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A B S T R A C T

This article considers the problem of classifying individuals in a dataset of diverse psychosis spectrum conditions, 
including persons with subsyndromal psychotic-like experiences (PLEs) and healthy controls. This task is more 
challenging than the traditional problem of distinguishing patients with a diagnosed disorder from controls using 
brain network features, since the neurobiological differences between PLE individuals and healthy persons are 
less pronounced. Further, examining a transdiagnostic sample compared to controls is concordant with 
contemporary approaches to understanding the full spectrum of neurobiology of psychoses. We consider both 
support vector machines (SVMs) and graph convolutional networks (GCNs) for classification, with a variety of 
edge selection methods for processing the inputs. We also employ the MultiVERSE algorithm to generate network 
embeddings of the functional and structural networks for each subject, which are used as inputs for the SVMs. 
The best models among SVMs and GCNs yielded accuracies >63%. Investigation of network connectivity be
tween persons with PLE and controls identified a region within the right inferior parietal cortex, called the PGi, 
as a central region for communication among modules (network hub). Class activation mapping revealed that the 
PLE group had salient regions in the dorsolateral prefrontal, orbital and polar frontal cortices, and the lateral 
temporal cortex, whereas the controls did not. Our study demonstrates the potential usefulness of deep learning 
methods to distinguish persons with subclinical psychosis and diagnosable disorders from controls. In the long 
term, this could help improve accuracy and reliability of clinical diagnoses, provide neurobiological bases for 
making diagnoses, and initiate early intervention strategies.

1. Introduction

Machine learning methods are increasingly being used in biomedical 
settings to improve diagnostic accuracy and reliability, prognostication, 
and to elucidate pathophysiology (Hassan et al., 2024; Mamdouh Far
ghaly et al., 2023; Yang et al., 2021). Inter-rater reliability and 
test-retest reliability of psychiatric diagnoses based on official classifi
catory systems such as the Diagnostic and Statistical Manual of Mental 
Disorders (DSM) are modest, and the biological validity of these di
agnoses is unclear. Given the ability of machine learning methods to 
detect patterns in complex high-dimensional data, it is proposed that 
they may distinguish patients from controls with higher accuracy and 
reliability. Moreover, such prediction of diagnosis using network 

features adds biological validity to the clinical diagnostic approach that 
entirely depends on self-report of symptoms by patients and observa
tions by experienced clinicians. The addition of biological validity may 
advance our understanding of the pathophysiology of psychotic disor
ders (Pereira et al., 2009).

This article considers the more challenging problem of classifying 
persons with psychotic-like experiences (PLE) and a transdiagnostic 
sample consisting of schizophrenia, major depressive disorder, and bi
polar disorder. Persons with PLE have approximately 4 times higher risk 
for developing psychosis during the entire lifetime (Kaymaz et al., 2012) 
and 5–16-fold increase in risk among children (Welham et al., 2009). 
However, clinically distinguishing persons with PLE from healthy in
dividuals is challenging, thereby highlighting the importance of 
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examining this population using machine learning methods to better 
distinguish PLE from controls. While the risk of conversion to psychosis 
is relatively low compared to the risk for psychosis in persons of clinical 
high risk (up to 35%) and familial high-risk (approximately 8%−15%), 
due to a higher prevalence of PLE in the community (7% of the general 
population (Linscott & van Os, 2013)), reliably identifying such persons 
is clinically significant as it may enable understanding early neurobi
ology before the onset of symptoms to help develop primary preventa
tive strategies.

Using multimodal MRI data within machine learning models pro
vides a non-invasive, data-driven, and neurobiology-based approach to 
classify persons with psychosis spectrum disorders (PSD). Clinically 
distinguishing PLEs from the general population is particularly chal
lenging because most PLE individuals experience subclinical symptoms 
and do not seek treatment. In addition to higher prevalence in the 
community and higher conversion to psychosis (Linscott & van Os, 
2013) as stated above, persons with PLE exhibit lower working memory 
capacity (Ziermans, 2013), higher frequency of anxiety and depression 
(Wigman et al., 2012), and decreased social functioning (Wikström 
et al., 2015). Using network data within machine learning methods can 
potentially lead to identifying persons with PLE and reveal early-stage 
pathophysiology without the confounds of medication exposure, since 
most individuals are not exposed to antipsychotics. Given that psychosis 
is considered a spectrum, ranging from mild subclinical symptoms to 
full-blown clinical syndrome, accurately classifying and examining 
network alterations can reveal the pathophysiological basis of psychosis 
spectrum at different severities of illness. This is important because 
psychotic disorders such as schizophrenia are chronic diseases with 
functional recovery as low as 14% (Jaaskelainen et al., 2013; Prasad, 
2017; Robinson et al., 2004) and reduced life span of up to 25 years 
(Laursen et al., 2012).

In this article, we also examine a transdiagnostic sample consisting of 
schizophrenia, bipolar disorder, and major depressive disorder. These 
disorders are diagnostically and biologically overlapping, frequently 
difficult to clinically distinguish, and often are treated with the same 
medications. Transdiagnostic examination can identify common bio
logical substrates that can distinguish these disorders from healthy 
control subjects.

Using data from the UK Biobank, we examined individuals with PLE 
who are included in the database as “unusual and psychotic experiences 
(UPE),” a transdiagnostic psychosis group consisting of schizophrenia, 
bipolar disorder, major depressive disorder defined according to the 
International Classification of Diseases, 10th edition (ICD-10), and a 
cohort of healthy subjects who were group-matched for age and sex with 
the latter two groups. We combined the PLE and the transdiagnostic 
groups to create a larger sample of psychosis spectrum disorder (PSD) 
subjects.

We implemented support vector machines (SVMs) and graph con
volutional networks (GCNs) using inputs from structural MRI data 
(consisting of tractography data from the diffusion imaging) and resting- 
state functional MRI data, because prior studies show that both struc
tural and functional networks are altered in persons with psychosis 
(Baker et al., 2014; Gong et al., 2017; Griffa et al., 2019; Rikandi et al., 
2022).

SVMs are supervised machine learning models for discriminating 
between groups of data points and have been shown to classify major 
depressive disorder (Gallo et al., 2023), bipolar disorder (Achalia et al., 
2020), and schizophrenia (Lei et al., 2022) with an accuracy of 61%, 
87.6%, and 80.9%, respectively. The training phase locates the hyper
plane that maximally separates the two groups, and a kernel can be 
applied to map the data into a higher-dimensional space to help identify 
the optimal discriminating hyperplane. Subsequently, a validation phase 
is used to adjust hyperparameters, and then a testing phase is used to 
measure classification accuracy. In this analysis, our SVM inputs were 
vectorized brain connectomes.

