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Abstract

Many populations defined by illegal or stigmatized

behavior are difficult to sample using conventional

survey methodology. Respondent Driven Sampling

(RDS) is a participant referral process frequently

employed in this context to collect information.

This sampling methodology can be modeled as

a stochastic process that explores the graph of a

social network, generating a partially observed sub-

graph between study participants. The methods cur-

rently used to impute the missing edges in this sub-

graph exhibit biased downstream estimation. We

leverage auxiliary participant information and con-

cepts from indirect inference to ameliorate these

issues and improve estimation of the hidden popu-

lation size. These advances result in smaller bias

and higher precision in the estimation of the study

participant arrival rate, the sample subgraph, and

the population size. Lastly, we use our method to

estimate the number of People Who Inject Drugs

(PWID) in the Kohtla-Jarve region of Estonia.

1 INTRODUCTION

Valid statistical inference tasks require understanding the

data sampling mechanism [Heckathorn, 1997]. Often this

means identifying a sampling frame, e.g., an enumeration

of units in the population of interest, and sampling from

it with a known rule. However, many populations lack a

conventional sampling frame because they are characterized

by behaviors that are illegal [Frost et al., 2006, Johnston

et al., 2010] or stigmatized [Hladik et al., 2012, Kerr et al.,

2018]. These “hidden” populations include intravenous drug

users [Crawford, 2016], undocumented immigrants [John-

ston et al., 2010], and other vulnerable groups.

Respondent Driven Sampling (RDS) is a participant referral

process frequently employed by researchers when a sam-

pling frame is unavailable because it preserves the privacy

and safety of at-risk populations [Heckathorn, 1997]. For

example, RDS was used to study HIV incidence and preva-

lence among people who inject drugs (PWID) in St. Pe-

tersburg, Russia [Crawford, 2016, Crawford et al., 2018b,

Heimer and White, 2010]. Here, RDS is leveraged because

it is easier to engender trust if study participants recruit their

own social contacts.

RDS has been similarly employed to study other hidden pop-

ulations at risk of HIV and other infectious diseases [Remera

et al., 2024, Mapingure et al., 2024, Alinaghi et al., 2024,

Barry et al., 2024]. Beyond epidemiological studies, RDS is

used for sampling hard-to-reach populations such as migrant

workers [Tyldum and Johnston, 2014], street children [John-

ston et al., 2010], the unhoused population [Bernard et al.,

2018], and ethnic minorities [Mullo et al., 2020]. Lastly,

RDS is essential when the relevant subpopulation is highly

stigmatized [Stahlman et al., 2016, Arayasirikul et al., 2015,

Magno et al., 2022, Shahmanesh et al., 2009].

RDS begins with a small convenience sample of individuals,

who are interviewed and asked to recruit other members of

the target population with a limited number of incentivized

coupons provided by the researchers. When individuals re-

deem their coupons, they receive an incentive, are enrolled

in the study, and are asked to recruit as well. Both access and

trust are achieved by incentivizing members of the hidden

population to recruit along social connections, thereby ver-

ifying the safety of participation. Additionally, anonymity

is preserved since only the researchers and a participant’s

recruiter know an individual’s membership status.1

This method cannot rely on the prophylactic effects of sim-

ple random sampling during estimation because it operates

along social connections. We will show how improving

estimation of the underlying social network between par-

ticipants in an RDS, and leveraging commonly collected

1Various additional layers of protection are possible, such

as “coupons” being digital and recruiter information remaining

anonymous to recruits.
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auxiliary information about participants, can lead to more

accurate population size estimates.

The current literature has mainly focused on estimating

prevalence of health-related characteristics in the hidden

population, e.g., HIV [Montealegre et al., 2013] and syphilis

[Frost et al., 2006]. In order to conduct inference under this

sampling design, researchers create simple approximate

models for RDS recruitment, often treating the implicit

social network as a nuisance parameter [Gile, 2011, Volz

and Heckathorn, 2008]. In recent years, focus has shifted

to uncovering more about this underlying graph [Crawford

et al., 2018a, Verdery et al., 2017] for its use in downstream

estimation. Population size is one such downstream target.

Estimating population sizes is often imperative for assessing

the scope of public health crises [Crawford et al., 2018b,

Wu et al., 2017]. There are various approaches to estimat-

ing the overall size of a hidden population that do not ac-

count for the sampling mechanism, such as RDS, adequately

and hence may perform poorly. Simple capture-recapture

methods require random sampling and so ignore the mech-

anism altogether [White, 1982], and multiplier methods

[Fearon et al., 2017] depend on every survey participant ac-

curately reporting the hidden population membership status

of their acquaintances, which is unrealistic in many sensitive

contexts. Successive Sampling has been used to estimate

population size from RDS samples [Johnston et al., 2010,

Gamble et al., 2023], however this method does not incorpo-

rate all the network information available. The key problem

with these approaches is that they effectively ignore the un-

derlying graph structure in the population. Crawford et al.

[2018b] addresses this by estimating the unobserved edges

in a subgraph of the population to develop a model for the

hidden population size. Estimating missing graph informa-

tion requires working with a model over a complex combi-

natorial space, and we illustrate that the proposed maximum

likelihood and Bayesian estimators are necessarily biased

or sensitive to the specification of the prior [Crawford et al.,

2018b].

We make the following three contributions:

1. Debias existing estimators of the underlying social net-

work in an RDS sample via indirect inference. We

provide empirical validation of the theoretical perfor-

mance suggested by our Proposition 1.

2. Develop a two-stage procedure that incorporates com-

monly collected auxiliary information into the estima-

tion of the social network, providing improvements to

hidden population size estimates.

3. When the underlying social network depends on group

structure, we derive improved population size estima-

tors. We provide empirical evidence for the robustness

of the proposed approaches as compared to state of the

art methods.

The rest of the paper is organized as follows: Section 2 pro-

vides background information on the structure of the RDS

stochastic process model and its likelihood. In Section 3,

we extend the original indirect inference estimator (IIE) of

Jiang and Turnbull [2004] to the case of RDS and show that

this estimator is less biased than the MLE asymptotically.

Section 4 reviews the existing population size estimation

approaches, extends them to the case of more general un-

derlying graph structures, and develops a method for incor-

porating auxiliary information (such as group membership)

into the population size estimation procedure. Section 5 and

6 demonstrate, through simulation studies and a case study

respectively, the impact of indirect inference estimation and

auxiliary information on population size estimation.
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Figure 1: GR is composed of coupon exchanges →. GS includes

both observed → and unobserved connections —.

