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This article considers the problem of classifying individuals in a dataset of diverse psychosis spectrum conditions,
including persons with subsyndromal psychotic-like experiences (PLEs) and healthy controls. This task is more
challenging than the traditional problem of distinguishing patients with a diagnosed disorder from controls using
brain network features, since the neurobiological differences between PLE individuals and healthy persons are
less pronounced. Further, examining a transdiagnostic sample compared to controls is concordant with
contemporary approaches to understanding the full spectrum of neurobiology of psychoses. We consider both
support vector machines (SVMs) and graph convolutional networks (GCNs) for classification, with a variety of
edge selection methods for processing the inputs. We also employ the MultiVERSE algorithm to generate network
embeddings of the functional and structural networks for each subject, which are used as inputs for the SVMs.
The best models among SVMs and GCNs yielded accuracies >63%. Investigation of network connectivity be-
tween persons with PLE and controls identified a region within the right inferior parietal cortex, called the PGi,
as a central region for communication among modules (network hub). Class activation mapping revealed that the
PLE group had salient regions in the dorsolateral prefrontal, orbital and polar frontal cortices, and the lateral
temporal cortex, whereas the controls did not. Our study demonstrates the potential usefulness of deep learning
methods to distinguish persons with subclinical psychosis and diagnosable disorders from controls. In the long
term, this could help improve accuracy and reliability of clinical diagnoses, provide neurobiological bases for
making diagnoses, and initiate early intervention strategies.

1. Introduction

Machine learning methods are increasingly being used in biomedical
settings to improve diagnostic accuracy and reliability, prognostication,
and to elucidate pathophysiology (Hassan et al., 2024; Mamdouh Far-
ghaly et al., 2023; Yang et al.,, 2021). Inter-rater reliability and
test-retest reliability of psychiatric diagnoses based on official classifi-
catory systems such as the Diagnostic and Statistical Manual of Mental
Disorders (DSM) are modest, and the biological validity of these di-
agnoses is unclear. Given the ability of machine learning methods to
detect patterns in complex high-dimensional data, it is proposed that
they may distinguish patients from controls with higher accuracy and
reliability. Moreover, such prediction of diagnosis using network
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features adds biological validity to the clinical diagnostic approach that
entirely depends on self-report of symptoms by patients and observa-
tions by experienced clinicians. The addition of biological validity may
advance our understanding of the pathophysiology of psychotic disor-
ders (Pereira et al., 2009).

This article considers the more challenging problem of classifying
persons with psychotic-like experiences (PLE) and a transdiagnostic
sample consisting of schizophrenia, major depressive disorder, and bi-
polar disorder. Persons with PLE have approximately 4 times higher risk
for developing psychosis during the entire lifetime (Kaymaz et al., 2012)
and 5-16-fold increase in risk among children (Welham et al., 2009).
However, clinically distinguishing persons with PLE from healthy in-
dividuals is challenging, thereby highlighting the importance of
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examining this population using machine learning methods to better
distinguish PLE from controls. While the risk of conversion to psychosis
is relatively low compared to the risk for psychosis in persons of clinical
high risk (up to 35%) and familial high-risk (approximately 8%—15%),
due to a higher prevalence of PLE in the community (7% of the general
population (Linscott & van Os, 2013)), reliably identifying such persons
is clinically significant as it may enable understanding early neurobi-
ology before the onset of symptoms to help develop primary preventa-
tive strategies.

Using multimodal MRI data within machine learning models pro-
vides a non-invasive, data-driven, and neurobiology-based approach to
classify persons with psychosis spectrum disorders (PSD). Clinically
distinguishing PLEs from the general population is particularly chal-
lenging because most PLE individuals experience subclinical symptoms
and do not seek treatment. In addition to higher prevalence in the
community and higher conversion to psychosis (Linscott & van Os,
2013) as stated above, persons with PLE exhibit lower working memory
capacity (Ziermans, 2013), higher frequency of anxiety and depression
(Wigman et al., 2012), and decreased social functioning (Wikstrom
et al., 2015). Using network data within machine learning methods can
potentially lead to identifying persons with PLE and reveal early-stage
pathophysiology without the confounds of medication exposure, since
most individuals are not exposed to antipsychotics. Given that psychosis
is considered a spectrum, ranging from mild subclinical symptoms to
full-blown clinical syndrome, accurately classifying and examining
network alterations can reveal the pathophysiological basis of psychosis
spectrum at different severities of illness. This is important because
psychotic disorders such as schizophrenia are chronic diseases with
functional recovery as low as 14% (Jaaskelainen et al., 2013; Prasad,
2017; Robinson et al., 2004) and reduced life span of up to 25 years
(Laursen et al., 2012).

In this article, we also examine a transdiagnostic sample consisting of
schizophrenia, bipolar disorder, and major depressive disorder. These
disorders are diagnostically and biologically overlapping, frequently
difficult to clinically distinguish, and often are treated with the same
medications. Transdiagnostic examination can identify common bio-
logical substrates that can distinguish these disorders from healthy
control subjects.

Using data from the UK Biobank, we examined individuals with PLE
who are included in the database as “unusual and psychotic experiences
(UPE),” a transdiagnostic psychosis group consisting of schizophrenia,
bipolar disorder, major depressive disorder defined according to the
International Classification of Diseases, 10th edition (ICD-10), and a
cohort of healthy subjects who were group-matched for age and sex with
the latter two groups. We combined the PLE and the transdiagnostic
groups to create a larger sample of psychosis spectrum disorder (PSD)
subjects.

We implemented support vector machines (SVMs) and graph con-
volutional networks (GCNs) using inputs from structural MRI data
(consisting of tractography data from the diffusion imaging) and resting-
state functional MRI data, because prior studies show that both struc-
tural and functional networks are altered in persons with psychosis
(Baker et al., 2014; Gong et al., 2017; Griffa et al., 2019; Rikandi et al.,
2022).

SVMs are supervised machine learning models for discriminating
between groups of data points and have been shown to classify major
depressive disorder (Gallo et al., 2023), bipolar disorder (Achalia et al.,
2020), and schizophrenia (Lei et al., 2022) with an accuracy of 61%,
87.6%, and 80.9%, respectively. The training phase locates the hyper-
plane that maximally separates the two groups, and a kernel can be
applied to map the data into a higher-dimensional space to help identify
the optimal discriminating hyperplane. Subsequently, a validation phase
is used to adjust hyperparameters, and then a testing phase is used to
measure classification accuracy. In this analysis, our SVM inputs were
vectorized brain connectomes.

GCNs are an emerging state-of-the-art class of graph neural networks
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based on convolutional neural networks (CNNs) that were designed to
aggregate local and neighborhood connection information to generate
new feature maps. CNNs use filters on small regions of an image to
identify local image features whereas GCN applies filters to each node’s
neighborhood (Khlifi et al., 2023). The convolutional step enables the
algorithm to extract highly abstract features from the imaging data or
graph connectivity networks but requires lengthy training and param-
eter tuning. Like SVMs, GCNs have been successful in classifying autism
spectrum disorder (Ktena et al., 2018) and schizophrenia (Lei et al.,
2022) from controls, as well as males and females using network fea-
tures (Arslan et al., 2018). Unlike SVMs, GCNs consider neighborhood
relationships from the graph structure instead of independent nodal
edge weights. The GCN approach first uses an edge selection algorithm
to eliminate unlikely connections in the graphs when forming the ad-
jacency matrix. The adjacency matrix is then used as input for the
convolutional layers, global average pooling layer, and a fully connected
layer. A validation/testing set is used to measure model performance.
Prior studies have employed only a single edge-selection method,
whereas in this study, multiple edge-selection methods were employed.
Namely, we considered methods which use functional information only,
structural information only, and multiplex information (i.e., a combi-
nation of functional and structural), because edge selection methods can
drastically alter the network structure that are inputted to the machine
learning models in different ways. An additional advantage of GCNs is
the ability to further differentiate the graph structure to identify which
brain regions of the graph contributed the most to successful classifi-
cation. This could in turn provide insight about which brain regions to
target for novel treatment development.

The PLE networks may show less prominent changes compared to
clinically diagnosed disorders, which have more prominent network
alterations compared to healthy persons, because milder symptoms in
PLE are difficult to clinically distinguish from healthy persons. Similarly,
although the transdiagnostic disorders show dysfunctional activation in
similar regions compared to controls, such dysfunctions are in the
opposite direction for schizophrenia and bipolar disorder (McIntosh
et al., 2008; Smucny et al., 2021; Theis et al., 2024). For these reasons,
the dataset examined here is arguably more challenging to classify based
on brain network features, so we did not necessarily expect the classi-
fication accuracy to be higher than prior studies classifying samples of
clinically diagnosed subjects in comparison with healthy subjects.
Further, machine learning methods could identify key brain region-
s/subnetworks that potentially discriminate the groups. We also hy-
pothesized that GCNs would be more informative in terms of higher
classification accuracy than SVMs, because GCNs utilize network
structure with edge selection methods and can recognize features
contributing to classification.

