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The underwater acoustic (UWA) channel exhibits large spatial-temporal dynamics. This work focuses on
adapting the transmission power to the channel condition to achieve energy efficiency in UWA communi-
cations. To tackle the unknown channel variation, a reinforcement learning (RL) algorithm called Dyna-Q is
introduced. Consider the continuous variation of UWA channels. Instead of using a fixed action space in the
Dyna-Q, an adaptive action space with an updated Q-value iteration is proposed in this work. The switching

of the transmission power level occurs on a block-by-block basis during transmission, aiming to maximize
the system’s long-term energy efficiency performance. Using the widely-used communication technique,
Orthogonal Frequency-Division Multiplexing (OFDM), as an example, both simulations and experimental data
processing results demonstrate that the proposed method outperforms two comparative methods, including the
original Dyna-Q with fixed action spaces.

1. Introduction

The underwater acoustic (UWA) channel is a complex and un-
predictable process characterized by significant spatial and temporal
variations. To ensure efficient UWA communications, it is necessary
to adapt the communication strategy to the ever-changing channel
conditions. This study investigates the use of reinforcement learning
(RL) to enable adaptive switching among different transmission power
levels based on the current channel state.

Due to the widespread application of batteries in underwater com-
munication nodes, energy efficiency (EE) plays a crucial role in UWA
communication systems, aiming to regulate the transmission power of
acoustic devices to enhance overall communication performance under
the constraint of limited energy. The energy-efficiency maximization
problem can be formulated as a Markov decision process (MDP), where
the transmitter’s action involves selecting an appropriate power level,
and the system’s state depends on both the transmitted power and the
channel condition. RL is a widely-used learning approach to solve MDP
problems, in which an agent takes intelligent actions in an unknown
environment, learning through a combination of exploration and ex-
ploiting acquired knowledge to maximize a long-term reward [1,2].
In [3], a model-based RL technique was proposed to optimize adaptive
transmission and maximize EE. In [4], an adaptive power allocation
based on Dyna-Q was proposed to minimize the energy consumption of
the FSK communication system in time-varying underwater channels.

A MAC protocol based on lightweight Q-learning was proposed in [5]
to improve the EE of wireless sensor networks. In [6], a hot-booting
Q-learning algorithm was proposed for underwater adaptive modu-
lation and coding, incorporating an additional virtual learning stage
to optimize the system performance including energy consumption.
An improved RL method is proposed in [7] to maximize both energy
efficiency and spectral efficiency for a UWA communication system.
In [8], a Dyna-Q method is proposed to maximize the defined reward
function of an underwater image communication system, and energy
consumption plays a key role in evaluating its long-term performance.

Due to the use of neural networks in the RL methods with a
continuous action space, there is always a higher probability of failure
to converge [9]. Hence, the RL method with a discrete action space
is more widely applied in UWA communication systems which have a
relatively low-frequency interaction with the environment due to the
low sound speed in the water and therefore have a stronger demand
for reliability.

Existing works for EE maximization based on RL with discrete
action spaces, such as Q-learning and Dyna-Q, use fixed action sets.
However, prior knowledge is essential for the discretization of the
action space like the transmission power. A small-size action space
may fail to include the optimal transmission power, while the action
space with a large size tends to increase the computation complexity
and deteriorate its convergence performance. Moreover, there is an
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expected applicability degradation to the fixed action space of RL in
a time-varying environment.

As per the use of a model, RL algorithms can be categorized into
two types: model-based methods and model-free methods. Dyna-Q
is a specific RL algorithm that combines both approaches to learn
optimal policies in stochastic environments. Its effectiveness has been
demonstrated in various domains, including power control in wireless
communication systems. It can be leveraged to learn the optimal power
control policy. In the mentioned approach, an RL agent is employed at
the transmitter, which interacts with the environment to determine the
most suitable power level for transmission. The agent receives rewards
based on the performance metric defined based on EE and subsequently
updates its policy accordingly.

In this work, an adaptive action space is introduced in the proposed
RL method. Both simulations and experimental data processing reveal a
superior performance of the proposed method compared with the other
two comparative methods.