2 RDS MODEL SETUP AND ISSUES

Throughout we consider a setting where our population is

represented by a graph G = (V,E), where V is the set of

|V | = N nodes in the graph and E is the set of pairwise

connections, or edges, between individuals. Respondent

Driven Sampling (RDS) starts with a set of seeds (node 1

in Figure 1), and then proceeds by recruiting other partic-

ipants (the middle and right panels of Figure 1) over the

edges of the original graph G. This process continues until

a stopping rule is reached (e.g., a predetermined number of

recruited individuals or a budget constraint are met). At the

end of this process, a researcher is in possession of a recruit-

ment subgraph GR = (V R, ER) ¢ G on |V R| = n f N
individuals. The labels of the nodes in V R denote the or-

der in which they arrived at the study (and so participant

i was interviewed before participant j if i < j). Impor-

tantly, this is not the vertex induced subgraph of G that

would have been observed by projecting the original graph

G onto the vertices V R. We will call this induced subgraph

GS = (V S , ES) and note that, while V S = V R, we only

know that ER ¦ ES . If we had access to GS then estimat-

ing the size of the graph G would be a simple task.

There are two reasons that edges in GS are missing in GR.

First, recruiters may run out of coupons before they recruit

all of their neighbors (e.g., pariticipant 13 in Figure 1). Sec-

ond, if participant i recruits participant k before participant
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j does, a connection {j, k} ∈ ES will not be observed be-

cause an individual cannot participate in the study multiple

times (e.g., participant 6 is recruited by participant 2 before

participant 3 can recruit them in Figure 1).

While GS cannot be observed directly, it can be estimated

from data collected during RDS.2 Typical RDS studies ask

participants how many hidden population members they

know. For participant i, this is their degree in the larger

graph G, di = |
{
{i, j} ∈ E : i ∈ V R, j ∈ V, i ̸= j

}
|. The

vector of observed degrees, d = (d1, d2, . . . , dn), is ordered

by arrival to the study. Additionally, we define a vector w

such that wi is the time between the arrival of participant

i− 1 and participant i. This makes the full data observed at

the end of an RDS study Y = (GR,d,w), Y ∈ Y .

Our RDS arrival process model is described by wait times

attached to edges in G between recruiters with unused

coupons and unrecruited members of the hidden popula-

tion, termed “susceptible edges” [Crawford et al., 2018b].

When the wait time associated with edge {i, j} expires, par-

ticipant i recruits participant j (as long as j has not been

previously recruited); dj and wj are then recorded and {i, j}
is added to GR. We assume that edge times are indepen-

dent and identically distributed according to an exponential

distribution [Crawford, 2016].

Assumption 1 (Exponential Wait Times) Upon entering

the study, a participant immediately becomes active, and

their susceptible edges are assigned a wait time that is

drawn independently from an exponential distribution with

common parameter ¼ ∈ R
+. (This combines assumptions 4

and 6 in Crawford et al. [2018b].)

Remark 1 Assumption 1 is common when studying arrival

data. It implies Markovian dynamics and leads to a closed

form likelihood for the RDS process (Equation 1). It is possi-

ble to relax this assumption, e.g., by considering dependence

in arrival times. This will lead to changes in the likelihood,

but does not preclude the analytic approach we propose.

Let AS ∈ {0, 1}n×n
be the adjacency matrix associated

with graph GS , where AS
i,j = 1 if {i, j} ∈ ES and 0

if not; let ui be the number of connections study partici-

pant i has to unrecruited hidden population members, ui =
|
{
{i, j} ∈ E : j /∈ V R

}
|, and u = (u1, u2, . . . , un); and

let M be the seed set. Additionally, let lt : Rn×n → R
n×n

be the lower-triangular function, i.e., for any A ∈ R
n×n, we

have {lt(A)}i,j = Ai,j1(i f j). The joint likelihood for

parameters AS and ¼ is

Ln(Y|AS , ¼) =


∏

j /∈M

¼sj


 exp

(
−¼s¦w

)
, (1)

2We use the notation of Crawford et al. [2018b] when possible

for referential convenience.
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Figure 2: This figure depicts the bias of ¼̂n and

∣∣∣ÊS
n

∣∣∣. We

can see that the bias of ¼ and the edge set size are positively

correlated and increase as the sample proportion decreases.

where s = lt(ASC)¦1+C¦u is the susceptible edge vector,

and C ∈ R
n×n is the coupon matrix in which Cij = 1 if par-

ticipant i has at least one coupon before the jth participant

is recruited, and zero otherwise (Definition 4 from Crawford

et al. [2018b]). The ith entry of the susceptible edge vec-

tor, si ∈ s, is the number of edges between recruiters with

coupons and unrecruited members of the hidden population

just before the ith study participant is recruited.

Both GR and d function as graphical constraints ensuring

that the estimated adjacency matrix is compatible with the

observed data.

Definition 1 (Compatibility) An estimated subgraph

ĜS = (V̂ S , ÊS) represented by the estimated adjacency

matrix ÂS
n is compatible with the observed data, Y, if

the following three conditions hold: 1. V R = V̂ S; 2.

ER ¦ ÊS; 3. The degree of each i ∈ V̂ S does not exceed

di. (This is Definition 5 from Crawford et al. [2018b].)

Let A be the space of compatible subgraphs, then the max-

imum likelihood estimator (MLE) corresponding to Equa-

tion (1) is

{
ÂS

n , ¼̂n

}
= arg max

AS∈A,λ∈R+
Ln(Y|AS , ¼). (2)

2.1 ISSUES WITH MAXIMUM LIKELIHOOD

ESTIMATION

Beyond computational difficulties associated with maximiz-

ing functions over graph space, the MLE in Equation (2) can

exhibit severe bias even for moderately large sample sizes.

We start by noting that if AS were known, Equation (1)

reduces to the likelihood of exponentially distributed data.

It is well known that the MLE for the rate parameter of

an exponential, ¼, has a bias that diminishes as the sample
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size, n, increases: |E(¼̂n)− ¼| = ¼/(n− 1). However, in

RDS, AS is not known, and the magnitude of the bias is

related to the rate of increase of both n and N (the unob-

served population size). Specifically, when AS is unknown,

Equation (1) has n+ 1 unknown parameters that are meant

to be estimated based on n observations and the graphical

constraints imposed by GR and d — while the parameters

remain identifiable due to these constraints, high quality esti-

mation may not be possible. This is especially true for RDS,

as the constraints are often loose in this context (n j N
and so n/N ¼ 1).

In Figure 2, we plot the observed absolute biases in |ÊS
n | and

¼̂n following an RDS simulated according to the generative

model in Equation (1) with ¼ = 1, a single seed participant,

five coupons per participant, and n = 100. The population

graph, G, is simulated from an Erdos-Renyi model with

edge probability p set to keep the expected degree 10 (details

about the Erdos-Renyi model are provided in Section 4).