GCNs are an emerging state-of-the-art class of graph neural networks 

based on convolutional neural networks (CNNs) that were designed to 
aggregate local and neighborhood connection information to generate 
new feature maps. CNNs use filters on small regions of an image to 
identify local image features whereas GCN applies filters to each node’s 
neighborhood (Khlifi et al., 2023). The convolutional step enables the 
algorithm to extract highly abstract features from the imaging data or 
graph connectivity networks but requires lengthy training and param
eter tuning. Like SVMs, GCNs have been successful in classifying autism 
spectrum disorder (Ktena et al., 2018) and schizophrenia (Lei et al., 
2022) from controls, as well as males and females using network fea
tures (Arslan et al., 2018). Unlike SVMs, GCNs consider neighborhood 
relationships from the graph structure instead of independent nodal 
edge weights. The GCN approach first uses an edge selection algorithm 
to eliminate unlikely connections in the graphs when forming the ad
jacency matrix. The adjacency matrix is then used as input for the 
convolutional layers, global average pooling layer, and a fully connected 
layer. A validation/testing set is used to measure model performance. 
Prior studies have employed only a single edge-selection method, 
whereas in this study, multiple edge-selection methods were employed. 
Namely, we considered methods which use functional information only, 
structural information only, and multiplex information (i.e., a combi
nation of functional and structural), because edge selection methods can 
drastically alter the network structure that are inputted to the machine 
learning models in different ways. An additional advantage of GCNs is 
the ability to further differentiate the graph structure to identify which 
brain regions of the graph contributed the most to successful classifi
cation. This could in turn provide insight about which brain regions to 
target for novel treatment development.

The PLE networks may show less prominent changes compared to 
clinically diagnosed disorders, which have more prominent network 
alterations compared to healthy persons, because milder symptoms in 
PLE are difficult to clinically distinguish from healthy persons. Similarly, 
although the transdiagnostic disorders show dysfunctional activation in 
similar regions compared to controls, such dysfunctions are in the 
opposite direction for schizophrenia and bipolar disorder (McIntosh 
et al., 2008; Smucny et al., 2021; Theis et al., 2024). For these reasons, 
the dataset examined here is arguably more challenging to classify based 
on brain network features, so we did not necessarily expect the classi
fication accuracy to be higher than prior studies classifying samples of 
clinically diagnosed subjects in comparison with healthy subjects. 
Further, machine learning methods could identify key brain region
s/subnetworks that potentially discriminate the groups. We also hy
pothesized that GCNs would be more informative in terms of higher 
classification accuracy than SVMs, because GCNs utilize network 
structure with edge selection methods and can recognize features 
contributing to classification.

2. Methods

2.1. Data acquisition

Data was sourced from the UK Biobank (www.ukbiobank.ac.uk), a 
large-scale biomedical database containing lifestyle and health data on 
about half a million participants in the United Kingdom (Littlejohns 
et al., 2020), including MRI data for some participants (Miller et al., 
2016). At the time we accessed the data for this study (March 2022), 
about 40,000 subjects had all three required scans for analysis: 
T1-weighted, diffusion tensor imaging (DTI), and resting-state functional 
magnetic resonance imaging (rs-fMRI). Out of all subjects with required 
imaging modalities, we chose subjects experiencing PLE defined as UPE 
(data field 20,461; age when first experienced UPE) in the UK Biobank (n 
= 370) and subjects meeting ICD-10 diagnostic criteria for schizo
phrenia (data field 130,874), schizoaffective disorder (130,884), manic 
episodes (130,890), bipolar affective disorder (130,892), and/or 
recurrent depressive disorder (130,896). We grouped persons with these 
disorders together as the transdiagnostic group (n = 99). The 
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transdiagnostic group along with persons with lifetime experience of 
PLE were called psychosis spectrum disorder (PSD; n = 469). The control 
group (n = 450) comprised of individuals without PSD or PLE and was 
group-matched to PSD group for age and sex. The UK Biobank bulk data 
files were downloaded to the Pittsburgh Supercomputing Center (PSC) 
Bridges-2 system (Buitrago & Nystrom, 2021). Image acquisition pa
rameters have been previously documented (Miller et al., 2016; Smith 
et al., 2022). Briefly, T1w scans were acquired using 3D MPRAGE with 
voxel size=1 mm3 and a TI/TR=880/2000 ms. The diffusion MRI had a 
voxel size of 2 mm3 (isotropic) and a multiband factor (MB)=3. The 
TE/TR=39/735 ms, MB=8, flip angle=52◦ for resting-state fMRI 
acquisition.

2.2. Anatomical image processing

Specialized neuroimaging programs used for additional processing 
were available on the Pittsburgh Supercomputing Center (Bridges-2 
system) using official Singularity containers (Kurtzer et al., 2017). The 
preprocessing pipeline for all modalities is presented in Fig. 1. The UK 
Biobank image files titled “T1_unbiased_brain.nii.gz” were used for the 
anatomical MRI (aMRI) processing for gradient distortion correction, 
brain extraction, and bias correction by the UK Biobank group (Smith 
et al., 2022). T1-weighted images were processed on Bridges-2 as part of 
the multiplex pipeline using the recon-all function from FreeSurfer 
(version 7.2.0) via the official dockerized image, using Singularity 
Image Format (SIF) (Fischl, 2012). Then, each individual brain was 
parcellated according to the Human Connectome Project Multi-Modal 
Parcellation (HCP MMP1) atlas (Glasser et al., 2016), using a pub
lished method (Neurolab, 2017). Briefly, this method uses a Freesurfer 
(FS) average version of the HCP MMP1 parcellation (Mills, 2016) to the 

individual result of recon-all which produces the standard 360-node 
parcellation (180 parcels per hemisphere). Since two of the Glasser 
atlas regions are the left and right hippocampus and these are included 
in the Freesurfer-derived subcortical structures, we removed them to 
keep 358 cortical parcels. Next, we included the 21 subcortical parcel
lations which included bilateral hippocampi. Because two subcortical 
structures from the automated segmentation were too small to be reli
ably parcellated (the left and right substantia nigra), these were 
removed to yield 19 subcortical structures, resulting in a total of 377 
parcels as network nodes.