2. Methods
2.1. Data acquisition

Data was sourced from the UK Biobank (www.ukbiobank.ac.uk), a
large-scale biomedical database containing lifestyle and health data on
about half a million participants in the United Kingdom (Littlejohns
et al., 2020), including MRI data for some participants (Miller et al.,
2016). At the time we accessed the data for this study (March 2022),
about 40,000 subjects had all three required scans for analysis:
T1-weighted, diffusion tensor imaging (DTI), and resting-state functional
magnetic resonance imaging (rs-fMRI). Out of all subjects with required
imaging modalities, we chose subjects experiencing PLE defined as UPE
(data field 20,461; age when first experienced UPE) in the UK Biobank (n
= 370) and subjects meeting ICD-10 diagnostic criteria for schizo-
phrenia (data field 130,874), schizoaffective disorder (130,884), manic
episodes (130,890), bipolar affective disorder (130,892), and/or
recurrent depressive disorder (130,896). We grouped persons with these
disorders together as the transdiagnostic group (n = 99). The
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transdiagnostic group along with persons with lifetime experience of
PLE were called psychosis spectrum disorder (PSD; n = 469). The control
group (n = 450) comprised of individuals without PSD or PLE and was
group-matched to PSD group for age and sex. The UK Biobank bulk data
files were downloaded to the Pittsburgh Supercomputing Center (PSC)
Bridges-2 system (Buitrago & Nystrom, 2021). Image acquisition pa-
rameters have been previously documented (Miller et al., 2016; Smith
et al., 2022). Briefly, Tyw scans were acquired using 3D MPRAGE with
voxel size=1 mm? and a TI/TR=880,/2000 ms. The diffusion MRI had a
voxel size of 2 mm? (isotropic) and a multiband factor (MB)=3. The
TE/TR=39/735 ms, MB=8, flip angle=52° for resting-state fMRI
acquisition.

2.2. Anatomical image processing

Specialized neuroimaging programs used for additional processing
were available on the Pittsburgh Supercomputing Center (Bridges-2
system) using official Singularity containers (Kurtzer et al., 2017). The
preprocessing pipeline for all modalities is presented in Fig. 1. The UK
Biobank image files titled “T1_unbiased_brain.nii.gz” were used for the
anatomical MRI (aMRI) processing for gradient distortion correction,
brain extraction, and bias correction by the UK Biobank group (Smith
etal., 2022). T;-weighted images were processed on Bridges-2 as part of
the multiplex pipeline using the recon-all function from FreeSurfer
(version 7.2.0) via the official dockerized image, using Singularity
Image Format (SIF) (Fischl, 2012). Then, each individual brain was
parcellated according to the Human Connectome Project Multi-Modal
Parcellation (HCP MMP1) atlas (Glasser et al., 2016), using a pub-
lished method (Neurolab, 2017). Briefly, this method uses a Freesurfer
(FS) average version of the HCP MMP1 parcellation (Mills, 2016) to the

Neural Networks 181 (2025) 106771

individual result of recon-all which produces the standard 360-node
parcellation (180 parcels per hemisphere). Since two of the Glasser
atlas regions are the left and right hippocampus and these are included
in the Freesurfer-derived subcortical structures, we removed them to
keep 358 cortical parcels. Next, we included the 21 subcortical parcel-
lations which included bilateral hippocampi. Because two subcortical
structures from the automated segmentation were too small to be reli-
ably parcellated (the left and right substantia nigra), these were
removed to yield 19 subcortical structures, resulting in a total of 377
parcels as network nodes.

2.3. DTI processing

DTI data was preprocessed by the UK Biobank (Smith et al., 2022) for
eddy current correction, head motion correction, and gradient distortion
correction. We performed fiber tracking using the Mrtrix3 (Tournier
et al., 2019) official docker image https://hub.docker.com/r/mrtrix
3/mrtrix3 via Singularity on Bridges-2. First, a brain mask was created
from the preprocessed DTI. Next, a response function was calculated as
well as a Fiber Orientation Distribution (FOD) image by spherical
deconvolution of preprocessed DTI with the response function. Fiber
tracking was then performed on the FOD image under the brain mask by
drawing 10 million streamlines with a maximum of 1000 attempts each
(maximum angle of 45°) using anatomically constrained tractography
(ACT) by the five-tissue-type (5TT) model. Tracts were also reduced
using Spherical-deconvolution Informed Filtering of Tractograms
(SIFT).

The native space (T; space) brain was then registered to the DTI
space image using FSL FLIRT linear interpolation. The resulting trans-
form matrix used to register the aMRI to the DTI was then applied to the

Raw T,w Raw BOLD Raw Diffusion
Images Images Images
l ~ ﬂ ~ ﬂ
Gradient distortion Head Motion Eddy current
correction Correction correction
UK Biobank l ﬂ ﬂ
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normalization A ﬂ
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Bles comection pank J Gradient distortion
UK Bio ank < High-pass correction
Processing temporal filtering ﬂ
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Unwarping and "
gradient distortion ﬂ
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i |
Glasser
parcellation Volume 0
Volume 1
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Fig. 1. Preprocessing pipeline for T1w images (left, blue), functional bold images (middle, green), and diffusion images (right, orange). Preprocessing steps
completed by the UK Biobank are indicated using brackets.



https://hub.docker.com/r/mrtrix3/mrtrix3
https://hub.docker.com/r/mrtrix3/mrtrix3

M. Lewis et al.

atlas parcellation image using nearest-neighbor interpolation to provide
a DTI-space anatomical atlas. This registration step was then quality
controlled by visual inspection. Finally, the Mrtrix3 function “tck2con-
nectome” was used to generate an adjacency matrix — a structural con-
nectome (SC) — where edge weights represent streamline counts (after
SIFT). All SCs were harmonized to eliminate multisite effects using
ComBat (Yu et al., 2018).

2.4. fMRI image processing

Resting state fMRI images were preprocessed by the UK Biobank
(Smith et al., 2022) for head motion (MCFLIRT) (Jenkinson et al., 2012),
grand-mean intensity normalization of each 4D dataset, high-pass tem-
poral filtering, echo planar imaging (EPI) unwarping and gradient
distortion correction, and finally independent component analysis
(ICA)-based denoising (Beckmann & Smith, 2004; Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). The native T; brain space was registered
to the rs-fMRI space image using FSL FLIRT linear interpolation. The
resulting transform matrix used to register the aMRI to the rs-fMRI was
then applied to the atlas parcellation image using nearest-neighbor
interpolation to provide a rs-fMRI-space anatomical atlas. This regis-
tration step was then quality controlled by visual inspection. Finally, the
spatially averaged time series (across all voxels in a parcel) was then
calculated for each node, and the temporal correlations of nodal time
series (Pearson’s correlation, r) were then determined for each node
pair, resulting in a resting state functional connectome (FC). All FCs
were harmonized to eliminate multisite effects using ComBat (Yu et al.,
2018).

2.5. Edge-Selection methods

Edge-selection methods, also known as thresholding methods, were
employed to select network edges that represent highly probable con-
nections and to remove edges that are most likely attributed to noise
which therefore may not represent true functional edges. The choice of
edge-selection method can significantly change the graph properties of
the original network. To test which method is best for distinguishing
functional connectivity between the groups, we compared multiple
commonly used methods. The K-nearest neighbors (KNN) method
(Cover & Hart, 1967) uses Euclidean distances between pairs of nodes to
estimate similarity and has achieved a high success rate in prior studies
using graph neural networks (Kang, 2021). We chose the values k = 10,
50, and 100 since our network size was significantly larger than in the
prior studies.

In addition to KNN, we implemented the percolation threshold which
determines the largest magnitude threshold at which the network’s
giant connected component (GCC) contains all nodes in the network
(Bordier et al., 2017). This method aims to find the optimal balance
between information gained by noise reduction and information lost by
excessive pruning.

We also implemented a method developed by our group, namely
objective function threshold method (Theis et al., 2023), which finds a
threshold value that optimizes a given graph metric calculation. Our
previous work demonstrated that characteristic path length is a useful
choice of metric over which to optimize. The objective function
threshold method can yield binary networks with one or more connected
components, depending on the choice of parameter value.

Given an input network, Kruskal’s Algorithm (Kruskal, 1956), as
implemented in the Maximum Weight Spanning tree (Undirected)
MATLAB package (Chu & Liu, 1965; Edmonds, 1967; Li, 2024) was used
to determine the Maximum Spanning Tree (MST). The MST is defined as
the smallest subset of edges in a graph that connects all graph nodes
(GCC=1) such that the corresponding total edge weight is maximal. A
simple and widely used thresholding method is proportional thresh-
olding, implemented in the brain connectivity toolbox (BCT) (Rubinov
& Sporns, 2010). This technique removes the weakest set of edges
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necessary to achieve a desired network density. We combined the MST
approach and the proportional thresholding approach to retain edges
with the largest weight after the MST edge to make the MST denser. We
called this edge-selection method “density-matched Maximum Spanning
Subgraph” (dMSS). The proportion of non-MST edges added back to the
FC is determined by the density of the corresponding SC for the same
subject.

