 0) is

Pr(Wij,t+h = 1 at time t + h | Wij,t = 0 at time t) = ³ijh + o(h), (2.2)

where the link activation rate ³ij can depend on the disease statuses of i and j (details later).
We further accommodate diûerent types of individual heterogeneity in the disease transmission

dynamics: (i) peoplemay exhibit diûerent levels of susceptibility that can be explainedby individual
characteristics such as health conditions, hygiene habits, and behavioral choices; (ii) those who
are infectious might not be equally contagious for the susceptible population; (iii) contact rates in
the network may vary in time to reûect phases of social intervention and/or behavioral changes as
response to an epidemic; (iv) contact rates in the network may vary between pairs of individuals
based on their healthy (denoted by H, the collection of S, E, and R statuses) versus infectious
(denoted by I) statuses.

By the superposition property of Poisson processes, the population-level process combines all
the competing individual-level processes. In particular, combining all pairwise infection processes
naturally accounts for competing infectors for each susceptible person (Kenah et al. 2008).

2.1. Model speciûcation

At any time point t in the process, we represent the disease statuses of all individuals byXt , where
each entry Xi,t ∈ {S, E, I,R} denotes the status of person i. The states of the networked epidemic
process at time t can be summarized byZt = {Xt ,Wt}. Conditioned onZt, at the individual level,
the next possible event a�er time t falls into ûve categories: (i) exposure 3 an S person gets exposed
and becomesE); (ii)manifestation 3 anE person becomes I; (iii) recovery 3 an Iperson recovers and
becomes an R person; (iv) link activation 3 an unconnected pair get connected in the network; and
(v) link termination 3 a connected pair break oû their contact. For simple exposition, we assume a
closed population with no immigration or emigration, but the framework can be naturally extended
to account for external infections (see Section 4). For any members i and j in the population, we
specify the instantaneous rates for the ûve possible events as follows (see Figure 1 for a model
diagram):

(i) Exposure (S → E). For i infectious and j susceptible who are in contact at time t, i exposes j
with instantaneous rate ³ijt that can be decomposed as

log³ijt = log ³ + ·i(t) + bTS xj. (2.3)
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Here ³ is the baseline exposure rate, ·i(t) represents i9s infectiousness level at time t (details in
the next item), and bS are coeûcients on j9s individual characteristics xj that account for additional
heterogeneity in susceptibility. For example, xj could encode if j is vaccinated which may reduce
exposure risk, or could represent unobserved covariates for possible extensions to a mixed eûects
model.

(ii) Manifestation (E → I). For an exposed person, they become infectious with rate × to be
either Is (<symptomatic=) or Ia (<asymptomatic=) with probability ps and (1 − ps), respectively.
With the two-type infective setup, the ·i(t) term in (2.3) can be written as

·i(t) = ·I(i is Is at t), (2.4)

which means an Is person is on average e
· times more infectious than Ia. Given this framework, it

is straightfoward to introduce more sub-types of infectives or include continuous and even time-
varying explanatory variables for the function ·i(t), if more intricate modeling of heterogeneous
transmissibility is necessary.

(iii) Recovery (I → R). An infectious person i recovers with rate ³ , where ³ could diûer across
individuals with similar parametrization to that in (2.3); here for model parsimony we assume this
rate is shared across the population.

(iv) Link activation. For unconnected pair i and j, they activate their contact link with rate ³ijt ,
where ³ijt = ³AitAjt0I(t ∈ T0) + ³AitAjt1I(t ∈ T1). HereAit is the healthy (H, meaning S, I orR) or
infectious (I) status of person i at time t and ³ABk stands for the activation rate of link type A ∼ B
in phase Tk (A,B ∈ {H, I} and k ∈ {0, 1}). For brevity we assume there are two social phases T0 and
T1 in time, which could represent intermittent lockdown and no-lockdown phases with diûerent
baseline contact rates.