2.3. DTI processing

DTI data was preprocessed by the UK Biobank (Smith et al., 2022) for 
eddy current correction, head motion correction, and gradient distortion 
correction. We performed fiber tracking using the Mrtrix3 (Tournier 
et al., 2019) official docker image https://hub.docker.com/r/mrtrix 
3/mrtrix3 via Singularity on Bridges-2. First, a brain mask was created 
from the preprocessed DTI. Next, a response function was calculated as 
well as a Fiber Orientation Distribution (FOD) image by spherical 
deconvolution of preprocessed DTI with the response function. Fiber 
tracking was then performed on the FOD image under the brain mask by 
drawing 10 million streamlines with a maximum of 1000 attempts each 
(maximum angle of 45◦) using anatomically constrained tractography 
(ACT) by the five-tissue-type (5TT) model. Tracts were also reduced 
using Spherical-deconvolution Informed Filtering of Tractograms 
(SIFT).

The native space (T1 space) brain was then registered to the DTI 
space image using FSL FLIRT linear interpolation. The resulting trans
form matrix used to register the aMRI to the DTI was then applied to the 

Fig. 1. Preprocessing pipeline for T1w images (left, blue), functional bold images (middle, green), and diffusion images (right, orange). Preprocessing steps 
completed by the UK Biobank are indicated using brackets.
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atlas parcellation image using nearest-neighbor interpolation to provide 
a DTI-space anatomical atlas. This registration step was then quality 
controlled by visual inspection. Finally, the Mrtrix3 function “tck2con
nectome” was used to generate an adjacency matrix – a structural con
nectome (SC) – where edge weights represent streamline counts (after 
SIFT). All SCs were harmonized to eliminate multisite effects using 
ComBat (Yu et al., 2018).

2.4. fMRI image processing

Resting state fMRI images were preprocessed by the UK Biobank 
(Smith et al., 2022) for head motion (MCFLIRT) (Jenkinson et al., 2012), 
grand-mean intensity normalization of each 4D dataset, high-pass tem
poral filtering, echo planar imaging (EPI) unwarping and gradient 
distortion correction, and finally independent component analysis 
(ICA)-based denoising (Beckmann & Smith, 2004; Griffanti et al., 2014; 
Salimi-Khorshidi et al., 2014). The native T1 brain space was registered 
to the rs-fMRI space image using FSL FLIRT linear interpolation. The 
resulting transform matrix used to register the aMRI to the rs-fMRI was 
then applied to the atlas parcellation image using nearest-neighbor 
interpolation to provide a rs-fMRI-space anatomical atlas. This regis
tration step was then quality controlled by visual inspection. Finally, the 
spatially averaged time series (across all voxels in a parcel) was then 
calculated for each node, and the temporal correlations of nodal time 
series (Pearson’s correlation, r) were then determined for each node 
pair, resulting in a resting state functional connectome (FC). All FCs 
were harmonized to eliminate multisite effects using ComBat (Yu et al., 
2018).

2.5. Edge-Selection methods

Edge-selection methods, also known as thresholding methods, were 
employed to select network edges that represent highly probable con
nections and to remove edges that are most likely attributed to noise 
which therefore may not represent true functional edges. The choice of 
edge-selection method can significantly change the graph properties of 
the original network. To test which method is best for distinguishing 
functional connectivity between the groups, we compared multiple 
commonly used methods. The K-nearest neighbors (KNN) method 
(Cover & Hart, 1967) uses Euclidean distances between pairs of nodes to 
estimate similarity and has achieved a high success rate in prior studies 
using graph neural networks (Kang, 2021). We chose the values k = 10, 
50, and 100 since our network size was significantly larger than in the 
prior studies.

In addition to KNN, we implemented the percolation threshold which 
determines the largest magnitude threshold at which the network’s 
giant connected component (GCC) contains all nodes in the network 
(Bordier et al., 2017). This method aims to find the optimal balance 
between information gained by noise reduction and information lost by 
excessive pruning.

We also implemented a method developed by our group, namely 
objective function threshold method (Theis et al., 2023), which finds a 
threshold value that optimizes a given graph metric calculation. Our 
previous work demonstrated that characteristic path length is a useful 
choice of metric over which to optimize. The objective function 
threshold method can yield binary networks with one or more connected 
components, depending on the choice of parameter value.

Given an input network, Kruskal’s Algorithm (Kruskal, 1956), as 
implemented in the Maximum Weight Spanning tree (Undirected) 
MATLAB package (Chu & Liu, 1965; Edmonds, 1967; Li, 2024) was used 
to determine the Maximum Spanning Tree (MST). The MST is defined as 
the smallest subset of edges in a graph that connects all graph nodes 
(GCC=1) such that the corresponding total edge weight is maximal. A 
simple and widely used thresholding method is proportional thresh
olding, implemented in the brain connectivity toolbox (BCT) (Rubinov 
& Sporns, 2010). This technique removes the weakest set of edges 

necessary to achieve a desired network density. We combined the MST 
approach and the proportional thresholding approach to retain edges 
with the largest weight after the MST edge to make the MST denser. We 
called this edge-selection method “density-matched Maximum Spanning 
Subgraph” (dMSS). The proportion of non-MST edges added back to the 
FC is determined by the density of the corresponding SC for the same 
subject.

Additionally, we included a multiplex method that combines both SC 
and FC information as inputs to the GCN model. We start with subjects’ 
SC to define a binary network of all node-pairs connected by at least one 
diffusion streamline, thus yielding sparse networks with approximately 
10% edge density. Since our input graph for each subject is the complete 
FC, we additionally supply this SC-derived binary matrix as the edge 
selection scheme. This forces the GCN model to only consider the FC 
connections that have a corresponding SC connection. Hereafter we 
refer to this method as “SC-constrained" edge selection.

2.6. SVMs and SVMs with multiverse

In the SVM analysis, for each subject the rs-FC and SC represented 
the weighted adjacency matrices and were used to build separate 
functional and structural classifiers. Namely, we vectorized the upper 
triangle elements of the adjacency matrix so that for each sample i, we 
have n(n − 1)/2 features denoted as X[i]

FC and X[i]
SC. We then train the 

SVMs using X[i]
FC and X[i]

SC separately. However, there are two challenges 
when using this method. First, the number of features is very large (377 
nodes creates 70,876 possible features) compared to other studies that 
have a smaller network size. Second, we did not combine the informa
tion from the FC and SC to train the SVMs because this would double the 
number of features (which is already large), so instead we used the 
multiplex network embedding approach as described below.

