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Abstract

Background/objectives: Epileptiform activity (EA), including seizures and peri-

odic patterns, worsens outcomes in patients with acute brain injuries (e.g.,

aneurysmal subarachnoid hemorrhage [aSAH]). Randomized control trials

(RCTs) assessing anti-seizure interventions are needed. Due to scant drug effi-

cacy data and ethical reservations with placebo utilization, and complex physi-

ology of acute brain injury, RCTs are lacking or hindered by design constraints.

We used a pharmacological model-guided simulator to design and determine

the feasibility of RCTs evaluating EA treatment. Methods: In a single-center

cohort of adults (age >18) with aSAH and EA, we employed a mechanistic

pharmacokinetic-pharmacodynamic framework to model treatment response

using observational data. We subsequently simulated RCTs for levetiracetam

and propofol, each with three treatment arms mirroring clinical practice and an

additional placebo arm. Using our framework, we simulated EA trajectories

across treatment arms. We predicted discharge modified Rankin Scale as a

function of baseline covariates, EA burden, and drug doses using a double

machine learning model learned from observational data. Differences in out-

comes across arms were used to estimate the required sample size. Results:

Sample sizes ranged from 500 for levetiracetam 7 mg/kg versus placebo, to

>4000 for levetiracetam 15 versus 7 mg/kg to achieve 80% power (5% type I

error). For propofol 1 mg/kg/h versus placebo, 1200 participants were needed.

Simulations comparing propofol at varying doses did not reach 80% power

even at samples >1200. Conclusions: Our simulations using drug efficacy show

sample sizes are infeasible, even for potentially unethical placebo-control trials.

We highlight the strength of simulations with observational data to inform the

null hypotheses and propose use of this simulation-based RCT paradigm to

assess the feasibility of future trials of anti-seizure treatment in acute brain

injury.

Introduction

Up to 50% of patients with acute brain injury undergoing

continuous electroencephalography (EEG) exhibit epilep-

tiform activity (EA).1–5 EA, characterized by seizures,

periodic, and rhythmic patterns, is strongly linked to

higher mortality rates and poor functional outcomes in

patients with acute brain injuries (including trauma,

ischemic, and hemorrhagic stroke).6–9 There is limited

data on how EA responds to treatment, and whether

treatment improves outcomes.6,7 The existing studies

examining anti-seizure treatment of EA have major limi-

tations in design and analysis resulting in inconclusive or

conflicting findings.10–13 The lack of evidence to guide
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treatment results in broad anti-seizure treatment, with

anti-seizure medications (ASMs) such as levetiracetam or

anesthetics such as propofol being commonly prescribed

to manage EA.4,9–14 The goal of this study is to use obser-

vational data to guide trial designs that address the limi-

tations of prior studies and ultimately move the needle

toward feasible and practical clinical trials of anti-seizure

treatment of EA.

Randomized controlled trials (RCT) are considered the

gold-standard approach to assess the effectiveness of clini-

cal treatments and establish evidence-based treatment

guidelines.15 However, conducting RCTs for EEG-guided

anti-epileptiform treatment faces challenges stemming

from the variability in drug response among patients.

Individuals may need different dosage regimens and treat-

ment durations, while clear definitions of treatment tar-

gets and endpoints are ill-defined. Moreover,

standardizing the timing of EEG initiation and determin-

ing the time to randomization can be challenging due to

the variable presentation time from ictus. Lastly, random-

izing individuals into treatments that are considered likely

to be worse than the standard of care is problematic due

to ethical considerations. To design a robust trial, it is

imperative to meticulously consider these factors.