(v) Link termination. For connected pair i and j, they break oû their contact link with rate Ëijt ,
whereËijt = ËAitAjt0I(t ∈ T0) + ËAitAjt1I(t ∈ T1), andËABk stands for the termination rate of link
type A ∼ B in phase Tk.

We assume that link rates ³ijt and Ëijt are dependent on individual disease statusesH or I since
we wish to characterize the social adaptation behavior in response to epidemics 3 for instance,
a healthy-infectious (H ∼ I) pair that are in contact might be more likely to disconnect from
each other than a pair of healthy individuals to avoid disease transmission (Shukla et al. 2022;
Rieger et al. 2022; Bor et al. 2023). Further, since we assume an undirected contact network, the
link rates satisfy ³HIk = ³IHk and ËHIk = ËIHk for k = 0, 1 between time phases T0 and T1. One
may also choose to include individual-level covariates in the link activation and termination rates
(³ijt andËijt) to reûectmore heterogeneity in the network dynamics (SupplementarySection 2.2);
for exposition purposes, here we highlight the regression formulation in (2.3) for the infection
process.

3. INFERENCE WITH PARTIAL OBSERVATIONS: THE DANCE
FRAMEWORK

We take a data augmentation approach for inference in the partial observations setting. As such, we
begin by describing key likelihood-based inferential terms related to the complete data setting, and
then develop a sEM algorithm for partial observations,Data-AugmentedNetwork Contagion EM
(DANCE).

3.1. Inference with complete data

A complete dataset refers to the fully observed event sequence between time 0 andmaximum time
T (> 0) of one realization from the generative model. That is, a hypothetical continuous observer

of the networked epidemic would have access to (1) exact times of exposure (t(E)
i ), manifesta-

tion (t(I)i ), recovery, and link activation and termination; (2) individual identities in each event;
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Table 1. Explanation of notation.

Notation Explanation

N Total population size (assumed ûxed)

nIs , nIa , nE, nI , nR Total number of Is, Ia, exposed (E), infectious (I) and recovered (R) cases

Iai (t), I
s
i (t) Total number of Ia and Is neighbors of i at time t

Ia(t), Is(t),E(t) Total number of status Ia, Is, and E individuals in the population at time t

t
(E)
i , t(I)i Exposure time andmanifestation time for individual i (set to T if never

exposed/manifested)
CABk,DABk Total number of link activation & termination events among type A ∼ B pairs in

phase Tk
Mc

AB(t),M
d
AB(t) Number of connected & disconnected type A − B pairs at time t

(3) Is or Ia subtype for each individual who becomes infectious; and (4) the initial contact network
structure and all initial disease statuses at time 0.

Given the complete data (or equivalently, suûcient statistics summarizing the data) and all indi-
vidual characteristics {xi}, we canwrite down the completedata likelihoodwith respect to themodel
parameters 2 = {³ , ×, ³ , ·, bS,α,ω}. Here α = (³ABk)k∈{0,1},(A,B)∈S , ω = (ËABk)k∈{0,1},(A,B)∈S

denote the network link rates for diûerent link types between social phases, indexed by S =

{(H,H), (H, I), (I, I)} the set of all pair types. The likelihood takes the form (see Table 1 for a
summary of all notation):

L(2; complete data)

= ³nE³ nR×nIp
nIs
s (1 − ps)

nIa
∏

i:i got exposed

eb
T
S xi

[

Iai (t
(E)
i ) + Isi (t

(E)
i )e·

]

×
∏

k=0,1

∏

(A,B)∈S

[

(³ABk)
CABk (ËABk)

DABk
]

× exp

(

−

∫ T

0

[

³

N
∑

i=1

eb
T
S xi

[

Iai (t) + Isi (t)e
·
]

I(i is susceptible at t)

+ ³ (Ia(t) + Is(t)) + ×E(t)

]

dt

)

× exp

(

−

∫ T

0

∑

k=0,1

∑

(A,B)∈S

[³ABkM
d
AB(t) + ËABkM

c
AB(t)]I(t ∈ Tk)dt

)

. (3.5)

Since the generative model is a CTMC comprised of individual-level Poisson processes, the
above likelihood can be decomposed into epidemic-related components (1st and 3rd lines above)
and network-related components (2nd and 4th lines). Evaluation of this seemingly lengthy like-
lihood function involves either bookkeeping of population-level quantities (such as nE = total
number of exposed cases), or parallelizable computation of individual-level quantities (such as
Isi (t) = number of I neighbors for i at time t).