To combine information from the FC and SC, we used the Multi
VERSE algorithm (Pio-Lopez, Valdeolivas, Tichit, Remy, & Baudot, 
2021) which builds an embedding matrix from multiplex SC and FC 
networks. The MultiVERSE algorithm involves two main steps. First, 
given a structural and functional network, we constructed the similarity 
measure between two nodes using a random walk with restart. Next, 
given the similarity measure, we obtained an embedding matrix 
W ∈ Rn×d where d < n by using the noise contrastive estimation 
method (Gutmann & Hyvärinen, 2010) used within the MultiVERSE 
algorithm. For clarity, we followed the published procedure (Pio-Lopez, 
et al., 2021). For each sample i, we have a two-layer multiplex network 
where the first layer is the functional network, and the second layer is 
the structural network to find a matrix W[i] and then vectorize it into the 
feature vector X[i] ∈ Rnd (Pio-Lopez, et al., 2021). We used unweighted 
FC and SC with equal graph density as our inputs to the MultiVERSE 
algorithm. For the SC, we considered an edge to be present when at least 
one streamline count was observed, whereas for the FC we used the 
dMSS thresholding described above. We used the Python code in 
Pio-Lopez et al. to implement MultiVERSE using the recommended 
default values for most parameters (Pio-Lopez, et al., 2021). We 
considered different embedding dimensions (d ∈ 2,35,128), where 128 
is the default dimension used in the MultiVERSE algorithm.

The traditional SVM with linear kernel was used to construct a 
maximal margin hyperplane based on the training data, because previ
ous classification studies using neuroimaging data with this choice re
ported good performance (Achalia, et al., 2020; Gallo, et al., 2023; Lei, 
et al., 2022). We also considered SVMs with the radial kernel function, 
which constructs a nonlinear boundary by enlarging the feature space. 
For all input types, FC only, SC only, and MultiVERSE, the same tuning 
parameters for SVMs were used. For the linear kernel, we have one 
tuning parameter C and for the radial basis function (RBF) kernel, we 
have two tuning parameters C and γ. We considered C ∈ {0.0001,

0.001, 0.01, 0.1, 1, 10, 100, 1000} and γ ∈ {0.001, 0.01, 0.1, 1,

10, 100}. To evaluate SVM performance, pooled stratified 10-fold 
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cross-validation was used to split the data into training/validation and 
test sets. The training set was used to train the SVMs, the validation set 
was used to select the tuning parameters, and the test set was used to 
evaluate the classification performance of the SVMs (see Supplemental 
table 1 for sizes of the training, validation, and test sets).

2.7. Graph convolutional networks

We modified an existing GCN pipeline (Lei et al., 2022) to examine 
single subject classification of controls and PSD (Fig. 2). Modifications 
were made to the type of edge selection method used, input network 
architecture, and therefore how the data was loaded into Pytorch. The 
GCN model was kept the same except for the first input to convolutional 
layer 1 having a larger number of features. In short, three graph con
volutional layers (number of channels: [64, 64, 128]) were used in our 
model followed by a global average pooling layer and a fully connected 
layer. The Rectified Linear Unit (ReLU) activation function was used to 
add hidden layers and introduce non-linearity into the model. The 
Softmax function encoded the output value into a predictive probability 
for each class from the output layer. In our analysis, the FC was repre
sented using graph structure where each region is a node, and each node 
feature is the functional connectivity of that region and all other regions. 
The adjacency matrix was calculated via the edge-selection methods 
discussed above. For completeness, the SC consisted of the same nodes 
as the FC with each node feature representing the streamline count of 
that region to all other regions. The adjacency matrix was calculated 
using a threshold of streamline counts (≥1). To evaluate GCN perfor
mance, pooled stratified 10-fold cross-validation was used to split the 
data into training and test sets. For each fold, 50 epochs of the training 
dataset were run through the learning process. The performance of each 
epoch was determined by calculating training loss, validation loss, 

balanced accuracy, sensitivity, and specificity, and test balanced accu
racy, sensitivity, and specificity (see Appendix 1 for the GCN pseudo
code). For more information on network architecture, see pseudocode 
part 2 of the Appendix 1; see Fig. 2D for information on convolutional 
functions and feature dimensions, or Supplemental Fig. 1 for trainable 
parameters. Sizes of the training, validation, and test sets are described 
in Supplemental Table 1.

2.8. Post HOC analysis for PLE and transdiagnostic samples

After examining the entire PSD group compared with healthy con
trols, we conducted a post hoc investigation of the transdiagnostic 
sample and the PLE group separately, compared to age and sex matched 
controls. The balanced accuracy was calculated in the same way as 
above. Since the sample size of the transdiagnostic group was smaller 
than the PSD and PLE groups, we chose to use k = 5 instead of 10 for the 
k-fold cross validation. The connectome and edge selection method 
which performed the best on the PSD sample was used for the GCN in
puts and adjacency matrix calculation for PLE and transdiagnostic 
groups (see Supplemental Table 1 for sizes of the training, validation, 
and test sets).

2.9. Network analysis for graph theoretic features

To further understand network differences between the patient and 
control groups, the model with the highest accuracy was used to classify 
a random set of subjects that was the same size as the test set. The 
subjects were then split into groups based on whether they were clas
sified correctly or incorrectly as patient or control, resulting in four 
groups: true-patient, true-control, false-patient, and false-control. These 
four groups were analyzed separately using graph theoretic methods. 

Fig. 2. Pipeline used to classify preprocessed structural and functional images. (A) First the anatomical, diffusion, and functional images are preprocessed (see also 
Fig. 1). The preprocessing outputs of the diffusion, a tractogram, and the functional, a denoised and realigned timeseries, data are shown. (B) The Glasser atlas 
(cortical) and FreeSurfer (subcortical) were used to parcellate the brain (T1w image, top) into 377 regions of interest. The parcellation was then applied to the outputs 
of part A. (C): Connectomes were built using streamline count (diffusion) and Pearson correlation (functional) between each region and all other 376 regions. This 
step creates a 377-by-377 connectivity network from diffusion and functional data separately. (D) After network creation, Support Vector Machines (SVM) and Graph 
Convolutional Networks (GCN) were used to classify psychosis from controls.
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For each subject in each group, network hubs were calculated and the 
inter-section connections, based on the Glasser atlas section definitions, 
were compared. Hubs were defined as nodes with degree, betweenness 
centrality, or eigenvector centrality more than two standard deviations 
above the network average of the same measure (Bassett et al., 2008; 
Lewis et al., 2023). Global graph centrality (average eigenvector and 
betweenness centrality) and segregation (modularity) measures were 
calculated. These were then compared between groups to quantify dif
ferences in segregation and centrality metrics. Of note, modularity re
lates the number of within-network connections to all connections to 
quantify the strength of segregation into distinct networks (Cohen & 
D’Esposito, 2016). Average eigenvector and betweenness centrality 
were used to measure a network’s regional interaction and resilience 
(Rubinov & Sporns, 2010).

