
Geometriae Dedicata (2023) 217:82
https://doi.org/10.1007/s10711-023-00819-6

ORIG INAL PAPER

A topologically rigid set of quotients of the Davis complex

Yandi Wu1

Received: 21 May 2022 / Accepted: 9 July 2023 / Published online: 28 July 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
A class of topological spaces is topologically rigid if any two spaces with the same funda-
mental group are also homeomorphic. Topological rigidity, in addition to its intrinsic interest,
has been useful for solving abstract commensurability questions. In this paper, we explore
the topological rigidity of quotients of the Davis complex of certain right angled Coxeter
groups by providing conditions on the defining graphs that obstruct topological rigidity. Fur-
thermore, we explore why topological rigidity is hard to achieve for quotients of the Davis
complex. Nonetheless, we conclude by introducing infinitely many infinite topologically
rigid subclasses.

Keywords Topological rigidity · Davis complex · Right-angled coxeter group ·
Orbicomplex
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1 Introduction

Often, determining whether two topological objects are homeomorphic is a significantly
harder problem than determining whether their fundamental groups are isomorphic. In some
cases, however, if we impose enough conditions on the topological spaces we are study-
ing, the weaker equivalence relation (isomorphism between fundamental groups) implies the
stronger and often more useful equivalence relation (homeomorphism between the topolog-
ical objects). We can often exploit the topological rigidity of such sets of spaces to derive
useful results (recall that a collection of topological objects X is topologically rigid if for
any X1, X2 ∈ X , if π1(X1) ∼= π1(X2), then X1 and X2 are homeomorphic). For example,
to determine if two groups G1 and G2 are abstractly commensurable (i.e. have isomorphic
finite-index subgroups), we often construct two finite-sheeted homeomorphic covers of X1

and X2, where π1(Xi ) = Gi for i = 1, 2. These homeomorphic covers can be hard to con-
struct. However, if the finite-sheeted covers X̃1 and X̃2 belong to a topologically rigid class
of spaces and π1(X̃1) ∼= π1(X̃2), then we know X̃1 and X̃2 are homeomorphic.
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There are several well-established examples of topologically rigid classes. For example,
the set of closed orientable 2-manifolds is topologically rigid. The Poincare Conjecture
implies the set of simply-connected, closed 3-manifolds is topologically rigid. In a series
of papers (see [4], [5], and [6]), Lafont proves the set of of simple, thick n-dimensional
hyperbolic P-manifolds, a subclass of piecewise CAT(-1) spaces, is topologically rigid for
n ≥ 2. In this paper, we consider certain orbicomplexes, unions of collections of orbifolds
identified along homeomorphic suborbifolds, associated with Right-Angled Coxeter Groups
(RACGs), defined below.

Definition 1 (Right-Angled Coxeter Group) Given a finite simplicial graph � with edge set
E and vertex set V , the Right-Angled Coxeter Group (RACG) W� with defining graph � is
the group with presentation 〈vi ∈ V : v2i = 1, [vi , v j ] = 1 if [vi , v j ] ∈ E〉.

A RACG W� acts properly discontinuously by isometeries on a space called the Davis
Complex �� . The quotient D� = ��/W� , which we call a Davis orbicomplex, is one of the
aforementioned orbicomplexes and comes equipped with cell stabilizer data defined by the
action ofW� on �� . To clarify, recall that if an amalgamated free product or HNN extension
G acts on a Basse Serre tree T , the resulting quotient T /G is a graph of groups whose vertices
and edges are labelled by subgroups of G isomorphic to vertex and edge stabilizers of T .
Similarly, each edge and vertex of a Davis orbicomplex D� may be labeled by a subgroup
of W� that stabilizes a lift of the edge or vertex in �� (in this paper, we do not specify such
labels as they are not crucial for our proofs). For further background on the Davis complex
and Coxeter groups, refer to [3]. The Davis orbicomplex has been studied extensively by
Stark, who poses the following question in [7], which we will give a partial answer to in this
paper:

Question 1 For which set W of Coxeter groups is the set of Davis orbicomplexes D� for
groups in W together with their finite-sheeted covers topologically rigid?

Despite the simplicity of the problem statement, the answer to Question 1 is very nuanced.
In this paper, we focus our attention on RACGs that are one-ended (� has no separating edges
or vertices and is connected) and hyperbolic (� is square-free, or has no cycles of length four).
One example of a class of defining graphs that gives rise to W� satisfying these conditions
is a subclass of generalized � graphs, defined as follows:

Definition 2 (Generalized�-graph) For k ≥ 1, 0 ≤ n1 ≤ ... ≤ nk , let� = �(n1, n2, ..., nk)
be the graphwith two vertices a and b, each of valence k, and k edges e1, e2, ..., ek connecting
them, which we will call the branches of �. Furthermore, for 1 ≤ i ≤ k, ei is subdivided
into ni + 1 edges by inserting ni new vertices.

For the purposes of this paper, we will require that ni > 0 for all 1 ≤ i ≤ k and n2 > 1
in order to ensure W� is hyperbolic.

Associated to each generalized �-graph is an Euler characteristic vector, which captures
the Euler characteristics of the orbifolds in the Davis orbicomplex D� . The Euler charac-
teristic vector is often used to classify Davis orbicomplexes; in [2], the Euler characteristic
vector is used to list abstract commensurability criteria. In this paper, we will use Euler
characteristic vectors to list criteria for topological rigidity.

Definition 3 (Euler characteristic vectors of generalized�-graphs) Let� = �(n1, n2, ..., nk)
be a generalized � graph. Then the Euler characteristic vector of � is the vector v =
(x1, x2, ..., xn), where xi = 1−ni

4 . Two Euler characteristic vectors v1 and v2 are said to be
commensurable if there exist K , L ∈ Z �=0 such that Kv = Lw.
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Dani, Stark, and Thomas show in Theorem 5.2 of [2] that finite covers of Davis orbicom-
plexes with � = �(n1, n2, ..., nk) are topologically rigid. In this paper, we focus on cycles
of generalized � graphs introduced in [2], which consist of generalized � graphs identified
along their essential vertices.

Definition 4 (Cycle of generalized �-graphs) Let N ≥ 3 and let b1, b2, ..., bN be positive
integers so that for each i , 1 ≤ i ≤ N , at most one of bi and bi+1 where i is taken mod N
is equal to 1. Let �i be a generalized � graph with bi edges between two vertices ai and ci .
We can construct a cycle of N generalized �-graphs � by identifying ci with ai+1.

We call the vertex of a cycle of generalized � graphs with valence greater than two an
essential vertex. For the rest of the paper, we will use {vi }Ni=1 to denote the set of essential
vertices of all the graphs involved. The indices of all vi ’s will also taken mod N , where
N is the number of essential vertices (or equivalently generalized � graphs) in a cycle of
generalized �-graphs �.

Let � be a cycle of generalized � graphs with Davis complex �� , and G a finite index,
torsion-free subgroup of W� . Stark proves in [7] that the set of quotients ��/G, which
correspond to finite-sheeted covers of the Davis orbicomplexesD� , is not topologically rigid
by constructing X1 = ��/G1 and X2 = ��/G2 that are homotopic but not homeomorphic.
Theorem 1 in Sect. 2 generalizes the construction from [7] to create a class of orbicomplexes
where topological rigidity fails. Our construction of homotopic but not homeomorphic covers
relies on the fact that one set of orbifolds in the orbicomplex is a finite cover of another set
of orbifolds.

Definition 5 Suppose � is a cycle of generalized � graphs with essential vertices {vi }Ni=1,
and there exist two essential vertices v j , vk such that the generalized � graphs � j and �k

between v j and v j+1 mod N and vk and vk+1 mod N (where k �= j) respectively have
commensurable Euler characteristic vectors u and w (Ku = Lw for some K , L ∈ Z �=0).
Then we say � is repetitive. If K or L = 1, then we say � is strongly repetitive.