On the x-axis, we vary the total population size, N . We

see that as n/N decreases and the constraints loosen, the

bias increases. The intuition behind this is as follows. For

a given ¼ and i ∈ {1, 2, . . . , n}, the MLE of si without

graphical constraints is 1/(¼wi), which has expectation

E {1/(¼wi)} = ∞. This suggests that if n/N ¼ 1 as

n → ∞ and N → ∞, then the MLE of si¼ will have

positive bias. RDS is used in settings where n << N (and

so the constraints on s are minimal), so an alternative to the

MLE is needed for high quality inference. We aim to resolve

these biases using an alternative estimator motivated by

concepts from indirect inference.

3 INDIRECT INFERENCE ESTIMATOR

We define the indirect inference estimator, derive its theoret-

ical properties, and demonstrate its improvement in estimat-

ing RDS model parameters empirically.

3.1 INDIRECT INFERENCE

The indirect inference estimator (IIE) relies on specifying a

calibration statistic. The choice of this statistic is not unique,

but often there is a natural option in a given problem do-

main [Jiang and Turnbull, 2004]; we use the MLE for ¼ as

our calibration statistic. The IIE is constructed by finding

parameter settings under which the expected value of the

calibration statistic matches its observed value.

To formalize the indirect inference estimator (IIE) in our

setting, we require a few definitions. Let ¼ : Y → R

and AS
 : Y → {0, 1}n×n

be functions that map the data,

Y, to the solutions of Equation (2). Additionally, define

AS
λ : Y × R

+ → {0, 1}n×n so that for observed data, Y,

and value ¼′ > 0, AS
λ(Y, ¼′) is the solution to Equation (2)

holding ¼ fixed at ¼′.

We propose the following estimation procedure for our

model parameters. Let ¼̃n solve

EZ∼P
AS

λ
(Y,λ̃n),λ̃n

{
¼ (Z)

}
= ¼ (Y), (3)

and ÃS
n = AS

λ(Y, ¼̃n), then the IIE is the pair (¼̃n, Ã
S
n).

The expectation in Equation (3) is taken over simulated data

Z = (GR,d,w∗) ∈ Y , where w∗ ∼ PAS ,λ and PAS ,λ is

the generative model described in Equation (1). The proce-

dure for calculating the IIE is summarized in Algorithm 1.

This algorithm requires K × J evaluations of the MLE. Be-

cause these evaluations are embarrassingly parallelizable,

the IIE has the same computational complexity as the MLE.

To understand why an IIE can reduce bias, we first dis-

cuss the IIE for exponentially distributed data, which we

observed in Section 2.1 are closely related to the data gen-

erated by RDS. The important benefit of this setting is that

we are able to derive the analytic form of the IIE.

Suppose X = (X1, ..., Xn) comprises n independent draws

from an exponential distribution indexed by ¼ ∈ R
+. The

likelihood of X is

L(¼|X) =

n∏

i=1

¼exp(−¼Xi) = ¼nexp(−¼

n∑

i=1

Xi).

The MLE is ¼̂n = n/ (
∑n

i=1 Xi), which is distributed ac-

cording to an Inverse-Gamma distribution with shape and

scale parameters (n, n¼). The absolute bias of the MLE is

|E(¼̂n − ¼)| = ¼/(n − 1). Choosing the MLE as the cali-

bration statistic in the IIE procedure, we see that the IIE is

¼̃n = (n− 1)/(
∑

i Xi), which is unbiased.

Moreover, the mean squared error (MSE) of ¼̃n is smaller

than that of ¼̂n:

MSE(¼̂n) =
¼2(n2 + n− 2)

(n− 1)2(n− 2)
,

MSE(¼̃n) =
¼2

(n− 2)
,

MSE(¼̂n)−MSE(¼̃n) =
3¼2(n− 1)

(n− 1)2(n− 2)
> 0.

In general, the IIE (that uses the MLE as a calibration statis-

tic) is unbiased for a parameter if the bias of the MLE is

linear in the parameter. The exponential likelihood example

above suggests that this is possible in our setting. We for-

mally compare the asymptotic behavior of the IIE bias to

the MLE bias in the next subsection.

3.2 ASYMPTOTICS

To characterize the asymptotic behavior of the IIE, we as-

sume that the MLE admits an Edgeworth expansion [Hall,

2013].
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Algorithm 1: The Indirect Inference Estimator

Goal: Find the estimator,

¼̃n ∈ argmin
λ

∣∣∣EZ∼P
AS

λ
(Y,λ),λ

{
¼ (Z)

}
− ¼ (Y)

∣∣∣

Generate a grid of ¼k values, k ∈ {1, 2, ..,K},

centered at ¼̂n

for k in {1, 2, . . . ,K} do

for j in {1, 2, . . . , J} do

Find ÂS
n,k = AS

λ(Y, ¼k)

Simulate wait time vector wk,j from the model

defined by parameters ÂS
n,k, ¼

k

Find ¼̂k,j
n by solving Equation (2) with

generated data Zk,j = (GR,d, wk,j)

end

Save set
{
¼k, ÂS

n,k, ¼̂
k
n =

(∑J
j=1 ¼̂

k,j
n

)
/J

}

end

Calculate k∗ = argmink∈{1,2,...,K}

∣∣∣¼̂k
n − ¼ (Y)

∣∣∣
Output estimators

{
¼̃n, Ã

S
n

}
=

{
¼k∗

, ÂS
n,k∗

}

Assumption 2 As n → ∞,

¼̂n = ¼+
A(V, ¼)√

n
+

B(V, ¼)

n
+

C(V, ¼)

n3/2
+ op(n

−3/2),

where V has a distribution that does not depend on ¼, and

A(V, ¼) B(V, ¼) and C(V, ¼) are random vectors that only

depend on ¼ and V .

Such an expansion holds for the MLE under general condi-

tions; see Section 2.4 of Hall [2013] for details. Under this

expansion, it can be seen that the bias is of order n−1/2.

Proposition 1 Given Assumption 2, as n → ∞,

E

(
¼̃n

)
= ¼+

E {C∗(V, ¼)}
n3/2

+ op(n
−3/2),

where V is a random variable with a distribution that does

not depend on ¼, and C∗(V, ¼) is a random vector that only

depends on ¼ and V .

Proposition 1 follows from Assumption 2 and Corollary 2.1

in Gouriéroux et al. [2000]. It shows that the IIE does not

have bias terms of orders n−1/2, n−1, while the MLE does.

3.3 EMPIRICAL PERFORMANCE: STUDY

PARTICIPANT ARRIVAL RATE AND

SUBGRAPH ACCURACY IMPROVEMENTS

In this section, we empirically evaluate the finite sample

behavior of our proposed IIE estimator for the two model

Table 1: Graph True Positive Rate (%)

MLE IIE

Pop. Deg. Average Std. Average Std.