The main contribution of this work is summarized as follows.

» An action space with an adaptive size is proposed in the Dyna-Q
algorithm. Besides the removal of the prior knowledge require-
ment, it allows the agent to explore and add potential optimal
actions to its action space to improve the performance;
Additionally, a cumulative modified EE is proposed to evaluate
the system performance. Instead of summing the EE of all the
transmission blocks directly, the energy consumption of failed
communication is also taken into account;

+ and a field trial was conducted to evaluate the performance of the

proposed method along with comparative methods.

The rest of the paper is structured as follows. Section 2 presents the
formulation of the optimization problem in the RL learning framework
for adaptive switching among communication transmission power lev-
els. Section 3 introduces the Dyna-Q method and an adaptive action
space to address the optimization problem. The convergence of the
proposed method is demonstrated in Section 4 using simulations in
a measured underwater acoustic channel. Section 5 presents the ex-
perimental data processing and results. Finally, Section 6 draws the
conclusion.

2. Problem formulation
2.1. System model

This work considers point-to-point underwater acoustic transmis-
sions in blocks and assumes that the UWA channel is quasi-stationary
for each block. To maximize long-term EE, the system can transmit the
communication signal with an adaptive power level while ensuring its
communication quality.

The underwater acoustic communication power control problem
can be formulated as an MDP in which the transmitter’s action is to
choose an appropriate power level. The system’s state is a function of
the transmitted power and channel conditions. The MDP is defined as
M =(S, A, P,R,y) with

+ a discrete state space S specifying the system or the channel
condition;

+ a discrete action space A = {al,az, ...,a M} where the discrete
action a,,,m = 1, ..., M, specifies the mth communication strategy;

» the state transition probability P;

» the reward R when the state transits to another with an action
from A; and

« a discount factor y € (0, 1].
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The cumulative reward with the discount factor can be maximized
to optimize the long-term system performance,

L
— — I pl
Ry =maxV(s) = max E (; V'R > ¢h)

where L is the total number of transmissions, and E(-) is the expectation
operator of a random variable.
Those elements in the MDP are described next in more detail.

2.1.1. The discrete state space

The state of the UWA communication power control system is
defined as the received signal-to-noise ratio (SNR). It is one of the most
widely-used indicators for the relationship between the received signal
power and the noise level and can be measured simply at the receiver
side [10-12].
P

P.—P.
SNR := 10log,, | —2——toise | 2
Pnoise

where P, is the received signal power and P, is the noise power.

oise
2.1.2. The discrete action space

Communication signals with multiple power levels are implemented
in the action space A = {a,,a,, ..., ay, } and the action a,,(m = 1,..., M)
specifies the communication signal with mth transmission power level.

2.1.3. The reward function

Define Ny, as the number of information bits in each transmission
block. Define Tj,, as the block time duration, and define B as the
system bandwidth. Define B, as the transmission power. Define p
as the average bit success rate in each block transmission. To evaluate
the performance of the system, the EE can be defined as

(Nyig X p)/ (Potock X Totock)s  Ps 2 Py
0, ps < pt

E, =

e 3
where p, is a target average bit success rate. In practical systems, the
transmission block with a bit success rate lower than p, would be
considered as a failed transmission with E, = 0. To maximize the
long-term EE, the reward function is defined as

E, >
R := e Py Pt (4)
_107 Py <pl

where the negative number —10 is a penalty to accelerate converging
by preventing the agent from executing certain actions.

2.2. Optimization

The Bellman optimality equation (BOE) is a commonly employed
concept in RL due to the impracticality of directly solving Eq. (1)
because of the large number of possible actions and states [13]. The
BOE determines the best action to take in each state, considering both
the immediate reward and the expected future discounted rewards.

Since the state transition function in the MDP considered here is not
available, the Q-function, denoted as Q(s', a'), represents the expected
return when taking action 4’ in state s’. It is defined as the expected
value of the sum of the immediate reward R and the maximal Q-value
in the next state s'*! discounted by a factor of y, namely,

0(s',d) =E[R+7y max QO(s"*!,a'*h]. (5)
aHlGA

The optimal action aépt for the /th state, which maximizes the ex-
pected cumulative reward, can be determined by finding the argument
that maximizes the Q-value,

I 1o
o = Arg Tei)t( o(s',a'). 6)
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Fig. 1. Diagram of the RL-assisted UWA communication system.