Additionally, we included a multiplex method that combines both SC
and FC information as inputs to the GCN model. We start with subjects’
SC to define a binary network of all node-pairs connected by at least one
diffusion streamline, thus yielding sparse networks with approximately
10% edge density. Since our input graph for each subject is the complete
FC, we additionally supply this SC-derived binary matrix as the edge
selection scheme. This forces the GCN model to only consider the FC
connections that have a corresponding SC connection. Hereafter we
refer to this method as “SC-constrained" edge selection.

2.6. SVMs and SVMs with multiverse

In the SVM analysis, for each subject the rs-FC and SC represented
the weighted adjacency matrices and were used to build separate
functional and structural classifiers. Namely, we vectorized the upper
triangle elements of the adjacency matrix so that for each sample i, we

have n(n — 1)/2 features denoted as Xl['}‘]C and X.[sl]c We then train the

SVMs using Xg]c and XE]C separately. However, there are two challenges
when using this method. First, the number of features is very large (377
nodes creates 70,876 possible features) compared to other studies that
have a smaller network size. Second, we did not combine the informa-
tion from the FC and SC to train the SVMs because this would double the
number of features (which is already large), so instead we used the
multiplex network embedding approach as described below.

To combine information from the FC and SC, we used the Multi-
VERSE algorithm (Pio-Lopez, Valdeolivas, Tichit, Remy, & Baudot,
2021) which builds an embedding matrix from multiplex SC and FC
networks. The MultiVERSE algorithm involves two main steps. First,
given a structural and functional network, we constructed the similarity
measure between two nodes using a random walk with restart. Next,
given the similarity measure, we obtained an embedding matrix
W ¢ R™¥ where d < n by using the noise contrastive estimation
method (Gutmann & Hyvarinen, 2010) used within the MultiVERSE
algorithm. For clarity, we followed the published procedure (Pio-Lopez,
et al., 2021). For each sample i, we have a two-layer multiplex network
where the first layer is the functional network, and the second layer is
the structural network to find a matrix W and then vectorize it into the
feature vector Xt! € R™ (Pio-Lopez, et al., 2021). We used unweighted
FC and SC with equal graph density as our inputs to the MultiVERSE
algorithm. For the SC, we considered an edge to be present when at least
one streamline count was observed, whereas for the FC we used the
dMSS thresholding described above. We used the Python code in
Pio-Lopez et al. to implement MultiVERSE using the recommended
default values for most parameters (Pio-Lopez, et al., 2021). We
considered different embedding dimensions (d € 2,35,128), where 128
is the default dimension used in the MultiVERSE algorithm.

The traditional SVM with linear kernel was used to construct a
maximal margin hyperplane based on the training data, because previ-
ous classification studies using neuroimaging data with this choice re-
ported good performance (Achalia, et al., 2020; Gallo, et al., 2023; Lei,
et al., 2022). We also considered SVMs with the radial kernel function,
which constructs a nonlinear boundary by enlarging the feature space.
For all input types, FC only, SC only, and MultiVERSE, the same tuning
parameters for SVMs were used. For the linear kernel, we have one
tuning parameter C and for the radial basis function (RBF) kernel, we
have two tuning parameters C and y. We considered C € {0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000} and y € {0.001, 0.01, 0.1, 1,

10, 100}. To evaluate SVM performance, pooled stratified 10-fold
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cross-validation was used to split the data into training/validation and
test sets. The training set was used to train the SVMs, the validation set
was used to select the tuning parameters, and the test set was used to
evaluate the classification performance of the SVMs (see Supplemental
table 1 for sizes of the training, validation, and test sets).

2.7. Graph convolutional networks

We modified an existing GCN pipeline (Lei et al., 2022) to examine
single subject classification of controls and PSD (Fig. 2). Modifications
were made to the type of edge selection method used, input network
architecture, and therefore how the data was loaded into Pytorch. The
GCN model was kept the same except for the first input to convolutional
layer 1 having a larger number of features. In short, three graph con-
volutional layers (number of channels: [64, 64, 128]) were used in our
model followed by a global average pooling layer and a fully connected
layer. The Rectified Linear Unit (ReLU) activation function was used to
add hidden layers and introduce non-linearity into the model. The
Softmax function encoded the output value into a predictive probability
for each class from the output layer. In our analysis, the FC was repre-
sented using graph structure where each region is a node, and each node
feature is the functional connectivity of that region and all other regions.
The adjacency matrix was calculated via the edge-selection methods
discussed above. For completeness, the SC consisted of the same nodes
as the FC with each node feature representing the streamline count of
that region to all other regions. The adjacency matrix was calculated
using a threshold of streamline counts (>1). To evaluate GCN perfor-
mance, pooled stratified 10-fold cross-validation was used to split the
data into training and test sets. For each fold, 50 epochs of the training
dataset were run through the learning process. The performance of each
epoch was determined by calculating training loss, validation loss,
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balanced accuracy, sensitivity, and specificity, and test balanced accu-
racy, sensitivity, and specificity (see Appendix 1 for the GCN pseudo-
code). For more information on network architecture, see pseudocode
part 2 of the Appendix 1; see Fig. 2D for information on convolutional
functions and feature dimensions, or Supplemental Fig. 1 for trainable
parameters. Sizes of the training, validation, and test sets are described
in Supplemental Table 1.

2.8. Post HOC analysis for PLE and transdiagnostic samples

After examining the entire PSD group compared with healthy con-
trols, we conducted a post hoc investigation of the transdiagnostic
sample and the PLE group separately, compared to age and sex matched
controls. The balanced accuracy was calculated in the same way as
above. Since the sample size of the transdiagnostic group was smaller
than the PSD and PLE groups, we chose to use k = 5 instead of 10 for the
k-fold cross validation. The connectome and edge selection method
which performed the best on the PSD sample was used for the GCN in-
puts and adjacency matrix calculation for PLE and transdiagnostic
groups (see Supplemental Table 1 for sizes of the training, validation,
and test sets).

2.9. Network analysis for graph theoretic features

To further understand network differences between the patient and
control groups, the model with the highest accuracy was used to classify
a random set of subjects that was the same size as the test set. The
subjects were then split into groups based on whether they were clas-
sified correctly or incorrectly as patient or control, resulting in four
groups: true-patient, true-control, false-patient, and false-control. These
four groups were analyzed separately using graph theoretic methods.
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Convolutional Networks (GCN) were used to classify psychosis from controls.
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For each subject in each group, network hubs were calculated and the
inter-section connections, based on the Glasser atlas section definitions,
were compared. Hubs were defined as nodes with degree, betweenness
centrality, or eigenvector centrality more than two standard deviations
above the network average of the same measure (Bassett et al., 2008;
Lewis et al., 2023). Global graph centrality (average eigenvector and
betweenness centrality) and segregation (modularity) measures were
calculated. These were then compared between groups to quantify dif-
ferences in segregation and centrality metrics. Of note, modularity re-
lates the number of within-network connections to all connections to
quantify the strength of segregation into distinct networks (Cohen &
D’Esposito, 2016). Average eigenvector and betweenness centrality
were used to measure a network’s regional interaction and resilience
(Rubinov & Sporns, 2010).

2.10. Salient region detection using class activation mapping (CAM)

In addition to investigating graph theoretic properties, we used Class
Activation Mapping (CAM) to detect salient regions that were infor-
mative for classification (Arslan et al., 2018). Using the GCN model with
the highest accuracy, we extracted the final dense layer, or the output
from the final convolutional layer, from all subjects. To estimate the
activation value of each node, we multiplied each subject’s final layer
(in our case 377 x 128 matrix) by the optimized weight vector for their
respective class (128 x 1 vector). This yielded a 377 x 1 CAM vector for
each subject in each class. Here, we were interested in analyzing the two
group’s activation values separately, so we calculated the average CAM
vector across subjects in each group. The top 10 nodes with the highest
activation value are reported from each group.

3. Results
3.1. Demographic data

After extensive processing and quality control of processed outputs
as detailed above, a final sample of 919 multiplex networks were used
(PSD=469; controls=450). Of the 469 PSD subjects, 370 had lifetime
experience of PLE but were never diagnosed with an ICD disorder (PLE
sample), and 99 had an ICD-10 disorder (transdiagnostic sample).
Control and PSD did not significantly differ by age. The sex distribution
between the PSD (72% female) and the control group (64% female) and
between the PLE and controls were significantly different, respectively,
but not between the transdiagnostic and controls (Table 1). The same
training, validation, and test sets were used for both GCNs and SVMs for
k-fold cross validation (Supplemental Table 1).

