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Abstract 

Many computational models of reasoning rely on explicit 
relation representations to account for human cognitive 
capacities such as analogical reasoning. Relational luring, a 
phenomenon observed in recognition memory, has been 
interpreted as evidence that explicit relation representations 
also impact episodic memory; however, this assumption has 
not been rigorously assessed by computational modeling. We 
implemented an established model of recognition memory, the 
Generalized Context Model (GCM), as a framework for 
simulating human performance on an old/new recognition task 
that elicits relational luring. Within this basic theoretical 
framework, we compared representations based on explicit 
relations, lexical semantics (i.e., individual word meanings), 
and a combination of the two. We compared the same 
alternative representations as predictors of accuracy in solving 
explicit verbal analogies. In accord with previous work, we 
found that explicit relation representations are necessary for 
modeling analogical reasoning. In contrast, preliminary 
simulations incorporating model parameters optimized to fit 
human data reproduce relational luring using any of the 
alternative representations, including one based on non-
relational lexical semantics. Further work on model 
comparisons is needed to examine the contributions of lexical 
semantics and relations on the luring effect in recognition 
memory. 
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Introduction 
Human reasoning depends on the ability to represent the 
world not only in terms of individual concepts, such as beagle 
and dog, but also in terms of the relations between concepts, 
such as a beagle is a kind of dog. Computational models of 
human analogical reasoning have incorporated explicit 
representations of relations, so that a relation can link 
multiple pairs of concepts yet remain distinct from any 
particular linked concepts (e.g., Falkenhainer, Forbus, & 
Gentner, 1989; Hummel & Holyoak, 1997). Thus, the 
relation is a kind of can also link spear and weapon, and an 
indefinite number of other concept pairs, while maintaining 
its separate identity. 

Relational Luring in Recognition Memory 
If relations have explicit representations used in reasoning 
tasks, then it may be possible to detect their influence in 
memory tasks that do not directly involve reasoning. 
Recently, it has been reported that relation similarity can 
impact episodic memory in recognition tasks, yielding a 
phenomenon termed relational luring (Popov, Hristova, & 
Anders, 2017). In a typical experiment, participants were 
shown a sequence of word pairs to commit to memory, and 
at test were asked to indicate that a given word pair was ‘old’ 
if they had seen that exact word pair previously in the 
sequence, ‘recombined’ if it was a novel combination of 
individual words that they had seen before, or ‘new’ if they 
had not previously seen either the full word pair or its 
constituent words. Popov et al. showed that participants were 
more likely to misclassify ‘recombined’ word pairs as ‘old’, 
and took longer to correctly identify ‘recombined’ word 
pairs, when the pair instantiated a relation made familiar by 
previously-presented pairs as compared to word pairs that did 
not instantiate the same relation as a prior word pair. 
Moreover, the degree to which ‘recombined’ word pairs were 
misclassified, and correct responses were delayed, increased 
linearly with the number of instances of that relation a 
participant had seen previously (see also Challis & Sidhu, 
1993; Reder et al., 2000). 

On the face of it, relational luring is naturally explained by 
assuming that an explicit representation of a semantic relation 
becomes increasingly familiar as it is activated by exposure 
to specific instances. The accrued familiarity of the relation 
then serves as a cue that tends to lead to false recognition of 
recombined word pairs that instantiate the same relation. 
Thus, relational luring has been interpreted as providing 
evidence for the role of explicit relations in guiding 
recognition memory (Popov et al., 2017). However, this 
assumption has never been formalized in a computational 
model of recognition memory, nor compared against 
alternative possibilities. The present paper fills this gap. 
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Word Embeddings as Predictors of Analogical 
Reasoning and Word Recognition 
Advances in natural language processing (NLP) have 
generated representations of individual word meanings (e.g., 
Mikolov et al., 2013; Pennington, Socher, & Manning, 2014; 
Devlin et al., 2019), referred to as word embeddings. These 
representations are high-dimensional vectors that constitute 
hidden layers of activation within neural network models 
trained to predict patterns of text in sequence as they appear 
in large corpora. Word embeddings have been used to predict 
human judgments of lexical similarity and probability (for a 
review see Bhatia & Aka, 2022; for a discussion of and 
response to critiques of embeddings as psychological models, 
see Günther et al., 2019.) 