3. The proposed method
3.1. Dyna-Q algorithm

Based on the channel condition, a Dyna-Q algorithm with an adap-
tive state space and an adaptive action space is employed for transmis-
sion power control in UWA communications.

The Dyna-Q is an RL algorithm. It updates the Q-value using both
real experiences from the environment and simulated experiences gen-
erated by a model to solve the RL problems. It combines both model-
free learning and model-based learning by incorporating a Q-learning
update step along with a model of the environment to improve learning
performance [14].

In the direct RL component, sequences of states, actions, and re-
wards obtained from real interactions with the environment are re-
quired. Based on the Eq. (5), there is an iterative form to approximate
the expectation,

0(s',d) < (1 - wO(s', a") + a[ R + y max(Q(s™!, a+1))]. %)

where « € (0,1) is the learning rate.

The experiences from the real interactions are used for the model-
learning component via M(s',a') « (R, s'*!), where M is the model to
store the relationship between the tuple (s’, ') and the tuple (R, s'*!).
With an estimated environment model, it becomes possible to deter-
mine the subsequent state and reward by utilizing the present state and
action. By considering all potential future states, rewards, and their
corresponding probabilities, the Q-value function can be computed
within the framework of a model-based approach,

oG, dy < Z n(d'|s") 2 T(s"*!, R|s',d)[R
o SR (8)
+ ymax(Q(s"*, a1,

where T(s'*!,R|s!,d') is the model’s estimate of the probability of
transitioning from state s' to state s'*! when taking action o', and
7(d'|s") is the probability of taking action «' in the given state s’
following policy .

3.2. Intelligent switching based on Dyna-Q with an adaptive action space

For an RL-assisted underwater acoustic communication system in
Fig. 1, the receiver will send a feedback signal with necessary informa-
tion once the processing for the communication signal is completed.
Based on the feedback information, the transmitter is expected to
choose optimal actions such as the power levels in this paper via RL
algorithms.

Based on the definition of EE, it is clear that Eq. (3) is a piecewise
function determined by the target average bit success rate p, = 1 — p,.
A commonly used target bit error rate p, is in the range of 1072 to
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Fig. 2. Diagram of the potential optimal action searching.

10-% depending on the system’s objectives, the desired reliability, and
the trade-off between the achievable data rate and the acceptable error
rate. Hence, with the assumption of p, <« 1 when p; > p;, Eq. (3) can
be rewritten as,

E, ~ Nyt /(Potock X Thiock)- ©)

The EE is determined by the transmission power when p, > p,, since
Ny and Ty are fixed for all the transmission signals considered in
this work.

Discretization is an essential part of the RL algorithms with dis-
crete spaces like Dyna-Q. In this work, prior knowledge is required
to determine a decent step size within a certain transmission power
range to make the designed optimal action accessible to the agent.
Moreover, in the time-varying UWA environment, a perfect design of
the discrete space may not be ideal in future time blocks. In this work,
an adaptive action space instead of a fixed equally divided action space
is proposed for improved performance in EE. If all the transmission
power levels are ordered from the lowest to the highest in the action
space, an example of the discrete actions in a fixed action space and
of the potential optimal action are illustrated in Fig. 2. For the action
set Ay = {a;,a,,a3,4a,,...a,} in the fixed action space shown in Fig. 2,
the equally divided transmission power levels yield different EE, and as
leads to the highest EE. However, the optimal action a,,, with a higher
EE than a3 is not included in the action space and is not accessible
to the agent. It is clear that a search for the optimal action should be
continued after reaching the convergence of a3 to obtain a better EE
performance.

Here, a trigger function is defined below to start the search for the
potential optimal action,
L=

[N,/N,]
where L, is the step length of the action searching; L, is the initial step
length of an equally-divided action space in the design stage; [-] is the
integer division operator; N, is the number of continuous selections of
a certain action; and N, is the target number of continuous selections
which determines the tendency for potential optimal action searching.
Once a different action is executed, N, will be reset as 1.

