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Abstract

A class of topological spaces is fopologically rigid if any two spaces with the same funda-
mental group are also homeomorphic. Topological rigidity, in addition to its intrinsic interest,
has been useful for solving abstract commensurability questions. In this paper, we explore
the topological rigidity of quotients of the Davis complex of certain right angled Coxeter
groups by providing conditions on the defining graphs that obstruct topological rigidity. Fur-
thermore, we explore why topological rigidity is hard to achieve for quotients of the Davis
complex. Nonetheless, we conclude by introducing infinitely many infinite topologically
rigid subclasses.

Keywords Topological rigidity - Davis complex - Right-angled coxeter group -
Orbicomplex
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1 Introduction

Often, determining whether two topological objects are homeomorphic is a significantly
harder problem than determining whether their fundamental groups are isomorphic. In some
cases, however, if we impose enough conditions on the topological spaces we are study-
ing, the weaker equivalence relation (isomorphism between fundamental groups) implies the
stronger and often more useful equivalence relation (homeomorphism between the topolog-
ical objects). We can often exploit the topological rigidity of such sets of spaces to derive
useful results (recall that a collection of topological objects 2 is topologically rigid if for
any X1, X7 € 27, if m1(X1) = m1(X»), then X and X, are homeomorphic). For example,
to determine if two groups G and G» are abstractly commensurable (i.e. have isomorphic
finite-index subgroups), we often construct two finite-sheeted homeomorphic covers of X
and X», where 71 (X;) = G; fori = 1, 2. These homeomorphic covers can be hard to con-
struct. However, if the finite-sheeted covers X and X» belong to a topologically rigid class
of spaces and (X 1) = m (Xz) then we know X 1 and Xz are homeomorphic.
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There are several well-established examples of topologically rigid classes. For example,
the set of closed orientable 2-manifolds is topologically rigid. The Poincare Conjecture
implies the set of simply-connected, closed 3-manifolds is topologically rigid. In a series
of papers (see [4], [5], and [6]), Lafont proves the set of of simple, thick n-dimensional
hyperbolic P-manifolds, a subclass of piecewise CAT(-1) spaces, is topologically rigid for
n > 2. In this paper, we consider certain orbicomplexes, unions of collections of orbifolds
identified along homeomorphic suborbifolds, associated with Right-Angled Coxeter Groups
(RACGsS), defined below.

Definition 1 (Right-Angled Coxeter Group) Given a finite simplicial graph I with edge set
E and vertex set V, the Right-Angled Coxeter Group (RACG) Wr with defining graph I' is
the group with presentation (v; € V : vi2 =1,[v;,v;] = 1if [v;,v;] € E).

A RACG Wr acts properly discontinuously by isometeries on a space called the Davis
Complex r. The quotient Zr = Xr/Wr, which we call a Davis orbicomplex, is one of the
aforementioned orbicomplexes and comes equipped with cell stabilizer data defined by the
action of Wr on Zr. To clarify, recall that if an amalgamated free product or HNN extension
G acts on a Basse Serre tree T, the resulting quotient 7' /G is a graph of groups whose vertices
and edges are labelled by subgroups of G isomorphic to vertex and edge stabilizers of T'.
Similarly, each edge and vertex of a Davis orbicomplex Zr may be labeled by a subgroup
of Wr that stabilizes a lift of the edge or vertex in Xr (in this paper, we do not specify such
labels as they are not crucial for our proofs). For further background on the Davis complex
and Coxeter groups, refer to [3]. The Davis orbicomplex has been studied extensively by
Stark, who poses the following question in [7], which we will give a partial answer to in this

paper:

Question 1 For which set # of Coxeter groups is the set of Davis orbicomplexes Zr for
groups in % together with their finite-sheeted covers topologically rigid?

Despite the simplicity of the problem statement, the answer to Question 1 is very nuanced.
In this paper, we focus our attention on RACGs that are one-ended (I" has no separating edges
or vertices and is connected) and hyperbolic (T is square-free, or has no cycles of length four).
One example of a class of defining graphs that gives rise to W satisfying these conditions
is a subclass of generalized ® graphs, defined as follows:

Definition 2 (Generalized ®-graph) Fork > 1,0 <n; < ... < ng,let® = O(ny, ny, ..., ng)
be the graph with two vertices a and b, each of valence k, and k edges e, e, ..., e, connecting
them, which we will call the branches of ®. Furthermore, for 1 < i < k, ¢; is subdivided
into n; + 1 edges by inserting n; new vertices.

For the purposes of this paper, we will require that n; > Oforall 1 <i <kandn, > 1
in order to ensure Wr is hyperbolic.

Associated to each generalized ®-graph is an Euler characteristic vector, which captures
the Euler characteristics of the orbifolds in the Davis orbicomplex Zr. The Euler charac-
teristic vector is often used to classify Davis orbicomplexes; in [2], the Euler characteristic
vector is used to list abstract commensurability criteria. In this paper, we will use Euler
characteristic vectors to list criteria for topological rigidity.

Definition 3 (Euler characteristic vectors of generalized ®-graphs) Let® = ©(ny, na, ..., ny)
be a generalized ® graph. Then the Euler characteristic vector of © is the vector v =
(x1,x2, ..., Xp), Where x; = 1_4"" . Two Euler characteristic vectors v; and v, are said to be

commensurable if there exist K, L € Z( such that Kv = Lw.
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Dani, Stark, and Thomas show in Theorem 5.2 of [2] that finite covers of Davis orbicom-
plexes with I' = ®(ny, ny, ..., ng) are topologically rigid. In this paper, we focus on cycles
of generalized ® graphs introduced in [2], which consist of generalized ® graphs identified
along their essential vertices.

Definition 4 (Cycle of generalized ®-graphs) Let N > 3 and let by, by, ..., by be positive
integers so that for each i, 1 <i < N, at most one of b; and b; | where i is taken mod N
isequal to 1. Let ®; be a generalized ® graph with b; edges between two vertices a; and c;.
We can construct a cycle of N generalized ®-graphs I' by identifying ¢; with a; 1.

We call the vertex of a cycle of generalized ® graphs with valence greater than two an
essential vertex. For the rest of the paper, we will use {Ui},N= | to denote the set of essential
vertices of all the graphs involved. The indices of all v;’s will also taken mod N, where
N 1is the number of essential vertices (or equivalently generalized ® graphs) in a cycle of
generalized ®-graphs I'.

Let T be a cycle of generalized ® graphs with Davis complex Xr, and G a finite index,
torsion-free subgroup of Wr. Stark proves in [7] that the set of quotients Xr /G, which
correspond to finite-sheeted covers of the Davis orbicomplexes Zr, is not topologically rigid
by constructing X1 = ¥r /G and X, = X1 /G, that are homotopic but not homeomorphic.
Theorem 1 in Sect. 2 generalizes the construction from [7] to create a class of orbicomplexes
where topological rigidity fails. Our construction of homotopic but not homeomorphic covers
relies on the fact that one set of orbifolds in the orbicomplex is a finite cover of another set
of orbifolds.