When complete data are available, we can obtain closed-form maximum likelihood estimates
(MLEs) for most of the parameters, and ûnd the remaining MLEs for parameters ³ , · and bS
through simple numerical procedures, which can be implemented by ûtting conditional Poisson
regressionmodels (See Supplementary Section 2 for full derivations).This suggests that likelihood-
based inference given completely observed data is easily implementable and can be modularized
toward inference in the missing data setting.
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3.2. Inference with partial observations

We now discuss our inferential framework for partial observations, theData-AugmentedNetwork
Contagion EM (DANCE) algorithm. Since real-world epidemic data rarely include measurements
of the full event sequence, our goal is to utilize the simplicity of complete data inference (described
above) through data augmentation, based on the stochastic EM approach (Celeux 1985).

The EM algorithm oûers an approach to eûciently carry out maximum likelihood estimation
for continuous-time Markov chain models in missing data settings (Doss et al. 2013; Xu et al.
2015; Guttorp 2018). Imputing the missing data in the E-step requires access to the conditional
expectation, and sEM is a variant that approximates the conditional expectation using augmented
data obtained via conditional simulation. To be more precise, let X denote the observed data and
Z be the missing data; a general outline of sEM for estimating parameter » is as follows: For
s = 1 : maxIter, do

" (E-step) draw one sample of missing data, Z(s) from its conditional distribution p(Z |

X, » (s−1)), and then let

Q (» | » (s−1)) = logL(» ;X,Z(s));

" (M-step) maximize with respect to target functionQ (» | » (s)) to update » :

» (s) = arg max
»

Q (» | » (s−1)).

There are two advantages of this approach. First, in the E-step, integrating to obtain an expected
log-likelihood (as in the traditional EM algorithm) is replaced by sampling, which avoids the o�en
intractablemarginalization step in the case of complexmodels (Renshaw2015; Xu andMinin 2015;
Stutz et al. 2022). Second, the M-step simply requires solving for the MLEs given a version of the
complete data, which is o�en straightforward, as discussed previously for the present setting.

These advantages come at the cost of a potential challenge: we have to conditionally sample the
missing data given our observed data and current parameter estimates. In our framework, this is
equivalent to sampling event times of a continuous-timeMarkov chain conditioned on end-points,
a notably diûcult problem (Hobolth and Stone 2009; Rao and Teg 2013).

In the case of our motivating study, eX-FLU, true exposure times are not available even though
the data contain daily symptom reports, due to the incubation period. Exact recovery times are
not available either, with recoveries discernible only at a weekly resolution from epidemic surveys.
Therefore, we need to consider inference with partially observed epidemic data, in particular
with exposure times and recovery times unknown. Data augmentation under sEM thus involves
conditionally simulating thesemissing event times, while preserving consistency between epidemic
events and the dynamic contact network.

Let t(E) and t(R) denote all missing exposure times and recovery times, respectively. We assume

that (i) that allmanifestation times {t(I)i } are observed, available through daily symptommonitoring
or routine testing, and (ii) the contact network events are fully observed with high-resolution
contact-tracing. Thus, our DANCE framework for partial observations is outlined as follows. For
s = 1 : maxIter, do

1. sample missing exposure times t(E)(s) from their joint conditional distribution p(t(E) |

observed events, t(R)(s−1)
,2(s−1));

2. sample missing recovery times t(R)(s) from their joint conditional distribution p(t(R) |

observed events, t(E)(s),2(s−1));
3. form an augmented dataset by combining sampled event times in Steps 1 and 2with observed

data, then solve for the complete data MLEs to obtain updated parameter estimates2(s).