Take Fig. 2 as an example. Once action a; has been executed N,
times, it will be considered as the optimal one in the current action
space, and the potential optimal action searching will be triggered.
Based on the basis of binary search, the length of the searching step
on the left is slashed in half and a temporal action aer,, is added to
the action space at that time until the minimal step length is reached.
Its initial Q-value is copied from a; to encourage the exploration.

The Dyna-Q algorithm with adaptive action space is summarized in
Algorithm 1.

10$)

4. Simulations

There are various techniques for underwater acoustic communica-
tions [15,16]. In this work, the orthogonal frequency-division multi-
plexing (OFDM) technique is employed for simulation and experimental
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Algorithm 1 Dyna-Q Algorithm with adaptive action space

1: Initialize Q-table: Q(s', a') for all state-action pairs

2: Initialize Model: M(s',a') for all state-action pairs with default
values

3: Initialize environment state: s

4: while episode < T, do

5 Choose an action a' via epsilon-greedy based on Q-table

6:  Take action 4’ and observe the reward R and the next state s/*!

7 if o/ = a"~! = a,, then

8 N,«< N, +1

9: else

10: N, <1

11: end if

12: if N, > N, then

13: {al,az,...,am,l,am;,am,...,aM} —
{aj,ap, ...y 1 Gy ap ) (m=1<m' <m)

14: 0(s'd ) — 0", dl,)

15: end if

16: Update Q-table: Q(s',a') =
ymax(Q(s™!, a'*1y)]

17: Update the model: M(s',a') < (R, s"*1)

18: while steps < 7, do

(1 - a0, d) + a[R +

19: Sample a random state—action pair (s', ') from the model

20: Retrieve the predicted reward and next state from the model:
(R, SI+1) P M(sl,al)

21: Update Q-table using the model: Q(s',d') = (1 — a)Q(s', a') +

a[R + ymax(Q(s'*!, a'*1))]
22: end while
23: Set the current state to the next state: s’ « s/*!
24: end while

0.09

o o o o o o
Q =} =} =3 =} =}
@ = a > N =3}
T T T T T T
)
>
. . . . . .

Impluse response magnitude

o
Q

Delay [ms]

Fig. 3. The impulse response of KW channel.

data processing. The OFDM is widely used due to its high spectral
efficiency and robustness to multipath fading [17,18].

The proposed method is first evaluated in a measured underwater
acoustic channel impulse response (CIR) shown in Fig. 3 with additive
white Gaussian noise (AWGN). The CIR was measured on 2022-08-10 at
21:33:48 UTC in the Keweenaw Waterway (KW), Houghton, Michigan,
USA.

4.1. Signaling method
The OFDM structure for simulation is shown in Fig. 4. The wave-

form includes multiple preambles, 20 zero-padding (ZP)-OFDM data
blocks, 1 s for recording background noise, and a Hyperbolic Frequency
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Fig. 4. The transmitted OFDM waveform.
Table 1
Parameters of the OFDM communication.
Modulation QPSK
Bandwidth (Hz) 6000
Baud rate (bits/s) 7875
Channel estimation Least Square
Equalization Least Square
Error correction X

Modulation (HFM) chirp as postamble. Linear Frequency Modulated
(LFM) Pulse Waveform is used for synchronization. The OFDM data
blocks consist of 1024 subcarriers, uniformly distributed in a 6 kHz
bandwidth. These subcarriers consist of 256 pilot subcarriers, 672
data subcarriers, and 96 null subcarriers. The lowest and highest 32
subcarriers are null subcarriers, while one pilot subcarrier is present
in every 4 adjacent subcarriers. The data subcarriers are situated in
the middle-frequency range, and there is one null subcarrier in every
20 adjacent subcarriers. Each data block has a duration of 170 ms
and is followed by an 80 ms guard time. The frequency range used
for operations in all communication strategies is between 21 kHz and
27 kHz. Table 1 provides detailed information about the associated
parameters and processing methods for OFDM communication.