Definition 5 Suppose I is a cycle of generalized ® graphs with essential vertices {vi}lN: 1
and there exist two essential vertices v, vx such that the generalized ® graphs ©; and ©y
between v; and v;y; mod N and vx and viy; mod N (where k # j) respectively have
commensurable Euler characteristic vectors # and w (Ku = Lw for some K, L € Zz).

Then we say I is repetitive. If K or L = 1, then we say I is strongly repetitive.

Theorem 1 Suppose a class of finite-sheeted covers of Davis orbicomplexes 2" contains all
the finite-sheeted covers of some Davis orbicomplex P where I is strongly repetitive. Then
Z is not topologically rigid.

It is not known whether Theorem 1 is true if we only assume T" is repetitive.

Theorem 1 as well as Stark’s proof in [7] rely on constructions of finite-sheeted covers of
the same Davis orbicomplex Zr. One can also prove, however, that two finite-sheeted covers
of nonhomeomorphic Davis orbicomplexes can also violate topological rigidity.

Definition 6 (Permuted pairs) Two cycles of generalized ® graphs I'y and ', form a permuted
pair if they are obtained from identifying the essential vertices of the same set of generalized
® graphs. Equivalently, the set of Euler characteristic vectors of ' is some permutation of
the set of Euler characteristic vectors of I'>.

Remark 1 Note that if we use the definition above, it is possible for a permuted pair I'; and I',
to be isomorphic. For example, if '] and I"; each consist of three generalized ® graphs glued
together, they are isomorphic (see the proof of Lemma 2 for details). We do not consider
such pairs in Theorem 2, stated below.

Theorem 2 Suppose a class of finite-sheeted covers of Davis orbicomplexes 2" contains all

finite sheeted covers of two Davis orbicomplexes Zr, and Zr,, where I'1 and T'» form a
permuted pair and T and Ty are not isomorphic. Then 2" is not topologically rigid.
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I'y

Fig.1 An example of a permuted pair. Note that I'; and I'; both consist of ®; (where 1 < i < 4) glued along
essential vertices

In the proof of Theorem 2, we find two homotopic finite-sheeted covers of Zr, and Zr,
that are not homemomorphic. As a side note, this means that Wr, and Wr, are commensu-
rable, so having two defining graphs that form a permuted pair is a sufficient condition for
commensurability. Recall that in Theorem 1.12 of [2], Dani, Stark, and Thomas provide two
necessary and sufficient conditions for commensurability of RACGs with defining graphs
that are cycles of generalized ® graphs.

In [7], Stark constructs X and X5, two homotopic finite covers of a Davis orbicomplex
2r with non-homeomorphic singular sets (e.g. sets along which the orbifolds are identified).
In her example, I' is a cycle of generalized ® graphs, proving that the set of finite-sheeted
covers of Davis complexes with defining graphs that are cycles of generalized ® graphs is
not topologically rigid. In light of these results, in Sect. 3 of [2], Dani, Stark, and Thomas
construct a different set of orbicomplexes that is topologically rigid, which they use to prove
abstract commensurability results. Nevertheless, in Sect. 4 (see Theorem 5), we are able to
find a topologically rigid subclass of finite-sheeted covers of Davis orbicomplexes Zr where
I" is a cycle of generalized ® graphs. The subclass also takes Theorems 1 and 2 into account
to exclude finite-sheeted covers of Zr that violate topological rigidity. Although the exact
statement of the theorem is fairly technical, we state a simplified version below.

Theorem 3 There exists an infinite class € of Davis orbicomplexes such that for any Dr € €,
an infinite collection of finite-sheeted covers of Dr form a topologically rigid set.

2 Preliminaries

We now introduce a construction of the Davis orbicomplex specific to the setting where the
defining graph I" is a cycle of generalized ® graphs consisting of ®; = O (n; 1, n; 2, ..., R k)
for 1 < i < N.Foramore detailed construction of W and verification that 7 (Zr) is indeed
Wr, we refer the reader to Sect. 2 of [7] and Sect. 3 of [2].

First, we describe how to construct an orbifold &7; ; for a branch (edge) b; ; of a general-
ized ® graph ®;. For each b; ;, construct a (n;, ; + 2)-gon with an edge of order 1, which we
call a nonreflection edge, and n; ; + 1 reflection edges of order 2. All the vertices are order
4 vertices, with the exception of the two order 2 vertices adjacent to the non-reflection edge.
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Fig. 2 A cycle of generalized ® graphs W along with its Davis orbicomplex 2. We label edges ¢; in the
singular star S with / arrows. Note that each branch b; ; € W determines an orbifold &; ; € Py,

Construction 1 (Davis Orbicomplex Zr of a cycle of generalized ® graphs) First, we will
construct an orbifold graph S. The underlying graph of S is a star with one central vertex
vo adjacent to N valence one vertices. The valence one vertices are orbifold points of order
2. Cyclically label the orbifold points with v where 1 <1 < N, and use e; to denote the
edge [vo, vi] € E(S). Then attach the set of branch orbifolds &; ; along their non-reflection
edges to e; and e; i1, where the labels are taken mod N. An example of Construction 1 is
shown in Fig. 2.

Note that for the cycle of generalized ® graphs W shown in Fig. 2, the Euler characteristic
vectors of ® and ®3 are (—%, —i) and —%, —%), so3w; = w3, which means W is strongly
repetitive. Theorem 1.7 then implies any class 2" that contains all finite-sheeted covers of
9y is not topologically rigid.

All finite-sheeted covers of Davis orbicomplexes that we construct will contain jester hats,
a specific kind of orbifold defined below:

Definition 7 (Jester hats) Suppose & = D? (2,2,...,2), i.e. a disk with n order 2 points.
~———

n
Then we will call & a jester hat with n (order two) cone points.

3 Examples of topologically non-rigid sets

We first introduce the construction of jester hats that cover orbifolds in a Davis orbicomplex
Dr.

Lemma 1 Suppose d is a positive even integer. Each orbifold &2 with r reflection edges is
covered by the jester hat D* (2,2, ..., 2), where ¢ = %(r —3) + 2 and d is the degree of the
——

c
cover.

Proof This construction is based on Stark’s construction in Lemma 3.1 from [7] and Crisp
and Paoluzzi’s construction from Section 3.1 of [1]. Using Crisp and Paoluzzi’s construction,
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dl
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Fig.3 A tower of covers illustrating the lemma. Here, D? (2,2,2,2,2) is a six-fold cover of an orbifold with
four reflection edges
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Fig.4 A generalized ® graph with four branches two-fold covers the singular subset of the orbicomplex from
Fig.2. Here, N = 4

we observe that for any even integer d > 0, an orbifold 0 with %(r —3) + 3 reflection edges
is tiled by % copies of an orbifold with r reflection edges, so Oisa %-sheeted orbifold cover
of 0. For example, in Fig. 3, an orbifold 0 with 6 reflection edges is tiled by 3 copies of 0,
an orbifold with 4 reflection edges. Thus, 0 is a 3-sheeted orbifold cover of &. Next, if we
unfold along the reflection edges of 5, we obtain a closed disk with %(r — 3) + 2 order two
cone points, as desired. The construction is illustrated in Fig. 3. O

Construction 2 (The double of a singular set) The Davis orbicomplex Zr has a singular
subset S consisting of an orbifold star graph with N order two points, where N is the number
of essential vertices in I". We can construct a double cover of S, which we call S, by unfolding
along order two points to obtain a subdivided generalized ®-graph with N branches and
one vertex on each branch between the essential vertices. For an illustration, refer to Fig. 4.
All the singular sets constructed in this section will be a finite-sheeted cover of S.