Crucially, word embeddings may capture rich aspects of 
conceptual meaning that go beyond surface features and 
direct category relations. For example, Utsumi (2020) was 
able to extract information from embeddings sufficient to 
predict the values of about 500 words on most of 65 semantic 
features for which neurobiological correlates have been 
identified. Such successes suggest that it may be possible to 
account for relational luring in terms of lexical overlap based 
solely on embeddings for word pairs, without necessarily 
involving explicit relation representations. In particular, 
embeddings might capture information about characteristic 
relational roles that concepts play (Goldwater, Markman, & 
Stilwell, 2011; Jones & Love, 2007; Markman & Stilwell;, 
2001). For example, concatenated embeddings for the word 
pair nurse:hospital might include features that implicitly 
encode the facts that nurse is a human occupation and that 
hospital is a work location, perhaps creating a basis for 
relational luring. 

In the present study we build on recent theoretical 
developments in which embeddings are used to learn relation 
representations that can provide a basis for analogical 
reasoning. A number of alternative methods can be used to 
define relation similarity, in the sense of similarity between 
word pairs. In the present study, alternative methods take the 
same embeddings as inputs, extracted using Word2vec 
(Mikolov et al., 2013), and all compute relation similarity 
based on cosine similarity (a measure well-suited for high-
dimensional spaces). Critically, relation representations can 
either be based on explicit re-representations within a new 
relational space, or implicit in the raw word embeddings (Lu, 
Chen, & Holyoak, 2012; Lu, Wu, & Holyoak, 2019; Lu, 
Ichien, & Holyoak, 2022). 

We first report an experiment designed to elicit relational 
luring. Rather than studying word pairs in the context solely 
of a memory task (Popov et al., 2017), we compared two 
encoding contexts that were more incidental in nature. One 
encoding task, involving relatedness judgments, required 
participants to decide whether or not the two words in a pair 
were related. Because relatedness judgments do not require 
identification of any specific relation, they can potentially be 
made using an implicit relation representation. The second 
encoding task, verbal analogical reasoning, required 
participants to decide whether or not an analogy in A:B :: C:D 

format was valid. Evaluating analogies requires attention to 
the specific relation linking the A:B and the C:D word pairs, 
and hence is likely to depend on explicit relation 
representations (consistent with previous computational 
modeling; Lu et al., 2019). Each task was followed by a test 
of recognition memory, with conditions designed to elicit 
relational luring. 

Critically, both the analogy task and the subsequent 
recognition memory task can be modeled using the same 
alternative measures of word-pair similarity. Specifically, we 
compare a measure of lexical similarity between individual 
word meanings, relational similarity between explicit 
relation representations, and a joint measure that combines 
lexical and relational similarity. Based on previous findings, 
we predicted that the measure based on relational similarity 
would prove most effective for the analogy task. The key 
question is whether recognition memory will be predicted by 
the same measure of word-pair similarity, or whether a 
dissociation will be observed between the analogical 
reasoning and recognition memory tasks. 

 

 
Figure 1. Task structure. Participants completed six tasks, 
divided into two blocks (columns) of three tasks each. Task 
order was fixed. The two blocks of tasks were the same 
except for the encoding task, with assignment of specific 
word pairs counterbalanced across the two sets. 

Experiment 
Procedures and analyses were pre-registered on AsPredicted 
(#66576). 

Method 
Participants. Participants were 111 undergraduates (Mage = 
20.12, SDage = 1.94) at either UCLA (n = 93) or at Dartmouth 
(n = 18; 81 female, 20 male, 1 nonbinary, 9 gender not 
reported) who completed our tasks online to obtain partial 
course credit in psychology classes. The study was approved 
by the Institutional Review Boards at UCLA and at 
Dartmouth. Participants were self-assessed proficient English 
speakers, and 82% were native English speakers. We 
excluded 17 participants whose median correct response 
time, number of omitted responses, and/or d’ were 3 standard 
deviations away from the sample mean on any task (final 
sample size: 94).  
Procedure. All participants completed two blocks, each of 
which included three tasks. The first task in each block was 
an incidental encoding task: either relatedness judgments 
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(first block) or analogical reasoning (second block). The 
second task in each block was a demanding distractor task 
involving visuospatial reasoning (a short form of Raven’s 
Progressive Matrices). The third task in each block was a 
recognition memory task. The assignment of word pairs to 
each block was counterbalanced across participants. 
Participants were first shown a list of all the tasks that they 
would be completing during the experimental session (and 
thus made aware before starting the experiment that they 
would be completing memory tasks). The entire test session 
lasted approximately one hour. Figure 1 presents the 
sequence of tasks that each participant completed during an 
experimental session. 
Materials and Encoding Tasks. Both encoding tasks 
involved word pairs that instantiated one of three abstract 
semantic relations: category:exemplar (e.g., bird:robin), 
part:whole (e.g., toe:foot), and place:thing (e.g., 
store:groceries), or else were not semantically related (e.g., 
mascara:spoon). To create the tasks, a total of 200 word pairs 
were constructed out of 400 unique words. These word pairs 
were evenly distributed across two 100 word-pair lists. 
Within each list, 10 unrelated pairs consisted of words with 
no discernible semantic relation between them. The 
remaining 90 pairs were evenly distributed across the three 
abstract semantic relations. Participants saw one list during 
the relatedness task and the other list during the verbal 
analogy task; which list was presented during each task was 
counterbalanced across participants. 