1000 5 56.66 0.85 67.61 1.47

1000 10 36.52 0.82 50.48 2.00

1000 15 29.49 0.79 47.71 2.38

5000 5 58.76 0.96 69.93 1.58

5000 10 37.00 0.91 51.73 1.92

5000 15 30.57 1.08 49.48 2.48

10000 5 59.25 0.93 72.18 1.52

10000 10 37.52 0.93 54.15 2.08

10000 15 30.50 0.84 51.30 2.22

These are the true positive rates of the estimated sub-

graphs over a series of population sizes (Pop.) and av-

erage degrees (Deg.). The standard deviations reported

quantify the Monte Carlo error associated with these

estimates based on 100 simulations.

parameters in the likelihood of Equation (1). We simulate

RDS trajectories of size 100 over various graph sizes, with

an average wait time of 1/¼ = 1 and each recruit having

5 coupons. The hidden population graph, G, is simulated

from an Erdos-Renyi model with edge probability p (details

of this model choice are provided in Section 4). In our

simulations, we vary N ∈ {1000, 5000, 10000} and Np ∈
{5, 10, 15}. Algorithm 1 is used to construct the IIE, which

we compare to the MLE.

Table 1 demonstrates that the IIE for the sample subgraph,

ÃS
n , has a higher true positive rate than the MLE in all

simulation settings. Importantly, Table 3 in Appendix A

shows that these improvements do not come at the expense

of the true negative rate.

The rate parameter ¼ is of independent interest for assessing

coupon uptake speed and the time necessary for recruiting

a target sample size. Table 4 in Appendix A indicates that

over a range of population sizes and graph densities, the IIE,

¼̃n, outperforms the MLE in terms of MSE.

Remark 2 Consistent with Figure 2 and the intuition devel-

oped in Section 2.1, the advantage of both ¼̃n and ÃS
n over

¼̂n and ÂS
n respectively is slightly greater in high average

degree and low sample proportion settings generally.

4 HIDDEN POPULATION SIZE

ESTIMATION

One of the primary goals of sampling hidden populations

is to estimate their total size, N . Imagine that the popula-

tion graph, G = (V,E), is a sample from an Erdos-Renyi

graph model with parameters N and p (that is, there are N
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individuals in the graph and the probability of a connection

between any two of them is p). While this is a very simple

model, it has demonstrated practical utility when estimating

hidden population size, forming the basis for methods such

as the snowball sampling estimator [Frank and Snijders,

1994] and the network scale-up estimator [Killworth et al.,

1998]. Under an Erdos-Renyi model, the degree of each

individual in G is distributed as di ∼ Binomial(N − 1, p).
If we had access to a simple random sample of individuals,

then we could directly estimate N based on this likelihood.

As discussed earlier, RDS does not yield a simple random

sample from the population (e.g., an individual’s probabil-

ity of being sampled depends on their degree [Heckathorn,

1997, Gile, 2011]). Conditional on the (unobserved) AS

and the Erdos-Renyi assumption, it is possible to write

down the distribution for the number of edges individual

i ∈ {1, 2, . . . , n} shares with unsampled members of the

hidden population at the time of individual i’s recruitment.

Let dui = di −
∑i−1

j=1 I
(
{i, j} ∈ ES

)
, and note that, unlike

di, this quantity is independently and identically distributed

from a Binomial distribution, dui ∼ Binomial(N − i, p).

Sections 4.1 and 4.2 present population size estimators

based on an Erdos-Renyi graph assumption. This is for

simplicity of exposition since there are only two parameters

in this model, N and p. However, the proposed approach

can easily be applied to other graph models by deriving the

corresponding distribution of dui . For example, consider a

population graph that is distributed according to a stochas-

tic block model (SBM) with two groups, VA ¦ V and

VB = V \ VA. Let the probability of an edge between

members of the same group be pin, and the probability of

a connection between members of different groups be pout.
Assume that we observe the group membership of each

study participant, and define iA, iB as the number of indi-

viduals in groups A and B respectively that are recruited

before participant i+ 1.

P(dui = d) =

d∑

j=0

(
Ni

j

)(
(N − i)−Ni

d− j

)
pjin(1− pin)

Ni−j

× pd−j
out (1− pout)

(N−i)−Ni−(d−j),

where NA g NB and pin g pout. We can use this distribu-

tion to estimate N in the SBM setting. Appendix B provides

details of those derivations.

4.1 REVISING CURRENT APPROACHES

Based on this population size model, Crawford et al. [2018b]

propose an approximate Bayesian MCMC sampling scheme

with strong priors on p and AS to conduct inference on

N . They find that informative priors on p are necessary

for ensuring finite first and second moments of the poste-

rior distribution for N . For example, the most diffuse prior

on p in their simulations has a variance of about 5×10−6.

Moreover, they use an informative prior on the graph space

Ã(AS) ∝ exp(−µ|ES |), where µ = − log {p/(1− p)}
ranges from about 5 to 9, imposing heavy penalties on

graphs with large edge sets. These priors inflate the pos-

terior mean of N , resulting in significant upward bias.

Prior selection is non-trivial in our problem. Choosing a non-

informative prior risks an improper posterior [Kahn, 1987],

but, given the nature of the populations we aim to study, it

is unlikely that strong informative priors are scientifically

justifiable. Moreover, full posterior inference for N is not

possible due to computational constraints, requiring multi-

ple approximations [Hunter and Handcock, 2006, Crawford

et al., 2018b]. We avoid these issues by reformulating the

problem as regularized estimation, which incorporates in-

formation on edge prevalence, p, via a regularization term.

Given regularization function R(p̌) = log Beta(p̌; a, b) for

a, b ∈ R
+, we define the regularized estimates of N, p con-

ditional on ÂS
n and ÃS

n as

{
p̂, N̂

}
= argmax

p̌,Ň
logL(Ň , p̌|ÂS

n) +R(p̌),

{
p̃, Ñ

}
= argmax

p̌,Ň
logL(Ň , p̌|ÃS

n) +R(p̌).

4.2 IMPROVING ESTIMATION USING

AUXILIARY INFORMATION

The RDS data collection process commonly includes a large

survey that can be used to improve population size estima-

tion [e.g. Frost et al., 2006, Wu et al., 2017]. In particular,

it is common to track how information accumulates over

the RDS process, and this measurement necessarily carries

information about the underlying network. For example, an

RDS interview may begin with a quiz about local free re-

sources, important public health issues, or beneficial health

practices (e.g., for People Who Inject Drugs this might in-

clude drug therapy options or needle exchange sites). The

interview ends with the interviewer revealing the answers

to the quiz so that each study participant leaves the study

with the same amount of information. The performance of a

study participant on this quiz is a graph dependent outcome,

Q. Below we propose a model for Q that, when combined

with the IIE approach of Section 3, substantially improves

the population size estimates of the previous section.

Remark 3 Other graph-dependent outcomes are certainly

possible: measurements may depend on participant interac-

tions with their friends or require participants to quantify

some characteristic of their referral chain. These different

types of Q would simply require different models from the

ones we study below, but could otherwise be easily incorpo-

rated into the analysis.