Theorem 1 Suppose a class of finite-sheeted covers of Davis orbicomplexesX contains all
the finite-sheeted covers of some Davis orbicomplex D� where � is strongly repetitive. Then
X is not topologically rigid.

It is not known whether Theorem 1 is true if we only assume � is repetitive.
Theorem 1 as well as Stark’s proof in [7] rely on constructions of finite-sheeted covers of

the same Davis orbicomplexD� . One can also prove, however, that two finite-sheeted covers
of nonhomeomorphic Davis orbicomplexes can also violate topological rigidity.

Definition 6 (Permutedpairs) Twocycles of generalized�graphs�1 and�2 formapermuted
pair if they are obtained from identifying the essential vertices of the same set of generalized
� graphs. Equivalently, the set of Euler characteristic vectors of �1 is some permutation of
the set of Euler characteristic vectors of �2.

Remark 1 Note that if we use the definition above, it is possible for a permuted pair�1 and�2

to be isomorphic. For example, if �1 and �2 each consist of three generalized� graphs glued
together, they are isomorphic (see the proof of Lemma 2 for details). We do not consider
such pairs in Theorem 2, stated below.

Theorem 2 Suppose a class of finite-sheeted covers of Davis orbicomplexesX ′ contains all
finite sheeted covers of two Davis orbicomplexes D�1 and D�2 , where �1 and �2 form a
permuted pair and �1 and �2 are not isomorphic. Then X ′ is not topologically rigid.
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Fig. 1 An example of a permuted pair. Note that �1 and �2 both consist of �i (where 1 ≤ i ≤ 4) glued along
essential vertices

In the proof of Theorem 2, we find two homotopic finite-sheeted covers of D�1 and D�2

that are not homemomorphic. As a side note, this means that W�1 and W�2 are commensu-
rable, so having two defining graphs that form a permuted pair is a sufficient condition for
commensurability. Recall that in Theorem 1.12 of [2], Dani, Stark, and Thomas provide two
necessary and sufficient conditions for commensurability of RACGs with defining graphs
that are cycles of generalized � graphs.

In [7], Stark constructs X1 and X2, two homotopic finite covers of a Davis orbicomplex
D� with non-homeomorphic singular sets (e.g. sets along which the orbifolds are identified).
In her example, � is a cycle of generalized � graphs, proving that the set of finite-sheeted
covers of Davis complexes with defining graphs that are cycles of generalized � graphs is
not topologically rigid. In light of these results, in Sect. 3 of [2], Dani, Stark, and Thomas
construct a different set of orbicomplexes that is topologically rigid, which they use to prove
abstract commensurability results. Nevertheless, in Sect. 4 (see Theorem 5), we are able to
find a topologically rigid subclass of finite-sheeted covers of Davis orbicomplexesD� where
� is a cycle of generalized � graphs. The subclass also takes Theorems 1 and 2 into account
to exclude finite-sheeted covers of D� that violate topological rigidity. Although the exact
statement of the theorem is fairly technical, we state a simplified version below.

Theorem 3 There exists an infinite classC ofDavis orbicomplexes such that for any D� ∈ C ,
an infinite collection of finite-sheeted covers of D� form a topologically rigid set.

2 Preliminaries

We now introduce a construction of the Davis orbicomplex specific to the setting where the
defining graph � is a cycle of generalized� graphs consisting of�i = �(ni,1, ni,2, ..., ni,k)
for 1 ≤ i ≤ N . For a more detailed construction ofW� and verification that π1(D�) is indeed
W� , we refer the reader to Sect. 2 of [7] and Sect. 3 of [2].

First, we describe how to construct an orbifoldPi, j for a branch (edge) bi, j of a general-
ized � graph �i . For each bi, j , construct a (ni, j + 2)-gon with an edge of order 1, which we
call a nonreflection edge, and ni, j + 1 reflection edges of order 2. All the vertices are order
4 vertices, with the exception of the two order 2 vertices adjacent to the non-reflection edge.
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Fig. 2 A cycle of generalized � graphs � along with its Davis orbicomplex D� . We label edges el in the
singular star S with l arrows. Note that each branch bi, j ∈ � determines an orbifoldPi, j ∈ Dψ

Construction 1 (Davis Orbicomplex D� of a cycle of generalized � graphs) First, we will
construct an orbifold graph S. The underlying graph of S is a star with one central vertex
v0 adjacent to N valence one vertices. The valence one vertices are orbifold points of order
2. Cyclically label the orbifold points with vl where 1 ≤ l ≤ N, and use el to denote the
edge [v0, vl ] ∈ E(S). Then attach the set of branch orbifoldsPi, j along their non-reflection
edges to ei and ei+1, where the labels are taken mod N. An example of Construction 1 is
shown in Fig.2.

Note that for the cycle of generalized� graphs� shown in Fig. 2, the Euler characteristic
vectors of�1 and�3 are (− 1

4 ,− 1
4 ) and (− 3

4 ,− 3
4 ), so 3w1 = w3, whichmeans� is strongly

repetitive. Theorem 1.7 then implies any class X that contains all finite-sheeted covers of
D� is not topologically rigid.

All finite-sheeted covers of Davis orbicomplexes that we construct will contain jester hats,
a specific kind of orbifold defined below:

Definition 7 (Jester hats) Suppose O = D2 (2, 2, ..., 2)
︸ ︷︷ ︸

n

, i.e. a disk with n order 2 points.

Then we will call O a jester hat with n (order two) cone points.

3 Examples of topologically non-rigid sets

We first introduce the construction of jester hats that cover orbifolds in a Davis orbicomplex
D� .

Lemma 1 Suppose d is a positive even integer. Each orbifold P with r reflection edges is
covered by the jester hat D2 (2, 2, ..., 2)

︸ ︷︷ ︸

c

, where c = d
2 (r − 3) + 2 and d is the degree of the

cover.

Proof This construction is based on Stark’s construction in Lemma 3.1 from [7] and Crisp
and Paoluzzi’s construction from Section 3.1 of [1]. Using Crisp and Paoluzzi’s construction,
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Fig. 3 A tower of covers illustrating the lemma. Here, D2(2, 2, 2, 2, 2) is a six-fold cover of an orbifold with
four reflection edges

Fig. 4 A generalized � graph with four branches two-fold covers the singular subset of the orbicomplex from
Fig. 2. Here, N = 4

we observe that for any even integer d > 0, an orbifold ̂O with d
2 (r − 3)+ 3 reflection edges

is tiled by d
2 copies of an orbifold with r reflection edges, so ̂O is a d

2 -sheeted orbifold cover
of O . For example, in Fig. 3, an orbifold ̂O with 6 reflection edges is tiled by 3 copies of O ,
an orbifold with 4 reflection edges. Thus, ̂O is a 3-sheeted orbifold cover of O . Next, if we
unfold along the reflection edges of ̂O , we obtain a closed disk with d

2 (r − 3) + 2 order two
cone points, as desired. The construction is illustrated in Fig. 3. 
�

Construction 2 (The double of a singular set) The Davis orbicomplex D� has a singular
subset S consisting of an orbifold star graph with N order two points, where N is the number
of essential vertices in�. We can construct a double cover of S, which we call̂S, by unfolding
along order two points to obtain a subdivided generalized �-graph with N branches and
one vertex on each branch between the essential vertices. For an illustration, refer to Fig.4.
All the singular sets constructed in this section will be a finite-sheeted cover of ̂S.

For all of the covers described in this paper, all the edges will be subdivided by a copy
of the lift of an order two point ṽi from the Davis orbicomplex. Both subdivisions will be
oriented towards ṽi and labeled with the label of the edge, which we will specify in the
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construction. For simplicity, we will count a subdivided edge as one edge when calculating
cycle lengths.

Proposition 1 Let� be strongly repetitive. Then there exist homotopic but non-homeomorphic
finite-sheeted covers of D� .