Each encoding task consisted of two halves, and each word 
pair within a given list was presented once during each half. 
Thus, each half of the relatedness task consisted of 100 trials 
(with one word pair shown per trial), yielding 200 trials in 
total. Each half of the verbal analogy task consisted of 50 
trials (with two word pairs shown per trial), yielding 100 
trials in total. Thus, participants saw each word pair twice 
across the two halves of each encoding task. 

In the relatedness task, participants were presented with a 
sequence of word pairs and asked to judge whether each pair 
was comprised of words that were semantically related; this 
was the case 90% of the time. In the verbal analogy task, 
participants were sequentially presented with two word pairs 
on each trial, and were asked to judge whether or not each set 
constituted a valid analogy; this was the case 54% of the time. 
Prior to beginning the relatedness task, participants were 
shown examples of related and unrelated word pairs and then 
completed seven practice trials. Prior to beginning the verbal 
analogy task, participants were shown examples of valid and 
invalid analogies (e.g., carpenter:hammer is analogous to 
nurse:syringe, whereas bowl:cereal is not analogous to 
poverty:money), and then completed four practice trials. 
Neither the individual words in the practice trials, nor the 
relations instantiated by them, overlapped with the word pairs 
used in the actual encoding tasks. Unlike the relatedness task, 
the analogy task was expected to require explicit comparison 
of relations; hence, this task was always delivered after the 
relatedness task, so as to avoid priming an explicit strategy of 
identifying abstract relations in the relatedness task.  

Recognition Memory Task. Following each encoding task 
and the intervening distractor task, participants completed a 
subsequent old/new recognition task, during which they were 
presented with a sequence of word pairs. Each word pair was 
constructed out of individual words that participants had seen 
during their prior encoding task. Participants were asked to 
identify whether or not they had seen that exact combination 
of words in the previous encoding task, as well as to rate how 
confident they were in their judgment using a four-point 
scale: "Definitely New", "Maybe New", "Maybe Old", and 
"Definitely Old". The specific word pairs differed across the 
memory tasks in the two blocks. Participants were given a 
brief tutorial on the memory task prior to beginning each such 
task. None of the individual words nor relations instantiated 
in this tutorial overlapped with those used in the actual task. 

A total of 100 word pairs were used for the memory tasks, 
with each word pair drawn from one of four types. The first 
type, intact, consisted of word pairs that were shown during 
the relation identification or analogy task. For intact pairs, 
responses of either “Maybe Old” or "Definitely Old" were 
scored as correct. The second, third, and fourth types 
consisted of word pairs that were not used in either encoding 
task; either “Maybe New” or "Definitely New" were scored 
as correct responses. These three types of word pairs were all 
constructed by recombining words that had appeared in the 
immediately prior encoding task, so that individual words 
were now paired differently, generating novel word pairs 
distinct from those used in the encoding task. More 
specifically, relationally familiar word pairs consisted of 
unseen, recombined word pairs instantiating relations to 
which participants had been exposed during the encoding 
tasks (i.e., part:whole, category:exemplar, and place:thing). 
Relationally unfamiliar word pairs consisted of unseen, 
recombined word pairs instantiating a relation type 
(similarity) to which participants had not been exposed. 
These word pairs included concepts with overlapping salient 
attributes (e.g., bartender:cashier), and hence were 
relationally similar to one another, but not with respect to any 
of the three relations included in the encoding tasks. Finally, 
unrelated word pairs consisted of recombined word pairs that 
were not semantically related in any discernible way. 