For all of the covers described in this paper, all the edges will be subdivided by a copy
of the lift of an order two point v; from the Davis orbicomplex. Both subdivisions will be
oriented towards v; and labeled with the label of the edge, which we will specify in the
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construction. For simplicity, we will count a subdivided edge as one edge when calculating
cycle lengths.

Proposition 1 Let I be strongly repetitive. Then there exist homotopic but non-homeomorphic
finite-sheeted covers of Pr.

Proof Suppose u and w are Euler characteristic vectors of ®; and ©y respectively where
Ku = w for some K € Z,.. Without loss of generality, assume i = 1 since we can rotate the
labels of the essential vertices otherwise. Suppose ®1 and ®; have [ branches. Let g ;, denote

the number of vertices on the bth branch of ©. Then if u = (1 d 1_21‘2, s ]_Z”) and
w= (It oz j“)thenfongbgl,K(ﬂ#):(l "“’) and K (1—ny ) =

1—ngp. If rg p denotes the number of reflection edges on the orbifold in the Davis orbicomplex
constructed from the bth branch of ©, thenrs , = ng p+2,sowehave K (r1 p,—3)+3 = r¢ .
Case 1 (K = 1): We will first consider some general cases before addressing the edge case
where N 7 3. First, suppose K = landk < N —1.Thenr; , =rpforl < b < 1. We will
construct two non-homeomorphic but homotopic four-sheeted covers of Zr, which we will
call )71 and }72 First, we construct their singular sets .§ and 5‘2 with four essential vertices,
vy, U2, D3, U4 and ¥}, 05, 04, ¥. To construct §1, add k edges between two pairs of vertices:
vy and v4, as well as v, and v3. The edges will be labeled with all integers between 1 and
k and subdivided as described earlier in the section. Between two other pairs of vertices,
v1 and v, as well as U3 and v4, construct N — k subdivided edges labeled with all integers
between k + 1 and N. Thus, in total, there are two (subdivided) four-cycles labeled with k
and k4 1 aswell as 1 and N, and N — 2 cycles of length two labeled with i and i + 1, where
1 <i < N —1,i # k. For the other singular set, S, there is one edge labeled with 1 between
two pairs of vertices: vl and v v4, as well as v2 and v Addltlonally, there are N — 1 edges
between two other pairs of vertices, ¥ and ¥ as well as 04 and 7y; these edges are labeled
with all integers between 2 and N. In total, there are again two four-cycles with edges labeled
with 1 and 2 as well as 1 and N, and N — 2 cycles of length two labeled with i and i + 1
where2 <i < N — 1.

By the conditions imposed on Zr, the four-cycles labeled by k and k + 1 in .SF'VI and 1 and
2 in S2 have the same set of jester hats glued to them. Additionally, the two-cycles labeled
with 1 and 2 in S} and k and k + 1 in S, have the same set of jester hats glued to them. For
other integers / where 1 < I < N and I # 1, k, for every cycle in S} labeled with / and
I 4 1, there is a corresponding cycle of the same length labeled with / and / + 1 in S'} Asa
result, for each cycle in 3’] with a set of jester hats glued to it, there is a corresponding cycle
in S5 with the same set of jester hats glued to it. By taking their regular neighborhoods, we
can see that both S and S are homotopic to a (2N — 4)-holed sphere. We can then conclude
that )71 and }72 are homotopic to the same (2N — 4)-holed sphere with the same same sets of
jester hats glued to their boundary components. However, they are not homeomorphic since
the complements of their cut pairs have different numbers of connected components.

If N # 3, there are two special cases where the above construction does not work.
First, note that if k = N, the construction does not work because the first cover will be
disconnected. Thus, we construct modified ‘non-homeomorphic but homotopic degree four
covers. As before, we W111 call these covers X 1 and X, > with smgular sets S1 and 52 that have
essential vertices v; and v respectively, where 1 < i < 4. For Sl, construct two subdivided
edges labeled with 1 and 2 between v] and v4 as well as v> and v3. Then between vertices
v3 and vy as well as v1 and v, construct N — 2 edges with labels between 3 and N. For

Sz, between v1 and v4 as well as v’ and v3, construct N — 1 subdivided edges labeled
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with all integers between 3 and N and one subdivided edge labeled with 1. Then construct a

subdivided vertex labelled w1th 2 between vg and v4 as well as v1 and v2

Second, note thatif k = N —1, the general construction does not work since 51 and S2 are
homeomorphic; therefore, X 1 and X5 2 are also homeomorphic. In order to fix this, construct
new §1 and .S?z as follows: for §1, construct 3 edges between v and v, as~well ag U3 and V4,
which are labeled with 1, 2, and N. Then construct N — 3 edges between v} and v}, as well as

v2 and v3 labeled from 3 to N — 1. For Sz, follow the constructlon for the case where k =
Again, in both edge cases (k = N,k = N — 1, N > 3), both Sl and Sz are homotoplc toa
(2N — 4)-holed sphere and have the same sets of jester hats glued to them, but complements
of their cut pairs have different numbers of connected components. Thus, S, and §; are not
homeomorphic but 5{\,1 and 5{2 are homotopic.

For the case N = 3, any of the previous constructions will yield homeomorphic )71
and X>, so a different pair of covers is necessary. For this special case, we will construct
16-sheeted covers. Assume w1th0ut loss of generality that ®; and ©3 have the same Euler
characteristic vectors. For both S 1 and Sz, label edges [v;, vj+1] and [v 1] respectively
with 2 if i is odd and 3 if i is even. Then construct the edges [03, U13], [v3, v12], [Va, U111,
(07, 016, [014, Uj5], [D9, U1pl. U7, Ug], and [ 05, Us] labelled with 1. For L%Lcoﬂr\llstruct edges
[V}, vigls [V3, vis], [V3, vi4ls V5, V1,1, [v], V5], [vg, v, [vg, v],], and [vg, v|,] and label
them with 1. As a result, S7 has one 6-cycle, one 4-cycle, and three 2-cycles labelled with 1
and 2 and one 8-cycle, one 4-cycle, and two 2-cycles labelled with 1 and 3. On the other hand,
S> has the same set of cycle counts with different labels: one 6-cycle, one 4-cycle, and three
2-cycles labelled with 1 and 3 and one 8-cycle, one 4-cycle, and two 2-cycles labelled with 1
and 2. Thus, both §1 and 572 are homotopic to 10-holed spheres, and by construction have the
same sets of jester hats glued to them; thus, 5{1 and )?2 are homotopic. Observe, however,
that §1 and §2 are not homeomorphic, as desired. This completes the proof for K = 1.
Case 2 (K > 1): Suppose K > land K = p' p5...p/" = [[,_, py is the prime factoriza-
“at1_gheeted covers X
ud+1

tion of K. We will now construct two non- homeomorphlc 2115, Py
and X> 2. First, we construct their singular sets S 3 and Sz, which will both have 2 5 d=1D

essential vertices, which we will label #; and v'; for 1 < i < 2112 p 0 1 Note that all
the vertex indices in the construction will be taken modulo 2 [T p e
Construction of Sl