Proof Suppose u and w are Euler characteristic vectors of �i and �k respectively where
Ku = w for some K ∈ Z+. Without loss of generality, assume i = 1 since we can rotate the
labels of the essential vertices otherwise. Suppose�1 and�k have l branches. Let ns,b denote
the number of vertices on the bth branch of �s . Then if u = (

1−n1,1
4 ,

1−n1,2
4 , ...,

1−n1,l
4 ) and

w = (
1−nk,1

4 ,
1−nk,2

4 , ...,
1−nk,l

4 ) then for 1 ≤ b ≤ l, K
( 1−n1,b

4

) = ( 1−nk,b
4

)

and K (1−n1,b) =
1−nk,b. If rs,b denotes the number of reflection edges on the orbifold in theDavis orbicomplex
constructed from the bth branch of�s , then rs,b = ns,b+2, sowe have K (r1,b−3)+3 = rk,b.
Case 1 (K = 1): We will first consider some general cases before addressing the edge case
where N �= 3. First, suppose K = 1 and k < N − 1. Then r1,b = rk,b for 1 ≤ b ≤ l. We will
construct two non-homeomorphic but homotopic four-sheeted covers of D� , which we will
call ˜X1 and ˜X2. First, we construct their singular sets ˜S1 and ˜S2 with four essential vertices,
ṽ1, ṽ2, ṽ3, ṽ4 and ṽ′

1, ṽ
′
2, ṽ

′
3, ṽ

′
4. To construct ˜S1, add k edges between two pairs of vertices:

ṽ1 and ṽ4, as well as ṽ2 and ṽ3. The edges will be labeled with all integers between 1 and
k and subdivided as described earlier in the section. Between two other pairs of vertices,
ṽ1 and ṽ2, as well as ṽ3 and ṽ4, construct N − k subdivided edges labeled with all integers
between k + 1 and N . Thus, in total, there are two (subdivided) four-cycles labeled with k
and k + 1 as well as 1 and N , and N − 2 cycles of length two labeled with i and i + 1, where
1 ≤ i ≤ N −1, i �= k. For the other singular set, ˜S2, there is one edge labeled with 1 between
two pairs of vertices: ṽ′

1 and ṽ′
4, as well as ṽ′

2 and ṽ′
3. Additionally, there are N − 1 edges

between two other pairs of vertices, ṽ′
1 and ṽ′

2 as well as ṽ′
3 and ṽ′

4; these edges are labeled
with all integers between 2 and N . In total, there are again two four-cycles with edges labeled
with 1 and 2 as well as 1 and N , and N − 2 cycles of length two labeled with i and i + 1
where 2 ≤ i ≤ N − 1.

By the conditions imposed on D� , the four-cycles labeled by k and k + 1 in ˜S1 and 1 and
2 in ˜S2 have the same set of jester hats glued to them. Additionally, the two-cycles labeled
with 1 and 2 in ˜S1 and k and k + 1 in ˜S2 have the same set of jester hats glued to them. For
other integers I where 1 ≤ I ≤ N and I �= 1, k, for every cycle in ˜S1 labeled with I and
I + 1, there is a corresponding cycle of the same length labeled with I and I + 1 in ˜S2. As a
result, for each cycle in ˜S1 with a set of jester hats glued to it, there is a corresponding cycle
in ˜S2 with the same set of jester hats glued to it. By taking their regular neighborhoods, we
can see that both ˜S1 and ˜S2 are homotopic to a (2N −4)-holed sphere. We can then conclude
that ˜X1 and ˜X2 are homotopic to the same (2N −4)-holed sphere with the same same sets of
jester hats glued to their boundary components. However, they are not homeomorphic since
the complements of their cut pairs have different numbers of connected components.

If N �= 3, there are two special cases where the above construction does not work.
First, note that if k = N , the construction does not work because the first cover will be
disconnected. Thus, we construct modified non-homeomorphic but homotopic degree four
covers. As before, we will call these covers ˜X1 and ˜X2 with singular sets ˜S1 and ˜S2 that have
essential vertices ṽi and ṽ′

i respectively, where 1 ≤ i ≤ 4. For ˜S1, construct two subdivided
edges labeled with 1 and 2 between ṽ1 and ṽ4 as well as ṽ2 and ṽ3. Then between vertices
ṽ3 and ṽ4 as well as ṽ1 and ṽ2, construct N − 2 edges with labels between 3 and N . For
˜S2, between ṽ′

1 and ṽ′
4 as well as ṽ2’ and ṽ′

3, construct N − 1 subdivided edges labeled
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with all integers between 3 and N and one subdivided edge labeled with 1. Then construct a
subdivided vertex labelled with 2 between ṽ′

3 and ṽ′
4 as well as ṽ′

1 and ṽ′
2.

Second, note that if k = N −1, the general construction does not work since ˜S1 and ˜S2 are
homeomorphic; therefore, ˜X1 and ˜X2 are also homeomorphic. In order to fix this, construct
new ˜S1 and ˜S2 as follows: for ˜S1, construct 3 edges between ṽ1 and ṽ2 as well as ṽ3 and ṽ4,
which are labeled with 1, 2, and N . Then construct N −3 edges between ˜v′

1 and
˜v′
4 as well as

˜v′
2 and

˜v′
3 labeled from 3 to N −1. For ˜S2, follow the construction for the case where k = N .

Again, in both edge cases (k = N , k = N − 1, N > 3), both ˜S1 and ˜S2 are homotopic to a
(2N − 4)-holed sphere and have the same sets of jester hats glued to them, but complements
of their cut pairs have different numbers of connected components. Thus, ˜S2 and ˜S1 are not
homeomorphic but ˜X1 and ˜X2 are homotopic.

For the case N = 3, any of the previous constructions will yield homeomorphic ˜X1

and ˜X2, so a different pair of covers is necessary. For this special case, we will construct
16-sheeted covers. Assume without loss of generality that �1 and �3 have the same Euler
characteristic vectors. For both ˜S1 and ˜S2, label edges [vi , vi+1] and [v′

i , v
′
i+1] respectively

with 2 if i is odd and 3 if i is even. Then construct the edges [ṽ2, ṽ13], [ṽ3, ṽ12], [ṽ4, ṽ11],
[ṽ1, ṽ16], [ṽ14, ṽ15], [ṽ9, ṽ10], ṽ7, ṽ8], and [ṽ5, ṽ6] labelled with 1. For ˜S2, construct edges
[˜v′

1,
˜v′
16], [˜v′

2,
˜v′
15], [˜v′

13,
˜v′
14], [˜v′

3,
˜v′
12], [˜v′

4,
˜v′
5], [˜v′

6,
˜v′
7], [˜v′

8,
˜v′
11], and [˜v′

9,
˜v′
10] and label

them with 1. As a result, ˜S1 has one 6-cycle, one 4-cycle, and three 2-cycles labelled with 1
and 2 and one 8-cycle, one 4-cycle, and two 2-cycles labelled with 1 and 3. On the other hand,
˜S2 has the same set of cycle counts with different labels: one 6-cycle, one 4-cycle, and three
2-cycles labelled with 1 and 3 and one 8-cycle, one 4-cycle, and two 2-cycles labelled with 1
and 2. Thus, both ˜S1 and ˜S2 are homotopic to 10-holed spheres, and by construction have the
same sets of jester hats glued to them; thus, ˜X1 and ˜X2 are homotopic. Observe, however,
that ˜S1 and ˜S2 are not homeomorphic, as desired. This completes the proof for K = 1.
Case 2 (K > 1): Suppose K > 1 and K = pu11 pu22 ...putt = ∏t

d=1 p
ud
d is the prime factoriza-

tion of K . We will now construct two non-homeomorphic 2
∏t

d=1 p
ud+1
d -sheeted covers ˜X1

and ˜X2. First, we construct their singular sets ˜S1 and ˜S2, which will both have 2
∏n

d=1 p
ud+1
d

essential vertices, which we will label ṽi and ˜v′
i for 1 ≤ i ≤ 2

∏t
d=1 p

ud+1
d . Note that all

the vertex indices in the construction will be taken modulo 2
∏t

d=1 p
ud
d .