2.10. Salient region detection using class activation mapping (CAM)

In addition to investigating graph theoretic properties, we used Class 
Activation Mapping (CAM) to detect salient regions that were infor
mative for classification (Arslan et al., 2018). Using the GCN model with 
the highest accuracy, we extracted the final dense layer, or the output 
from the final convolutional layer, from all subjects. To estimate the 
activation value of each node, we multiplied each subject’s final layer 
(in our case 377 × 128 matrix) by the optimized weight vector for their 
respective class (128 × 1 vector). This yielded a 377 × 1 CAM vector for 
each subject in each class. Here, we were interested in analyzing the two 
group’s activation values separately, so we calculated the average CAM 
vector across subjects in each group. The top 10 nodes with the highest 
activation value are reported from each group.

3. Results

3.1. Demographic data

After extensive processing and quality control of processed outputs 
as detailed above, a final sample of 919 multiplex networks were used 
(PSD=469; controls=450). Of the 469 PSD subjects, 370 had lifetime 
experience of PLE but were never diagnosed with an ICD disorder (PLE 
sample), and 99 had an ICD-10 disorder (transdiagnostic sample). 
Control and PSD did not significantly differ by age. The sex distribution 
between the PSD (72% female) and the control group (64% female) and 
between the PLE and controls were significantly different, respectively, 
but not between the transdiagnostic and controls (Table 1). The same 
training, validation, and test sets were used for both GCNs and SVMs for 
k-fold cross validation (Supplemental Table 1).

3.2. SVMs and SVMs with MultiVERSE

The SVMs correctly classified the PSD group with 56% average ac
curacy across the folds that used FC edge weights. The models using SC 
and MultiVERSE embedding performed relatively poorly (Table 2A). 
However, the best model using the FC edge-weight inputs had an ac
curacy of 65% (Table 2B). The linear kernel consistently outperformed 
the radial basis function (RBF) kernel (Supplemental Table 2).

3.3. Graph convolutional network models

Across the folds, SC input provided the highest average accuracy 
(53%) with 38% sensitivity and 68% specificity (Table 3A). Balanced 
accuracy varied marginally (~2%) based on the connectome input and 
edge selection method chosen, but some provided imbalanced sensi
tivity and specificity. Similarly, the FC input with SC-constrained edge 
selection yielded 52.5% accuracy with 47% sensitivity and 58% speci
ficity (Table 3A). In terms of best model metrics, the lowest balanced 
accuracy (57.9%) was achieved using the KNN algorithm, and the best 
classification accuracy was achieved using SC-constrained (62.0%) and 
had a balanced sensitivity and specificity (Table 3B). KNN with k = 100 
performed the best but not k = 10 or 50 that performed <50% accuracy 
and are therefore not reported.

3.4. Post HOC analysis for PLE and transdiagnostic samples

We examined the diagnostic components of the PSD group, namely 
the PLE and the transdiagnostic samples separately. The highest average 
accuracy for the PLE across folds was 54% and was achieved using linear 
kernel SVMs with functional connectome edge weights as the input 
(Table 4A). The best model, with an accuracy of 65%, was MultiVERSE 
SVM using an embedding dimension=8 with a linear kernel (Table 4B). 
See Supplemental Table 3 for metrics for the other embedding di
mensions and the RBF kernel.

For the transdiagnostic sample, the highest average accuracy (57%) 
using MultiVERSE with SVM was achieved using the embedding 
dimension d = 4 and a linear kernel (Table 5A). The best model across 
methods and folds was also using MultiVERSE embedding with a 
dimension d = 4 as the input and had a 69% accuracy (Table 5B; see 
Supplemental Table 4 for metrics for other embedding dimensions and 
the RBF kernel).

Since SC and FC with SC-constrained edge selection inputs provided 

Table 1 
Demographic data of the samples used for classification tasks.

PSD Sample PLE Sample Transdiagnostic Sample

Group PSD (n ¼ 469) Control (n ¼ 450) PLE (n ¼ 370) Control (n ¼ 370) Transdiagnostic (n ¼ 99) Control (n ¼ 99)

Age (years) 53.2 ± 6.9 53.6 ± 7.3 53.3 ± 6.7 53.3 ± 7.4 52.6 ± 7.5 53.0 ± 6.8
Age Comparison t = 0.98 p = 0.91 t=−0.12 p = 0.91 t = 0.38 p = 0.71
Sex (M/F) 131/338 162/288 101/269 131/239 31/68 40/59
Sex Comparison χ2=6.76 p = 0.0093 χ2=5.64 p = 0.0175 χ2=1.63 p = 0.201

Table 2 
PSD classification accuracy, sensitivity, and specificity for the test sets using 
SVM. (A) Average metrics across all 10 folds for functional, structural, and 
MultiVERSE inputs. (B) Metrics for the best model, the model with the highest 
accuracy, for the three different inputs. The highest average and best model 
accuracies are in bold. Metrics using a linear kernel are shown for all SVM 
models since it outperformed RBF. The best embedding dimension for Multi
VERSE is shown. Metrics for other embedding dimensions and the RBF kernel is 
provided in the Supplemental Table 2.