Biostatistics, 2025, 26(1) · 7

Since Step 3 is already addressed in the previous section, we derive conditional sampling
algorithms for Steps 1 and 2. One essential consideration is that the conditional samplers must
respect the dynamic contact network constraints while leveraging dynamic contact information.

Step 1: conditional sampling of missing exposure times. We derive a rejection sampler for all
individual exposure times, conditionalonparameter values and recovery times. In fact, it is suûcient

to separately sample exposure time t(E)
i for each individual i who has ever become infectious. This

is because each person i9s exposure time is independent from other individuals9 exposure times
conditional on all other event times, as implied by the formof the complete data likelihood in (3.5).

We consider sampling the missing exposure time t
(E)
i within a plausible interval, Li =

(timin, t
i
max), possibly informed by prior knowledge or computational capacity. For example, wemay

set timin = max(0, t(I)i − 14) and timax = max(0, t(I)i − 2), if we believe the incubation period should

be longer than 2 days but shorter than 2 weeks. Here, for generosity, we consider Li = (0, t(I)i ),
meaning exposure could occur any time before the start of infectiousness.

The target we wish to sample from is the conditional density for i9s exposure time, which can be
written as

pi(t | t
(I)
i ,³ , ·i, ·, ×, network events)

=
»i(t) exp

(

−
∫ t
timin

»i(u)du
)

× × exp(−×(t
(I)
i − t))I(timin < t < timax)

Ci(»i(t), ×; t
i
min, t

i
max)

. (3.6)

Here »i(t) is i9s time-varying total exposure risk, which is a step-constant function with change
points fully determinedwhen all other event times are known (see SupplementarySection 3 for full
details). The normalizing constant Ci(»i(t), ×; t

i
min, t

i
max) can be explicitly evaluated since »i(t) is

a step function.
Consider the density

qi(t) =
»i(t) exp

(

−
∫ t
0 »i(u)du

)

I(0 < t < t
(I)
i )

1 − exp

(

−
∫ t

(I)
i

0 »i(u)du

) , (3.7)

which is the density function of a truncated inhomogeneous Exponential distribution with rate
»i(t). It is straightforward to show that pi(t)/qi(t) ≤ M for a constant M > 1 (Supplementary
Section 3), which suggests we can use qi(t) as a proposal for a rejection sampling scheme for
sampling from the conditional density pi(t).

Therefore, we have the following rejection sampler for t(E)
i that runs in two steps:

1. Sample t from qi(t), an inhomogeneous Exponential with step-constant rate »i(t) truncated
on Li (sampling details included in Supplementary Section 3).

2. Compute the acceptance probability for t by (hereM > 1 is a constant, see Supplementary
Section 3)

pi(t)

Mqi(t)
= exp(−×(t

(I)
i − t)), (3.8)

anddrawU ∼ Unif (0, 1); accept t as a sample of t(E)
i ifU < exp(−×(t

(I)
i − t)), andotherwise

go back to Step 1 and repeat.

A full derivation of the above (importantly showing that M > 1) and other technical details
are provided in Section 3 of the Supplementary Material. This step is also fully parallelizable
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across individuals, as the conditional sampling is performed separately for each person i. Through
simulation experiments (see Supplementary Section 6), we see that the rejection sampler is very
eûcient, with an average acceptance rate of approximately 45%.

Step 2: conditional sampling of missing recovery times The conditional samples of missing
recovery times should satisfy two conditions: ûrst, an individual i cannot recover when they are still
known to be infectious; second, i cannot recover either if they should serve as the infector of another
exposure case. This amounts to conditionally sampling event times with endpoints restricted by
low-resolution epidemic data and high-resolution contact data.

This challenge was previously addressed by the DARCI algorithm developed in Bu et al. (2020)
(Proposition 4.2) for a simpler epidemic model with only one type of infectives. Here, we can
adapt and modify DARCI for our two-type infective setting, conditional on the value of ps (the
proportions of Is among all I individuals) and the sampled exposure times in Step 1. For brevity, we
leave technical details to the SupplementaryMaterial (Section 4).