Construction of ˜S1:
First, suppose that k �= N ; if k = N , the following construction will be disconnected.

For the first singular set ˜S1 ⊂ ˜X1, for even i , construct k edges between ṽi and ṽi+1 mod
2

∏t
d=1 p

ud+1
d . The edges will be labeled with all integers I where 2 ≤ I ≤ k + 1. For odd

i , construct N − k edges between ṽi and ṽi+1 mod 2
∏t

d=1 p
ud+1
d . One of these edges will

be labeled with 1 and the rest with all integers I where k + 2 ≤ I ≤ N . As a result, for
i �= 1, k + 1, between ṽi and ṽi+1, there is a copy of a two-cycle that is a double cover of
the nonreflection edges inD� labeled with i and (i + 1) mod N . We will then have a graph
with

∏t
d=1 p

ud+1
d copies of two-cycles labeled with i and (i + 1) for 2 ≤ i ≤ N , i �= k + 1,

as well as two 2
∏t

d=1 p
ud+1
d -cycles, one labeled with 1 and 2, and one labeled with k + 1

and k + 2. For an example, refer to the graph on the right in Fig. 5, which is an 18-sheeted
cover of the singular set from the orbicomplex in Fig. 2.

We now consider the special case where k = N . For even i , construct N − 2 edges
between ṽi and ṽi+1 labeled with integers I where 2 ≤ I ≤ N − 1. Then for odd i , construct
2 edges between vertices ṽi and ṽi+1 labeled with 1 and N . We will again have a graph with
∏t

d=1 p
ud+1
d copies of two-cycles labeled with i and (i + 1) for i = N and 2 ≤ i ≤ N − 2.
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Wewill also still have two 2
∏t

d=1 p
ud+1
d -cycles, one labeled with N −1 and N and the other

with 1 and 2 as before.
Construction of ˜S2: For the second singular set ˜S2 ⊂ ˜X2, first partition {ṽ′

i } into p =
∏t

d=1 pd sets of equal size, so the first setwill contain vertices ṽ
′
i where 1 ≤ i ≤ 2

∏t
d=1 p

ud
d ,

the second set will contain vertices where 2
∏t

d=1 p
ud
d + 1 ≤ i ≤ 4

∏t
d=1 p

ud
d , so in general,

the nth set will contain ṽ′
i labeled 2n

(

∏t
d=1 p

ud
d

)

+ 1 ≤ i ≤ 2(n + 1)
∏t

d=1 p
ud
d , where

0 ≤ n ≤ p − 1.
We first consider the case where k �= N . Construct k − 1 edges between the pairs of

vertices labeled ṽ′
2n

(
∏t

d=1 p
ud
d

)

+1
and ṽ′

2(n+1)
∏t

d=1 p
ud
d
, for 0 ≤ n ≤ p − 1. Label these

edges with integers I , where 2 ≤ I ≤ k. For all 1 ≤ n ≤ p, construct an edge each labeled
with k + 1 between ṽ′

2n
∏t

d=1 p
ud
d

and ṽ′
2n

(
∏t

d=1 p
ud
d

)

+1
. Finally, add edges to the remaining

vertices with no edges between them. For even i , if there are no edges between ṽ′
i and ṽ′

i+1,
add k edges and label them with integers I where 2 ≤ I ≤ k + 1. For odd i , add k edges
between all ṽ′

i and ṽ′
i+1 with no edges between them. One of these edges will be labeled

with a 1, while the rest are labeled with integers I such that k + 2 ≤ I ≤ N . As a result,
we will have p cycles of length 2

∏t
d=1 p

ud
d labeled with 1 and 2,

∏t
d=1 p

ud+1
d two-cycles

labeled with i and i + 1 for 2 ≤ i ≤ k or k + 2 ≤ i ≤ N ,
∏t

d=1 p
ud
d two-cycles labeled with

k and k + 1, and a 2p-cycle labeled with k and k + 1. For an example, see the graph on the
left in Fig. 5.

Now consider the edge case of k = N . This time, we will construct one edge labeled
with 1 between the pairs of vertices labeled ṽ′

2n
(

∏t
d=1 p

ud
d

)

+1
and ṽ′

2(n+1)
∏t

d=1 p
ud
d
, for 0 ≤

n ≤ p − 1. For all 1 ≤ n ≤ p, construct an edge labeled with N between ṽ′
2n

∏t
d=1 p

ud
d

and

ṽ′
2n

(
∏t

d=1 p
ud
d

)

+1
. For the other pairs of vertices, for even i , if there are no edges between ṽ′

i

and ṽ′
i+1, add 2 edges and label them with 1 and N . For odd i , add N − 2 edges between all

ṽ′
i and ṽ′

i+1 labeled with integers I such that 2 ≤ I ≤ N − 1. As a result, we will have p
cycles of length 2

∏t
d=1 p

ud
d labeled with 1 and 2,

∏t
d=1 p

ud+1
d each of two-cycles labeled

with i and i + 1 for 2 ≤ i ≤ N − 2 or i = N , and a 2p-cycle labeled with 1 and N .
Observe that ˜S1 and ˜S2 are not homeomorphic since ˜S1 has many more cut pairs. In

particular, any two essential vertices will form a cut pair in ˜S1, but ˜S2 only has
(2p
2

)

pairs of
cut pairs. As a result, ˜X1 and ˜X2 are not homeomorphic. However, note that ˜S1 and ˜S2 are
homotopic; take a regular neighborhood of both graphs to obtain a 2

∏t
d=1 p

ud+1
d (N−2)+1-

holed sphere.
We then examine what orbifolds are glued to ˜S1. Recall that rs,b denotes the number of

reflection edges of the orbifold corresponding to the bth branch of �s ⊂ �. By Lemma 2.1,
we can see that there will be a disk with

∏t
d=1 p

ud+1
d (rs,b − 3) + 2 cone points glued along

its boundary circle to the 2
∏t

d=1 p
ud
d -cycles labeled by 1 and 2 and k + 1 and k + 2 for

s = 1, k + 1 for the case k �= N ; if k = N , the second 2
∏t

d=1 p
ud
d -cycle is labeled with

N −1 and N and s = N −1. Additionally, there will be a disk with ri,b −1 cone points glued
to each of the

∏t
d=1 p

ud+1
d two-cycles labeled by i and i + 1 mod N + 1 for 2 ≤ i ≤ k or

k + 2 ≤ i ≤ N if k �= N (2 ≤ i ≤ N − 2 or i = N if k = N ).
Next, we list the orbifolds glued to ˜S2. First, there will be p copies of disks with

∏t
d=1 p

ud
d (r1,b − 3) + 2 cone points glued to the 2

∏t
d=1 p

ud
d -cycles with edges labeled

with 1 and 2. Second, there will be one copy of a disk with
∏t

d=1 p
ud+1
d (rk+1,b − 3) + 2

cone points glued to the 2
∏t

d=1 p
ud+1
d cycle labeled by k + 1 and k + 2 if k �= N and N − 1
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Fig. 5 Two homotopic but non-homeomorphic covers of the singular set ofW� from Fig. 2. Instead of labeling
the edges with numbers, we use different numbers of arrows

and N if k = N . There will also be
∏t

d=1 p
ud+1
d copies of a disk with ri,b − 1 cone points

glued to each 2-cycle labeled by i and i + 1 mod N for 2 ≤ i ≤ k − 1 or k + 1 ≤ i ≤ N
if k �= N and 2 ≤ i ≤ N − 2 if k = N . Finally, there are