First, suppose that k # N; if k = N, the following construction will be disconnected.
For the first singular set .SA’] C )?1 for even i, construct k edges between v; and v;+; mod
2115, Py’ 1 The edges will be labeled with all integers I where 2 < I < k + 1. For odd

i, construct N — k edges between 9; and 9;1 mod 2 [[,_, p"d *1_ One of these edges will
be labeled with 1 and the rest with all integers I where k +2 < I < N. As a result, for
i # 1,k + 1, between ; and v, there is a copy of a two-cycle that is a double cover of
the nonreflection edges in Zr labeled with i and (i +1) mod N. We will then have a graph
with ]_[d 1 pd“'Jr copies of two-cycles labeled withi and (i + 1) for2 <i < N,i #k+ 1,
as well as two 2 ]—I d=1D d"+ -cycles, one labeled with 1 and 2, and one labeled with k + 1
and k + 2. For an example, refer to the graph on the right in Fig. 5, which is an 18-sheeted
cover of the singular set from the orbicomplex in Fig.2.

We now consider the special case where k = N. For even i, construct N — 2 edges
between v; and v; 41 labeled with integers / where 2 < I < N — 1. Then for odd i, construct
2 edges between vertices v; and v; labeled with 1 and N. We will again have a graph with
]_[d 1 p“"+ copies of two-cycles labeled withi and (i + 1) fori = Nand2 <i < N — 2.
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We will also still have two 2 ]_[ d=1 p”" +l -cycles, one labeled with N — 1 and N and the other
with 1 and 2 as before

Construction of Sz For the second singular set Sz C Xg, first partition {v i} into p =
[T, pa sets of equal size, so the first set will contain vertlces vjwherel <i <2[[,_, Py’
the second set will contain vertices where 2 ]_[ d=1 p d +1<i<4 ]_[ d=1 p d ,s01n general,

the nth set will contain v/; labeled 2n(]_[d | Py ) +1<i<2m+ D[, py’, where

O<n<p-1
We first consider the case where k # N. Construct £ — 1 edges between the pairs of
vertices labeled v (ﬂd . (,)+1 and v’ 241 [Ty 4 for 0 < n < p — 1. Label these

edges with integers /, where 2 < [ < k. Forall 1 <n < p, construct an edge each labeled

with k + 1 between v', | Ty and v’ (T p4) 17 Finally, add edges to the remaining

vertices with no edges between them. For even i, if there are no edges between v/; and v/; 1,
add k edges and label them with integers / where 2 < I < k + 1. For odd i, add k edges
between all v/; and v’ i+1 with no edges between them. One of these edges will be labeled
with a 1, while the rest are labeled with integers / such that k +2 < I < N. As a result,
we will have p cycles of length 2 ]_[d L P dd labeled with 1 and 2, Hd L P d‘i+ two-cycles
labeled withi andi +1for2 <i <kork+2<i <N, ]_[d=1 pd" two-cycles labeled with
k and k + 1, and a 2 p-cycle labeled with k and k + 1. For an example, see the graph on the
left in Fig. 5.

Now consider the edge case of k = N. This time, we will construct one edge labeled
with 1 between the pairs of vertices labeled v (1_1'71 » )+1 and v’ (1) Hd plds for 0 <

n < p—1.Forall 1 <n < p, construct an edge labeled with N between v/ 2Ty Pl and

)+1' For the other pairs of vertices, for even i, if there are no edges between v i

2”(1_[;:1 Py
and v/ i+1, add 2 edges and label them with 1 and N. For odd i, add N — 2 edges between all
v/; and 1;,+1 labeled with integers / such that 2 < I < N — 1. As a result, we will have p
cycles of length 2 [T,_, piy* labeled with 1 and 2, [T,_, p4* *1 each of two-cycles labeled
withiandi +1for2 <i <N —2ori =N, and a2p-cycle labeled with 1 and N.

Observe that 51 and Sz are not homeomorphic since S1 has many more cut pairs. In
particular, any two essential vertices will form a cut pair in S 1, but 52 only has ( ) palrs of
cut pairs. As a result, X 1 and Xz are not homeomorphic. However, note that S1 and Sz are
homotopic; take a regular neighborhood of both graphs to obtain a 2 ]_[ d=1 p“‘iJrl (N-2)+1-
holed sphere.

We then examine what orbifolds are glued to .571 Recall that r ;, denotes the number of
reflection edges of the orbifold corresponding to the bth branch of ®; C I'. By Lemma 2.1,
we can see that there will be a disk with ]_[ d=1 p“d+ (rs,p — 3) + 2 cone points glued along
its boundary circle to the 2T d=1D dd -cycles labeled by 1 and 2 and k + 1 and k + 2 for
s = 1,k+1 for the case k # N;if k = N, the second 2 ]_[21:1 pzd -cycle is labeled with

—land N and s = N — 1. Additionally, there will be a disk with r; , — 1 cone points glued
to each of the ]_[d 1 p“"+ two-cycles labeled by i andi +1 mod N + 1for2 <i <k or
k+2<i<Nifk#NQ@<i<N-2ori=Nifk=N).

Next, we list the orbifolds glued to §2 First, there will be p copies of disks with
]_[fi:1 pzd (r1,p — 3) + 2 cone points glued to the 2 ]_[;:1 pzd—cycles with edges labeled
with 1 and 2. Second, there will be one copy of a disk with H:1=1 pZ‘H'] (rk+1.0 —3) +2
cone points glued to the 2 Hd 1 p“"Jr cycle labeled by k + 1 and k42 if k # Nand N — 1
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S 2 S 1
Fig.5 Two homotopic but non-homeomorphic covers of the singular set of Wr from Fig. 2. Instead of labeling
the edges with numbers, we use different numbers of arrows

and N if k = N. There will also be Hil:l pZ“H copies of a disk with r; , — 1 cone points
glued to each 2-cycle labeled by i andi +1 mod N for2 <i <k—1lork+1<i <N
ifk #Nand2 <i < N —2if k = N. Finally, there are ]_[2:1 pzd copies of a disk with
¢, — 1 cone points glued to each two-cycle labeled by k and k + 1 as well as one copy of
a disk with p(rx, — 3) + 2 cone points glued to the 2 p-cycle labeled by k and k + 1. Then
for both orbicomplex covers, we have the same collection of orbifolds glued to S1 and S5:

° ]_[2121 pZ"H copies of each disk with r; , — 1 cone points, where 2 < i < k — 1 or
k+1<i<Nifk#Nand2<i<N —2ifk =N,

e One copy of a disk with ]_[td:] pZ"H (rk+1,» — 3) + 2 cone points;

o [T, Pl 4p= =, pZ"H copies of a disk with ry , — 1 = [, Py rip—3)+2

cone points since there are 1Td=1 pzd copies of two-cycles labeled with k and k + 1 as
well as p copies of 2[[,_; pZ" -cycles labeled with 1 and 2 in 572 and ]_[;,:1 pzd + copies
of two-cycles labeled with k and k + 1 in Sy;

e One copy of the disk with p(rp —3) +2 = ]_[tdzl p[';dﬂ(rLb — 3) + 2 cone points
since there is one 2p-cycle labeled with k and k + 1 in .372 and one 2]_[;:1 pzd H-cycle

labeled with 1 and 2 in Sj.

As aresult, since X 1 and )N(z have the same sets of jester hats glued to homotopic graphs, we
have found finite covers that are homotopic but not homeomorphic. This proves Theorem 1.
]

Next, we prove a Lemma which immediately implies Theorem 2.

Lemma 2 Suppose I'y and 'y form a non-isomorphic permuted pair (see Definition 6). Then
there exist finite-sheeted covers of Dr, and Dr, that are homotopic but not homeomorphic.

Proof Note that Zr, and Zr, have the same number of generalized ® graphs glued together,
so the two-sheeted covers of their singular sets will be two isomorphic generalized ® graphs
S1 and S;. We will now construct two non-homeomorphic double covers of S; and S, which
we will call §1 and .§2
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Fig. 6 Here, the defining graphs I'y and I'; are the permuted pair from Fig. 1, so they satisfy the conditions
of Lemma 2. The singular sets S; of X;, which are four-sheeted covers of Z, fori = 1,2 are shown on the
left. Note that X| and X, are homotopic but not homeomorphic

Since I'; and I"; are not isomorphic, N > 3, where N as before denotes the number of
generalized ® graphs glued together in I'y and I',. Indeed, suppose that I'j and I"; are cycles
of three generalized ® graphs, ®1, ®,, and ®3. Without loss of generality, suppose that in
I'1, ®; has essential vertices v; and v;4 and in 'y, ® has essential vertices vi and vé, (O
has essential vertices v| and v}, and @3 has essential vertices v/, and v}. Then there is a graph
isomorphism f : ' — Iy, defined by f(v)) = v}, f(v2) = v}, and f(v3) = v} (with f
defined on the valence 2 vertices in the natural way). We point this out since the construction
detailed below will not work for N = 3.

To construct §1, fix a cyclic ordering on a set of four vertices {v;, U, U3, va}. Construct
edges between v; and 0, and between v3 and 4, labeled with all integers I such that
1 <1 < N — 1. Then construct one edge between v, and v3, as well as v4 and v and label
those edges with N.

According to the assumptions, for every generalized ® graph ®; between vertices v; and
vi+1 in 'y, there is an isomorphic generalized ® graph ®’j in I' between v;. and v;. 41 €M
We can therefore assume there exists some @’j C I'; that is isomorphic to ® C I'y, and
some ® C I'; that is isomorphic to® Iy C 1. Without loss of generality, assume that j <k

Constmct S2 with vertices {v 1, V7, v/ 3, v ’4} and construct edges between v; and v > as well
as v'3 and v'4 labeled with all integers I such that j + 1 < I < k. Then construct edges
between v’y and v’3 as well as v/4 and v’ labeled with all integers / suchthatk+1 <1 < N
orl <[ <j.

In the Davis orbicomplexes, the isomorphic ® graphs ®; C I'; and ('*)’] C I'; giverise to
identical sets of orbifolds glued to edges labeled 1 and 2 in Dr, and j and j 4+ 1 in Dr,. As
a result, if there is a cycle in X labeled with 1 and 2 and a cycle of the same length in X,
labeled with j and j + 1, the sets of jester hats glued to them will be identical. The same holds
for ®y C I'1 and (H)}( C I';. Note that in §1, there are two four-cycles with jester hats glued
to them, one labeled with 1 and N and the other with N and N — 1. The other cycles with
jester hats glued to them are all two-cycles labeled with 7 and 7 + 1 where | <1 < N — 2.
On the other hand, S5 is a generalized ® graph with two cycles of length four that have
jester hats glued to them- one labeled with £ and k + 1 and the other with j and j 4 1. The
other cycles with jester hats glued to them are labeled with 7 and I 4+ 1 where I # j, k
are two-cycles. Note that the regular neighborhood of both S} and S5 is the 2N — 2)-holed
sphere Sp.on—2, and there is a bijective correspondence between sets of jester hats glued to
boundary components of Spon—2 C .SF’VI and sets of jester hats glued to boundary components
of Soonv—2 C 372 Thus, X1 and X, are homotopic but not homeomorphic because 5‘1 and 572
are not homeomorphic. For an example, refer to Fig. 6. O
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I8 Ty

Fig.7 S; and Sy are non-homeomorphic singular sets of homotopic eight- and four-sheeted covers of I,
and r, . Thus, neither 'y nor I'; is repetitive and 'y and I'; do not form a permuted pair, yet any set 2~ "
that contains all finite-sheeted covers of Zr, and Zr, is not topologically rigid

As a segue into our next section, we make the following remark.

Remark 2 Finding necessary and sufficient conditions for topological rigidity is a very
nuanced task. In our setting, by Theorem 2, we know a topologically rigid set cannot contain
the finite-sheeted covers of Zr, and Zr,, where I', I'; are strongly repetitive or form a
permuted pair (see Definition 6). Unfortunately, simply excluding finite-sheeted covers of
all Zr where T is repetitive and part of a permuted pair is not sufficient for constructing a
topologically rigid set. For example, for Zr, and Zr, from Fig.7, I'y and I'; are not com-
posed of the same set of generalized ® graphs glued together. Furthermore, for both defining
graphs, there do not exist pairs of commensurable Euler characteristic vectors of generalized
® graphs in I'y and I'>. Nevertheless, there exist eight- and four-sheeted covers of Zr,; and
Pr, respectively that are homotopic but not homeomorphic.

4 A topologically rigid set

In this section, we introduce a class of finite-sheeted covers of Davis orbicomplexes that is
topologically rigid. Since topological rigidity is difficult to achieve, many assumptions are
necessary, so our class does not contain the complete set of finite-sheeted covers of Davis
orbicomplexes. In particular, to find rigid classes, we not only need restrictions on the defining
graphs but also on the singular sets of the covers.