Based on prior evidence for relational luring (Popov et al., 
2017), we hypothesized that participants would false-alarm 
more often to relationally familiar word pairs than to either 
relationally unfamiliar or unrelated word pairs. 

Experiment Results 

Encoding Tasks. Overall, participants performed well on 
both of the encoding tasks: relatedness task, 𝑴𝑨𝒄𝒄 = . 𝟗𝟒, 
𝑺𝑫𝑨𝒄𝒄 =. 𝟎𝟒; verbal analogy task, 𝑴𝑨𝒄𝒄 = . 𝟕𝟔, 𝑺𝑫𝑨𝒄𝒄 =
 . 𝟏𝟏. Note that the false alarm rate for unrelated word pairs 
on the relatedness task was low (𝑴𝑭𝑨 = . 𝟏𝟗, 𝑺𝑫𝑭𝑨 =. 𝟏𝟖), 
yielding a high d-prime (𝑴𝑫′ =  𝟐. 𝟕𝟕, 𝑺𝑫𝑫′ =. 𝟕𝟏). Thus, 
even though 90% of the trials involved semantically related 
word pairs, participants completed the task as instructed, and 
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did not achieve their high accuracy by simply classifying all 
word pairs as related. 
Recognition Memory. Participants showed good overall 
performance in recognizing studied word pairs, 𝑀𝐴𝑐𝑐 =  .80, 
𝑆𝐷𝐴𝑐𝑐 =  .12. They correctly recognized intact word pairs as 
either "Maybe Old" or "Definitely Old" with high accuracy, 
exhibiting a high hit rate, 𝑀𝐻𝑖𝑡 =  .88, 𝑆𝐷𝐻𝑖𝑡 =  .10; 
however, they also sometimes misrecognized recombined 
word pairs (familiar, unfamiliar, or unrelated), exhibiting a 
substantial false-alarm rate, 𝑀𝐹𝐴 =  .25, 𝑆𝐷𝐹𝐴 =  .16. 
 To test for a relational luring effect, we performed a within-
subjects ANOVA on the false alarm data for new pairs with 
two factors: encoding task (relatedness or verbal analogy) 
and pair type (familiar, unfamiliar, unrelated). Pair type 
reliably influenced false alarm rate, F(2, 186) = 122.21, p = 
< .001.  Planned comparisons revealed that false alarms were 
more frequent for familiar (.32) than unfamiliar (.22) pairs, 
and for unfamiliar than unrelated (.10) pairs (both p’s < .001). 
The higher false alarm rate for familiar than unfamiliar pairs 
reveals a relational luring effect, qualitatively similar to that 
observed by Popov et al. (2017). The main effect of encoding 
task was not significant,  F(1, 93) = 0.16, p = .69; nor was the 
interaction with pair type, F(2, 186) = 1.96, p = .14. 

 
Figure 2. 2-D multidimensional scaling solution of the 
similarity space derived using relational similarity (Panel A) 
and lexical similarity (Panel B). Plots show word-pair stimuli 
instantiating category:exemplar (blue circles), part:whole 
(magenta squares), and place:thing (green diamonds) 
relations. 

Computational Models 

Measures of Word-Pair Similarity 
To predict performance on both the analogy task and the 
recognition memory task, we compared two basic measures 
of similarity between word pairs: (1) lexical: similarity of 
word pairs computed directly from the similarities of the 
individual words in each pair; (2) relational: similarity of 
word pairs based on the similarity of the explicit relation 
between the two words in each individual pair. We also 
considered the possibility of (3) a joint measure that 
combines both lexical and relational similarity. We 
implemented specific versions of each of these three 

possibilities, all rooted in 300-dimensional word embeddings 
created by Word2vec. 