3.2. SVMs and SVMs with MultiVERSE

The SVMs correctly classified the PSD group with 56% average ac-
curacy across the folds that used FC edge weights. The models using SC
and MultiVERSE embedding performed relatively poorly (Table 2A).
However, the best model using the FC edge-weight inputs had an ac-
curacy of 65% (Table 2B). The linear kernel consistently outperformed
the radial basis function (RBF) kernel (Supplemental Table 2).

Table 1
Demographic data of the samples used for classification tasks.
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Table 2

PSD classification accuracy, sensitivity, and specificity for the test sets using
SVM. (A) Average metrics across all 10 folds for functional, structural, and
MultiVERSE inputs. (B) Metrics for the best model, the model with the highest
accuracy, for the three different inputs. The highest average and best model
accuracies are in bold. Metrics using a linear kernel are shown for all SVM
models since it outperformed RBF. The best embedding dimension for Multi-
VERSE is shown. Metrics for other embedding dimensions and the RBF kernel is
provided in the Supplemental Table 2.

A. SVM Average Metrics Across Folds for Psychosis Spectrum Disorder Sample

Input Average Average Average
Accuracy Sensitivity Specificity

Functional Connectome 0.56+0.06 0.5610.06 0.55+0.10

Structural Connectome 0.5040.05 0.514+0.06 0.4940.08

MultiVERSE Embedding 0.51+0.06 0.50+0.08 0.52+0.07

(d=16)

B. Best SVM Model Metrics for Psychosis Spectrum Disorder Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.65 0.62 0.69

Structural Connectome 0.59 0.62 0.56

MultiVERSE Embedding (d = 2) 0.61 0.70 0.51

3.3. Graph convolutional network models

Across the folds, SC input provided the highest average accuracy
(53%) with 38% sensitivity and 68% specificity (Table 3A). Balanced
accuracy varied marginally (~2%) based on the connectome input and
edge selection method chosen, but some provided imbalanced sensi-
tivity and specificity. Similarly, the FC input with SC-constrained edge
selection yielded 52.5% accuracy with 47% sensitivity and 58% speci-
ficity (Table 3A). In terms of best model metrics, the lowest balanced
accuracy (57.9%) was achieved using the KNN algorithm, and the best
classification accuracy was achieved using SC-constrained (62.0%) and
had a balanced sensitivity and specificity (Table 3B). KNN with k = 100
performed the best but not k = 10 or 50 that performed <50% accuracy
and are therefore not reported.

3.4. Post HOC analysis for PLE and transdiagnostic samples

We examined the diagnostic components of the PSD group, namely
the PLE and the transdiagnostic samples separately. The highest average
accuracy for the PLE across folds was 54% and was achieved using linear
kernel SVMs with functional connectome edge weights as the input
(Table 4A). The best model, with an accuracy of 65%, was MultiVERSE
SVM using an embedding dimension=8 with a linear kernel (Table 4B).
See Supplemental Table 3 for metrics for the other embedding di-
mensions and the RBF kernel.

For the transdiagnostic sample, the highest average accuracy (57%)
using MultiVERSE with SVM was achieved using the embedding
dimension d = 4 and a linear kernel (Table 5A). The best model across
methods and folds was also using MultiVERSE embedding with a
dimension d = 4 as the input and had a 69% accuracy (Table 5B; see
Supplemental Table 4 for metrics for other embedding dimensions and
the RBF kernel).

Since SC and FC with SC-constrained edge selection inputs provided

PSD Sample PLE Sample Transdiagnostic Sample
Group PSD (n = 469) Control (n = 450) PLE (n = 370) Control (n = 370) Transdiagnostic (n = 99) Control (n = 99)
Age (years) 53.2+ 6.9 53.6 £7.3 53.3+6.7 53.3+7.4 52.6 £+ 7.5 53.0 £ 6.8
Age Comparison t=10.98 p=0.91 t=—0.12 p=0.91 t=10.38 p=0.71
Sex (M/F) 131/338 162/288 101/269 131/239 31/68 40/59
Sex Comparison ¥’=6.76 p = 0.0093 ¥’=5.64 p=0.0175 ¥’=1.63 p=0.201
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Table 3

Graph Convolutional Network metrics for PSD sample. (A) Average balanced
accuracy, sensitivity, and specificity across the 10-folds for different edge se-
lection methods. (B) Metrics for the model with best performance, based on
highest accuracy. The highest average and best model accuracies are in bold.
KNN= k-nearest neighbors (k = 100). For more information on each edge se-
lection, see the methods section.

A. GCN Average Metrics Across Folds for Psychosis Spectrum Disorder Sample

Connectome Edge- Av. Av. Av.
Selection Accuracy Sensitivity Specificity
Functional KNN 0.52+0.04 0.38+0.27 0.66+0.24
Functional Objective 0.51+0.05 0.34+0.16 0.68+0.19
Function
Functional Percolation 0.52+0.04 0.60+0.17 0.43+0.15
Multiplex dMSS 0.49+0.05 0.39+0.27 0.59+0.31
(structural +
functional)
Multiplex SC- 0.53+0.07 0.47+0.25 0.58+0.27
(structural + constrained
functional)
Structural Streamline 0.53 0.38+0.15 0.68+0.12
Count>1 +0.05

B. Best GCN Model Metrics for Psychosis Spectrum Disorder Sample

Connectome Edge- Accuracy  Sensitivity  Specificity
Selection
Functional KNN 0.58 0.87 0.29
Functional Objective 0.61 0.75 0.47
Function
Functional Percolation 0.61 0.60 0.62
Multiplex (structural dMSS 0.58 0.40 0.76
+ functional)
Multiplex (structural SC- 0.62 0.62 0.62
+ functional) constrained
Structural Streamline 0.61 0.53 0.69
Count>1
Table 4

PLE classification metrics for the test sets using SVMs. (A) Average metrics across
all 10 folds for functional, structural, and MultiVERSE inputs. (B) Metrics for the
best model, the model with the highest accuracy, for the three different inputs.
The highest average and best model accuracies are in bold. Metrics using a linear
kernel are shown for all SVM models since it outperformed RBF. The best
embedding dimension for MultiVERSE is shown. Metrics for other embedding
dimensions and the RBF kernel can be viewed in the supplemental material.

A. SVM Average Metrics Across Folds for PLE Sample

Input Average Average Average
Accuracy Sensitivity Specificity

Functional Connectome 0.54 + 0.06 0.49 £ 0.16 0.58 £ 0.11

Structural Connectome 0.49 + 0.06 0.50 = 0.12 0.47 + 0.07

MultiVERSE Embedding  0.53 + 0.03 0.52 + 0.09 0.53 + 0.08

a=2

B. Best SVM Model Metrics for PLE Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.62 0.54 0.70

Structural Connectome 0.58 0.68 0.49

MultiVERSE Embedding (d = 8) 0.65 0.62 0.68

the highest accuracy for the PSD samples, these two edge selection
methods were used for classifying the PLE and transdiagnostic groups.
The balanced accuracy improved marginally when GCN was imple-
mented on these subgroups. For the PLE-only sample, the best average
balanced accuracy was 54%, which was similar to the PSD, but the best
model accuracy showed a marginal improvement at 65% compared to
62% (Table 6). Similarly, when the transdiagnostic sample was exam-
ined, the best average balanced accuracy (55%) improved by 2% and 1%
for the best model (Table 6).
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Table 5

Transdiagnostic sample classification metrics for the test sets using SVMs. (A)
Average metrics across all 5 folds for functional, structural, and MultiVERSE
inputs. (B) Metrics for the best model, the model with the highest accuracy, for
the three different inputs. The highest average and best model accuracies are in
bold. Metrics using a linear kernel are shown for all SVM models since it out-
performed RBF. The best embedding dimension for MultiVERSE is shown.
Metrics for other embedding dimensions and the RBF kernel can be viewed in the
supplemental material.

A. SVM Average Metrics Across Folds for Transdiagnostic Sample

Input Average Average Average
Accuracy Sensitivity Specificity

Functional Connectome 0.51 + 0.08 0.69 + 0.31 0.33 £ 0.39

Structural Connectome 0.55 + 0.09 0.57 = 0.09 0.53 £0.11

MultiVERSE Embedding 0.57 + 0.10 0.56 + 0.14 0.59 + 0.08

d=4

B. Best SVM Model Metrics for Transdiagnostic Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.62 0.30 0.95

Structural Connectome 0.69 0.68 0.70

MultiVERSE Embedding (d = 4) 0.69 0.70 0.68

3.5. Network analysis for graph theoretic features

GCNs yielded the best model (65% accuracy) using the SC with the
streamline count>1 as the edges to classify persons with PLE from
controls. This model’s test subjects’ thresholded networks were extrac-
ted and analyzed for differences in graph measures. None of the global
graph measures were significantly different between PLE and control
groups. The right PGi, part of the inferior parietal cortex, was identified
as a hub in PLE subjects but not in controls. The right PGi was considered
to be a connector hub since it had first-degree connections with other
inferior parietal regions, lateral temporal cortex, temporo-parieto-
occipital junction, and auditory association cortex (Fig. 3) that are
different cortical sections, defined by the Glasser parcellation, allowing
for communication between these sections (Farahani et al., 2019). There
were 10 hubs in all groups that did not impact model classification
(Supplementary Table 5; see Supplemental Materials for results from the
PSD and transdiagnostic samples).