A key tool in the proof of Theorem 5 is Lafont’s topological rigidity result from [5].
Lafont’s result involves (simple, thick, 2-dimensional) hyperbolic P-manifolds (see [5] Def-
inition 2.3), which, roughly speaking, consist of compact surfaces with boundary identified
along their boundaries. The gluing curves form the singular set of the hyperbolic P-manifold.
Additionally, there is the important restriction that the singular set of a hyperbolic P-manifold
consists of disjoint unions of circles. We now restate the theorem we will use:

Theorem 4 (Lafont [5], Theorem 1.2) Let X1, X2 be a pair of simple, thick, 2-dimensional
hyperbolic P-manifolds, and assume that ¢ : w1(X1) — m(X2) is an isomorphism. Then
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there exists a homeomorphism ¢ : X1 — X, that induces ¢ on the level of the fundamental
groups.

In order to use Theorem 4, we impose a restriction on the finite covers of Davis orbicom-
plexes we are examining, which we state below.

Assumption 1 X is homotopic to an orbicomplex Y that consists of jester hats glued along
their boundaries to the boundaries of an h-holed genus g surface S, ;. Furthermore, in Y,
each boundary of S j, has at least one jester hat glued to it.

Recall that a graph I' is said to be 3-convex if every edge between its essential vertices
has at least 3 subdivisions. Note that if a cycle of generalized ® graphs I" is 3-convex, then
Wr is hyperbolic since I' is square-free. Although the converse is not true, we impose the
3-convexity condition in our proof to ensure our construction of hyperbolic P-manifold lifts
of Davis orbicomplexes will work.

We now use Assumption 1 to prove a lemma that will be important in the proof of our
main result of the section.

Lemma3 Let X1 and X, be finite covers of Davis orbicomplexes Dr, and Dr,, where I'y
and Ty are 3-convex and satisfy Assumption 1, and suppose w1(X1) = w1(X3). Then the
isomorphism f : m1(X1) — m1(X2) induces a bijection f, between jester hats of X1 and
Xy and for a jester hat 0 C Xy, if fx(O1) = O C X2, then O and O, are homeomorphic.
Furthermore, if S| and S, are singular subsets of X1 and X, respectively, if y1 C Sy is the
boundary component of O, then f,(y1) = y» where y; is the boundary component of 05.

Proof Suppose X; and X, are two orbicomplexes with 3-convex defining graphs where
m1(X1) = m(X2). We first use the construction from Proposition 3.2 of [7]: let X; be a finite
cover of Ir, fori = 1, 2. Each jester hat in X; with p cone points lifts to a orbifold with
2(p — 2) cone points and two boundary components, which in turn has a two-sheeted cover
Sg.4, where g = w — 1. Then, we glue each boundary component of S, 4 to a copy
of S;, the singular set of X;, to obtain a torsion-free four-sheeted cover. We will call these
torsion-free covers )/(\1 and )/(\2 See Fig. 8 for an illustration of the construction.

Since abstract commensurability is an equivalence relation, (5(\1) and | (5(\2) are
abstractly commensurable, so there exist finite-sheeted covers %7 and %5 such that

(X)) = 1(#) = 11(%) < 11(X2).

Note that 5(\1 and f(; are homotopic to hyperbolic P-manifolds; take the regular neighborhoods
of their singular sets. As a result, finite-sheeted covers of 5(\1 and 5(\2 are also homotopic to
hyperbolic P-manifolds by Nielsen-Schreier, so it follows that %7 and %5 are homotopic to
hyperbolic P-manifolds Y7 and Y;. By Corollary 3.5 of [5], a homotopy ¢ between hyperbolic
P-manifolds induces a bijection between homeomorphic chambers (hyperbolic manifolds
with boundary) of Y7 and Y>. Additionally, for achamber C; C Y; with boundary component
v1, if ¢(C1) = Co C Yo, then ¢(y1) = y» where y; is a boundary component of C;
for i = 1, 2. Using these results, we can conclude that surfaces with boundary in %] are
mapped bijectively, and homeomorphically, to surfaces in %5, as the maps are preserved
under homotopy. The homotopy lifting property then gives us the statement of the lemma.
Alternatively, observe that the Davis complex Xr, the universal cover of Zr, is CAT(0)
and thus contractible. Since Wr acts freely on Xr, it follows that Zr is a classifying space
of Wr, or equivalently a K(Wr, 1) space. Furthermore, finite covers of Zr are quotients
of Xr by a free action as well, so X and X, are classifying spaces for the same finite-

~

index subgroup of Wr. As a result, since 71(X1) = m1(X2), X1 and X, are homotopy
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Fig. 8 A tower of covers constructed in the proof of Lemma 3. Note that 5(7 is homotopic to a hyperbolic
P-manifold

equivalent by Whitehead’s Theorem. This allows us to construct a shorter tower of covers
since a homotopy between X and X» induces a homotopy between X and X5, which are
homotopic to hyperbolic P-manifolds. We can then apply Theorem 4 to obtain our result. O
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Fig. 9 An example of a finite-sheeted cover of a Davis orbicomplex Zr that does not satisfy Assumption 1.
The singular set S is not necessarily planar; in this example, S (depicted in red) embeds on a torus

We stress that Assumption 1 is key for the proof of Lemma 3. For example, let S, , be
a genus g surface with n boundary components. Recall the graph genus of a graph G is
the minimal genus of an orientable surface into which G can be embedded. In general, a
cover of a Davis orbicomplex X is homotopic to an orbicomplex consisting of jester hats
identified along their boundaries to a set of simple closed curves C on S; , since every graph
has a genus (see [8]). Analyzing X can be difficult since there is no guarantee of the four-
sheeted hyperbolic P-manifold cover constructed in Lemma 3, as the lifts of C may not be a
disjoint union of circles. For example, consider Fig.9, which depicts a six-sheeted cover of
a Davis orbicomplex Zr. The singular set of X is the complete bipartite graph K3 3, which
is homotopic to Sy 3. Since the jester hats are not identified along disjoint circles, Lafont’s
rigidity result is not available for use and the proof for Lemma 3 does not work.

In order to determine whether two finite-sheeted covers of Davis orbicomplexes are home-
omorphic, which we need to do to determine topological rigidity, we need to check that their
singular sets are homeomorphic. Unfortunately, since finite covers of the singular sets are
graphs, determining topological rigidity therefore requires solving a graph isomorphism
problem, which has a high computational complexity. Recall that a complete graph invariant
is combinatorial tool for determining whether a pair of graphs in a family of graphs is isomor-
phic. To simplify our problem, we will define a family of singular sets .7 of finite-sheeted
covers of a Davis complex Zr with an easily computable complete graph invariant, which
we now introduce.