A. SVM Average Metrics Across Folds for Psychosis Spectrum Disorder Sample

Input Average 
Accuracy

Average 
Sensitivity

Average 
Specificity

Functional Connectome 0.56±0.06 0.56±0.06 0.55±0.10
Structural Connectome 0.50±0.05 0.51±0.06 0.49±0.08
MultiVERSE Embedding 

(d = 16)
0.51±0.06 0.50±0.08 0.52±0.07

B. Best SVM Model Metrics for Psychosis Spectrum Disorder Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.65 0.62 0.69
Structural Connectome 0.59 0.62 0.56
MultiVERSE Embedding (d = 2) 0.61 0.70 0.51
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the highest accuracy for the PSD samples, these two edge selection 
methods were used for classifying the PLE and transdiagnostic groups. 
The balanced accuracy improved marginally when GCN was imple
mented on these subgroups. For the PLE-only sample, the best average 
balanced accuracy was 54%, which was similar to the PSD, but the best 
model accuracy showed a marginal improvement at 65% compared to 
62% (Table 6). Similarly, when the transdiagnostic sample was exam
ined, the best average balanced accuracy (55%) improved by 2% and 1% 
for the best model (Table 6).

3.5. Network analysis for graph theoretic features

GCNs yielded the best model (65% accuracy) using the SC with the 
streamline count≥1 as the edges to classify persons with PLE from 
controls. This model’s test subjects’ thresholded networks were extrac
ted and analyzed for differences in graph measures. None of the global 
graph measures were significantly different between PLE and control 
groups. The right PGi, part of the inferior parietal cortex, was identified 
as a hub in PLE subjects but not in controls. The right PGi was considered 
to be a connector hub since it had first-degree connections with other 
inferior parietal regions, lateral temporal cortex, temporo-parieto- 
occipital junction, and auditory association cortex (Fig. 3) that are 
different cortical sections, defined by the Glasser parcellation, allowing 
for communication between these sections (Farahani et al., 2019). There 
were 10 hubs in all groups that did not impact model classification 
(Supplementary Table 5; see Supplemental Materials for results from the 
PSD and transdiagnostic samples).

3.6. Salient region detection using class activation mapping (CAM)

Using the GCN model for PLE that yielded the highest accuracy 
(65%), we extracted each subject-specific CAM vector. Due to the rela
tively low classification accuracy, sensitivity, and specificity, we 
examined the groups separately. For the PLE and control groups, the top 
10 most salient regions were located in different cortical sections. Both 
groups had salient regions in the primary visual, early visual, somato
sensory, and motor, and subcortical Glasser-defined sections. The PLE 
group had salient regions in dorsolateral prefrontal cortex, lateral tem
poral, and orbital and polar frontal cortex but the control group had 
salient regions in auditory association, posterior cingulate, inferior 
frontal, paracentral lobule and mid cingulate cortex, and superior pa
rietal cortex sections (Fig. 4). Results from the PSD and transdiagnostic 
samples are available in Supplementary Material.

4. Discussion

Our main findings are that SVMs and GCNs provided similar pre
diction accuracy using network characteristics for PSD (PLE + trans
diagnostic group). The best model for SVMs achieved 65% classification 
accuracy for the PLE and 69% for the transdiagnostic sample, whereas 
GCNs achieved 65% accuracy for the PLE and 63% for the trans
diagnostic sample. That being said, the average accuracy across all folds 
for SVM and GCN were similar. The PLE group showed an accuracy 

Table 3 
Graph Convolutional Network metrics for PSD sample. (A) Average balanced 
accuracy, sensitivity, and specificity across the 10-folds for different edge se
lection methods. (B) Metrics for the model with best performance, based on 
highest accuracy. The highest average and best model accuracies are in bold. 
KNN= k-nearest neighbors (k = 100). For more information on each edge se
lection, see the methods section.

A. GCN Average Metrics Across Folds for Psychosis Spectrum Disorder Sample

Connectome Edge- 
Selection

Av. 
Accuracy

Av. 
Sensitivity

Av. 
Specificity

Functional KNN 0.52±0.04 0.38±0.27 0.66±0.24
Functional Objective 

Function
0.51±0.05 0.34±0.16 0.68±0.19

Functional Percolation 0.52±0.04 0.60±0.17 0.43±0.15
Multiplex 

(structural +
functional)

dMSS 0.49±0.05 0.39±0.27 0.59±0.31

Multiplex 
(structural +
functional)

SC- 
constrained

0.53±0.07 0.47±0.25 0.58±0.27

Structural Streamline 
Count≥1

0.53 
±0.05

0.38±0.15 0.68±0.12

B. Best GCN Model Metrics for Psychosis Spectrum Disorder Sample

Connectome Edge- 
Selection

Accuracy Sensitivity Specificity

Functional KNN 0.58 0.87 0.29
Functional Objective 

Function
0.61 0.75 0.47

Functional Percolation 0.61 0.60 0.62
Multiplex (structural 

+ functional)
dMSS 0.58 0.40 0.76

Multiplex (structural 
+ functional)

SC- 
constrained

0.62 0.62 0.62

Structural Streamline 
Count≥1

0.61 0.53 0.69

Table 4 
PLE classification metrics for the test sets using SVMs. (A) Average metrics across 
all 10 folds for functional, structural, and MultiVERSE inputs. (B) Metrics for the 
best model, the model with the highest accuracy, for the three different inputs. 
The highest average and best model accuracies are in bold. Metrics using a linear 
kernel are shown for all SVM models since it outperformed RBF. The best 
embedding dimension for MultiVERSE is shown. Metrics for other embedding 
dimensions and the RBF kernel can be viewed in the supplemental material.

A. SVM Average Metrics Across Folds for PLE Sample

Input Average 
Accuracy

Average 
Sensitivity

Average 
Specificity

Functional Connectome 0.54 ± 0.06 0.49 ± 0.16 0.58 ± 0.11
Structural Connectome 0.49 ± 0.06 0.50 ± 0.12 0.47 ± 0.07
MultiVERSE Embedding 

(d = 2)
0.53 ± 0.03 0.52 ± 0.09 0.53 ± 0.08

B. Best SVM Model Metrics for PLE Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.62 0.54 0.70
Structural Connectome 0.58 0.68 0.49
MultiVERSE Embedding (d = 8) 0.65 0.62 0.68

Table 5 
Transdiagnostic sample classification metrics for the test sets using SVMs. (A) 
Average metrics across all 5 folds for functional, structural, and MultiVERSE 
inputs. (B) Metrics for the best model, the model with the highest accuracy, for 
the three different inputs. The highest average and best model accuracies are in 
bold. Metrics using a linear kernel are shown for all SVM models since it out
performed RBF. The best embedding dimension for MultiVERSE is shown. 
Metrics for other embedding dimensions and the RBF kernel can be viewed in the 
supplemental material.