4.2. Simulation results

In each Monte Carlo simulation, the transmitted OFDM signal passes
through the KW channel. White Gaussian noise of different levels is
added to the channel output to simulate different SNR scenarios.

At the receiver side, the SNR of the received signal is estimated as
follows. The guard interval before the postamble is used to record the
noise and estimate the noise power. The power of the useful signal plus
noise is estimated based on the OFDM data blocks. Then the SNR can be
calculated based on Eq. (2). In practice, the estimation of the received
SNR is utilized in this approach as the channel state, which makes it
necessary to include estimation error in the simulation to evaluate its
performance improvement.

Based on the decoding outcomes from 1000 data blocks, the BER
under different estimated SNR conditions in the KW channel is depicted
in Fig. 5. Although the resulting curve may not be a perfect waterfall
due to the SNR estimation error, it enhances the efficacy of the simu-
lation as compared to employing theoretically computed received SNR
values.
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Fig. 5. BER of OFDM transmission in the KW channel.
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Fig. 6. The action space with different layers. The X-axis is the transmission power
level in dB.

Table 2

The state space.
State SNR
K SNR < 7 dB
55 SNR < 11 dB
55 SNR < 15 dB
Sy SNR > 15 dB

4.2.1. Testing schemes

Based on the simulated BER curve, we define a state space S, as
listed in Table 2. To examine the improvement of the proposed method
with an adaptive action space, a three-layer action space within the
same transmission power range is defined in Fig. 6. Specifically, there
are 4 discrete power levels 1, 5, 9, and 13 in Layer 1., By halving the
transmission power difference, power levels 3, 7, and 11 are added to
Layer 2. Similarly, more power levels are added to Layer 3 to have
smaller power steps within the same transmission power range.

We consider two comparative schemes:

» Scheme 1: The Dyna-Q algorithm with a state space of S,, and a
fixed action space of Layer 1; and

+ Scheme 2: The Dyna-Q algorithm with a state space of S,, and a
fixed action space of Layer 3.

where the comparative Dyna-Q algorithms with fixed action space are
summarized in Algorithm 2.

The proposed method initializes its adaptive action space using
Layer 1 and then adds the potential optimal action of the next two
layers based on the convergence.

A discount factor y = 0.9 and a number of planning steps of 100
are used in the three methods. The other hyper-parameters are also the
same for the three methods.

4.2.2. The cumulative EE
To evaluate the long-term EE performance of a point-to-point UWA
communication system, we introduce the cumulative EE C, as the sum
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Algorithm 2 Dyna-Q Algorithm with fixed action space

—_

: Initialize Q-table: Q(s', a') for all state-action pairs
: Initialize Model: M(s',d') for all state-action pairs with default
values

: Initialize environment state: s

: Initialize action space with the given layer: A,

: while episode < T, do
Choose an action a' € A; via epsilon-greedy based on Q-table
Take action o' and observe the reward R and the next state s'+!
Update Q-table: QO(s',d)) = (1 - a)0G',d) + a[R +

ymax(Q(s"t!, a"t1))]

o: Update the model: M(s',d') < (R, s'*1)

10: while steps < 7, do

N

11: Sample a random state-action pair (s, a') from the model M

12: Retrieve the predicted reward and next state from the model:
(R, sty « M(s!,d")

13: Update Q-table using the model: Q(s',d') = (1 — a)Q(s', d") +

a[R + ymax(Q(s'*1, a'+1))]
14: end while
15: Set the current state to the next state: s’ « s/*!
16: end while

of the EE of all the data blocks,
I

C, = Z EL, 1)
i=1

where Eé is the EE of the ith block, and I refers to the total number of
data blocks.