3.6. Salient region detection using class activation mapping (CAM)

Using the GCN model for PLE that yielded the highest accuracy
(65%), we extracted each subject-specific CAM vector. Due to the rela-
tively low classification accuracy, sensitivity, and specificity, we
examined the groups separately. For the PLE and control groups, the top
10 most salient regions were located in different cortical sections. Both
groups had salient regions in the primary visual, early visual, somato-
sensory, and motor, and subcortical Glasser-defined sections. The PLE
group had salient regions in dorsolateral prefrontal cortex, lateral tem-
poral, and orbital and polar frontal cortex but the control group had
salient regions in auditory association, posterior cingulate, inferior
frontal, paracentral lobule and mid cingulate cortex, and superior pa-
rietal cortex sections (Fig. 4). Results from the PSD and transdiagnostic
samples are available in Supplementary Material.

4. Discussion

Our main findings are that SVMs and GCNs provided similar pre-
diction accuracy using network characteristics for PSD (PLE + trans-
diagnostic group). The best model for SVMs achieved 65% classification
accuracy for the PLE and 69% for the transdiagnostic sample, whereas
GCNs achieved 65% accuracy for the PLE and 63% for the trans-
diagnostic sample. That being said, the average accuracy across all folds
for SVM and GCN were similar. The PLE group showed an accuracy
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Table 6
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GCN performance after dividing the PSD sample into more distinct subgroups: PLE and transdiagnostic samples. (A) Average balanced accuracy, sensitivity, and
specificity across the 10-folds (PLE) and 5-folds (transdiagnostic) for different edge selection methods. (B) Metrics for the model with best performance, based on
highest accuracy. The highest average and best model accuracies are in bold. The most distinct group is the transdiagnostic sample (gray filled) and the PLE group

(white filled).

A. GCN Average Metrics Across Folds for PLE and Transdiagnostic Samples

Connectome Sample Edge-Selection Average Accuracy Average Sensitivity Average Specificity
Functional PLE SC-constrained 0.51 + 0.06 0.53 + 0.28 0.53 +£0.28
Structural PLE Streamline Count > 1 0.54 + 0.06 0.63 + 0.23 0.44 + 0.24
Functional Transdiagnostic SC-constrained 0.55 + 0.05 0.48 + 0.23 0.63 + 0.22
Structural Transdiagnostic Streamline Count > 1 0.52 + 0.07 0.49 + 0.25 0.55 + 0.19

B. Best GCN Model Metrics for PLE and Transdiagnostic Samples

Connectome Sample Edge-Selection Accuracy Sensitivity Specificity
Functional PLE SC-constrained 0.62 0.38 0.87
Structural PLE Streamline Count > 1 0.65 0.60 0.70
Functional Transdiagnostic SC-constrained 0.63 0.75 0.50
Structural Transdiagnostic Streamline Count > 1 0.59 0.63 0.55

PLE Network Hubs
Region Name Section or
color
Community
Right PGi Inferior Parietal

Cortex

Right STSd posterior Auditory Association

Cortex

*TPOJ- Temporo-Parieto-Occipital

1%t Degree Hub Connections
Region Name Section or Region Name
color
Community
Right PGp Inferior Parietal Right PFm Complex
Cortex
Right PGs Inferior Parietal Right Intraparietal 1
Cortex
Right TE1 posterior Lateral Temporal Right PHT
Cortex
Right TPO Junction 1 TPO Junction Right TPO Junction 2
Right TPO Junction 3 TPO Junction Right Superior

Temporal Visual Area

Graphical Representation of a
Connector Hub

Section or Community

Inferior Parietal Cortex Connector

Hub

Inferior Parietal Cortex

Lateral Temporal

Cortex
TPO Junction

B - \Inferior Parietal Cortex
TPO Junction .- Lateral Temporal Cortex

* TPO Junction

Auditory Association Cortex

Fig. 3. List of hubs (top left) and their first-degree connections (bottom left). The hubs have connections with multiple other cortical sections making them connector
hubs. A graphical representation of a connector hub is shown on the right with each color corresponding to a different cortical section defined by the Glasser

parcellation.

similar to that in the transdiagnostic group which illustrates the pre-
dictive ability of SVMs and GCNs in a diagnostically heterogeneous
transdiagnostic sample or symptomatically subsyndromal PLE sample.
While this is a challenging classification problem, these findings are
especially encouraging because our previous attempts to predict the
group membership of familial high-risk individuals (who have up to
15% risk for conversion to psychoses) using traditional structural
equation modeling with psychopathological, cognitive, and a global
brain measure provided much lower accuracy and sensitivity (Eack
etal., 2008; Shah et al., 2012). Although the classification metrics in our
SVM and GCN models are not currently suitable for clinical deployment,
it should be noted that these methods used only one type of predictor
variable of SC or structurally constrained FC compared to our prior study
that used multiple predictor variables in structural equation modeling.
Further, even with these metrics, GCN models can highlight the
importance of salient regions for classification or identify diagnostic
groups in our best GCN model. Our study revealed a connector hub
which contributes to the accuracy of classification. The model that

provided the highest classification accuracy between PLE and controls
used SC inputs. The PLE and control groups had a unique set of salient
and common regions. The salient regions for PLE were in the dorsolat-
eral prefrontal cortex, lateral temporal, and orbital and polar frontal
cortex Glasser sections. Among the controls, the salient regions were in
the auditory association, posterior cingulate, inferior frontal, para-
central lobular, mid cingulate, and superior parietal cortices Glasser
sections. The salient regions common to both groups were in the primary
visual, early visual, somatosensory, and motor, and subcortical sections.
Adding other potential clinical variables or using more homogenous
diagnostic groups may improve the classification accuracy, potentially
making deep learning methods more appropriate for -clinical
applications.

Despite the relatively low accuracy of classification models observed
in this study, our findings are valuable because of the possibility for
early detection using machine learning that may help early in-
terventions. Prior studies have demonstrated that early detection and
interventions improve outcomes (Correll et al., 2018; de Koning et al.,
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SALIENT REGIONS FOR PLE vs CONTROL CLASSIFICATION

Anterior Posterior

Max Salient

Posterior Anterior

Activation Value

Inferior

Superior

Inferior Superior

Min Salient
Activation Value

; Not a Salient Region

Control Most Salient Regions

Region Name Glasser Atlas Section

L Primary Visual Cortex Primary Visual Cortex

R Auditory 4 Complex Auditory Association Cortex
Brain-Stem Subcortical
L Third Visual Area Early Visual Cortex

L Dorsal Transitional Visual Area Posterior Cingulate Cortex

R Area anterior 47r Inferior Frontal Cortex
L Area 6mp Paracentral Lobular and Mid Cingulate Cortex
RAreal Somatosensory and Motor Cortex

R Anterior IntraParietal Area Superior Parietal Cortex

R Putamen Subcortical

PLE Most Salient Regions

Region Name Glasser Atlas Section

LArea1l

Somatosensory and Motor Cortex

L Third Visual Area

Early Visual Cortex

R Putamen Subcortical

L Putamen Subcortical

Primary Visual Cortex

R Primary Visual Cortex
RArea 11l
R Area TE1 posterior
L Caudate
R Area 9-46d

. RArea2

Orbital and Polar Frontal Cortex

Lateral Temporal Cortex

Subcortical

Dorsolateral Prefrontal Cortex

Somatosensory and Motor Cortex

Fig. 4. Top 10 most salient regions for PLE and controls influencing classification. The control group (left) had the maximum activation value (red) and the minimum

(the darkest blue). The PLE group (right) had a smaller range of activation values.

2009) and are cost-saving for people at high-risk of developing psychi-
atric disorders (Ologundudu et al., 2021). Further, we also found that
certain interventions can not only benefit clinical outcomes but also
improve neurobiological parameters (Eack et al., 2010; Keshavan et al.,
2017). For these reasons, identification of people at high-risk for
developing psychosis from psychiatrically healthy individuals is at the
forefront of psychiatric research. Our study examines persons with a
“soft” spectrum of psychopathology, namely people with PLE, who
normally do not come under the care of a psychiatrist. Even if they do,
no formal psychiatric diagnosis can be assigned leading to no clinically
approved interventions. Attempts to classify disorders based on certain
features of brain networks derived from MRI data is further useful
because psychiatric disorders are defined entirely based on clusters of
behaviors. The subjects in our dataset exist across a wide range of psy-
chosis spectrum, and classifying across this spectrum is challenging
because each disorder is shown to have different brain connectivity
changes compared to a control subject.