Define monotonically increasing functions f : R → R and

g : R → R, 1n = (1, 1, . . . , 1) ∈ R
n, and zero-mean
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distribution F . If we assume that there is communication

over the network, then the performance of an interviewee

on the quiz should be proportional to their connections to

previously recruited study participants,

qi = f {³+ µg (mi)}+ ϵi, ϵi
i.i.d∼ F, (4)

where m =
{
AS · lt(1n1

¦
n )

}
1n. The ith entry of m is

the number of neighbors of study participant i who were

recruited before participant i. In Equation (4), ³ represents

an average hidden population member’s knowledge of the

quiz subject without outside intervention and µ is the in-

tensity of communication flow. Adding information about

Q = (q1, q2, . . . , qn) to our analysis will improve estima-

tion of m, which will improve estimators of AS and N .

We now augment our IIE procedure with the auxiliary in-

formation contained in Q. We expand Y to include the

regression information, Yr = (Q, GR, d,w) ∈ Yr. Define

¼ 
r : Yr → R as the function that maps the data, Yr, to

the MLE for ¼. Additionally, define AS,r
λ : Yr × R →

{0, 1}n×n
so that for value ¼′ > 0, AS,r

λ (Yr, ¼′) is the

MLE estimator of AS holding ¼ fixed at ¼′. Let ¼̃r
n solve

EZr∼P
A

S,r
λ

(Yr,λ̃r
n),λ̃r

n

{
¼ 
r(Z

r)
}
= ¼ 

r(Y
r), (5)

and ÃS,r
n = AS,r

λ (Yr, ¼̃r
n), then the IIE is now the pair

(¼̃r
n, Ã

S,r
n ). The expectation in Equation (5) is over simu-

lated data Zr = (Q, GR,d,w∗) ∈ Y , where w∗ ∼ PAS ,λ

and PAS ,λ is the generative model described in Equation (1).

Algorithm 2 in Appendix E builds on Algorithm 1 and pro-

vides the complete description for this computation. The

regularized estimator of population size conditional on the

IIE with auxiliary information is

{
p̃r, Ñr

}
= argmax

p̌,Ň
logL(Ň , p̌|ÃS,r

n ) +R(p̌).

5 POPULATION SIZE ESTIMATION

SIMULATIONS

In this section, we empirically evaluate the IIEs of hidden

population size with and without auxiliary information. The

first simulation study compares our estimators to state-of-

the-art competitors for a variety of population sizes and

graph densities. The second and third simulations showcase

the robustness of our estimators to different graph models.

Simulation 1. For each simulation, we draw a hidden pop-

ulation graph from an Erdos-Renyi model, G ∼ ER(N, p),
varying N ∈ {1000, 5000, 10000} and Np ∈ {5, 10, 15}.

We then simulate an RDS study of size n = 100 over this

graph, starting from 3 random seeds. This RDS follows the

generative model specified in Equation (1) with ¼ = 1 and 5

coupons. Letting m =
{
AS · lt(1n1

¦
n )

}
1n, we observe a

vector of study participant attributes, Q = (q1, q2, . . . , qn),
drawn according to

qi = ³+ µmi + ϵi, ϵi
i.i.d∼ N(0, Ã2),

which is within the class of models outlined in Equation (4).

We set ³ = 0, µ = 1, and Ã2 = 1 and experiment with

regularization information on p to explore the utility of

social network edge density information when estimating

population size. This procedure is repeated 200 times for

each simulation setting.

We compare our estimators to the MLE derived in Crawford

et al. [2018b] as well as to several estimators proposed in

Handcock et al. [2014] that use the successive sampling (SS)

method. Under a uniform prior, the SS estimators, which

are posterior summaries, require the researcher to specify

the maximum that the population size can attain, Nmax. For

a given N , we use values Nmax ∈ {3N, 5N, 8N}.

Figure 3 reports the results across all nine simulation setups.

First, we note that the IIEs with and without auxiliary in-

formation have lower maximum absolute deviation (MAD)

than the MLE over a range of hidden population graph sizes

and densities. The weak regularization information setting

is defined by R(p̌) = log Beta(p̌; a, b), where Beta(p̌; a, b)
is centered at p with a = 0.1. Consistent with Remark 2, the

improvements of the IIE without auxiliary information over

the MLE are greater in high average degree settings. The

improvements of the IIE with auxiliary information over the

IIE without auxiliary information follow the same pattern.

When comparing to the SS approach, we note that the esti-

mators based on this procedure are very sensitive to the prior

specification. In fact, Figure 3 shows that the MAD for the

SS Mean estimator (the posterior mean) where Nmax = kN
for k ∈ {3, 5, 8} is almost exactly |(k− 2)N −n|/2, which

is the absolute difference between the prior mean and N .

In Appendix D, we explore the role of regularization in our

estimator. Figure 6 in Appendix D shows that in the strong

regularization setting, where R(p̌) = log Beta(p̌; a, b) and

a = 10, the improvements of Ñ and Ñr over N̂ are greater

in larger populations.

Simulation 2: Stochastic Block Model. We assess the

sensitivity of our population size estimate results to the

Erdos-Renyi model assumption. Following Crawford et al.

[2018b] and Gile et al. [2018], we divide the hidden pop-

ulation into two groups, VA ¦ V and VB = V \ VA. The

probability of an edge between members of the same group

is pin, and the probability of a connection between mem-

bers of different groups is pout. For constant c ∈ [0, 1], we

set pout = cpin. Lastly, we let p∗ = P ({i, j} ∈ E), where

nodes i and j are drawn uniformly at random from V .

In this simulation, we set N = 5000, p∗ = 0.002 (implying

an average degree of 10), c = 0.3 and NA/N = 0.6. We

report estimates assuming an underlying SBM with strong
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Figure 3: This figure compare the performance of successive sampling estimators, N̂ , Ñ , and Ñr under weak regularization

information over a series of population sizes, N , and average degrees, Np, with 90% Monte Carlo confidence intervals.

regularization around pin and pout (details in Appendix B)

and estimates under misspecification of the network model

as an Erdos-Renyi. Figure 4 in Appendix B indicates that

the estimator error when the network model is correctly

specified follows the same pattern as Figure 3. Figure 4 also

shows that ignoring the block structure results in signifi-

cantly worse estimator performance. Additional analysis

under network model misspecification is in Appendix B.

Encouragingly, both the correctly and incorrectly specified

IIEs perform better than their MLE counterparts.

Simulation 3: Latent Space Model. We further assess the

sensitivity of our estimation techniques by generating net-

work data from the more general latent space inner product

model. We allow edge probabilities to range from 1.5×10−3

to 2.7×10−3 with an expected degree of 10. In this context,

we use estimators that assume the Erdos-Renyi model. Fig-

ure 5 in Appendix C indicates that these estimators, while

being incorrectly specified, still yield substantively similar

results to Figure 3.