4.2.3. The cumulative modified EE
For the failed communication attempts that have smaller bit success
rates than the defined target rate, the energy efficiencies are considered
zero based on the definition, regardless of the corresponding transmis-
sion power. Here, we propose a cumulative modified EE which takes
the wasted energy of the failed communication into account to evaluate
the long-term performance. Rather than directly summing up the EE of
all the data blocks in the cumulative EE, the cumulative modified EE
is defined as
= - Zl’:l Nll)its , (12)
Z,‘:[ (Ptilock X Tblock)
where the number of cumulative bits for the ith block Nt[;ils is defined
as

. Nyt Xpgs Py 2D
Nll)m = bit s s t (13)
’ 0, Ps < Py

me

4.2.4. Simulation results

Assuming perfect feedback from the receiver, Fig. 7 shows the
cumulative EE of the three schemes. One can see that the proposed
method has the best performance. The mean of the EE for the proposed
method is 4253.9 bps/W, while that for Scheme 1 and Scheme 2 are
2788.8 bps/W and 4166.2 bps/W respectively.

Fig. 8 depicts the cumulative modified EE of the three schemes. One
can see that the proposed method has a better performance than the
two comparative schemes. For the proposed method, due to the small
size of the initial action space, the cumulative modified EE grows as
fast as Scheme 1 which has an action space of size 4. Then Scheme
1 converges to the optimal action within its action space, while the
proposed method keeps searching for the potential optimal actions
and adds them into its adaptive action space. The proposed method
and Scheme 2 converge to the same level of cumulative modified EE.
The cumulative modified EE is higher than that of Scheme 1 because
the optimal action is chosen from a larger action space with a size
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of 13. Moreover, although the proposed method and Scheme 2 have
almost the same performance after convergence, the proposed method
converges much faster than Scheme 2 and is expected to have a better
performance in more frequently changing channels.

5. Experimental data processing
5.1. Experimental data collection

The experiment was conducted in April 2023 in the Keweenaw
Waterway, Houghton, Michigan, USA. Fig. 9 depicts the layout of
the transmitter and the receiver. The distance between them is about
675 m, and the depth of the transmitter is 2.5 m while that of the
receiver is 1 m. The depth of the waterway nearby ranges from 2 m
to 8 m during this experiment. Both the transmitter and the receiver
drifted with waves. The receiving modem has four hydrophones with
10 cm spacing. This experiment is from 2023-04-28 at 23:04:40 UTC
to 2023-04-30 at 15:48:36 UTC.

The transmission waveform of an OFDM packet is shown in Fig. 10.
The waveform that is sent includes multiple preambles followed by 20
ZP-OFDM data blocks. The transmission power of the ZP-OFDM data
block decreases by 1 dB with each block in the packet. Due to the
space-time variety characteristic of the underwater acoustic channel,
it is unfeasible to compare the real-time system performance with
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Fig. 10. The transmission waveform of an OFDM packet.

different RL algorithms in the same underwater environment. Assuming
that the channel condition remains unchanged within each OFDM
packet, through this design of the received waveforms with different
transmission power levels (i.e., actions) are recorded. This allows the
evaluation of different schemes based on the experimental data.

The total duration of the waveform for each packet is approximately
9 s. When it is transmitted by a commercial OFDM modem, an ad-
ditional preamble is added for detection and synchronization. If this
additional preamble is not detected or properly decoded, the receiving
modem will not record the waveform and report a lost packet. The
waveform is transmitted within the 21-27 kHz frequency range. The
OFDM packet with the same structure is sent in every 60-second time
slot, which is shown in Fig. 11.

5.2. Experimental data processing results

During the experiment, 543 packets out of 2527 packets were
successfully recorded, while other lost packets are represented as empty
spaces in Fig. 13. It shows the executed actions (i.e., transmission power
levels) and the corresponding received SNRs for the 543 packets.

The first 13 transmission power levels (i.e., action) of each OFDM
packet are included in the action space. For each valid packet, the
action that yields the highest EE is highlighted in Fig. 12.
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Fig. 12. The actions with the highest EE for all the valid packets.

It is evident that the optimal action varies according to the temporal
fluctuation of the channel. Each action in the action space has been
selected as an optimal action at least once.

To evaluate the performance of the proposed method and two
comparative schemes, the performance metrics used in the simulation
(the cumulative EE, and the cumulative modified EE) are employed in
the experimental data processing.