A. SVM Average Metrics Across Folds for Transdiagnostic Sample

Input Average 
Accuracy

Average 
Sensitivity

Average 
Specificity

Functional Connectome 0.51 ± 0.08 0.69 ± 0.31 0.33 ± 0.39
Structural Connectome 0.55 ± 0.09 0.57 ± 0.09 0.53 ± 0.11
MultiVERSE Embedding 

(d = 4)
0.57 ± 0.10 0.56 ± 0.14 0.59 ± 0.08

B. Best SVM Model Metrics for Transdiagnostic Sample

Input Accuracy Sensitivity Specificity

Functional Connectome 0.62 0.30 0.95
Structural Connectome 0.69 0.68 0.70
MultiVERSE Embedding (d = 4) 0.69 0.70 0.68
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similar to that in the transdiagnostic group which illustrates the pre
dictive ability of SVMs and GCNs in a diagnostically heterogeneous 
transdiagnostic sample or symptomatically subsyndromal PLE sample. 
While this is a challenging classification problem, these findings are 
especially encouraging because our previous attempts to predict the 
group membership of familial high-risk individuals (who have up to 
15% risk for conversion to psychoses) using traditional structural 
equation modeling with psychopathological, cognitive, and a global 
brain measure provided much lower accuracy and sensitivity (Eack 
et al., 2008; Shah et al., 2012). Although the classification metrics in our 
SVM and GCN models are not currently suitable for clinical deployment, 
it should be noted that these methods used only one type of predictor 
variable of SC or structurally constrained FC compared to our prior study 
that used multiple predictor variables in structural equation modeling. 
Further, even with these metrics, GCN models can highlight the 
importance of salient regions for classification or identify diagnostic 
groups in our best GCN model. Our study revealed a connector hub 
which contributes to the accuracy of classification. The model that 

provided the highest classification accuracy between PLE and controls 
used SC inputs. The PLE and control groups had a unique set of salient 
and common regions. The salient regions for PLE were in the dorsolat
eral prefrontal cortex, lateral temporal, and orbital and polar frontal 
cortex Glasser sections. Among the controls, the salient regions were in 
the auditory association, posterior cingulate, inferior frontal, para
central lobular, mid cingulate, and superior parietal cortices Glasser 
sections. The salient regions common to both groups were in the primary 
visual, early visual, somatosensory, and motor, and subcortical sections. 
Adding other potential clinical variables or using more homogenous 
diagnostic groups may improve the classification accuracy, potentially 
making deep learning methods more appropriate for clinical 
applications.

Despite the relatively low accuracy of classification models observed 
in this study, our findings are valuable because of the possibility for 
early detection using machine learning that may help early in
terventions. Prior studies have demonstrated that early detection and 
interventions improve outcomes (Correll et al., 2018; de Koning et al., 

Table 6 
GCN performance after dividing the PSD sample into more distinct subgroups: PLE and transdiagnostic samples. (A) Average balanced accuracy, sensitivity, and 
specificity across the 10-folds (PLE) and 5-folds (transdiagnostic) for different edge selection methods. (B) Metrics for the model with best performance, based on 
highest accuracy. The highest average and best model accuracies are in bold. The most distinct group is the transdiagnostic sample (gray filled) and the PLE group 
(white filled).

A. GCN Average Metrics Across Folds for PLE and Transdiagnostic Samples

Connectome Sample Edge-Selection Average Accuracy Average Sensitivity Average Specificity

Functional PLE SC-constrained 0.51 ± 0.06 0.53 ± 0.28 0.53 ± 0.28
Structural PLE Streamline Count ≥ 1 0.54 ± 0.06 0.63 ± 0.23 0.44 ± 0.24
Functional Transdiagnostic SC-constrained 0.55 ± 0.05 0.48 ± 0.23 0.63 ± 0.22
Structural Transdiagnostic Streamline Count ≥ 1 0.52 ± 0.07 0.49 ± 0.25 0.55 ± 0.19

B. Best GCN Model Metrics for PLE and Transdiagnostic Samples

Connectome Sample Edge-Selection Accuracy Sensitivity Specificity

Functional PLE SC-constrained 0.62 0.38 0.87
Structural PLE Streamline Count ≥ 1 0.65 0.60 0.70
Functional Transdiagnostic SC-constrained 0.63 0.75 0.50
Structural Transdiagnostic Streamline Count ≥ 1 0.59 0.63 0.55

Fig. 3. List of hubs (top left) and their first-degree connections (bottom left). The hubs have connections with multiple other cortical sections making them connector 
hubs. A graphical representation of a connector hub is shown on the right with each color corresponding to a different cortical section defined by the Glasser 
parcellation.

M. Lewis et al.                                                                                                                                                                                                                                   Neural Networks 181 (2025) 106771 

8 



2009) and are cost-saving for people at high-risk of developing psychi
atric disorders (Ologundudu et al., 2021). Further, we also found that 
certain interventions can not only benefit clinical outcomes but also 
improve neurobiological parameters (Eack et al., 2010; Keshavan et al., 
2017). For these reasons, identification of people at high-risk for 
developing psychosis from psychiatrically healthy individuals is at the 
forefront of psychiatric research. Our study examines persons with a 
“soft” spectrum of psychopathology, namely people with PLE, who 
normally do not come under the care of a psychiatrist. Even if they do, 
no formal psychiatric diagnosis can be assigned leading to no clinically 
approved interventions. Attempts to classify disorders based on certain 
features of brain networks derived from MRI data is further useful 
because psychiatric disorders are defined entirely based on clusters of 
behaviors. The subjects in our dataset exist across a wide range of psy
chosis spectrum, and classifying across this spectrum is challenging 
because each disorder is shown to have different brain connectivity 
changes compared to a control subject.