∏t
d=1 p

ud
d copies of a disk with

rk,b − 1 cone points glued to each two-cycle labeled by k and k + 1 as well as one copy of
a disk with p(rk,b − 3) + 2 cone points glued to the 2p-cycle labeled by k and k + 1. Then
for both orbicomplex covers, we have the same collection of orbifolds glued to ˜S1 and ˜S2:

• ∏t
d=1 p

ud+1
d copies of each disk with ri,b − 1 cone points, where 2 ≤ i ≤ k − 1 or

k + 1 ≤ i ≤ N if k �= N and 2 ≤ i ≤ N − 2 if k = N ;
• One copy of a disk with

∏t
d=1 p

ud+1
d (rk+1,b − 3) + 2 cone points;

• ∏t
d=1 p

ud
d + p = ∏t

d=1 p
ud+1
d copies of a disk with rk,b − 1 = ∏t

d=1 p
ud
d (r1,b − 3) + 2

cone points since there are
∏t

d=1 p
ud
d copies of two-cycles labeled with k and k + 1 as

well as p copies of 2
∏

d=1 p
ud
d -cycles labeled with 1 and 2 in ˜S2 and

∏t
d=1 p

ud+1
d copies

of two-cycles labeled with k and k + 1 in ˜S1;
• One copy of the disk with p(rk,b − 3) + 2 = ∏t

d=1 p
ud+1
d (r1,b − 3) + 2 cone points

since there is one 2p-cycle labeled with k and k + 1 in ˜S2 and one 2
∏t

d=1 p
ud+1
d -cycle

labeled with 1 and 2 in ˜S1.

As a result, since ˜X1 and ˜X2 have the same sets of jester hats glued to homotopic graphs, we
have found finite covers that are homotopic but not homeomorphic. This proves Theorem 1.


�
Next, we prove a Lemma which immediately implies Theorem 2.

Lemma 2 Suppose �1 and �2 form a non-isomorphic permuted pair (see Definition 6). Then
there exist finite-sheeted covers of D�1 and D�2 that are homotopic but not homeomorphic.

Proof Note thatD�1 andD�2 have the same number of generalized � graphs glued together,
so the two-sheeted covers of their singular sets will be two isomorphic generalized � graphs
S1 and S2. We will now construct two non-homeomorphic double covers of S1 and S2, which
we will call ˜S1 and ˜S2.
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Fig. 6 Here, the defining graphs �1 and �2 are the permuted pair from Fig. 1, so they satisfy the conditions
of Lemma 2. The singular sets Si of Xi , which are four-sheeted covers of D�i for i = 1, 2 are shown on the
left. Note that X1 and X2 are homotopic but not homeomorphic

Since �1 and �2 are not isomorphic, N > 3, where N as before denotes the number of
generalized � graphs glued together in �1 and �2. Indeed, suppose that �1 and �2 are cycles
of three generalized � graphs, �1, �2, and �3. Without loss of generality, suppose that in
�1, �i has essential vertices vi and vi+1 and in �2, �1 has essential vertices v′

1 and v′
2, �2

has essential vertices v′
1 and v′

3, and�3 has essential vertices v′
2 and v′

3. Then there is a graph
isomorphism f : �1 → �2, defined by f (v1) = v′

2, f (v2) = v′
1, and f (v3) = v′

3 (with f
defined on the valence 2 vertices in the natural way). We point this out since the construction
detailed below will not work for N = 3.

To construct ˜S1, fix a cyclic ordering on a set of four vertices {ṽ1, ṽ2, ṽ3, ṽ4}. Construct
edges between ṽ1 and ṽ2, and between ṽ3 and ṽ4, labeled with all integers I such that
1 ≤ I ≤ N − 1. Then construct one edge between ṽ2 and ṽ3, as well as ṽ4 and ṽ1 and label
those edges with N .

According to the assumptions, for every generalized � graph �i between vertices vi and
vi+1 in �1, there is an isomorphic generalized � graph �′

j in �2 between v′
j and v′

j+1 ∈ �2.
We can therefore assume there exists some �′

j ⊂ �2 that is isomorphic to �1 ⊂ �1, and
some�′

k ⊂ �2 that is isomorphic to�N ⊂ �1.Without loss of generality, assume that j < k.

Construct ˜S2 with vertices {ṽ′
1, ṽ′

2, ṽ′
3, ṽ′

4} and construct edges between ṽ1 and ṽ′
2 as well

as ṽ′
3 and ṽ′

4 labeled with all integers I such that j + 1 ≤ I ≤ k. Then construct edges
between ṽ′

2 and ṽ′
3 as well as ṽ′

4 and ṽ′
1 labeled with all integers I such that k+1 ≤ I ≤ N

or 1 ≤ I ≤ j .
In the Davis orbicomplexes, the isomorphic � graphs �1 ⊂ �1 and �′

j ⊂ �2 give rise to
identical sets of orbifolds glued to edges labeled 1 and 2 in D�1 and j and j + 1 in D�2 . As
a result, if there is a cycle in X1 labeled with 1 and 2 and a cycle of the same length in X2

labeled with j and j+1, the sets of jester hats glued to themwill be identical. The same holds
for �N ⊂ �1 and �′

k ⊂ �2. Note that in ˜S1, there are two four-cycles with jester hats glued
to them, one labeled with 1 and N and the other with N and N − 1. The other cycles with
jester hats glued to them are all two-cycles labeled with I and I + 1 where 1 ≤ I ≤ N − 2.
On the other hand, ˜S2 is a generalized � graph with two cycles of length four that have
jester hats glued to them- one labeled with k and k + 1 and the other with j and j + 1. The
other cycles with jester hats glued to them are labeled with I and I + 1 where I �= j, k
are two-cycles. Note that the regular neighborhood of both ˜S1 and ˜S2 is the (2N − 2)-holed
sphere S0,2N−2, and there is a bijective correspondence between sets of jester hats glued to
boundary components of S0,2N−2 ⊂ ˜S1 and sets of jester hats glued to boundary components
of S0,2N−2 ⊂ ˜S2. Thus, X1 and X2 are homotopic but not homeomorphic because ˜S1 and ˜S2
are not homeomorphic. For an example, refer to Fig. 6. 
�
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Fig. 7 S1 and S2 are non-homeomorphic singular sets of homotopic eight- and four-sheeted covers of D�1
and D�2 . Thus, neither �1 nor �2 is repetitive and �1 and �2 do not form a permuted pair, yet any set X ′′
that contains all finite-sheeted covers of D�1 and D�2 is not topologically rigid

As a segue into our next section, we make the following remark.

Remark 2 Finding necessary and sufficient conditions for topological rigidity is a very
nuanced task. In our setting, by Theorem 2, we know a topologically rigid set cannot contain
the finite-sheeted covers of D�1 and D�2 , where �1, �2 are strongly repetitive or form a
permuted pair (see Definition 6). Unfortunately, simply excluding finite-sheeted covers of
all D� where � is repetitive and part of a permuted pair is not sufficient for constructing a
topologically rigid set. For example, for D�1 and D�2 from Fig. 7, �1 and �2 are not com-
posed of the same set of generalized� graphs glued together. Furthermore, for both defining
graphs, there do not exist pairs of commensurable Euler characteristic vectors of generalized
� graphs in �1 and �2. Nevertheless, there exist eight- and four-sheeted covers of D�1 and
D�2 respectively that are homotopic but not homeomorphic.

4 A topologically rigid set

In this section, we introduce a class of finite-sheeted covers of Davis orbicomplexes that is
topologically rigid. Since topological rigidity is difficult to achieve, many assumptions are
necessary, so our class does not contain the complete set of finite-sheeted covers of Davis
orbicomplexes. In particular, to find rigid classes, we not only need restrictions on the defining
graphs but also on the singular sets of the covers.