The target average bit success rate keeps p; = 0.99 since there is
no error correction employed. There are 100 steps for planning within
each time slot for the Dyna-Q algorithm in all methods. Namely, in each
time slot, the agent keeps training 100 times based on the data from
the previous attempts to find the optimal or near-optimal action. Other
RL parameters like learning rate @« = 0.1 and discount factor y = 0.9
keep the same for all the schemes as well.

5.2.1. Analysis based on executed actions

Fig. 13 depicts the EE of each action executed by the proposed
method and two comparative schemes. Due to the small size of the
initial action space in the proposed method, one can observe from the
first 100 packets that the proposed method inherits the fast-boot char-
acteristic from Scheme 1 which has smaller state space and action space
and is expected to converge with less time consumption. Meanwhile,
there are more exploration attempts compared to those in Scheme 1,
and the proposed method before Scheme 2 converges to the optimal
action, which shows the executed actions for Scheme 2 with smaller
EE in that period.

There is a severe change in the channel condition around the 600th
time slot. The actions executed by all the schemes yield small EE from
the 600th packet to the 1500th packet. Once it reaches the stage be-
tween the 1600th and 1900th packet where the channel conditions are
relatively good and stable, all schemes exhibit an increase in EE. While
the proposed method executes more suboptimal actions compared to
Scheme 1 due to its adaptive action space with temporal actions added,
the performance gap is notably smaller than that observed between
Scheme 2 and the others. The temporal actions show the benefit when

Physical Communication 61 (2023) 102218

Table 3
EE of different schemes.

Scheme Average of the

modified EE

1771.4 bps/W
1510.4 bps/W
1504.9 bps/W

The proposed method
Scheme 1
Scheme 2

the SNR declines in the subsequent 600 packets. Unlike Scheme 1 which
directly switches from actions with EE over 4000 bps/W to actions
with EE of approximately 2000 bps/W, the proposed method allows the
selection of several temporal actions to adapt to the changing channel
condition and yields a better overall performance compared to the
other two schemes during this period. From Table 3, one can see that
the proposed method has the highest mean EE of 1771.4 bps/W, while
that for Scheme 1 and Scheme 2 are 1510.4 bps/W and 1504.9 bps/W,
respectively.

5.2.2. Performance analysis based on cumulative EE and cumulative mod-
ified EE

The long-term EE performance analysis is conducted based on 543
packets that were successfully recorded in the experiment. Fig. 14
shows the cumulative EE of the proposed method and two comparative
schemes.

In the first 120 packets, the cumulative EE of the proposed method
grows more rapidly than the other two schemes. From the 120th to
the 320th packet, all the schemes have a negligible increase in the
cumulative EE until the channel condition turns better. Around the
320th packet, the proposed method exhibits a timely response and
yields the best performance.

Fig. 15 depicts the cumulative modified EE of three different meth-
ods. One can see that the proposed method still has the best perfor-
mance. Due to the small size of the initial action space in the proposed
method, the cumulative modified EE grows rapidly in the first 10 valid
packets. For Scheme 2, due to its large action space, it spends an extra
exploration cost in the first 40 valid packets before it converges to
the optimal action, and then exhibits similar performance with the
proposed method from the 40th packet to the 300th packet. Scheme
1 has the same rapid-growing performance as the proposed method
in the first 10 valid packets, but from the 10th to the 120th packet,
it fails to execute the same optimal action as the other two schemes
due to its limited action space. When the channel condition becomes
better around the 320th packet, the cumulative modified EE of all the
schemes increases again, and the proposed method still has the best
performance.

5.2.3. Computational complexity analysis

Denote |S| as the number of states, |A| as the number of actions,
and N, as the number of planning steps in Dyna architecture, the
computational complexity of Dyna-Q is O(N,|S|in|A[) [19,20]. Note
that the proposed method utilizes the same state space and number
of planning steps as the comparative methods, only the sizes of action
spaces determine the computational complexity rank. Compared with
Scheme 2, the proposed method has a smaller action space, and there-
fore a lower computational complexity to converge to the same optimal
action of Scheme 2. Due to the designed action space adaptation in the
proposed method, only the potential optimal actions will be added to
the action space gradually. The extra computational complexity of the
proposed method compared with Scheme 1 is considered moderate and
acceptable.
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