Definition 8 (Cycle count vectors) Consider X, a 2d-sheeted cover of a Davis orbicomplex,
where d > 0 is any arbitrary integer. Recall that for a cycle of generalized ® graphs I', its
associated Davis orbicomplex Zr has a singular set that is a star graph with N edges, which
we will label with integers i = 1,2, ..., N. If an edge e = [v, w] is labeled by i, we will
write e = [v, w];. Fix a cyclic labeling of the edges, which will lift to a labeling in any cover
of the singular set. For 1 <i < N, letx; = (x;,1, X; 2, ..., Xj ¢) be a vector where x; ; is the
number of cycles in S of length 2 that are labeled with i and i 4 1. Recall that as usual, we
are counting the edges between two essential vertices as one edge. Note that x; is a vector of
length d since the possible cycle lengths of a 2d-sheeted cover will range from 2 to 2d. For
an example, refer to Fig. 6. Let the labeling of an edge of S; be the number of arrows seen
on the edge, so N = 3. For S, the set of cycle count vectors is x; = (2,0), xo = (0, 1),
x3 = (2,0), and x4 = (0, 1) since there are two 2-cycles labeled with 1 and 2, two 2-cycles
labeled with 3 and 4, one 4-cycle labeled with 2 and 3, and one 4-cycle labeled with 4 and 1.
Similarly, for $;, the set of cycle count vectors is x; = (2,0), x2 = (2,0), x3 = (0, 1) and
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Fig. 10 Construction of a § € .¥ from a cycle of generalized ® graphs. The edges and vertices added at each
step are depicted in red

x4 = (0, 1). As we will see soon, since the cycle count vectors are different, S; and S, are
not isomorphic.

We now define a family of singular sets of finite-sheeted covers of a Davis complex Zr.
Recall that the double cover of the singular set of Zr is itself a generalized ® graph Gy
with N branches, where N is the number of generalized ® graphs in the defining graph I
(see Construction 2). A double cover of ®y is a cycle of four (possibly trivial) generalized
© graphs S’ with valence N vertices. Note there exists some a, b € Zso anda+b = N such
that adjacent essential vertices of S’ either have a or b branches between them. For example,
in Fig. 6, all the essential vertices in S7 and S have valence N = 4 since the original defining
graph consisted of four generalized ® graphs glued together. In S1,a = 2 and b = 2, and in
S>,a=1and b = 3.

Construction 3 (A special class of singular sets .7’) To begin our construction, take S’, a
Sfour-sheeted cover of the singular set of Pr, which is a cycle of four generalized ® graphs
each with either a or b branches. Then arbitrarily choose two adjacent vertices of valence
greater than two, v; and vi1 with n; = a or b edges between them. Delete some fixed
number of (subdivided) edges j between them, where 1 < j < nj;, add two essential vertices
uj and u; 1, and add j edges between v; and u; as well as vi+1 and u; 1. Finally, add N — j
edges between u; and ujy). Then arbitrarily choose two other adjacent essential vertices
and repeat the process any finite number of times. See Fig. 10 for an example of an element
of ; at each step, two edges are added between the new essential vertices.

Let S € . be a graph that can be constructed from the process described above. By
construction, S covers the original singular set of the Davis orbicomplex. Notice . describes
singular sets, not defining graphs, so the graphs in.# are not restricted to cycles of generalized
® graphs. We now introduce a second assumption:

Assumption 2 The singular set S of X is an element of the set . defined in Construction 3.

We are now ready to introduce a topologically rigid class finite covers of Davis orbicom-
plexes.

Theorem 5 Suppose T is 3-convex and not repetitive (see Definition 5). Let 2" contain all
finite-sheeted covers of Dr that satisfy Assumptions I and 2. Then 2" is topologically rigid.

We now give an outline of the proof of Theorem 5 (for the actual proof, see the end of
the section). We first show that the statement of the theorem reduces to a graph isomorphism
problem on singular sets of two finite covers of Davis orbicomplexes (see Lemma 4). We
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then show that if two finite covers of Davis orbicomplexes satisfying the conditions listed in
Theorem 5 are homotopic, then they have the same cycle count vectors. Finally, in Lemma 6,
we show that cycle count vectors are a complete graph invariant for singular sets in . detailed
in Construction 3.

Remark 3 Recall thatif X and X, are homeomorphic, then Wr, and Wr, are commensurable.
Given that Assumption 1 is true, the converse is very much false. Figure 1.2 of [2] gives some
examples of pairs of defining graphs {I";, I'/} (i = 1, 2, 3) of commensurable RACGs, which
we will now reference. We can check that none of the finite-sheeted covers of Zr; and 2
can be homotopic by Lemma 3, even though the RACGs Wr; and W are commensurable.
To see the full commensurability classification for cycles of generalizled ® graphs, refer to
Theorem 1.12 of [2].

Definition 9 We say that a graph homeomorphism f 1 Gi = G is label-preserving if for
all [v, w]; € Gq, f([v, w];) C G> is also labeled by i.

We now prove the following useful result involving singular sets of finite covers of Davis
orbicomplexes.

Lemma4 Let X\ and X» satisfy the assumptions from Lemma 3. Then every label-preserving
graph homeomorphism f : S1 — Sy between the singular subsets of X1 and X» will induce
a homeomorphism f : X1 — Xo.

Proof Suppose the singular sets S C X and S, C X, are homeomorphic. Then the vertices
v; € V(§1) with valence greater than two map bijectively to the vertices v;. € V($2) with

the same valence, and if f(vl) = vi and f(vz) = vé, then for every edge [v, v2]; labeled
with i, f([v1, vali) = [v], v5];. As aresult, every cycle y; C S labeled with i and i + 1 (
mod N) is bijectively mapped to a cycle of the same length in y» C S, labeled with i and
i+ 1( mod N). By Lemma 3, for every jester hat ¢, with ¢ cone points glued to y;, there
must also be a jester hat ¢ with ¢ cone points glued to y» = f(y;). As a result, f induces
a homeomorphism f : X1 — X, where f(S1) = Sz and f(0)) = 0. ]

Recall that a graph G with genus g can be embedded into a genus g surface S,. The
edges of the graph will divide S, into regions called faces. Let |V| denote the number of
vertices of G, | E| the number of edges, and | F| the number of faces. For planar graphs, we
can calculate the number of faces using Euler’s formula, 2 = |V | — |E| 4 | F|. In general,
using the definition of Euler characteristic for simplicial complexes, for a graph with genus
82-2g=|VI—|E|+|FI

Lemma5 Let 27 be the set of finite-sheeted covers of a single Davis orbicomplex 9y, where
I is 3-convex and not repetitive. Suppose X1, X, € 2" are homotopic, and their singular
sets S1 and S, satisfy the conditions listed in Theorem 5. Then x; = xlf foralll <i <N,
where x; and x] are the cycle count vectors of X1 and X respectively.

Proof First, we show that if I" consists of N essential vertices, and X; are d; sheeted covers
of r fori = 1, 2, then d| = d» necessarily. As usual, we will denote S; to be the singular
set of X;. Since X; and X, are homotopic, by Lemma 4.3, they consist of the same sets
of jester hats identified along their boundary components to some F'-holed genus g surface
S, F. Note that F is also the number of faces of both §; C X and S C X». Note the number
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of vertices in S; is d; and the number of edges is ‘I’TN fori = 1, 2, so using the definition of
Euler characteristic, we have:

dl—leN—kF=2—2g=d2—dzTN+F = di|(2—N)=d:(2—N).