6 HOW MANY PEOPLE INJECT DRUGS

IN KOHTLA-JARVE, ESTONIA?

According to the European Drug Report 2023, from 2015-

2021 Estonia had the highest per capita prevalence of People

Who Inject Drugs (PWID) in Europe. There is also evidence

of high HIV prevalence [Degenhardt et al., 2017] and drug

overdose death rates (related to the introduction of Fentanyl)

among PWID in Estonia during this time period [Uusküla

et al., 2020]. To lower the prevalence of HIV among PWID

in Estonia, syringe exchange programs were launched in

1997 [Wu et al., 2017]. Estimating the size of the PWID

population sheds light on the magnitude of this public health

crisis and the necessary scope of potential policy solutions.

Wu et al. [2017] use data from an RDS sample conducted in

2012 to estimate the number of PWID in the Kohtla-Jarve

region of Estonia. They compare a series of models includ-

ing the standard multiplier method [Fearon et al., 2017],

successive sampling [Johnston et al., 2010], and a network-

based approach [Crawford et al., 2018b]. This RDS sample

began with 6 seeds and includes 600 participants from the

Kohtla-Jarve region. The data on each member of the study

includes their arrival time, degree, recruiter identity, and

allotted coupons. We use the IIE approach of Section 4, es-

timating the population size to be Ñ = 795 and the average

wait time to be 1/¼̃n = 1/0.23. This is within the intervals

implied by previous estimates [Wu et al., 2017].

These data further include an indicator of whether the par-

ticipant is using antiretroviral therapy (ART) for HIV. We

use this covariate and the RDS sample to construct a data-

realistic simulation study to showcase how a hypothetical

network-based covariate could assist in estimating popula-

tion size. A simple change to the study could have asked

each person to share their ART status with their social con-

nections in the PWID population (to hopefully increase

screening for HIV and uptake of ART). The auxiliary infor-

mation to be collected from each RDS participant is then a

measurement of how many people have shared their ART

status with them since the beginning of the study. Letting

xART ∈ {0, 1}n be the indicator of ART status, the re-

sponses to this question, Q = (q1, q2, . . . , qn), could follow

a Poisson model similar to the one described in Section 5,

qi ∼ Poisson
([{

AS · lt(1n1¦n )
}
xART

]
i

)
.

The simulation proceeds as follows: we first select an AS

that is compatible with the observed RDS. Treating this AS

as ground truth, we set N = 1105 (this is the most likely

population size that could have generated that AS). Finally,

we set ¼ = ¼̃n = 0.23 as was estimated without auxiliary

information. We incorporate the auxiliary information in Q
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Table 2: Population Estimation MAD

Algorithm MAD Std.

MLE 219.1 9.3

IIE w/ Info 181.3 6.8

This table displays the MAD of population size esti-

mates for the case study of Section 6.

to improve our estimation of N as outlined in Section 4.2.

Table 2 compares Ñr and N̂ , and we see that when such

auxiliary information is available, leveraging it improves

population size estimation (by approximately 20%).

7 CONCLUSION

RDS provides access to populations often excluded from sci-

entific discourse. Although this sampling process presents

a variety of inferential problems, it also contains valuable

information on the social network connecting study partic-

ipants. This paper expands on the existing literature with

new mechanisms for improving estimation of the study par-

ticipant arrival rate, complete subgraph, and population size.

The first accounts for the the bias of the MLE using concepts

from indirect inference, and the second proposes a mech-

anism for including auxiliary information. Both methods

combine to achieve cutting edge performance.

Although modeling arrival time data as independent and

exponential is natural, loosening this assumption would al-

low for more realistic dependencies in the RDS model. For

example, future work could consider wait times that depend

on recruiter covariates (accounting for recruiter preferences).

Additionally, the inferential advantage of including auxil-

iary information in the estimation procedure depends on the

quality of this data. Future research could focus on optimiz-

ing auxiliary information collection for inferential targets

such as population size and degree distribution. Lastly, ac-

curate recovery of the sample subgraph is essential for tasks

beyond population size estimation, such as running random-

ized experiments and measuring the efficacy of interventions

on the RDS sample.
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A ADDITIONAL SIMULATION RESULTS FOR SECTION 3.3

This section contains simulation results that are referenced in Section 3.3 of the main text. It continues the empirical

evaluation of the IIE for the two model parameters in Equation (1): AS , the subgraph between study participants, and ¼, the

study paricipant arrival rate. Table 1 in Section 3.3 of the main text shows that ÃS
n , the IIE of AS , has a higher true positive

rate than ÂS
n , the MLE of AS , across all simulation settings.

We first evaluate the error rates of ÃS
n and ÂS

n in more detail. Table 3 reports the true negative rates (TNR) of ÂS
n and ÃS

n

over a range of graph densities and population sizes. It shows that there is no discernible difference between the TNR of

the IIE and MLE in these settings. Therefore, the higher true positive rates of ÃS
n depicted in Table 1 do not come at the

expense of overall accuracy.

We also compare the performance of the IIE and the MLE for ¼ in terms of MSE. Table 4 shows that the IIE, ¼̃n, is

considerably more accurate than the MLE, ¼̂n, over a range of graph sizes and densities. We observe that ¼̃n has an MSE

that is less than 50% of the MSE of ¼̂n across all settings. Additionally, the difference in MSE between ¼̂n and ¼̃n is slightly

higher with larger population sizes, which correspond to lower sample proportions (since the sample size is held fixed at

n = 100), and higher average degrees.

Table 3: True Negative Rates of ÂS
n and ÃS

n (%)

MLE IIE

Pop. Deg Average Std. Average Std.

1000 5 99.61 0.01 99.61 0.01

1000 10 99.08 0.01 99.08 0.01

1000 15 98.61 0.02 98.61 0.02

5000 5 99.92 0.00 99.92 0.00

5000 10 99.83 0.01 99.82 0.01

5000 15 99.72 0.01 99.72 0.01

10000 5 99.96 0.00 99.96 0.00

10000 10 99.90 0.00 99.90 0.00

10000 15 99.87 0.01 99.87 0.00

These are the true negative rates of ÂS
n and ÃS

n for a series of population sizes (Pop.) and average degrees (Deg.). The standard

deviations reported quantify the Monte Carlo error associated with these estimates based on 100 simulations.
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Table 4: MSE of ¼̂n and ¼̃n

IIE MLE

Pop. Deg. Mean Sd Mean Sd

1000 5 0.09 0.02 0.21 0.02

1000 10 0.11 0.02 0.28 0.03

1000 15 0.09 0.02 0.24 0.03

5000 5 0.11 0.02 0.25 0.02

5000 10 0.13 0.03 0.36 0.04

5000 15 0.10 0.02 0.27 0.03

10000 5 0.10 0.02 0.28 0.03

10000 10 0.12 0.03 0.32 0.04

10000 15 0.09 0.02 0.29 0.03

These are the MSEs of the λ estimators for a series of population sizes (Pop.) and average degrees (Deg.). The standard deviations

reported quantify the Monte Carlo error associated with these estimates over 100 simulations.