Uncertainty quantiûcation. For estimates produced by DANCE, we can quantify uncertainty by
leveraging expressions for their asymptotic variances, using results established in Nielsen (2000).
We further implement a multiple-chain strategy to reduce variance, by (i) averaging the last m
iterations in one chain, or (ii) averaging m independent chains. As derived in Nielsen (2000),
for example, averaging m = 10 independent chains of DANCE would provide a conservative

variance estimate of 1.05(I(2̂))−1 where 2̂ are the parameter estimates and I(·) denotes the Fisher
informationmatrix. This allows us to produce conservativeWald-type conûdence intervals. See full
details in Supplementary Section 5.

Validationvia simulations.Weperformcomprehensive simulation studies to validate theDANCE
inference framework, by ûrst validating the complete data inference procedure (Supplementary
Section 6.1), and then testing the data augmentation component of DANCE (Step 1 and Step 2) by
ûrst taking out all simulated exposure times followed by removing all exposure and recovery times
from simulated datasets (Supplementary Section 6.2). Across 40 independent simulations for each
scenario, our inference algorithm is able to accurately recover the parameter values and produce
conûdence intervals with good coverage rates. We present a detailed description and all results of
the simulation studies in Supplementary Section 6.

Remarks on computing time. As a stochastic EM algorithm, DANCE enjoys fast computation.
With moderate eûorts of parallelized implementation, on a regular 4-core laptop, each iteration
typically takes a few seconds and the algorithm usually converges in about 100 iterations for a 100-
200 person population (similar in size to our motivating dataset), amounting to total computing
time only in the order of minutes.

4. CASE STUDY: FLU SEASON ON A UNIVERSITY CAMPUS

To illustrate our model and inference framework, we present a case study on transmissions of
inûuenza-like illnesses among students on a university campus, where high-resolution contact
tracing was performed to track physical proximity between study subjects and individual-level
baseline characteristics were collected.

This dataset was collected over a 10-week epidemiological study, eX-FLU (Aiello et al. 2016),
where inter-personal physical contacts of study participants were surveyed to investigate the eûect
of social intervention on respiratory infection transmissions. 590 university students enrolled in the
study and were asked to respond to weekly surveys on inûuenza-like illness symptoms and social
interactions; they also completed a comprehensive entry survey about demographic information,
lifestyles, immunization history, health-related habits, and tendencies of behavioral changes during
a ûu season or a hypothetical pandemic. 103 individuals among the study population were further
recruited to participate in a sub-study in which each study subject was provided a smartphone
equipped with an application, iEpi. This application pairs smartphones with other nearby study
devices via Bluetooth and thus can record individual-level contacts (i.e. physical proximity) at
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ûve-minute intervals. Bluetooth signals are pre-processed based on signal strengths to identify
suûciently intimate pairwise physical proximity which is treated as a contact link (Supplementary
Section 7.2).

The iEpi sub-study took place from January 28, 2013 to April 15, 2013 (that is, fromweek 2 until
a�er week 10 in themain study). Betweenweeks 6 and 7, there was a one-week spring break (March
1 toMarch 7), during which epidemic data collection was paused and volume of recorded contacts
also dropped considerably. In our application case study, we use data obtained on theN = 103 sub-
study population from January 28 to April 4 (week 2 to week 10), and treat the two periods before
and a�er the spring break as two diûerent social behavior phases. That is, we regard weeks 2-6 as T0
and weeks 7-10 as T1 in our analysis.

Weconsider two typesof <infectious= (status I)memberswithin the studypopulation: (1)multi-
symptomatic (Is) 3 a case with a cough AND one of these three symptoms: fever or feverishness,
chills, or body aches (deûnition of <inûuenza-like-illnesses=); (2) uni-symptomatic (Ia) 3 a case
with a cough, a non-speciûc but important symptom for inûuenza.