Our analysis implemented two key machine learning tools, namely
SVMs and GCNs. SVMs have a long history of application to classify
groups and have well-understood theoretical foundations. However,
SVMs use hyperplanes and learned parameters to classify brain networks
that do not retain information about the network structure and can only
handle one type of connectome input, either functional or structural
(Miller et al., 2020). Since both structural and functional networks have
been shown to be altered in people at high-risk for psychosis (Baker
et al., 2014; Gong et al., 2017; Griffa et al., 2019; Prasad et al., 2023,
2015; Rikandi et al., 2022), traditional SVMs cannot handle differences
in both structural and functional networks simultaneously. To address
this limitation, we implemented the MultiVERSE embedding algorithm
to combine SC and FC data before inputting into the SVM model.
Further, we observed overfitting of SVM training models, possibly
because of the high dimensionality of the networks. Even the Multi-
VERSE network embedding approach, which reduced the dimension in
addition to combining the structural and functional data, did not fully

address the problem of overfitting. Several issues remain regarding the
use of MultiVERSE, such as deciding the number of iterations to run
without a tolerance-based stopping criterion and the choice of embed-
ding dimension. In separate simulation studies involving stochastic
block model random graphs, the embedding dimension caused over-
fitting (Arroyo Relion et al., 2019), but in our data, it seems that the
embedding dimension did not affect overfitting. Therefore, our future
works will use regularized SVMs. In addition, since the SVMs do not
retain the information about network structure, further analysis to
identify network features that contributed to classification could not be
implemented.

GCNs suited our connectome data due to their ability to retain nodal
information of the input network structure and the use of three con-
volutional layers to model the graph inputs and distinguish the groups
(Ktena et al., 2018; Lei et al., 2022). In this study, GCNs and SVMs
provided similar classification results regardless of feature input. Some
studies have reported a higher classification accuracy using GCNs on
subjects with clinically diagnosed schizophrenia (Lei et al., 2022). Using
our sample consisting of PLE with less prominent neurobiological
changes compared to controls and a transdiagnostic sample with
heterogenous networks, a classification accuracy of 63% is encouraging
compared to structural equation modeling (SEM) in our previous studies
(Eack et al., 2008; Shah et al., 2012). Our sample was balanced to avoid
having the GCN models overfit the network features of one group
compared to the other, unlike some other studies (Lei et al., 2022). An
imbalanced sample can bias the model to provide higher balanced ac-
curacy for the group with larger sample size since the model overfits that
group because balanced accuracy is an average of sensitivity and spec-
ificity. Additionally, we were careful in entering the inputs in the proper
order for the confusion matrix. We input the ground truth labels first and
then the predicted labels next since entering in an incorrect order could
yield a falsely high balanced accuracy by inflating sensitivity and/or
specificity. Using a more homogeneous PLE sample, the classification
accuracy improved which suggests that comparing two groups where
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each group is relatively more homogeneous is better. This also shows
that network connectivity of people at relatively higher risk for psy-
chosis, namely PLE, and the transdiagnostic sample share similar fea-
tures compared to controls.

The choice of classification method depends on the scientific ques-
tion being asked and the resources available. While SVMs use relatively
fewer computational resources and are faster to implement than GCNs,
SVMs still provided the same accuracy when used on our samples
(Supplemental Table 6). Previous studies have similarly reported high
accuracy on other samples (Achalia et al., 2020; Gallo et al., 2023; Lei
et al., 2022). However, SVMs may not be suitable for networks with a
large number of nodes because of the risk of overfitting as we observed
with the Glasser parcellation (377 cortical and subcortical regions)
(Glasser et al., 2016). A study using the AAL atlas, which consisted of 90
nodes, showed better accuracy and did not mention overfitting in their
data (Lei et al., 2022). Therefore, using a parcellation atlas with fewer
regions may reduce overfitting in the SVMs but could lose valuable
regional connectivity information provided by the Glasser atlas. In such
instances, it may be preferable to use deep learning methods, such as
GCNs implemented with careful consideration of the edge selection
method, provided the computational resources are accessible. Our study
shows that FC and SC inputs performed similarly most of the time, but
the best classification accuracy was observed when the SC or structurally
constrained FC was used. This observation indicates that integrating
data from different modalities into a multiplex form could improve
classification compared to inputting the monoplex networks. Further,
GCNs can handle larger number of nodes supporting an additional
advantage over SVMs.

In summary, we sought to classify PSD individuals consisting of PLE
and a transdiagnostic sample with relatively high accuracy using SVMs
and GCNs. We also identified that multiplexing SC and FC improves
connectome classification while using structurally constrained FCs for
GCNs resulting in marginal improvement. FC yielded 3-5% higher ac-
curacy compared to other inputs on average for SVMs for the PSD and
PLE samples, but for the transdiagnostic sample, MultiVERSE inputs
were better with about 5% higher accuracy than other methods on
average.

5. Conclusions

This paper used GCNs and SVMs to classify diverse psychosis samples
of PSD, PLE, and transdiagnostic samples compared to healthy controls.
Both methods produced similar accuracies of 65-69%. The edge selec-
tion method chosen for GCNs improved classification accuracy, sug-
gesting that researchers should carefully choose biologically relevant
edge selection methods. Our analysis also revealed that using a combi-
nation of FC and SC may improve classification, and we identified an
inferior parietal region as hub in PLE subjects only. Because GCNs rely
on network architecture, using GCNs permits further investigations
using network analysis and CAM which, in our study, revealed hubs and
salient regions unique to PLE subjects. In future studies to improve
classification accuracy, we could use network features instead of the
entire network as the input to reduce the number of features and
implement feature selection methods that have been successful previ-
ously (Abdel Hady & Abd El-Hafeez, 2023, 2024). Future studies to
improve classification accuracy could use clinical and cognitive scores
as additional features within the machine learning models which have
shown success in multi-disease classification using symptom descriptors
(Hassan et al., 2024) and Hepatitis C prediction (Mamdouh Farghaly
et al., 2023). Limitations of this study include a relatively small sample
of the transdiagnostic group, but in future studies, we plan to replicate
these results on publicly available subclinical or high-risk adolescents
and young adults with high-risk of developing psychosis to further
enhance the usefulness of the classification to develop early in-
terventions and improve outcomes (Khosla, 2006; Kosztyan et al., 2022)
and minimize long-term social and functional impairments. Additionally
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in future analysis, we will include soft classifiers which outputs group
probabilities instead of a binary classification and are not present in this
analysis. We will also include other dimensionality reduction techniques
alongside SVMs such as principal component analysis, network-based
nonparametric dimensionality reduction, and latent factor analysis
(Khosla, 2006; Kosztyan et al., 2022; Nakayama et al., 2021).

Funding source

Funding was provided by NIMH grant numbers: ROIMH115026 and
RO1MH112584 (KMP). Computational resources were provided by the
Pittsburgh Supercomputing Center through ACCESS Discover grant
BIO200047 (KMP). JC was supported in part by the National Science
Foundation under grant NSF DMS 2413552.

Declaration of generative Al in scientific writing

No generative Al programs were used for this work, including the
data analysis, drafting, and editing of the manuscript.

Code availability

The code for this analysis is publicly available on GitHub (htt
ps://github.com/madisonlewis323/PSD_GCN_analysis).

CRediT authorship contribution statement

Madison Lewis: Writing — review & editing, Writing — original draft,
Validation, Formal analysis, Data curation. Wenlong Jiang: Writing —
review & editing, Writing — original draft, Formal analysis. Nicholas D.
Theis: Writing — review & editing, Writing — original draft, Resources,
Data curation. Joshua Cape: Writing — review & editing, Writing —
original draft, Validation, Supervision. Konasale M. Prasad: Writing —
review & editing, Writing — original draft, Visualization, Validation,
Supervision, Project administration, Methodology, Investigation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data is available through the UK Biobank

Acknowledgements

We thank the UK Biobank for providing access to their database for
all the multimodal data used in the analysis. In addition, we would like
to extend thanks to Du Lei and other authors for helping in the Class
Activation Mapping implementation.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.neunet.2024.106771.

References

Abdel Hady, D. A., & Abd El-Hafeez, T. (2023). Predicting female pelvic tilt and lumbar
angle using machine learning in case of urinary incontinence and sexual dysfunction.
Scientific Reports, 13.