A key tool in the proof of Theorem 5 is Lafont’s topological rigidity result from [5].
Lafont’s result involves (simple, thick, 2-dimensional) hyperbolic P-manifolds (see [5] Def-
inition 2.3), which, roughly speaking, consist of compact surfaces with boundary identified
along their boundaries. The gluing curves form the singular set of the hyperbolic P-manifold.
Additionally, there is the important restriction that the singular set of a hyperbolic P-manifold
consists of disjoint unions of circles. We now restate the theorem we will use:

Theorem 4 (Lafont [5], Theorem 1.2) Let X1, X2 be a pair of simple, thick, 2-dimensional
hyperbolic P-manifolds, and assume that φ : π1(X1) → π1(X2) is an isomorphism. Then
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there exists a homeomorphism φ : X1 → X2 that induces φ on the level of the fundamental
groups.

In order to use Theorem 4, we impose a restriction on the finite covers of Davis orbicom-
plexes we are examining, which we state below.

Assumption 1 X is homotopic to an orbicomplex Y that consists of jester hats glued along
their boundaries to the boundaries of an h-holed genus g surface Sg,h . Furthermore, in Y ,
each boundary of Sg,h has at least one jester hat glued to it.

Recall that a graph � is said to be 3-convex if every edge between its essential vertices
has at least 3 subdivisions. Note that if a cycle of generalized � graphs � is 3-convex, then
W� is hyperbolic since � is square-free. Although the converse is not true, we impose the
3-convexity condition in our proof to ensure our construction of hyperbolic P-manifold lifts
of Davis orbicomplexes will work.

We now use Assumption 1 to prove a lemma that will be important in the proof of our
main result of the section.

Lemma 3 Let X1 and X2 be finite covers of Davis orbicomplexes D�1 and D�2 , where �1

and �2 are 3-convex and satisfy Assumption 1, and suppose π1(X1) ∼= π1(X2). Then the
isomorphism f : π1(X1) → π1(X2) induces a bijection f∗ between jester hats of X1 and
X2 and for a jester hat O1 ⊂ X1, if f∗(O1) = O2 ⊂ X2, then O1 and O2 are homeomorphic.
Furthermore, if S1 and S2 are singular subsets of X1 and X2 respectively, if γ1 ⊂ S1 is the
boundary component of O1, then f∗(γ1) = γ2 where γ2 is the boundary component of O2.

Proof Suppose X1 and X2 are two orbicomplexes with 3-convex defining graphs where
π1(X1) ∼= π1(X2). We first use the construction from Proposition 3.2 of [7]: let Xi be a finite
cover of D�i for i = 1, 2. Each jester hat in Xi with p cone points lifts to a orbifold with
2(p − 2) cone points and two boundary components, which in turn has a two-sheeted cover
Sg,4, where g = 2(p−2)

2 − 1. Then, we glue each boundary component of Sg,4 to a copy
of Si , the singular set of Xi , to obtain a torsion-free four-sheeted cover. We will call these
torsion-free covers ̂X1 and ̂X2. See Fig. 8 for an illustration of the construction.

Since abstract commensurability is an equivalence relation, π1(̂X1) and π1(̂X2) are
abstractly commensurable, so there exist finite-sheeted covers Y1 and Y2 such that

π1(̂X1) ≥ π1(Y1) ∼= π1(Y2) ≤ π1(̂X2).

Note that̂X1 and̂X2 are homotopic to hyperbolic P-manifolds; take the regular neighborhoods
of their singular sets. As a result, finite-sheeted covers of ̂X1 and ̂X2 are also homotopic to
hyperbolic P-manifolds by Nielsen-Schreier, so it follows that Y1 and Y2 are homotopic to
hyperbolic P-manifolds Y1 and Y2. By Corollary 3.5 of [5], a homotopy φ between hyperbolic
P-manifolds induces a bijection between homeomorphic chambers (hyperbolic manifolds
with boundary) of Y1 and Y2. Additionally, for a chamberC1 ⊂ Y1 with boundary component
γ1, if φ(C1) = C2 ⊂ Y2, then φ(γ1) = γ2 where γi is a boundary component of Ci

for i = 1, 2. Using these results, we can conclude that surfaces with boundary in Y1 are
mapped bijectively, and homeomorphically, to surfaces in Y2, as the maps are preserved
under homotopy. The homotopy lifting property then gives us the statement of the lemma.

Alternatively, observe that the Davis complex �� , the universal cover of D� , is CAT(0)
and thus contractible. Since W� acts freely on �� , it follows that D� is a classifying space
of W� , or equivalently a K (W�, 1) space. Furthermore, finite covers of D� are quotients
of �� by a free action as well, so X1 and X2 are classifying spaces for the same finite-
index subgroup of W� . As a result, since π1(X1) ∼= π1(X2), X1 and X2 are homotopy
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Fig. 8 A tower of covers constructed in the proof of Lemma 3. Note that ̂X1 is homotopic to a hyperbolic
P-manifold

equivalent by Whitehead’s Theorem. This allows us to construct a shorter tower of covers
since a homotopy between X1 and X2 induces a homotopy between ̂X1 and ̂X2, which are
homotopic to hyperbolic P-manifolds. We can then apply Theorem 4 to obtain our result. 
�
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Fig. 9 An example of a finite-sheeted cover of a Davis orbicomplex D� that does not satisfy Assumption 1.
The singular set S is not necessarily planar; in this example, S (depicted in red) embeds on a torus

We stress that Assumption 1 is key for the proof of Lemma 3. For example, let Sg,n be
a genus g surface with n boundary components. Recall the graph genus of a graph G is
the minimal genus of an orientable surface into which G can be embedded. In general, a
cover of a Davis orbicomplex X is homotopic to an orbicomplex consisting of jester hats
identified along their boundaries to a set of simple closed curves C on Sg,n since every graph
has a genus (see [8]). Analyzing X can be difficult since there is no guarantee of the four-
sheeted hyperbolic P-manifold cover constructed in Lemma 3, as the lifts of C may not be a
disjoint union of circles. For example, consider Fig. 9, which depicts a six-sheeted cover of
a Davis orbicomplex D� . The singular set of X is the complete bipartite graph K3,3, which
is homotopic to S1,3. Since the jester hats are not identified along disjoint circles, Lafont’s
rigidity result is not available for use and the proof for Lemma 3 does not work.

In order to determine whether two finite-sheeted covers of Davis orbicomplexes are home-
omorphic, which we need to do to determine topological rigidity, we need to check that their
singular sets are homeomorphic. Unfortunately, since finite covers of the singular sets are
graphs, determining topological rigidity therefore requires solving a graph isomorphism
problem, which has a high computational complexity. Recall that a complete graph invariant
is combinatorial tool for determining whether a pair of graphs in a family of graphs is isomor-
phic. To simplify our problem, we will define a family of singular sets S of finite-sheeted
covers of a Davis complex D� with an easily computable complete graph invariant, which
we now introduce.

Definition 8 (Cycle count vectors) Consider X , a 2d-sheeted cover of a Davis orbicomplex,
where d > 0 is any arbitrary integer. Recall that for a cycle of generalized � graphs �, its
associated Davis orbicomplex D� has a singular set that is a star graph with N edges, which
we will label with integers i = 1, 2, ..., N . If an edge e = [v,w] is labeled by i , we will
write e = [v,w]i . Fix a cyclic labeling of the edges, which will lift to a labeling in any cover
of the singular set. For 1 ≤ i ≤ N , let xi = (xi,1, xi,2, ..., xi,d) be a vector where xi, j is the
number of cycles in S of length 2 j that are labeled with i and i + 1. Recall that as usual, we
are counting the edges between two essential vertices as one edge. Note that xi is a vector of
length d since the possible cycle lengths of a 2d-sheeted cover will range from 2 to 2d . For
an example, refer to Fig. 6. Let the labeling of an edge of Si be the number of arrows seen
on the edge, so N = 3. For S1, the set of cycle count vectors is x1 = (2, 0), x2 = (0, 1),
x3 = (2, 0), and x4 = (0, 1) since there are two 2-cycles labeled with 1 and 2, two 2-cycles
labeled with 3 and 4, one 4-cycle labeled with 2 and 3, and one 4-cycle labeled with 4 and 1.
Similarly, for S2, the set of cycle count vectors is x1 = (2, 0), x2 = (2, 0), x3 = (0, 1) and
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Fig. 10 Construction of a S ∈ S from a cycle of generalized � graphs. The edges and vertices added at each
step are depicted in red

x4 = (0, 1). As we will see soon, since the cycle count vectors are different, S1 and S2 are
not isomorphic.