One of the key aspects of a study design is the determi-

nation of a reasonable sample size via a power analysis.16

Sample size selection in prior RCTs on EEG-guided

anti-seizure treatment were not based on realistic power

analysis calculations. Limited availability of data on phar-

macodynamic heterogeneity and poor-quality data on

outcomes resulted in unrealistic null distributions and

consequently underestimation of the required sample

size.13,17 To address these challenges, we propose leverag-

ing observational data in a simulation-aided design of a

randomized experiment and power analysis. This

simulation-aided approach assists in establishing appro-

priate sample sizes, optimizing the trial design, and

improving the reliability of future estimates.18–20

In this study, we employed mechanistic pharmacologi-

cal model-guided simulations to assess the feasibility of a

trial investigating the effectiveness of anti-seizure medica-

tion (ASM) treatment for EA in a subgroup of acute

brain injury patients with aneurysmal subarachnoid hem-

orrhage (aSAH). The target endpoint for these trials was

functional outcomes at discharge as measured by the

modified Rankin Scale (mRS). Our analysis focuses on

evaluating the impact of trial design and drug efficacy in

reducing EA burden on the required sample size needed

to achieve sufficient statistical power. To accomplish this,

we developed a simulator that incorporated real EEG and

ASM data from aSAH patients, enabling us to understand

and simulate patients’ epileptiform activity trajectories

during their hospitalization, including the interactions

between EEG and ASM. Using the trained model, we con-

ducted simulated RCTs, varying the ASM doses, to inves-

tigate their effects on the modified Rankin Scale.

Methods

We developed a framework to leverage observational data

to inform the effect size estimation for the efficient design

of experiments in clinically and physiologically complex

scenarios (see Fig. 1). Specifically, we studied sequential

ASM treatment regimes, where administered treatments

not only affect the short-term state (i.e., EEG findings)

but also the long-term outcome of a patient (e.g., dis-

charge modified Rankin Score [mRS]), while at the same

time capturing patient-level heterogeneity in response to

treatment. We designed a simulated randomized control

trial that used an estimated mechanistic simulator and

long-term effect predictor learned using observational

data. The empirical distribution of the pre-treatment cov-

ariates is similar to the one in the observational data. This

design allowed us to perform power analyses and com-

pare various choices of treatment arms and outcomes.

Patient cohort

The observational study was approved by the Institutional

Review Boards of the Massachusetts General Hospital and

Duke University. Informed consent was not required. The

EEG recordings and clinical and demographic variables

were extracted from a retrospective database of adult (age

≥18 years) aSAH patients consecutively admitted to Massa-

chusetts General Hospital and underwent cEEG monitoring

between 2012 and 2017. Per institutional protocol aSAH

patients with Hunt and Hess scores ≥3 and Fisher scores ≥3

undergo 10 days of cEEG monitoring for ischemia detec-

tion. From the initial database of 136 patients with aSAH,

we considered a subset of 48 patients who underwent more

than 24 h of EEG and had EA during monitoring. We

selected this population as all had cEEG initiation at the

same time point in their disease course, allowing for homo-

geneity in the time of EA measurement and treatment

interventions. Here, EA was defined as seizures, generalized

and lateralized periodic discharges (GPDs and LPDs), and

lateralized rhythmic delta activity (LRDA). We included

LPDs, GPDs, and LRDA in our definition of EA as all of

these are highly associated with seizures and are frequently

treated with anti-seizure medications in clinical

practice.4,6,9,21 In addition, seizures as well as periodic and

rhythmic patterns are shown to be associated with similar

patterns of metabolic stress.22–25 Finally, in clinical practice

these patterns are frequently overlapping/not mutually

exclusive or on a continuum and isolating to a single pat-

tern would make measuring a response to a treatment trial
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more challenging in the present work.5,21 Generalized

rhythmic delta activity (GRDA) was excluded from our

definition of EA as it is a more benign pattern that is not

associated with seizures.4 Clinical and demographic vari-

ables for the selected patients are shown in Table 1. The

median time from admission to EEG initiation was

Figure 1. Overall analysis framework and a typical patient’s timeline. (A) The analysis framework consists primarily of two parts—estimation

using observational data (shown in gray) and simulated RCTs (shown in red). (B) The schematic shows the timeline of a typical patient

participating in a prototypical RCT.
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24 hours. Discharge outcome was measured using the

modified Rankin Scale. We dichotomized outcomes as

good (mRS < 4) and poor (mRS ≥ 4). The data and soft-

ware to reproduce these findings are available in a publicly

accessible repository at bdsp.io.