Abdel Hady, D. A., & Abd El-Hafeez, T. (2024). Revolutionizing core muscle analysis in
female sexual dysfunction based on machine learning. Scientific Reports, 14.


https://github.com/madisonlewis323/PSD_GCN_analysis
https://github.com/madisonlewis323/PSD_GCN_analysis
https://doi.org/10.1016/j.neunet.2024.106771
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0001
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0001
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0001
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0002
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0002

M. Lewis et al.

Achalia, R., Sinha, A., Jacob, A., Achalia, G., Kaginalkar, V., Venkatasubramanian, G.,
et al. (2020). A proof of concept machine learning analysis using multimodal
neuroimaging and neurocognitive measures as predictive biomarker in bipolar
disorder. Asian Journal of Psychiatry, 50, Article 101984.

Arroyo Relién, J. D., Kessler, D., Levina, E., & Taylor, S. F. (2019). Network classification
with applications to brain connectomics. The Annals of Applied Statistics, 13,
1648-1677.

Arslan, S., Ktena, S.I., Glocker, B., & Rueckert, D. (2018). Graph saliency maps through
spectral convolution networks: Application to sex classification with brain
connectivity. In: ArXiv.

Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T., Krienen, F., Buckner, R. L., et al.
(2014). Disruption of cortical association networks in schizophrenia and psychotic
bipolar disorder. JAMA Psychiatry, 71, 109-118.

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-
Lindenberg, A. (2008). Hierarchical organization of human cortical networks in
health and schizophrenia. The Journal of Neuroscience, 28, 9239-9248.

Beckmann, C. F., & Smith, S. M. (2004). probabilistic independent component analysis
for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging, 23,
137-152.

Bordier, C., Nicolini, C., & Bifone, A. (2017). Graph analysis and modularity of brain
functional connectivity networks: Searching for the optimal threshold. Frontiers in
Neuroscience, 11, 441.

Buitrago, P., & Nystrom, N. (2021). Neocortex and bridges-2: A high performance AI+HPC
ecosystem for science, discovery, and societal good (pp. 205-219). High Performance
Computing.

Chu, Y. J., & Liu, T. H. (1965). On the shortest arborescence of a directed graph. Science
Sinica, 14, 1396-1400.

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct brain
networks and their relationship to cognition. The Journal of Neuroscience, 36,
12083-12094.

Correll, C. U., Galling, B., Pawar, A., Krivko, A., Bonetto, C., Ruggeri, M., et al. (2018).
Comparison of early intervention services vs treatment as usual for early-phase
psychosis: A systematic review, meta-analysis, and meta-regression. JAMA
Psychiatry, 75, 555-565.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification., 13 pp. 21-27). IEEE
Transactions on Information Theory.

de Koning, M. B., Bloemen, O. J., van Amelsvoort, T. A., Becker, H. E., Nieman, D. H., van
der Gaag, M., et al. (2009). Early intervention in patients at ultra high risk of
psychosis: Benefits and risks. Acta Psychiatrica Scandinavica, 119, 426-442.

Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S.,
et al. (2010). Neuroprotective effects of cognitive enhancement therapy against gray
matter loss in early schizophrenia: Results from a 2-year randomized controlled trial.
Arch Gen Psychiatry, 67, 674-682.

Eack, S. M., Prasad, K. M., Montrose, D. M., Goradia, D. D., Dworakowski, D.,
Miewald, J., et al. (2008). An integrated psychobiological predictive model of
emergent psychopathology among young relatives at risk for schizophrenia. Progress
in Neuro-Psychopharmacology & Biological Psychiatry, 32, 1873-1878.

Edmonds, J. (1967). Optimum branchings. Journal of RESEARCH of the National Bureau
of Standards, 71B, 233-240.

Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for
identifying connectivity patterns in human brain networks: A systematic review.
Frontiers in Neuroscience, 13, 585.

Fischl, B. (2012). FreeSurfer. Neurolmage, 62, 774-781.

Gallo, S., El-Gazzar, A., Zhutovsky, P., Thomas, R. M., Javaheripour, N., Li, M., et al.
(2023). Functional connectivity signatures of major depressive disorder: Machine
learning analysis of two multicenter neuroimaging studies. Molecular Psychiatry, 28,
3013-3022.

Glasser, M. E., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., et al.
(2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171-178.

Gong, Q., Hu, X., Pettersson-Yeo, W., Xu, X., Lui, S., Crossley, N., et al. (2017). Network-
level dysconnectivity in drug-naive first-episode psychosis: Dissociating
transdiagnostic and diagnosis-specific alterations. Neuropsychopharmacology : Official
Publication of the American College of Neuropsychopharmacology, 42, 933-940.

Griffa, A., Baumann, P. S., Klauser, P., Mullier, E., Cleusix, M., Jenni, R., et al. (2019).
Brain connectivity alterations in early psychosis: From clinical to neuroimaging
staging. Translational Psychiatry, 9, 62.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G.,
Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated fMRI
acquisition for improved resting state network imaging. Neurolmage, 95, 232-247.

Gutmann, M., & Hyvarinen, A. (2010). Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In , 9. Proceedings of the 13th
international conference on artificial intelligence and statistics.

Hassan, E., Abd El-Hafeez, T., & Shams, M. Y (2024). Optimizing classification of diseases
through language model analysis of symptoms. Scientific Reports, 14.

Jaaskelainen, E., Juola, P., Hirvonen, N., McGrath, J. J., Saha, S., Isohanni, M., et al.
(2013). A systematic review and meta-analysis of recovery in schizophrenia.
Schizophrenia Bulletin, 39, 1296-1306.

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012).
Fsl. Neurolmage, 62, 782-790.

Kang, S. (2021). K-nearest neighbor learning with graph neural networks, 9. Mathematics.

Kaymaz, N., Drukker, M., Lieb, R., Wittchen, H. U., Werbeloff, N., Weiser, M., et al.
(2012). Do subthreshold psychotic experiences predict clinical outcomes in
unselected non-help-seeking population-based samples? A systematic review and
meta-analysis, enriched with new results. Psychological Medicine, 42, 2239-2253.

11

Neural Networks 181 (2025) 106771

Keshavan, M. S., Eack, S. M., Prasad, K. M., Haller, C. S., & Cho, R. Y. (2017).
Longitudinal functional brain imaging study in early course schizophrenia before
and after cognitive enhancement therapy. Neurolmage, 151, 55-64.

Khlifi, M. K., Boulila, W., & Farah, L. R. (2023). Graph-based deep learning techniques for
remote sensing applications: Techniques, taxonomy, and applications — A
comprehensive review. Computer Science Review, 50.

Khosla, N. (2006). Dimensionality reduction using factor analysis. Queensland, Australia:
Griffith University.

Kosztyan, Z. T., Kurbucz, M. T., & Katona, A. I. (2022). Network-based dimensionality
reduction of high-dimensional, low-sample-size datasets, 251. Knowledge-Based
Systems.

Ktena, S. 1., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B., et al. (2018). Metric
learning with spectral graph convolutions on brain connectivity networks.
Neurolmage, 169, 431-442.

Kurtzer, G., Sochat, V., & Bauer, M. (2017). Singularity: Scientific containers for mobility
of compute. PloS one.

Laursen, T. M., Munk-Olsen, T., & Vestergaard, M. (2012). Life expectancy and
cardiovascular mortality in persons with schizophrenia. Current Opinion in Psychiatry,
25, 83-88.

Lei, D., Qin, K., Pinaya, W. H. L., Young, J., van Amelsvoort, T., Marcelis, M., et al.
(2022). Graph convolutional networks reveal network-level functional
dysconnectivity in schizophrenia. Schizophrenia Bulletin.

Lewis, M., Santini, T., Theis, N., Muldoon, B., Dash, K., Rubin, J., et al. (2023). Modular
architecture and resilience of structural covariance networks in first-episode
antipsychotic-naive psychoses. Scientific Reports, 13, 7751.

Li, G. (2024). Maximum weight spanning tree (Undirected). MATLAB Central File Exchange.

Linscott, R. J., & van Os, J. (2013). An updated and conservative systematic review and
meta-analysis of epidemiological evidence on psychotic experiences in children and
adults: On the pathway from proneness to persistence to dimensional expression
across mental disorders. Psychological Medicine, 43, 1133-1149.

Littlejohns, T. J., Holliday, J., Gibson, L. M., Garratt, S., Oesingmann, N., Alfaro-
Almagro, F., et al. (2020). The UK Biobank imaging enhancement of 100,000
participants: Rationale, data collection, management and future directions. Nature
Communications, 11, 2624.

Mamdouh Farghaly, H., Shams, M. Y., & Abd El-Hafeez, T. (2023). Hepatitis C Virus
prediction based on machine learning framework: A real-world case study in Egypt.
Knowledge of Information Systems, 65, 2595-2617.

Mclntosh, A. M., Whalley, H. C., McKirdy, J., Hall, J., Sussmann, J. E., Shankar, P., et al.
(2008). Prefrontal function and activation in bipolar disorder and schizophrenia. The
American Journal of Psychiatry, 165, 378-384.