To compute lexical similarity, the meaning of a word pair 
is represented by a simple aggregate of the semantic vectors 
of the two individual words. We use 𝑓𝐴 to denote the semantic 
vector for the first word 𝐴 in a word pair and 𝑓𝑏 to denote the 
semantic vector for the second word 𝐵. We compute the 
distance between word pairs 𝑖 and 𝑗 as the mean of the 
distances between 𝑓𝐴𝑖  and 𝑓𝐴𝑗  and between 𝑓𝐵𝑖   and 𝑓𝐵𝑗: 

𝑑𝐿𝑒𝑥𝑖𝑗 =
𝑐𝑜𝑠 (𝑓𝐴𝑖,𝑓𝐴𝑗)+𝑐𝑜𝑠 (𝑓𝐵𝑖,𝑓𝐵𝑗)

2
.  (1) 

This representation is nonrelational, coding word pairs solely 
in terms of the meanings of the individual words. 

To compute relational similarity, we used relation vectors 
generated by Bayesian Analogy with Relational 
Transformations (BART; Lu et al., 2012, 2019).  BART 
assumes that specific semantic relations between words are 
coded as distributed representations over a set of abstract 
relations. The BART model takes concatenated pairs of 
Word2vec vectors as input, and then uses supervised learning 
with both positive and negative examples to acquire 
representations of individual semantic relations. 

After learning, BART calculates a relation vector 
consisting of the posterior probability that a word pair 
instantiates each of the learned relations. BART uses its pool 
of 270 learned relations to create a distributed representation 
of the relation(s) between any two paired words 𝐴 and 𝐵. The 
posterior probabilities calculated for all learned relations 
form a 270-dimensional relation vector 𝑅𝐴𝐵, in which each 
dimension codes how likely a word pair instantiates a 
particular relation. The distance between word pairs 𝑖 and 𝑗 
is computed as the cosine distance between corresponding 
relation vectors 𝑅𝑖 and 𝑅j : 

𝑑𝑅𝑒𝑙𝑖𝑗 = cos (𝑅𝑖,, 𝑅𝑗).             (2) 
Finally, to compute joint similarity, we simply combined 

lexical and relational representation by taking the unweighted 
average of the distances generated by each: 

𝑑𝐽𝑜𝑖𝑛𝑡𝑖𝑗 =
𝑑𝐿𝑒𝑥𝑖𝑗+𝑑𝑅𝑒𝑙𝑖𝑗

2
.          (3) 

To provide a preliminary sense of how well the two basic 
measures of word-pair similarity (lexical and relational) 
capture the categorical distinctions among the three relation 
types used in the encoding tasks (category:exemplar, 
part:whole, and place:thing), Figure 2 plots the word pairs 
used in the experiment on a 2-dimensional projection of the 
similarity space derived using the two measures. From visual 
inspection, it is clear that the relational measure (Panel B) 
separates the three types of pairs into clusters corresponding 
to semantic categories more clearly than does the lexical 
measure (Panel A); however, the lexical measure also 
predicts relation type to some extent. 

Modeling Verbal Analogical Reasoning 
Performance on the verbal analogy task was modeled directly 
by the BART model, which in addition to learning relations 
(as described above), can also be used to predict behavioral 
(Lu et al., 2019) and neural (Chiang et al., 2021) responses to 
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analogy problems. In order to predict yes/no decisions about 
analogy problems, we computed cosine distances between 
representations of the A:B and C:D word pairs, and then fit a 
threshold parameter 𝑡 such that distances below 𝑡 indicated a 
valid analogy and those above 𝑡 indicated an invalid analogy. 

In calculating distance for the purpose of solving analogy 
problems, we used each of the three similarity metrics 
described above: lexical, relational, and joint. Based on prior 
modeling of verbal analogical reasoning (Lu et al., 2019) and 
of explicit judgments of relation similarity (Ichien, Lu, & 
Holyoak, 2021), we predicted that the model based on 
relational similarity would best predict human judgments on 
the explicit analogy task. 

Figure 3 presents the proportion of model and human 
'valid’ responses broken down by valid analogies (darker 
bars) and invalid analogies (lighter bars). Overall, BART 
based on explicit relation similarity achieved the highest 
accuracy (.75), nearly matching human proportion correct 
(.76). The alternative model based on lexical (non-relational) 
similarity performed poorly (.59 correct); this version was 
overly permissive, detecting valid analogies at a high rate but 
failing to reject invalid analogies at a similarly high rate. 
Accuracy for the joint model was intermediate (.65 correct), 
indicating that incorporating lexical similarity in addition to 
relational similarity actually impaired model performance on 
the analogy task. 
 