For each infection case, we set the reported symptom onset time as the manifestation time

(denoted by t(I)i in previous sections), and treat the exposure time (t(E)
i ) and recovery time (t(R)

i )

as unobserved. Since t(E)
i < t

(I)
i (implied by the assumed SEIR mechanism), we set the plausible

incubation interval as Li = (0, t(I)i ). Using weekly surveys (which asked each participant if they felt
sick in the past week), we know that the missing recovery times must lie within a 7-day interval for
each individual, where the lower and upper bounds are the start and end of a week. Moreover, we
assume that all the contact network events are fully observed, as the high-resolution contact tracing
can provide timepoints of activation and termination of all individual-level contacts. This suggests
that our proposed DANCE algorithm is applicable to this dataset.

4.1. Inference with external infection sources

Since the 103 individuals in the dataset are sub-sampled from the 590 study participants, which
are also sub-sampled from the entire university campus population, we have to treat the data as
observed from an open population instead of a closed one. Therefore, some slight modiûcations
should be made to the model. Speciûcally, individuals in our target population may get infected
from outside infection sources, whom we refer to as <external infectors.=

For simplicity, we represent the joint forces of all external infectors by a single infector that exists
outside of the population andexhibits a constant level of transmissibility over time, and this external
force of infection is exerted uniformly on all members of the target population.

For each susceptible individual j, let the rate of disease onset (i.e. manifestation) due to external
infectors be ¿j, and let this onset rate depend on individual characteristics xj, similar to our

treatment of the internal exposure rate ³ij: log ¿j = log ¿ + xTj bE, where ¿ denotes the population
average externalonset rate, andcoeûcientsbE represent coeûcients to explain associationsbetween
individual characteristics xj and subject j9s deviations of susceptibility from the average level.

Here ¿j is the rate of moving from status S directly to either Ia or Is, rather than from S to E, and
that is why we are naming it the <external onset rate= instead of <external exposure/infection rate.=
We are not introducing both an exposure rate (like³ij) and amanifestation rate (like ×) for external
infection cases because of identiûability concerns: since all susceptible people are exposed to the
same external infector with time-invariant transmissibility, the exposure rate andmanifestation rate
would not be identiûable at the same time when the exposure times are not observed. Thus, to
ensure identiûcation, we choose to include only one rate instead of two, and the <onset rate= can
be thought of as the rate of any susceptible individual developing contagiousness due to external
infection forces.

Now the set of parameters is extended to 2̃ = {³ , ×, ³ , ·, bS, ¿ , bE,α,ω}, andwe canwrite down
a complete data likelihood by slightly modifying Eq. (3.5), where the term related to the new
parameters ¿ and bE are separate from the other terms (Supplementary Section 7.4). This means
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Table 2. Estimates of key epidemic parameters, with conservative estimates of asymptotic
standard errors.

Parameter Estimate Standard error

³ (internal exposure) 4.497 2.005
¿ (external onset) 0.00445 0.00114
× (latency) 0.221 0.0591
³ (recovery) 0.161 0.0279
e· (Is v.s. Ia infectiousness) 0.0622 0.0526
ps (proportion of Is) 0.382 0.0854

Table 3. Estimates of epidemic coeûcients on individual characteristics, with conservative
asymptotic standard deviations in the parentheses.

(ûushot) (wash_opt) (change_behavior) (prevention)

bS (internal exposure) −0.105 (0.671) −2.42 (0.817) −0.201 (0.326) −0.0541 (0.273)
bE (external onset) −0.805 (0.597) −0.139 (0.471) 0.257 (0.263) −0.0362 (0.273)

that introducing external cases does not aûect estimation of the other parameters at all, and that we
can still use the DANCE algorithm detailed in Section 3.2.

4.2. Data analysis

We ûrst discuss how we identify internal and external infection cases and describe the individual
characteristics used in the analysis. If an infected person had any infectious contact (within the
103-person population) up to 2 weeks prior to symptom onset, then we label this case as <internal,=
and otherwise this case is labeled as <external.= This procedure gives us 18 internal cases and 16
external cases in total. Moreover, among all 34 cases, 13 are multi-symptomatic (Is) and 21 are uni-
symptomatic (Ia).We provide a summary of the breakdown of all infection cases in Supplementary
Section 7.