EA burden estimation

Increasing EA burden is associated with worse outcomes

not only in aSAH patients but also across a wide spec-

trum of acute brain injury patients.6–8 We therefore

examined the interaction of EA burden and ASM treat-

ment with outcomes. To measure EA burden in our

cohort of aSAH we followed these steps: First, a previ-

ously developed convolutional neural network (CNN)

classifier was used to label every consecutive 2-sec seg-

ment of cEEG data as having one of the EA patterns (sei-

zure, GPD, LPD, LRDA) or not.26–28 Then, the EA

burden time series was defined as the proportion of 2-sec

segments having EA in a moving non-overlapping 10 min

window.6,7 We used a clinically meaningful summary to

quantify EA burden as Emax: the maximum EA fraction

among 6-h sliding windows. This measure of EA burden

was selected based on our prior work demonstrating that

the maximum EA burden within a sliding 6-h window

has a significant negative effect on discharge neurologic

outcome.7

Anti-seizure medication and PK/PD modeling

We modeled the short-term effect of ASMs on EA using a

mechanistic pharmacokinetics-pharmacodynamics (PK/

PD) model.7 PK/PD models are based on biological pro-

cesses and the parameters have physical or biological

interpretation. Estimating PK/PD parameters for each

patient allowed us to account for patient heterogeneity

across the cohort, which is important in our application.

Thus, using mechanistic models guarantees interpretabil-

ity of the estimates and is well-suited for our application

as these models require fewer data to calibrate compared

to empirical (nonparametric) statistical models. We used

a one-compartment PK model to estimate the concentra-

tion of drugs for each patient in the cohort.29 While PK

models with more compartments may more accurately

capture changes in serum concentration on very short

time scales, one-dimensional models sufficed for the treat-

ment time scales of hours considered in the present study,

and these simpler models have fewer parameters to esti-

mate. Furthermore, we used Hill’s PD model to estimate

the short-term effectiveness of the ASMs in reducing the

EA burden.30 We estimated the drug concentration neces-

sary to reduce EA burden in a 10-min window by 50%

from the maximum level and the steepness of the

effect-onset curve (Hill’s coefficient), as previously

described by our group.7,31 We estimated the PK/PD

parameters using the observed EA burden and ASM time

series from each patient to account for inter-patient het-

erogeneity. Our estimation method minimizes the

mean-squared error between the simulated and observed

EA burden trajectories. We delineate the formal mathe-

matical setup of the pharmacological models in

Appendix S1.

Discharge outcome modeling

Following our result showing Emax in a 6-h sliding win-

dow negatively impacts outcomes, with an effect size of

13.5%,7 we focused on modeling the outcome (mRS) as a

function of Emax and average ASM concentration during

treatment. We adapted the doubly robust machine learn-

ing causal effect estimator32 using gradient boosting trees

to learn discharge outcomes as a function of Emax and

ASMs.7 We adjusted for all baseline features (described in

Table 1) and their PK/PD parameters as confounders.

Simulated controlled trials

We designed trials to estimate the effectiveness of varying

treatment regimens for a commonly prescribed ASM,

levetiracetam, and a commonly prescribed anesthetic, pro-

pofol. We used the models learned using the observa-

tional data (as described in the previous section) to

simulate RCTs by generating random samples of patients’

EA burden over time (as a function of the ASM treatment

regime) as well as discharge outcomes (as a function of

Table 1. Descriptive table showing the distribution of demographic

and clinical covariates.

Variable Value

Age (median, Q1–Q3) 61 (51–74)

Gender, F (N (%)) 38 (79%)

Hunt and hess score

1 6 (12.5%)

2 6 (12.5%)

3 14 (29.1%)

4 15 (31.3%)

5 7 (14.6%)

Fisher Score

1 0 (0.0%)

2 2 (4.2%)

3 34 (70.8%)

4 12 (25.0%)

Time to EEG, h (median, Q1–Q3) 24 (24–48)

EEG duration, h (median, Q1–Q3) 183 (139–230)

ASM treatment, N (%) 32 (66.7%)

Note: We provide the percentage of each category for categorical var-

iables and the interquartile range (IQR) for continuous variables.
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EA burden and ASM exposure). We analyzed how the

required sample size and associated power varied with the

choice of treatment arms and outcomes defined below.