 
Figure 3. Model and human 'valid' responses on the verbal 
analogy task. Darker bars represent hits on valid analogies, 
and lighter bars represent false alarms on invalid analogies. 
Error bars reflect ±1 standard error of the mean for human 
responses. 
 

An item-level analysis corroborated these results. We used 
the cocor package in R to test the difference between the 
extent that each similarity measure correlated with the 
frequency with which human reasoners judged each analogy 
as valid (Diedenhofen & Musch, 2015).  A Dunn and Clark’s 
(1969) z-test showed that relational similarity was more 
highly correlated with human responses (r = .47) than were 
either lexical (r = .21; z = 3.69, p = 2.00 x 10-4) or joint 
similarity (r = .38; z = 2.04, p = .04). Moreover, because this 
item-level analysis is based purely on similarity predictions 
generated with each metric, its results are independent of the 
decision threshold that was fit to maximize model accuracy 

in the analogy task. These simulation results thus confirm 
previous findings indicating that the BART model based on 
explicit relations outperforms variants based on lexical 
similarity in tasks involving verbal analogy and explicit 
judgments of relation similarity (Chiang et al., 2021; Ichien 
et al., 2021; Lu et al., 2019). 

Modeling Recognition Memory 
To provide a formal account of relational luring in 
recognition memory, we adapted an established model of 
recognition memory, the Generalized Context Model (GCM; 
Nosofsky, 1988, 1991; Nosofsky & Zaki, 2003).  GCM 
predicts old/new recognition judgments, and is closely 
related to several other successful cognitive models (e.g., 
Anderson, 1991; Krushke, 1992; Love, Medin, & Gureckis, 
2004). If a version of GCM is able to account for relational 
luring, we will have demonstrated that this phenomenon is 
one of many that can be explained within a unified theoretical 
framework of exemplar-based recognition and 
categorization. 

In the version of GCM implemented here, we assume that 
recognition of a given word pair on a memory task is based 
on a comparison of similarities between that word pair and 
all word pairs presented during a prior encoding task (as 
described below). The probability with which a participant 
will classify a word pair 𝑖 as one they had seen during the 
encoding task is given by 

𝑃(𝑜𝑙𝑑|𝑖) = 𝐹𝑖
𝐹𝑖+𝑘

,   (4) 
where 𝑘 is a parameter representing a criterion for 
recognition, and 𝐹𝑖 is the familiarity of word pair 𝑖 which is 
defined as: 

𝐹𝑖 = ∑ 𝑠𝑖𝑗𝑗 ∈𝐽 .    (5) 
Here, 𝐽 is the set of word pairs shown during the encoding 
task, and 𝑠𝑖𝑗  is the similarity between word pair 𝑖 in the 
memory task and each word pair 𝑗 from the encoding task. 
This similarity follows an exponential decay function 
(Shepard, 1987) of the psychological distance 𝑑𝑖𝑗  between 
word pairs 𝑖 and 𝑗,  

𝑠𝑖𝑗 = 𝑒−𝑐𝑑𝑖𝑗,   (6) 
where 𝑐 is a scaling parameter representing the rate of decline 
in similarity with psychological distance among word pairs. 
When GCM is fit to data from individual participants, 𝑐 is 
typically interpreted as a measure of a participant’s memory 
sensitivity: i.e., the extent to which they can discriminate 
between word pairs in memory (Nosofsky, 1988). In the 
present simulations we fit the model to group-level data, 
varying the representations for word pairs over which the 
model operates (details below). In our simulations, 𝑐 (as it 
varies across different types of representations) is naturally 
interpreted as the discriminability between word-pair items 
within a given representational space. Because our 
representations are high-dimensional, we adopt cosine 
distance to compute 𝑑𝑖𝑗 , rather than the Minkowski power 
formula typically used in previous work (e.g., Nosofsky, 
1988, 1991; Nosofsky & Zaki, 2003). 
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As the above equations make clear, GCM must be 
grounded on some measure of similarity between word pairs. 
We compared the three measures described above (lexical, 
relational, joint) within the basic GCM framework. Because 
we found no reliable differences in false alarm rates across 
the two encoding tasks, we simulated the data obtained by 
averaging responses across them.  Using data for intact and 
unrelated word pairs only, we fit the GCM model using each 
of the three variants of similarity (tuning the criterion and 
scaling parameters 𝑘 and 𝑐 for each) by maximizing the item-
wise root mean square deviation (RMSD) between model-
generated 𝑃(𝑜𝑙𝑑|𝑖) predictions of the mean frequency with 
which human participants judged a word pair item to be either 
"Maybe old" or "Definitely old". Across the three variants, 
GCM achieved comparable RMSD (where lower RMSD 
indicates closer fit to human data): lexical: RMSD = .0606; 
relational: RMSD = .0556; and joint: RMSD = .0584. 