Our analysis implemented two key machine learning tools, namely 
SVMs and GCNs. SVMs have a long history of application to classify 
groups and have well-understood theoretical foundations. However, 
SVMs use hyperplanes and learned parameters to classify brain networks 
that do not retain information about the network structure and can only 
handle one type of connectome input, either functional or structural 
(Miller et al., 2020). Since both structural and functional networks have 
been shown to be altered in people at high-risk for psychosis (Baker 
et al., 2014; Gong et al., 2017; Griffa et al., 2019; Prasad et al., 2023, 
2015; Rikandi et al., 2022), traditional SVMs cannot handle differences 
in both structural and functional networks simultaneously. To address 
this limitation, we implemented the MultiVERSE embedding algorithm 
to combine SC and FC data before inputting into the SVM model. 
Further, we observed overfitting of SVM training models, possibly 
because of the high dimensionality of the networks. Even the Multi
VERSE network embedding approach, which reduced the dimension in 
addition to combining the structural and functional data, did not fully 

address the problem of overfitting. Several issues remain regarding the 
use of MultiVERSE, such as deciding the number of iterations to run 
without a tolerance-based stopping criterion and the choice of embed
ding dimension. In separate simulation studies involving stochastic 
block model random graphs, the embedding dimension caused over
fitting (Arroyo Relión et al., 2019), but in our data, it seems that the 
embedding dimension did not affect overfitting. Therefore, our future 
works will use regularized SVMs. In addition, since the SVMs do not 
retain the information about network structure, further analysis to 
identify network features that contributed to classification could not be 
implemented.

GCNs suited our connectome data due to their ability to retain nodal 
information of the input network structure and the use of three con
volutional layers to model the graph inputs and distinguish the groups 
(Ktena et al., 2018; Lei et al., 2022). In this study, GCNs and SVMs 
provided similar classification results regardless of feature input. Some 
studies have reported a higher classification accuracy using GCNs on 
subjects with clinically diagnosed schizophrenia (Lei et al., 2022). Using 
our sample consisting of PLE with less prominent neurobiological 
changes compared to controls and a transdiagnostic sample with 
heterogenous networks, a classification accuracy of 63% is encouraging 
compared to structural equation modeling (SEM) in our previous studies 
(Eack et al., 2008; Shah et al., 2012). Our sample was balanced to avoid 
having the GCN models overfit the network features of one group 
compared to the other, unlike some other studies (Lei et al., 2022). An 
imbalanced sample can bias the model to provide higher balanced ac
curacy for the group with larger sample size since the model overfits that 
group because balanced accuracy is an average of sensitivity and spec
ificity. Additionally, we were careful in entering the inputs in the proper 
order for the confusion matrix. We input the ground truth labels first and 
then the predicted labels next since entering in an incorrect order could 
yield a falsely high balanced accuracy by inflating sensitivity and/or 
specificity. Using a more homogeneous PLE sample, the classification 
accuracy improved which suggests that comparing two groups where 

Fig. 4. Top 10 most salient regions for PLE and controls influencing classification. The control group (left) had the maximum activation value (red) and the minimum 
(the darkest blue). The PLE group (right) had a smaller range of activation values.
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each group is relatively more homogeneous is better. This also shows 
that network connectivity of people at relatively higher risk for psy
chosis, namely PLE, and the transdiagnostic sample share similar fea
tures compared to controls.

The choice of classification method depends on the scientific ques
tion being asked and the resources available. While SVMs use relatively 
fewer computational resources and are faster to implement than GCNs, 
SVMs still provided the same accuracy when used on our samples 
(Supplemental Table 6). Previous studies have similarly reported high 
accuracy on other samples (Achalia et al., 2020; Gallo et al., 2023; Lei 
et al., 2022). However, SVMs may not be suitable for networks with a 
large number of nodes because of the risk of overfitting as we observed 
with the Glasser parcellation (377 cortical and subcortical regions) 
(Glasser et al., 2016). A study using the AAL atlas, which consisted of 90 
nodes, showed better accuracy and did not mention overfitting in their 
data (Lei et al., 2022). Therefore, using a parcellation atlas with fewer 
regions may reduce overfitting in the SVMs but could lose valuable 
regional connectivity information provided by the Glasser atlas. In such 
instances, it may be preferable to use deep learning methods, such as 
GCNs implemented with careful consideration of the edge selection 
method, provided the computational resources are accessible. Our study 
shows that FC and SC inputs performed similarly most of the time, but 
the best classification accuracy was observed when the SC or structurally 
constrained FC was used. This observation indicates that integrating 
data from different modalities into a multiplex form could improve 
classification compared to inputting the monoplex networks. Further, 
GCNs can handle larger number of nodes supporting an additional 
advantage over SVMs.

In summary, we sought to classify PSD individuals consisting of PLE 
and a transdiagnostic sample with relatively high accuracy using SVMs 
and GCNs. We also identified that multiplexing SC and FC improves 
connectome classification while using structurally constrained FCs for 
GCNs resulting in marginal improvement. FC yielded 3–5% higher ac
curacy compared to other inputs on average for SVMs for the PSD and 
PLE samples, but for the transdiagnostic sample, MultiVERSE inputs 
were better with about 5% higher accuracy than other methods on 
average.

5. Conclusions

This paper used GCNs and SVMs to classify diverse psychosis samples 
of PSD, PLE, and transdiagnostic samples compared to healthy controls. 
Both methods produced similar accuracies of 65–69%. The edge selec
tion method chosen for GCNs improved classification accuracy, sug
gesting that researchers should carefully choose biologically relevant 
edge selection methods. Our analysis also revealed that using a combi
nation of FC and SC may improve classification, and we identified an 
inferior parietal region as hub in PLE subjects only. Because GCNs rely 
on network architecture, using GCNs permits further investigations 
using network analysis and CAM which, in our study, revealed hubs and 
salient regions unique to PLE subjects. In future studies to improve 
classification accuracy, we could use network features instead of the 
entire network as the input to reduce the number of features and 
implement feature selection methods that have been successful previ
ously (Abdel Hady & Abd El-Hafeez, 2023, 2024). Future studies to 
improve classification accuracy could use clinical and cognitive scores 
as additional features within the machine learning models which have 
shown success in multi-disease classification using symptom descriptors 
(Hassan et al., 2024) and Hepatitis C prediction (Mamdouh Farghaly 
et al., 2023). Limitations of this study include a relatively small sample 
of the transdiagnostic group, but in future studies, we plan to replicate 
these results on publicly available subclinical or high-risk adolescents 
and young adults with high-risk of developing psychosis to further 
enhance the usefulness of the classification to develop early in
terventions and improve outcomes (Khosla, 2006; Kosztyán et al., 2022) 
and minimize long-term social and functional impairments. Additionally 

in future analysis, we will include soft classifiers which outputs group 
probabilities instead of a binary classification and are not present in this 
analysis. We will also include other dimensionality reduction techniques 
alongside SVMs such as principal component analysis, network-based 
nonparametric dimensionality reduction, and latent factor analysis 
(Khosla, 2006; Kosztyán et al., 2022; Nakayama et al., 2021).
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