B STOCHASTIC BLOCK MODEL ANALYSIS

This section provides the details of Simulation 2 from Section 5 in the main text. In this experiment, we test the performance

of our population size estimators in a more complex graph model setting. The Erdos-Renyi model we employ assumes that

edges between members of the population form with the same probability, p. However, individuals may be more likely to

form connections with one group of people than another. Consider the following generative model for the population graph,

G = (V,E). The hidden population is divided into two groups, VA ¦ V and VB = V \ VA with sizes NA = |VA| and

NB = |VB |. The probability of an edge between members of the same group is pin, and the probability of a connection

between members of different groups is pout. For constant c ∈ [0, 1], we set pout = cpin so that pin g pout. This is an

example of a stochastic block model (SMB), which is used throughout network analysis [Holland et al., 1983, Lee and

Wilkinson, 2019, Khabbazian et al., 2017]. We let p∗ = P ({i, j} ∈ E), where nodes i and j are drawn uniformly at random

from V . Defining Eout and Ein as the set of edges between and within groups respectively, we derive an expression for p∗

in terms of pout, c, NA, and NB ,

p∗ = P({i, j} ∈ E)

= P({i, j} ∈ Eout) ∗ pout + P({i, j} ∈ Ein) ∗ pin

=
2NANB

(NA +NB)(NA +NB − 1)
pout

+
NA(NA − 1) +NB(NB − 1)

(NA +NB)(NA +NB − 1)
pin.

Because cpout = pin,

p∗ =
2cNANB +NA(NA − 1) +NB(NB − 1)

(NA +NB)(NA +NB − 1)
pout.

We use this expression to set the overall edge prevalence in the simulations below, making N = 5000 and Np∗ = 10.

We assess the performance of the population size estimators in the SBM setting. Assume that we observe the group

membership of each study participant, and define iA, iB as the number of individuals in groups A and B respectively that

are recruited before participant i+ 1. Labelling Ni = I(i ∈ VA)(NA − iA) + {1− I(i ∈ VA)} (NB − iB),

P(dui = d) =

d∑

j=0

(
Ni

j

)
pjin(1− pin)

Ni−j

(
(N − i)−Ni

d− j

)
pd−j
out (1− pout)

(N−i)−Ni−(d−j). (6)
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We define the following estimators based on Equation 6,
{
p̂in, p̂out, N̂

}
= arg max

p̌in,p̌out,Ň
logL(Ň , p̌in, p̌out|ÂS

n) +Rout(p̌out) +Rin(p̌in),

{
p̃in, p̃out, Ñ

}
= arg max

p̌in,p̌out,Ň
logL(Ň , p̌in, p̌out|ÃS

n) +Rout(p̌out) +Rin(p̌in),

{
p̃rin, p̃

r
out, Ñ

r
}
= arg max

p̌in,p̌out,Ň
logL(Ň , p̌in, p̌out|ÃS,r

n ) +Rout(p̌out) +Rin(p̌in),

(7)

where Rout(p̌out) = log Beta(p̌out; aout, bout) and Rin(p̌in) = log Beta(p̌in; ain, bin).

In our simulation, c = 0.3, NA/N = 0.6, and auxiliary information is as specified in Simulation 1 of Section 5. We assess

the performance of correctly and incorrectly specified estimators, recognizing that the correctly specified estimators require

observing the group label of study participants (but not of their unobserved neighbors). The correctly specified estimators are

listed in Equation 7, and the incorrectly specified estimators assume the Erdos-Renyi model. For every correctly specified

estimator, eRout(p̌out) = Beta(p̌out; aout, bout) and eRin(p̌in) = Beta(p̌in; ain, bin) are centered at pin and pout respectively

with aout, ain = 10. For the misspecified estimators, we center eR(p̌) = Beta(p̌; a, b) at pin and set a = 10. Figure 4

indicates that the estimators based on the correctly specified likelihood perform an order of magnitude better than the

estimators assuming the Erdos-Renyi model. Additionally, the relationships between N̂ , Ñ , and Ñr mirror the results in the

Erdos-Renyi setting (Figure 3). Lastly, both the correctly and incorrectly specified network-based estimators outperform the

successive sampling estimator with Nmax/N = 3.
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7.5

SS Mean Misp. MLE Misp. IIE Misp. IIE w/ Info MLE IIE IIE w/ Info

Estimator

lo
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)

Figure 4: This figure compares the performance of a successive sampling estimator (mean of the posterior distribution),

N̂ , Ñ , and Ñr in the SBM setting. The estimators proceeded by “Misp." incorrectly assume the Erdos-Renyi model. The

figure includes 90% Monte Carlo confidence intervals for each estimator.

We assess the sensitivity of incorrectly specified population size estimators to the SBM setting more extensively in Table 5

(auxiliary information is also as specified in Simulation 1 of Section 5). To illustrate the effect of misspecification, we vary

NA/N and c. As NA/N → 1 (or 0) or c → 1, the Erdos-Renyi model becomes a better approximation of the truth. As

NA/N → 0.5 and c → 0, there is more heterogeneity in the graph edge probabilities, and the approximation becomes worse.

We can see this pattern in Table 5. The first line of the table, NA/N = 1 and c = 1, shows the MAD of our population size

estimators under the Erdos-Renyi model for comparison. When c = 0.3 and NA/N = 0.5, the error of the estimators is

highest, and when c = 0.9 and NA/N = 0.75, it is lowest; i.e., when c = 0.3 and the groups are evenly split, the estimators

demonstrate a 150%− 300% increase in MAD over the estimators in the Erdos-Renyi model setting, while when c = 0.9
and NA/N = 0.75, the increase is only 19%− 34%. The rest of Table 5 illustrates a continuous spectrum between these

two extremes. Lastly, as mentioned in Section 5 of the main text, the incorrectly specified IIEs still perform better than their

MLE counterparts.