We evaluated the outcome measure of discharge neuro-

logic status measured using the modified Rankin Scale

(mRS) dichotomized as good (mRS: 0–3) and poor

(mRS: 4–6) outcome.7

Treatment arms

For each of the two drugs, we designed three treatment

arms based on the drug dose plus standard care and a

fourth placebo arm. Our institutional practice is to dose

Levetiracetam every 12 h. However, due to additional

bolus doses and/or changes in dose timings, the average

dosing interval in the observed data was q8 hours. Propo-

fol is dosed as a continuous infusion, with intermittent

boluses as needed. For levetiracetam, we used the follow-

ing three doses (administered every 8 h): (i) 15 mg/kg,

(ii) 7 mg/kg, (iii) 3 mg/kg, and (iv) placebo with stan-

dard care. Similarly, for propofol, the treatment arms

were: (i) 1 mg/kg/h, (ii) 0.5 mg/kg/h, (iii) 0.25 mg/kg/h,

and (iv) placebo with standard care. For both drugs, the

second treatment dose (7 mg/kg for levetiracetam and

0.6 mg/kg/h for propofol) was chosen based on the

median doses used in the observational data. Of the 48

patients with EA, 16 did not receive any anti-seizure

treatment, reflecting existing practice variation in ASM

prescription for patients with EA.4–6,9

We simulated RCTs with varying sample sizes using

our cohort of 48 patients. For each sampled patient, we

simulated a timeline akin to the real-world scenario (as

shown in Fig. 1b). The baseline covariates such as demo-

graphics and medical history were measured at the time

of hospitalization. We considered the first EA measure-

ment as t = 0. After the initial measurement of EA, the

patient was randomized into one of the four treatment

arms for each drug, in addition to the standard of care as

per the observed data. Simulated outcomes were mea-

sured at hospital discharge.

We compared pairwise outcomes for each treatment

arm and computed the power of the analysis. Thus, vary-

ing the sample size and re-performing the analysis

allowed us to identify the smallest sample needed to

achieve a power of more than 80% for each treatment

arm and outcome, with effect sizes as observed in our

data, using a two-sided t-test.

Results

For both drugs of interest, Figure 2 shows the expected

discharge outcomes (measured as binarized mRS) for

each treatment arm estimated using the clinical trial

simulation. Differences in outcome across the arms were

used to define the effect size. We estimated power curves

for three combinations of treatment arms for both levetir-

acetam and propofol (see Figs. 3 and 4). We found that

comparing levetiracetam or propofol to placebo yielded

the maximum power for a given sample size, as opposed

to comparing different treatment intensities. For levetira-

cetam, a sample size of at least 500 patients per treatment

arm is needed to achieve power of more than 80%,

whereas for propofol, at least 600 patients are needed per

treatment arm. The need for large sample sizes can par-

tially be attributed to the relatively small effects of these

drugs on discharge outcome mRS. For levetiracetam, we

found that a reduction of the drug dose from 15 to

7 mg/kg improves the outcome—this may be related to

the potential negative side effects of a high drug dose.

However, further reduction in levetiracetam dose from 7

to 3 mg/kg worsened outcomes, due to the impact of

untreated higher EA burden. Interestingly, for propofol,

we found no or minimal difference in outcomes between

the highest (1 mg/kg/h) versus lowest dose (0.25 mg/kg/

h) treatment arms. This could potentially be explained by

the similar impact of propofol on EA at all three doses

and that the highest propofol dose (1 mg/kg/h) used in

this cohort was also a low dose leading to minimal side

effects.

Discussion

Our findings demonstrate the strength of

simulation-based design and power calculation for ran-

domized trials of anti-seizure treatment of EA in acute

brain injury. This work overcomes limitations of prior tri-

als in the field by defining a data-driven null hypothesis

and demonstrating the feasibility and practicality of vary-

ing trial designs. We propose our approach as a potential

method to assist the design of future trials of anti-seizure

treatment of EA in patients with acute brain injuries. The

approach may enable high-powered and practical trials

that have acceptable likelihood of producing clinically

meaningful and applicable results.

The sample sizes determined by our simulations are

significantly larger than those of prior trials examining

EEG-guided anti-seizure treatments.13,17 A recent trial

comparing suppression of EA for at least 48 h versus

standard of care in patients with cardiac arrest and anoxic

brain injury found no difference in neurologic

outcomes.13 172 subjects (84 per group) were included in

the study. The sample size needed was determined based

on an assumed prevalence of poor outcomes of 99%

extrapolated from other external observational cohorts

where poor outcome ranged from 90% to 100%.13,33,34

The investigators specifically aimed at a 7% lower
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incidence of poor outcomes in the treatment group com-