Miller, C. H., Sacchet, M. D., & Gotlib, I. H. (2020). Support vector machines and affective
science, 12 pp. 297-308). Emotion Review.

Miller, K. L., Alfaro-Almagro, F., Bangerter, N. K., Thomas, D. L., Yacoub, E., Xu, J., et al.
(2016). Multimodal population brain imaging in the UK Biobank prospective
epidemiological study. Nature Neuroscience, 19, 1523-1536.

Mills, K. (2016). HCP-MMP1.0 projected on fsaverage. In figshare (Ed.).

Nakayama, Y., Yata, K., & Aoshima, M. (2021). Clustering by principal component
analysis with Guassian kernel in high-dimension, low-sample-size settings. Journal of
Multivariate Statistics, 185.

Neurolab, C. (2017). HCP-MMP1.0 volumetric (NIfTT) masks in native structural space.
In (pp. Dataset). figshare.

Ologundudu, O. M., Lau, T., Palaniyappan, L., Ali, S., & Anderson, K. K. (2021).
Interventions for people at ultra-high risk for psychosis: A systematic review of
economic evaluations. Early Intervention in Psychiatry, 15, 1115-1126.

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and f{MRI: A
tutorial overview. Neurolmage, 45, S199-5209.

Pio-Lopez, L., Valdeolivas, A., Tichit, L., Remy, E., & Baudot, A. (2021). MultiVERSE: A
multiplex and multiplex-heterogeneous network embedding approach. Scientific
Reports, 11, 8794.

Prasad, K. M. (2017). Course, prognosis, and outcome of schizophrenia and related
disorders. M. J. Marcsisin, J. M. Gannon & J. B. Rosenstock (Eds.). Schizophrenia and
related disorders (pp. 111-142). New York: Oxford University Press.

Prasad, K. M., Muldoon, B., Theis, N., Iyengar, S., & Keshavan, M. S. (2023).
Multipronged investigation of morphometry and connectivity of hippocampal
network in relation to risk for psychosis using ultrahigh field MRI. Schizophrenia
Research, 256, 88-97.

Prasad, K. M., Upton, C. H., Schirda, C. S., Nimgaonkar, V. L., & Keshavan, M. S. (2015).
White matter diffusivity and microarchitecture among schizophrenia subjects and
first-degree relatives. Schizophrenia Research, 161, 70-75.

Rikandi, E., Mantyla, T., Lindgren, M., Kieseppa, T., Suvisaari, J., & Raij, T. T. (2022).
Functional network connectivity and topology during naturalistic stimulus is altered
in first-episode psychosis. Schizophrenia Research, 241, 83-91.

Robinson, D. G., Woerner, M. G., McMeniman, M., Mendelowitz, A., & Bilder, R. M.
(2004). Symptomatic and functional recovery from a first episode of schizophrenia
or schizoaffective disorder. The American Journal of Psychiatry, 161, 473-479.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses
and interpretations. Neurolmage, 52, 1059-1069.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., &
Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining
independent component analysis and hierarchical fusion of classifiers. NeuroImage,
90, 449-468.

Shah, J., Eack, S. M., Montrose, D. M., Tandon, N., Miewald, J. M., Prasad, K. M., et al.
(2012). Multivariate prediction of emerging psychosis in adolescents at high risk for
schizophrenia. Schizophrenia Research, 141, 189-196.

Smith, S.M., Alfaro-Almagro, F., & Miller, K.L. (2022). UK Biobank Brain Imaging
Documentation. In.


http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0003
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0003
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0003
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0003
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0004
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0004
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0004
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0006
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0006
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0006
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0007
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0007
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0007
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0008
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0008
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0008
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0009
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0009
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0009
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0010
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0010
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0010
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0011
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0011
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0012
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0012
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0012
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0013
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0013
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0013
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0013
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0014
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0014
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0015
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0015
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0015
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0016
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0016
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0016
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0016
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0017
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0017
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0017
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0017
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0019
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0019
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0019
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0020
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0021
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0021
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0021
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0021
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0022
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0022
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0023
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0023
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0023
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0023
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0024
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0024
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0024
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0025
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0025
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0025
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0026
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0026
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0026
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0027
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0027
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0028
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0028
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0028
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0029
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0029
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0030
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0031
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0031
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0031
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0031
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0032
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0032
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0032
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0033
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0033
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0033
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0034
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0034
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0035
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0035
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0035
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0036
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0036
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0036
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0037
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0037
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0038
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0038
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0038
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0039
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0039
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0039
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0040
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0040
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0040
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0041
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0042
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0042
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0042
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0042
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0043
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0043
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0043
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0043
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0044
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0044
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0044
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0045
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0045
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0045
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0046
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0046
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0047
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0047
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0047
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0049
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0049
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0049
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0051
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0051
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0051
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0052
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0052
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0053
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0053
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0053
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0054
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0054
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0054
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0055
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0055
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0055
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0055
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0056
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0056
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0056
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0057
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0057
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0057
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0058
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0058
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0058
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0059
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0059
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0060
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0060
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0060
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0060
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0061
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0061
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0061

M. Lewis et al.

Smucny, J., Tully, L. M., Howell, A. M., Lesh, T. A., Johnson, S. L., O’Reilly, R. C., et al.
(2021). Schizophrenia and bipolar disorder are associated with opposite brain
reward anticipation-associated response. Neuropsychopharmacology : Official
Publication of the American College of Neuropsychopharmacology, 46, 1152-1160.

Theis, N., Bahuguna, J., Rubin, J.E., Cape, J., Iyengar, S., & Prasad, K.M. (2024). Subject-
specific maximum entropy model of resting state fMRI shows diagnostically distinct
patterns of energy state distributions. bioRxiv.

Theis, N., Rubin, J., Cape, J., Iyengar, S., & Prasad, K. M. (2023). Threshold selection for
brain connectomes. Brain Connectivity, 13, 383-393.

Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., et al.
(2019). MRtrix3: A fast, flexible and open software framework for medical image
processing and visualisation. Neurolmage, 202, Article 116137.

Welham, J., Scott, J., Williams, G., Najman, J., Bor, W., O’Callaghan, M., et al. (2009).
Emotional and behavioural antecedents of young adults who screen positive for non-
affective psychosis: A 21-year birth cohort study. Psychological Medicine, 39,
625-634.

12

Neural Networks 181 (2025) 106771

Wigman, J. T., van Nierop, M., Vollebergh, W. A., Lieb, R., Beesdo-Baum, K.,
Wittchen, H. U,, et al. (2012). Evidence that psychotic symptoms are prevalent in
disorders of anxiety and depression, impacting on illness onset, risk, and
severity—implications for diagnosis and ultra-high risk research. Schizophrenia
Bulletin, 38, 247-257.

Wikstrom, A., Tuulio-Henriksson, A., Perala, J., Saarni, S., & Suvisaari, J. (2015).
Psychotic like experiences (PLE’s) in middle-aged adults. Schizophrenia Research,
169, 313-317.

Yang, S., Zhu, F., Ling, X., Liu, Q., & Zhao, P. (2021). Intelligent health care: Applications
of deep learning in computational medicine. Frontiers in Genetics, 12, Article 607471.

Yu, M., Linn, K. A., Cook, P. A., Phillips, M. L., McInnis, M., Fava, M., et al. (2018).
Statistical harmonization corrects site effects in functional connectivity
measurements from multi-site fMRI data. Human Brain Mapping, 39, 4213-4227.

Ziermans, T. B. (2013). Working memory capacity and psychotic-like experiences in a
general population sample of adolescents and young adults. Frontiers in Psychiatry, 4,
161.


http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0063
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0063
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0063
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0063
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0065
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0065
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0066
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0066
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0066
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0067
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0067
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0067
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0067
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0068
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0068
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0068
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0068
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0068
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0069
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0069
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0069
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0070
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0070
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0071
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0071
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0071
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0072
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0072
http://refhub.elsevier.com/S0893-6080(24)00695-6/sbref0072

	Classification of psychosis spectrum disorders using graph convolutional networks with structurally constrained functional  ...
	1 Introduction
	2 Methods
	2.1 Data acquisition
	2.2 Anatomical image processing
	2.3 DTI processing
	2.4 fMRI image processing
	2.5 Edge-Selection methods
	2.6 SVMs and SVMs with multiverse
	2.7 Graph convolutional networks
	2.8 Post HOC analysis for PLE and transdiagnostic samples
	2.9 Network analysis for graph theoretic features
	2.10 Salient region detection using class activation mapping (CAM)

	3 Results
	3.1 Demographic data
	3.2 SVMs and SVMs with MultiVERSE
	3.3 Graph convolutional network models
	3.4 Post HOC analysis for PLE and transdiagnostic samples
	3.5 Network analysis for graph theoretic features
	3.6 Salient region detection using class activation mapping (CAM)

	4 Discussion
	5 Conclusions
	Funding source
	Declaration of generative AI in scientific writing
	Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Supplementary materials
	References