 
Figure 4. Model and human false-alarm rates on the 
recognition memory task. Error bars reflect ±1 SEM. 

 
The models were then assessed with respect to their 

predictions for the critical relationally familiar and 
relationally unfamiliar word pairs (not used in parameter 
estimation). Figure 4 presents false-alarm rates for model-
generated 𝑃(𝑜𝑙𝑑|𝑖) predictions and human data, broken 
down by type of recombined word pairs. Crucially, using 
each of the alternative similarity calculations, GCM predicts 
the relational luring effect observed in the human data. We 
evaluated each variant’s ability to account for held-out 
human data by computing both the Spearman correlation and 
RMSD between model-generated predictions 𝑃(𝑜𝑙𝑑|𝑖) and 
the mean frequency of human "old" judgments for 
relationally familiar and relationally unfamiliar word pairs. 
Across the three variants, GCM achieved comparable fits to 
the human data (where higher ρ indicates closer fit to human 
data): lexical: RMSD = .1629, ρ = .4623; relational: RMSD 
= .1588, ρ = .4786; and joint: RMSD = .1535, ρ = .5043. 

Given that joint lexical and relational similarity tended to 
match the human data slightly more accurately (in terms of 
RMSD) than either lexical or relational similarity alone, we 
assessed whether each factor may have independently 
contributed to this overall improvement in model fit. 
Specifically, we computed semi-partial correlations between 
the mean frequency of human "old" responses for familiar 

and unfamiliar word pairs (thus excluding the intact and 
unrelated word pairs used to fit each model), and model-
generated 𝑃(𝑜𝑙𝑑|𝑖) predictions based on either lexical or 
relational similarity, after residualizing the other factor out of 
the human data. Neither the semi-partial correlation for 
lexical similarity, 𝑟 =  .15, 𝑝 =  .283, nor that for relational 
similarity, 𝑟 =  .23, 𝑝 =  .105, was reliable. Thus, although 
we can confidently conclude that the relational luring effect 
observed in the human data can be fit to a reliable degree 
using either or both lexical or relational similarity, the 
evidence from our experiment does not allow us to separate 
the impact of the two factors. 

Discussion 
A model based on explicit representations of relations clearly 
provided the best account of human performance on an 
analogy task, in accord with previous work (e.g., Chiang et 
al., 2021; Ichien et al., 2021; Lu et al., 2019). We also 
replicated the relational luring effect (Popov et al., 2017) in a 
test of recognition memory, using two alternative encoding 
tasks. However, computational modeling based on GCM 
revealed that this luring phenomenon can be predicted using 
either or both lexical and relational similarity. Relational 
similarity was more accurate than lexical similarity in 
clustering word pairs instantiating different categories of 
semantic relations (see Figure 2); nonetheless, the measure of 
lexical similarity appears to be crude but “good enough” to 
reliably predict relational luring. As an instance-based model, 
GCM effectively computes similarity of any test pair to the 
entire pool of studied pairs, so even an imperfect measure of 
word-pair similarity is sensitive to the broad relation types. 
In contrast, solving a verbal analogy requires fine-grained 
comparison of one particular word-pair relation (A:B) to 
another (C:D), so lexical similarity does not suffice. 

Importantly, simulation results reported here are restricted 
to predictions from models after GCM parameters have been 
optimized to minimize deviation from human data. Future 
analyses will examine the extent to which variations in 
GCM’s model parameters impact each similarity metric’s 
ability to reproduce relational luring, thus clarifying how 
likely it is that each of the alternative similarity metrics will 
reproduce the human phenomenon of relational luring. 
 In sum, it appears that word embeddings generated by 
machine learning include implicit information about typical 
relational roles, so that that in a recognition task, similarity of 
individual words in pairs can effectively approximate 
similarity of explicit relations between words. We thus 
reserve judgment as to whether the phenomenon of relational 
luring in recognition memory reflects the impact of explicit 
relational similarity (as previously suggested) and/or lexical 
similarity.  
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