pared with the control group. This approach to power

calculations did not protect them against possible misspe-

cifications of the null (e.g., if 90% were used as the stan-

dard of care mortality and a 7% reduction were studied,

then the standard difference in proportions power calcu-

lations would suggest sample sizes that are more than

twice their original recommendations). Eventually, their

observed data did not match the experimental null

hypothesis: The observed proportion of poor outcomes

was 90% in their treatment group and 92% in their con-

trol group. A second trial comparing lacosamide to phe-

nytoin for the treatment of non-convulsive seizures

enrolled only 37 subjects per arm for a non-inferiority

trial.17 In the absence of efficacy data for anti-seizure

medications, the sample size determination was based on

consensus from investigators, by contrast to our

data-driven methodology. A sample of 200 subjects was

deemed as a feasible enrollment target, with power calcu-

lations performed for different potential response rates in

both arms. The trial enrolled 74 subjects (37 per arm)

before the withdrawal of funding.17 Generally, it appears

that these studies are underpowered to detect the effects

they are interested in. Both studies come to a null conclu-

sion that there is no evidence of a difference between the

study arms. However, in light of the limitations in defin-

ing the null as detailed above, cautious interpretation is

indicated for any clinical decision-making35,36.

Using our PK/PD models, we included drug effective-

ness in our simulations. Not surprisingly, trials comparing

the drug to placebo required the smallest sample sizes,

although these sample sizes were still significantly larger

than prior trials. There is compelling evidence that EA

can worsen outcomes,7 and therefore trials using a pla-

cebo are likely to be considered unethical. There remains

significant uncertainty on the optimal treatment approach

with multiple treatment strategies employed in current

clinical practice ranging from monotherapy with low-dose

ASM to combination therapy with high-dose ASMs and

anesthetics.12,37 In our simulated trials, we considered a

few of these treatment strategies and demonstrate that

drug choice, dose, and effectiveness all strongly impact

trial design. Further PK/PD modeling of other treatment

approaches used in clinical practice is indicated to define

(A)

(B)

Figure 2. Expected post-discharge outcomes (binarized mRS) under each treatment arm for (A) levetiracetam and (B) propofol estimated using

the observational data. The points show mean point estimate using the observational study and the error bars show standard error. The y-axis is

the probability of poor outcome. mRS, modified Rankin Scale.
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the full range of treatment responses and a reasonable

null model.

A potential explanation for the small effect of

anti-epileptiform treatment under our model is that these

treatments alone may not be the most effective interven-

tion for aSAH patients with EA. Recall that all patients in

the simulation receive standard of care in terms of other

treatments. The development of epileptiform activity in

aSAH patients, particularly high-burden epileptiform

activity, is also a harbinger of delayed cerebral ischemia

(DCI).38 In addition, epileptiform activity is associated

with increased cerebral metabolism, decreased brain tissue

oxygenation, and secondary brain injury.24 Therefore, a

combination of ASM and/or anesthetic treatment with

interventions geared toward increasing cerebral blood

flow may need to be investigated in randomized trials of

EEG-guided treatment in aSAH. Because functional out-

comes are the result of multiple causes, it may also be

appropriate and clinically relevant to investigate more

proximal outcome measures comprised of EEG findings,

(A)

(B)

Figure 3. Power analysis and sample calculation for levetiracetam. (A) We estimate the sample size for 80% power calculated for binary

combinations of treatment arms on binarized discharge mRS scores. (B) For a sample size of 100 units per treatment arm, we change the ED50

for levetiracetam to identify the drug-effect size at which the treatment effect is detected with 80% power on the discharge outcome. ED50,

drug concentration necessary to reduce EA burden in a 10-min window by 50%; mRS, Modified Rankin Scale.
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clinical examinations, and biomarkers of cerebral metabo-

lism in this patient population.