We consider the following four individual-level characteristics collected from the entry sur-
vey that have previously been linked to disease transmission risk (the original survey questions
used to calculate the derived covariates <change_behavior= and <prevention= are provided in
Supplementary Section 7): (i) ûushot 3 whether or not the study subject has taken a ûu shot for
this year; (ii) wash_opt 3 whether or not the study subject9s hand-washing habit is considered
<optimal,= derived from survey questions about how long and how frequently one usually washes
their hands; (iii) change_behavior 3 a derived numeric score measuring how willingly the study
subjectwould change their lifestyle during ahypothetical pandemic,where ahigher score represents
more willingness in changing one9s lifestyle in response to a pandemic; (iv) prevention 3 a derived
score measuring one9s belief in the eûectiveness of diûerent preventative practices in reducing the
risk of catching the ûu; a higher score represents stronger belief in the eûectiveness of preventative
practices.

We perform 20 independent runs of the stochastic-EM inference procedure on the dataset, each
timewith a diûerent random initialization and 60 burn-in steps. For each run, we take the average of
the last 20 iterations (a�er burn-in) and then average over the 20 averages (across runs) to produce
estimates of the parameters. Convergence is assessed by examining traceplots andGeweke diagnos-
tics and model ût is validated by simulation-based predictive checks (Supplementary Section 7.8).
Conservative asymptotic standard errors are obtained using the method described in Section 3.2,

settingm = 20 and upper-bounding the asymptotic variance matrix by 1.025I( ˆ̃
2)−1, where ˆ̃

2 are
the ûnal parameter estimates produced by averaging.

Tables 2 and 3 present estimates of key epidemic parameters. Here we take one day as 1 unit of
time. For this population, the baseline exposure rate is quite high, indicating fast disease exposure
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Table 4. Estimates of link activation and termination rates for diûerent link types in the two
phases (T0 spans from week 2 to week 6, and T1 from week 7 to week 10), with estimates of
standard deviations in the parentheses.

Event type Activation (α,×10−4) Deletion (ω,×100)

Phase T0 T1 T0 T1

H ∼ H 181 (1.77) 8.68 (1.29) 11.6 (0.132) 5.27 (0.0783)
H ∼ I 153 (6.67) 0.653 (0.0420) 16.6 (0.725) 8.71 (0.589)

upon contact 3 it takes approximately 0.22days on average for anH − I contact to lead to infection if
the susceptible individual is not vaccinated, does not wash hands properly and has neutral attitudes
about disease prevention. On average, the incubation period lasts slightly less than 5 days, while
recovery takes about 6 days. The total external infection force experienced by the entireN = 103-
person population is on the scale of 0.00445 × 103 ≈ 0.458, indicating on average there would be
a disease onset due to external sources every other day if nobody in the study population had a ûu
shot or washed their hands optimally. In terms of the coeûcients for individual-level covariates,
we note that the estimates are associated with relatively large standard errors (indicated in the
parentheses), potentially due to the small sample size reûected by themoderate number of infection
cases. Nevertheless, hand-washing (<wash_opt=) seems to be a considerably inûuential mitigation
measure, given that there is a 11-fold reduction (1/e−2.42 ≈ 11.2) in the exposure risk if one washes
their hands optimally compared to suboptimal hand-washing; such a statistical association appears
signiûcant, with a 95%Wald conûdence interval of (−4.054,−0.786) that does not contain zero.