We now define a family of singular sets of finite-sheeted covers of a Davis complex D� .
Recall that the double cover of the singular set of D� is itself a generalized � graph �N

with N branches, where N is the number of generalized � graphs in the defining graph �

(see Construction 2). A double cover of �N is a cycle of four (possibly trivial) generalized
� graphs S′ with valence N vertices. Note there exists some a, b ∈ Z≥0 and a+b = N such
that adjacent essential vertices of S′ either have a or b branches between them. For example,
in Fig. 6, all the essential vertices in S1 and S2 have valence N = 4 since the original defining
graph consisted of four generalized � graphs glued together. In S1, a = 2 and b = 2, and in
S2, a = 1 and b = 3.

Construction 3 (A special class of singular sets S ) To begin our construction, take S′, a
four-sheeted cover of the singular set of D� , which is a cycle of four generalized � graphs
each with either a or b branches. Then arbitrarily choose two adjacent vertices of valence
greater than two, vi and vi+1 with ni = a or b edges between them. Delete some fixed
number of (subdivided) edges j between them, where 1 ≤ j ≤ ni , add two essential vertices
ui and ui+1, and add j edges between vi and ui as well as vi+1 and ui+1. Finally, add N − j
edges between ui and ui+1. Then arbitrarily choose two other adjacent essential vertices
and repeat the process any finite number of times. See Fig.10 for an example of an element
of S ; at each step, two edges are added between the new essential vertices.

Let S ∈ S be a graph that can be constructed from the process described above. By
construction, S covers the original singular set of the Davis orbicomplex. NoticeS describes
singular sets, not defining graphs, so the graphs inS are not restricted to cycles of generalized
� graphs. We now introduce a second assumption:

Assumption 2 The singular set S of X is an element of the setS defined in Construction 3.

We are now ready to introduce a topologically rigid class finite covers of Davis orbicom-
plexes.

Theorem 5 Suppose � is 3-convex and not repetitive (see Definition 5). Let X ′′ contain all
finite-sheeted covers ofD� that satisfy Assumptions 1 and 2. ThenX ′′ is topologically rigid.

We now give an outline of the proof of Theorem 5 (for the actual proof, see the end of
the section). We first show that the statement of the theorem reduces to a graph isomorphism
problem on singular sets of two finite covers of Davis orbicomplexes (see Lemma 4). We
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then show that if two finite covers of Davis orbicomplexes satisfying the conditions listed in
Theorem 5 are homotopic, then they have the same cycle count vectors. Finally, in Lemma 6,
we show that cycle count vectors are a complete graph invariant for singular sets inS detailed
in Construction 3.

Remark 3 Recall that if X1 and X2 are homeomorphic, thenW�1 andW�2 are commensurable.
Given that Assumption 1 is true, the converse is very much false. Figure 1.2 of [2] gives some
examples of pairs of defining graphs {�i , �

′
i } (i = 1, 2, 3) of commensurable RACGs, which

we will now reference. We can check that none of the finite-sheeted covers of D�i and D�′
i

can be homotopic by Lemma 3, even though the RACGs W�i and W�′
i
are commensurable.

To see the full commensurability classification for cycles of generalized � graphs, refer to
Theorem 1.12 of [2].

Definition 9 We say that a graph homeomorphism f̄ : G1 → G2 is label-preserving if for
all [v,w]i ∈ G1, f̄ ([v,w]i ) ⊂ G2 is also labeled by i .

We now prove the following useful result involving singular sets of finite covers of Davis
orbicomplexes.

Lemma 4 Let X1 and X2 satisfy the assumptions from Lemma 3. Then every label-preserving
graph homeomorphism f̄ : S1 → S2 between the singular subsets of X1 and X2 will induce
a homeomorphism f : X1 → X2.

Proof Suppose the singular sets S1 ⊂ X1 and S2 ⊂ X2 are homeomorphic. Then the vertices
v j ∈ V (S1) with valence greater than two map bijectively to the vertices v′

j ∈ V (S2) with

the same valence, and if f̄ (v1) = v′
1 and f̄ (v2) = v′

2, then for every edge [v1, v2]i labeled
with i , f̄ ([v1, v2]i ) = [v′

1, v
′
2]i . As a result, every cycle γ1 ⊂ S labeled with i and i + 1 (

mod N ) is bijectively mapped to a cycle of the same length in γ2 ⊂ S2 labeled with i and
i + 1 ( mod N ). By Lemma 3, for every jester hat O1 with c cone points glued to γ1, there
must also be a jester hat O2 with c cone points glued to γ2 = f̄ (γ1). As a result, f̄ induces
a homeomorphism f : X1 → X2 where f (S1) = S2 and f (O1) = O2. 
�

Recall that a graph G with genus g can be embedded into a genus g surface Sg . The
edges of the graph will divide Sg into regions called faces. Let |V | denote the number of
vertices of G, |E | the number of edges, and |F | the number of faces. For planar graphs, we
can calculate the number of faces using Euler’s formula, 2 = |V | − |E | + |F |. In general,
using the definition of Euler characteristic for simplicial complexes, for a graph with genus
g, 2 − 2 g = |V | − |E | + |F |.

Lemma 5 LetX ′′ be the set of finite-sheeted covers of a single Davis orbicomplexD� , where
� is 3-convex and not repetitive. Suppose X1, X2 ∈ X ′′ are homotopic, and their singular
sets S1 and S2 satisfy the conditions listed in Theorem 5. Then xi = x ′

i for all 1 ≤ i ≤ N,
where xi and x ′

i are the cycle count vectors of X1 and X2 respectively.

Proof First, we show that if � consists of N essential vertices, and Xi are di sheeted covers
of D� for i = 1, 2, then d1 = d2 necessarily. As usual, we will denote Si to be the singular
set of Xi . Since X1 and X2 are homotopic, by Lemma 4.3, they consist of the same sets
of jester hats identified along their boundary components to some F-holed genus g surface
Sg,F . Note that F is also the number of faces of both S1 ⊂ X1 and S2 ⊂ X2. Note the number
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of vertices in Si is di and the number of edges is di N
2 for i = 1, 2, so using the definition of

Euler characteristic, we have:

d1 − d1N

2
+ F = 2 − 2g = d2 − d2N

2
+ F �⇒ d1

(

2 − N
) = d2

(

2 − N
)

.

Thus, d1 = d2 necessarily. Then X1 and X2 are finite sheeted covers of the same degree of
the same Davis orbicomplex D� .