C LATENT SPACE SENSITIVITY RESULTS

In this section, we present a sensitivity analysis referenced in Section 5. Instead of drawing the hidden population graph

from an Erdos-Renyi distribution, we generate it from a latent space inner product model in 2-dimensions. In this context,
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Table 5: Population Size Estimation MAD with Incorrect Strong Regularization Information in the SBM Setting

NA/N c MLE IIE IIE w/ Info

1.0 1.0 861.6 560.9 459.4

0.50 0.3 2318.7 2071.8 2021.4

0.50 0.6 1711.1 1425.1 1344.8

0.50 0.9 1116.1 755.6 638.7

0.75 0.3 1784.1 1519.8 1443.4

0.75 0.6 1502.3 1178.5 1079.9

0.75 0.9 1039.5 672.6 614.2

This table displays the Mean Absolute Deviation (MAD) of the population estimators over a series of NA/N and c
values. We use strong regularization information centered at pin (a = 10 in the standard log Beta(p̌; a, b) regularizer

term) to mimic ignorance of the two block structure. These results are averaged over simulations with Monte Carlo

standard deviations below 25.

each member of the hidden population, i ∈ V , has an unobserved “position," xi ∈ R
2, in latent space. The probability of an

edge between individuals i, j ∈ V is dictated by the inner product between xi and xj ,

P ({i, j} ∈ E) =
eφ0+φ1x

¦

i xj

1 + eφ0+φ1x¦

i xj

,

where ϕ0, ϕ1 ∈ R. In this simulation setting, we set the population size equal to 5000. For each i ∈ V , we draw xi

independently,

xi ∼ Normal

{
(0, 0)¦,

(
0.01 0
0 0.01

)}
,

and set ϕ0 = −6.21 and ϕ1 = 1. This results in an expected overall degree of about 10. Under these parameters, the

edge probabilities are approximately 1.5× 10−3 to 2.7× 10−3. The regularization term is set to log Beta(p̌; a, b), where

Beta(p̌; a, b) is centered at an approximation of the overall edge density with a = 0.1 (weak regularization). Figure 5

indicates that the maximum likelihood estimator, N̂ , based on the Erdos-Renyi assumption still has a lower maximum

absolute deviation (MAD) than the successive sampling estimator with Nmax/N = 5. Additionally, the indirect inference

estimator, Ñ , and the indirect inference estimator with auxiliary information, Ñr (using the same information as Simulation

1 of Section 5), outperform N̂ . This provides evidence that our estimation methods are still advantageous in misspecified

settings.

D SIMULATION RESULTS UNDER STRONG REGULARIZATION FOR SECTION 5

In this section, we present the results of a simulation under strong (correctly specified) regularization. As described in

Section 4.1 of the main text, we use a regularized MLE approach to estimate population size to avoid specifying informative

priors that are difficult to justify scientifically. The regularization function, R(p̌) = log Beta(p̌; a, b), incorporates informa-

tion on edge prevalence, p — where Beta(p̌; a, b) is a Beta distribution that is centered at p with a variance that is inversely

proportional to a. Here, we use the same setup as Simulation 1 but vary the hyperparameters in the regularizer.

In Figure 3 of Section 5 in the main text, we compare the MAD of N̂ (MLE), Ñ (IIE), and Ñr (IIE with auxiliary

information) with a = 0.1, and a series of Successive Sampling (SS) estimators. We observe that Ñr improves on Ñ , and

both are more accurate than N̂ . Additionally, the performances of the SS estimators are highly dependent on their prior.

In Figures 6a and 6b, we show the log(MAD) of N̂ , Ñ , and Ñr with a = 1 and a = 10 respectively. The relationships

between estimators N̂ , Ñ and Ñr mirror Figure 3. Encouragingly, the MAD of our population size estimators decreases

significantly as a increases, and, with strong regularization information, N̂ , Ñ and Ñr are consistently more accurate than

the SS estimators.

E IIE AND SUCCESSIVE SAMPLING ALGORITHM DETAILS

In this section, we present the details of Algorithms 1 and 2 (Algorithm 1 is described in Section 3 of the main text).

3744



8.4

8.6

8.8

SS Mean MLE IIE IIE w/ Info

Estimator

lo
g

(M
A

D
)

Figure 5: This figure compares the performance of a successive sampling estimator (mean of the posterior distribution),

N̂ , Ñ , and Ñr when the Erdos-Renyi assumption is violated by drawing the population graph from a latent space model. It

includes 90% Monte Carlo confidence intervals for each estimator.

Both algorithms construct the IIE by finding the parameters under which the expected value of a calibration statistic is equal

to the observed value, where the calibration statistic is set equal to the MLE of ¼. In the simulations of Section 5 in the main

text, we use K = 9 grid values centered at ¼̂n, the MLE for the observed data. Specifically, we set ¼k = ¼̂n−(k−4)×0.1 for

k ∈ {1, 2, . . . , 9}. The set of candidate parameters are
{
¼k, AS

λ(Y, ¼k)
}9

k=1
and

{
¼k, AS,r

λ (Yr, ¼k)
}9

k=1
for Algorithms 1

and 2 respectively. For each candidate parameter, we approximate the expected value (setting J = 25) of the MLE of ¼,

labeling this quantity ¼̂k
n. The IIE is the set of parameters under which ¼̂k

n is closest to ¼̂n.

As described in Section 4.2 of the main text, Algorithm 2 augments Algorithm 1 with auxiliary information. We note that

this implies the MLE is taken with respect to different likelihoods in Algorithms 1 and 2. Defining ´ ∈ R
p for p ∈ N as the

parameter that indexes the distribution of Q, the MLE referenced in Algorithm 2 is

{
ÂS

n , ¼̂n, ̂́n
}
= arg max

AS∈A,λ∈R+,β∈Rp
Ln(Y,Q|AS , ¼, ´).

Algorithms 1 and 2 take about 24 hours to run with a sample size of 100. They are implemented in the code included in the

Supplementary Material.

Lastly, we use the SSPSE package [Handcock et al., 2023] under a “flat" prior setting to construct the SS estimators analyzed

in Figures 3 and 6.
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Figure 6: This figure compares the performance of N̂ , Ñ , and Ñr under strong regularization information over a series of

population sizes, N , and average degrees, Np, with 90% Monte Carlo confidence intervals.

Algorithm 2: The Indirect Inference Estimator with Auxiliary Information

We want to find the estimator,

¼̃r
n ∈ arg min

λ∈R+

∣∣∣∣EZ∼P
A

S,r
λ

(Yr,λ),λ

{
¼ (Zr)

}
− ¼ (Yr)

∣∣∣∣ ;

Generate a grid of ¼k values, k ∈ {1, 2, ..,K} ;

for k in {1, 2, ..,K} do

for j in {1, 2, .., J} do

Find AS
k,j = maxAS ,β L(AS , ´|¼k,Yr), where ´ indexes the distribution of Q;

Simulate wait time vector wk,j from the model defined by parameters AS
k,j , ¼

k;

Find ¼̂k,j
n , ÂS,k,j

n by maximizing the likelihood given the generated data Zr
k,j = (wk,j , GR,d,Q);

end

Save vector (¼k, AS
k , ´

k, ¼̂k
n =

∑J
j=1 λ̂k,j

n

n );

end

Calculate k∗ = argmink

∣∣∣¼̂k
n − ¼ 

r(Y
r)
∣∣∣;

Our estimator is then (
¼̃r
n, Ã

S,r
n , ˜́r

)
=

(
¼k∗

, AS
k∗ , ´k∗

)
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