In Table 4 we include estimates of key parameters related to the contact network process. Here
we emphasize the diûerence between the change rates ofH ∼ H (healthy-healthy) links andH ∼ I
(healthy-ill) links, as well as the diûerence between the two social phases (T0 before spring break
and T1 a�er). The link termination rates for H ∼ I links are higher than those of H ∼ H links in
both phases, suggesting that the duration of contact between a healthy-infectious pair is on average
shorter than the contact between two healthy people; this might be because infected students
avoided social activities as they felt unwell, or susceptible individuals interacted less frequently with
peers who seemed sick in order to avoid infection. Moreover, the level of network activity seems
much higher (both in terms of establishing and breaking contact) in T0 (weeks 2 to 6, before spring
break) compared to T1 (weeks 7 to 10, a�er spring break) when we compare the rates for phase
T0 and phase T1, possibly due to increased outdoor activities (thus less contacts via close physical
proximity) a�er the spring break. Such ûndings are enabled by our model design which allows for
diûerent levels of network activities by introducing diûerent time phases.

Through our data analysis, we have found quantitative evidence that proper hand-washing is
signiûcantly associated with reduced risks of ûu infection, and that there is a considerable external
force of infection for the study population. Moreover, study participants exhibit adaptive contact
behavior to ûu transmission with less frequent and shorter-lasting contacts between healthy and
infectious individuals. These ûndings are consistent with intuition and are also reûected in the
dataset where optimal hand-washers seem less prone to infections and infectious individuals tend
to lose contact links (Supplementary Section 7.9).

5. DISCUSSION

In this paper, we present a data-augmented stochastic EM inference algorithm for partially observed
epidemics on a dynamic contact network while accounting for heterogeneous infection risks
associated with individual characteristics. The design of a likelihood-based inferential framework
is challenged by and beneûts from the availability of high-resolution contact tracing data 3 the state
space of latent variables is expanded to all unobserved individual epidemic event times, but at the
same time largely reduced thanks to the knowledge of dynamic contact links.
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It is important to note that the modeling framework we propose is ûexible beyond our choice
of underlying compartments. That is, our approach can be easily adapted to incorporate notions of
reinfection (by allowing some individuals to reenter the susceptible population) or to distinguish
between more than two types of infections. In pursuing generalizations of the methodology,
introducing additional parameters requires careful consideration of the uncertainty quantiûcation
from the stochastic EM algorithm. Although in our setting, the estimated conûdence intervals
perform well empirically compared to their nominal coverage, they rely on variance approximation
formulas, and it is crucial to conduct similar validations in more complex models.

There are, however, several limitations in our model assumptions that can motivate future
research. First, for mathematical convenience we assume a Markovian model, but extensions
could be made toward non-Markovian infection or recovery processes, using Gamma or Weibull
distributions for inter-event wait times. Second, we assume all dynamic contact links are observed,
but for a larger population where high resolution contact tracing is less feasible, one could use a
social network model (stochastic block models or latent factor models) to account for unobserved
contacts; our assumedbinary contact links could be extended to categorical or continuousweighted
links using the signal strengths of mobile device contact tracing. Lastly, we made a couple of
pragmatic compromises in the real data case study: we identiûed external infections based on
lack of internal contacts, but if more population-level data were to become available (e.g. contact
surveys or viral sequencing data) we could estimate external infections in a joint statistical model;
similarly, we used the asymptomatic or less symptomatic compartment (Ia) to identify non-speciûc
symptomatic cases rather than truly asymptomatic cases, but one could introduce additional latent
compartments to infer asymptomatic infections based on diûerential contact patterns or other data
sources such as surveillance testing.

Our analysis of the iEpi data provides further evidence of the importance of personal hygiene
and health habits on the reduction of the spread of inûuenza-like-illness. Through a careful analysis
of real observational epidemiological data, we found a considerable association between hand-
washing and the transmission rate of a disease in an active population with dynamically changing
contact patterns. We hope that this development encourages greater data collection of high-
frequency individual-level data in this area to gain better understanding of other pharmaceutical
and non-pharmaceutical interventions. For example, future studies will be able to estimate the
eûectiveness of vaccination in preventing transmission under diûerent social interaction rates
and population densities, and assess claims about the eûcacy of mask-wearing and active social
distancing. Importantly, such data can be collected discretely in closed populations and provide
invaluable insight into the deployment of public health interventions (Motta et al. 2021).
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