Let � = �(n1, n2, ..., nk) and �′ = �(n′
1, n

′
2, ..., n

′
k′) be two arbitrary � graphs in

�. Recall that by Lemma 1, the number of cone points ci of a jester hat corresponding to
bi , the i th branch of �, is d

2 (ri − 3) + 2 where d is the index of the cover the jester hat
corresponds to. Similarly, the number of cone points c′

j of a jester hat corresponding to

b′
j , the j th branch of �′, is d

2 (r ′
j − 3) + 2. Note that � is not repetitive, so there do not

exist K , L such that K ( 1−n1
4 , 1−n2

4 , ...,
1−nk
4 ) = L(

1−n′
1

4 ,
1−n′

2
4 , ...,

1−n′
k′

4 ). So in particular,
(n1 − 1, n2 − 1, ..., nk − 1) �= (n′

1 − 1, n′
2 − 1, ..., n′

k′ − 1) and since ni and n′
j are equal to

ri − 2 and r ′
j − 2 respectively, it follows that { d2 (ri − 3)+ 2}1≤i≤k �= { d2 (r ′

j − 3)+ 2}1≤ j≤k′ .
Thus, in any finite-sheeted cover of D� , there are different sets of jester hats glued to cycles
with different labels since the sets of cone point counts are different. In particular, jester hats
in X1 that are lifts of orbifolds corresponding to a � graph in � must map to a collection of
jester hats in X2 that are lifts of orbifolds corresponding to the same � graph. In order for
the sets of jester hats to be the same, cycles of length 2 j labelled with i and i + 1 must map
to cycles of the same length and also labeled with i and i + 1. As a result, xi = x ′

i . 
�
Lemma 6 Let X ′′ be the class of finite-sheeted covers of Davis orbicomplexes from Theo-
rem 5. Suppose S1, S2 ∈ S are the singular sets of two 2d- sheeted covers X1, X2 ∈ X ′′. If
xi = x ′

i for all 1 ≤ i ≤ N, then there exists a label-preserving homeomorphism f̄ : S1 → S2.

Proof We use induction on the degree of the covers, 2d . Note that since the cycle count
vectors are the same, the covers must be of the same degree. For the base case, suppose
d = 2, so 2d = 4. By Assumption 1, each cycle in both S1 and S2 must be attached to at
least one jester hat. Thus, cycles of odd length are not allowed since a jester hat cannot be
attached to such a cycle. Thus, the only possible cycle lengths of S1 and S2 are 2 and 4.
By construction, every edge in S1 must be attached to part of the boundary of at least one
jester hat, so every edge in S1 must be included into at least one cycle. In order for S1 to
be a connected graph with four vertices satisfying the property that every edge is part of a
at least one cycle, there must be at least one four-cycle in S1. The same holds for S2. Since
three-cycles are not allowed and each edge in S1 will be included in a cycle, the only possible
edges in S1 are of the form [vi , vi+1], where as before, i is taken modulo 4. The same holds
for S2. Therefore, the only possible S1 and S2 are graphs with k edges between v1 and v2 as
well as v3 and v4 (where 1 ≤ k < N ), and N − k edges between v2 and v3 as well as v4
and v1 (namely, a cycle of 4 subdivided � graphs- see S1 and S2 in Fig. 7 for examples of
such graphs). Note that such graphs will have two four-cycles and (2N −4) two-cycles. As a
result, the only 4-sheeted covers that satisfy Assumption 1 of Theorem 5 consist of two sets
of jester hats glued to four-cycles, and the rest of the sets of jester hats glued to two-cycles.

If xi = x ′
i for all 1 ≤ i ≤ N , we know that for both S1 and S2, there is one four-cycle

labeled with j and j + 1 for some 1 ≤ j ≤ N , and another four-cycle labeled with k and
k+1 for k �= j . Without loss of generality, suppose j < k. Note that in S1, if an edge labeled
j + 1 is between vi and vi+1, then an edge labeled k must necessarily also be between vi
and vi+1. Otherwise, the edge labeled with k + 1 must be between vi and vi+1, so an edge
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labeled with k is between vi and vi−1. In this case, the labels on the edges between vi and
vi+1 will range from j + 1 to k + 1, so one of the edges must be labeled with k. However,
there is already a k edge between vi and vi−1, which is impossible. The same argument can
be used for S2 if we replace vi with v′

i . We can thus see that in S1, for all 1 ≤ i ≤ N , if edges
labeled with all integers between j + 1 and k connect vi and vi+1 (v′

i and v′
i+1 in S2), then

the edges connecting vi and vi−1 (v′
i and v′

i−1 in S2) are labeled with integers 1 ≤ l ≤ N
such that l ≤ j or l ≥ k + 1. We can then construct a homeomorphism f̄ : S1 → S2 where
f (vi ) = v′

i for all 1 ≤ i ≤ N . We can easily check that edge labels and vertex adjacencies
are preserved under f̄ , completing the base case.

Suppose the lemma holds for d-sheeted covers. By Assumption 2, there exist {vi , vi+1} ∈
V (S1) and {v′

i , v′
i+1} ∈ V (S2) with the same number of edges and the same set of labels

between them. Additionally, the only other edges attached to vi and vi+1 ∈ V (S1) are also
attached to vi−1 and vi+2 respectively; the same holds for v′

i , v
′
i+1 ∈ V (S2). Note that for

arbitrary d > 0, S1 and S2 must both have (2d + 2)-cycles for the same reason the four-
sheeted covers in the base case necessarily have 4-cycles: each edge of S1 and S2 is necessarily
attached to a jester hat, and thus by Assumption 1 necessarily belongs to a cycle. Suppose
there are no cycles in S1 and S2 of length 2d+2. Then S1 and S2 would be disconnected since
they are graphs with 2d + 2 vertices. Thus, there must be at least one (2d + 2)-cycle in S1
and S2, which we will label withm andm+1. Note that if vi and vi+1 have j edges between
them, then the other two pairs of vertices {vi , vi−1} and {vi+1, vi+2} must also necessarily
have N − j edges between them, and the edges between the two pairs of vertices have the
same set of labels. Delete vi and vi+1 and the edges they are adjacent to, and construct the j
deleted edges between vi+2 and vi−1 to create the singular set T1 of a 2d-sheeted cover of
D�1 . Construct a singular set T2 of 2d-sheeted cover of D�2 in the same way. Let yi and y′

i
be the new set of cycle count vectors. Note that in total, for both 2d-sheeted covers, we have
deleted and added the same set of cycles with the same set of edge labels, so yi = y′

i for all
1 ≤ i ≤ N . Then by the inductive hypothesis, there exists a homeomorphism ḡ : T1 → T2.

We then can extend ḡ to f̄ : S1 → S2. Suppose ḡ(vi+2) = v′
k for some v′

k ∈ T2 (note
that k is not necessarily equal to i). Then ḡ(vi−1) maps to an adjacent vertex vl such that
there are j edges between v′

k and v′
l with the same labelings as the edges between vi and

vi+1 in the original S1. Construct two vertices uk and ul in T2 and vi−1 and vi+2 in T1, and
delete the N − j edges between vk, vl ∈ V (T2) and vi−1, vi+2 ∈ V (T1) that have the same
labels as the edges added to construct Ti from Si for i = 1, 2. Then reconstruct the j deleted
edges between uk, ul ∈ V (T2) and vi−1, vi+2 ∈ V (T1) as well as N − j edges [v′

k, uk] and[v′
l , ul ] in T2 and [vi−1, vi ] and [vi+1, vi+2] in T1. Call the new graphs U1 and U2, but note

that U1 is identical to S1. Additionally, U2 is homeomorphic to S2 since they are the same
graph up to a relabeling of vertices. Let ḡ(v) = f̄ (v) for all v ∈ V (S1), f̄ (vi ) = uk and
f̄ (vi−1) = ul , which also determines the maps between the newly added edges, giving us a
label-preserving homeomorphism f̄ : S1 → S2. 
�

We now have all the tools to prove Theorem 5.

Proof (Theorem 5) It suffices to show that for X1, X2 ∈ X , π1(X1) ∼= π1(X2) implies

X1
homeo∼= X2. As a result of Lemma 4, in order to show X1

homeo∼= X2, it suffices to show
there exists a label-preserving graph homeomorphism between the singular sets of X1 and
X2 respectively. Since subdivisions of a graph belong to the same homeomorphism class, we
can delete the valence two vertices from the singular sets to obtain S1 and S2, and compare
the graphs. By Lemma 5, xi = x ′

i for 1 ≤ i ≤ N , where xi and x ′
i are the cycle count vectors
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of S1 and S2 defined in Definition 8. Then by Lemma 6, we can conclude S1
homeo∼= S2, as

desired. 
�
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