There are several limitations to our study. First, the

model for EEG simulations is based on data from a

single-center, potentially limiting generalizability. We

developed one-compartment PK/PD models from a rela-

tively small cohort of patients, and studies are warranted

to determine PK/PD and drug effectiveness for different

ASMs and anesthetics in the aSAH population with vary-

ing disease severity. As Levetiracetam and propofol levels

are not routinely or frequently measured in clinical prac-

tice, plasma concentrations were not included in our PK

models. Our simulations include interventions geared

toward increasing cerebral blood flow or metabolism only

through standard of care, thus the effects of these inter-

ventions are not being directly investigated in our simu-

lated randomized trials. We evaluated discharge

functional outcomes, whereas greater effect sizes might be

seen with more long-term outcomes (e.g., at 3, 6, or

12 months). Time to randomization in our simulations

was restricted to a median of 24 h (the observed time to

EEG initiation in our cohort), and we did not examine

the impact of delays or longer time windows to randomi-

zation. Early intervention is relevant from a clinical stand-

point given evidence that a higher epileptiform burden is

associated with worse outcomes in acute brain injury

patients.6,7 Finally, we combined all measured EAs into a

single EA burden in our trial and did not distinguish

between EA subtypes or EA frequencies. While ideally,

each pattern type and higher frequencies should be inves-

tigated separately, in clinical practice these patterns are

frequently overlapping, waxing or waning, or on a contin-

uum. Isolating to a single pattern or frequency makes

measuring a response to a treatment trial challenging. For

practical purposes, we binned all patterns together for this

initial study. A future direction is to expand to individual

pattern types and to analyze the dependence of the results

on frequency. This will require additional methodological

development, and an improved deep learning model to

accurately quantify the frequency of rhythmic and peri-

odic patterns. These need to be considered in future itera-

tions of this work with larger observational datasets.

Conclusions

In conclusion, our simulated experiments using clinical

observational data demonstrate that randomized trials of

EEG-guided anti-seizure treatment may currently be

infeasible. Further data is needed to define the natural

course of epileptiform activity in a larger cohort of acute

brain injury patients, describe the electrographic response

of epileptiform activity to ASMs, and the appropriate

therapeutic targets (e.g., EEG alone vs. EEG and bio-

markers of metabolism). Further work is also indicated to

determine which patient clinical profiles (disease type,

severity, metabolism, and EA characteristics) are most

likely to have an electrographic and clinical response to

ASMs, and whether the response increases with a combi-

nation of therapeutic interventions (e.g., ASMs, low-dose

anesthetics, and measures to augment perfusion). Identi-

fying the right cohort, interventions, and outcomes are

likely to increase the yield of such trials. Given the clinical

complexity of acute brain injury (and in this case aSAH),

the dynamic nature of the epileptiform activity, and the

multifaceted pathophysiology of secondary brain injury,

alternative trial designs with multi-tiered interventions are

indicated to determine optimal treatment strategies for

EA. Such trial designs also need to be considered for

Figure 4. Power analysis and sample calculation for propofol. We estimate the sample size for 80% power calculated for binary combinations of

treatment arms on binarized discharge mRS scores. mRS, modified Rankin Scale.
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other neurocritical care interventions. Importantly, these

future studies fit within the simulation-based RCT para-

digm developed in this work that combines modern sta-

tistical tools with biologically sound models.
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function.

1690 ª 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

Simulated Treatment Trials in Acute Brain Injury H. Parikh et al.

 2
3

2
8

9
5

0
3

, 2
0

2
4

, 7
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/acn

3
.5

2
0

5
9

 b
y

 D
u

k
e U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

7
/0

5
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se


	 Abstract
	 Introduction
	 Methods
	 Patient cohort
	acn352059-fig-0001
	 EA burden estimation
	 �Anti-�seizure� medication and PK/PD modeling
	 Discharge outcome modeling
	 Simulated controlled trials
	 Treatment�arms

	 Results
	 Discussion
	acn352059-fig-0002
	acn352059-fig-0003

	 Conclusions
	acn352059-fig-0004

	 Acknowledgment
	 Author Contributions
	 Funding Information
	 Conflict of Interest
	 Data Availability Statement

	 References
	acn352059-bib-0001
	acn352059-bib-0002
	acn352059-bib-0003
	acn352059-bib-0004
	acn352059-bib-0005
	acn352059-bib-0006
	acn352059-bib-0007
	acn352059-bib-0008
	acn352059-bib-0009
	acn352059-bib-0010
	acn352059-bib-0011
	acn352059-bib-0012
	acn352059-bib-0013
	acn352059-bib-0014
	acn352059-bib-0015
	acn352059-bib-0016
	acn352059-bib-0017
	acn352059-bib-0018
	acn352059-bib-0019
	acn352059-bib-0020
	acn352059-bib-0021
	acn352059-bib-0022
	acn352059-bib-0023
	acn352059-bib-0024
	acn352059-bib-0025
	acn352059-bib-0026
	acn352059-bib-0027
	acn352059-bib-0028
	acn352059-bib-0029
	acn352059-bib-0030
	acn352059-bib-0031
	acn352059-bib-0032
	acn352059-bib-0033
	acn352059-bib-0034
	acn352059-bib-0035
	acn352059-bib-0036
	acn352059-bib-0037
	acn352059-bib-0038