Thus, di = d; necessarily. Then X and X» are finite sheeted covers of the same degree of
the same Davis orbicomplex Zr.

Let ® = O(ny,n2,...,n;) and ' = O(n}, n}, ..., n},) be two arbitrary © graphs in
I". Recall that by Lemma 1, the number of cone points ¢; of a jester hat corresponding to
b;, the ith branch of O, is %(r,- — 3) + 2 where d is the index of the cover the jester hat
corresponds to. Similarly, the number of cone points c;. of a jester hat corresponding to

b}, the jth branch of @', is %(r} — 3) + 2. Note that I" is not repetitive, so there do not

. _ _ - 1—n!  1-n} 1-n/ . .
exist K, L such that K (2 T 1 T2 1 ) = L( 4"1, 4”2, 4"'). So in particular,

(mi—1,ny—1,..,ng— 1) # (ny —1,n5—1,..,n;, — 1) and since n; andn’j are equal to
r; —2 and r} — 2 respectively, it follows that {%(r,- —3)+2h<i<k # {%(r} —-3)+2h<j<k-
Thus, in any finite-sheeted cover of Dr, there are different sets of jester hats glued to cycles
with different labels since the sets of cone point counts are different. In particular, jester hats
in X that are lifts of orbifolds corresponding to a ® graph in I' must map to a collection of
jester hats in X that are lifts of orbifolds corresponding to the same © graph. In order for
the sets of jester hats to be the same, cycles of length 2 j labelled with i and i + 1 must map
to cycles of the same length and also labeled with i and i 4+ 1. As a result, x; = x.

[m}

Lemma6 Let 27 be the class of finite-sheeted covers of Davis orbicomplexes from Theo-
rem 5. Suppose S\, Sy € . are the singular sets of two 2d- sheeted covers X1, X» € 2 If
x; = x/forall1 <i < N, then there exists a label-preserving homeomorphism f : S| — $,.

Proof We use induction on the degree of the covers, 2d. Note that since the cycle count
vectors are the same, the covers must be of the same degree. For the base case, suppose
d = 2,50 2d = 4. By Assumption 1, each cycle in both S; and S, must be attached to at
least one jester hat. Thus, cycles of odd length are not allowed since a jester hat cannot be
attached to such a cycle. Thus, the only possible cycle lengths of S| and S, are 2 and 4.
By construction, every edge in S7 must be attached to part of the boundary of at least one
jester hat, so every edge in S; must be included into at least one cycle. In order for S; to
be a connected graph with four vertices satisfying the property that every edge is part of a
at least one cycle, there must be at least one four-cycle in Sj. The same holds for S;. Since
three-cycles are not allowed and each edge in §7 will be included in a cycle, the only possible
edges in S are of the form [v;, v; 1], where as before, i is taken modulo 4. The same holds
for S,. Therefore, the only possible S| and S, are graphs with k edges between v and v; as
well as v3 and v4 (where 1 < k < N), and N — k edges between v, and v3 as well as vgq
and v (namely, a cycle of 4 subdivided ® graphs- see S; and S> in Fig.7 for examples of
such graphs). Note that such graphs will have two four-cycles and (2N —4) two-cycles. As a
result, the only 4-sheeted covers that satisfy Assumption 1 of Theorem 5 consist of two sets
of jester hats glued to four-cycles, and the rest of the sets of jester hats glued to two-cycles.

If x;, = x; forall 1 <i < N, we know that for both S; and S, there is one four-cycle
labeled with j and j + 1 for some 1 < j < N, and another four-cycle labeled with k and
k+1fork # j. Without loss of generality, suppose j < k. Note that in Sy, if an edge labeled
Jj + 1 is between v; and v;41, then an edge labeled k must necessarily also be between v;
and v; 1. Otherwise, the edge labeled with k + 1 must be between v; and v;41, so an edge
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labeled with k is between v; and v;_. In this case, the labels on the edges between v; and
v;4+1 will range from j + 1 to k 4 1, so one of the edges must be labeled with k. However,
there is already a k edge between v; and v;_1, which is impossible. The same argument can
be used for $; if we replace v; with vlf . We can thus see thatin Sp, forall 1 <i < N, if edges
labeled with all integers between j + 1 and k connect v; and v; 41 (vlf and vlf 41 in ), then
the edges connecting v; and v;_ (vlf and vlff | in 82) are labeled with integers 1 <1 < N
such that/ < j or/ > k + 1. We can then construct a homeomorphism f : 81 — S, where
fv) =v]forall 1 <i < N.We can easily check that edge labels and vertex adjacencies
are preserved under f, completing the base case.

Suppose the lemma holds for d-sheeted covers. By Assumption 2, there exist {v;, vi+1} €
V(S1) and {vlf, vlfH} € V(S2) with the same number of edges and the same set of labels
between them. Additionally, the only other edges attached to v; and v;4+1 € V(S7) are also
attached to v;_1 and v; respectively; the same holds for vlf, vlf 11 € V (S,). Note that for
arbitrary d > 0, S1 and S> must both have (2d + 2)-cycles for the same reason the four-
sheeted covers in the base case necessarily have 4-cycles: each edge of S| and S is necessarily
attached to a jester hat, and thus by Assumption 1 necessarily belongs to a cycle. Suppose
there are no cycles in S7 and $> of length 2d + 2. Then S and S, would be disconnected since
they are graphs with 2d + 2 vertices. Thus, there must be at least one (2d + 2)-cycle in S
and S>, which we will label with m and m + 1. Note that if v; and v; 4+ have j edges between
them, then the other two pairs of vertices {v;, v;i—1} and {v;+1, v;42} must also necessarily
have N — j edges between them, and the edges between the two pairs of vertices have the
same set of labels. Delete v; and v;4 and the edges they are adjacent to, and construct the j
deleted edges between v;4, and v;_1 to create the singular set 7} of a 2d-sheeted cover of
Zr, . Construct a singular set T of 2d-sheeted cover of Zr, in the same way. Let y; and y;
be the new set of cycle count vectors. Note that in total, for both 2d-sheeted covers, we have
deleted and added the same set of cycles with the same set of edge labels, so y; = y/ for all
1 <i < N. Then by the inductive hypothesis, there exists a homeomorphism g : 71 — T5.

We then can extend g to f_ 1 S1 — $. Suppose g(vi42) = v,’( for some v,’( € T, (note
that k is not necessarily equal to 7). Then g(v;—1) maps to an adjacent vertex v; such that
there are j edges between v}, and v; with the same labelings as the edges between v; and
vi+1 in the original S;. Construct two vertices uy and u; in 7> and v;_; and v;4, in T}, and
delete the N — j edges between v, v; € V(T>) and v;_1, vi42 € V(T1) that have the same
labels as the edges added to construct 7; from S; for i = 1, 2. Then reconstruct the j deleted
edges between uy, u; € V(1) and v;_1, vi42 € V(T1) as well as N — j edges [v,’{, uy] and
[vl’, ur]in 7> and [v;—1, v;] and [v;41, vi42] in 7. Call the new graphs U; and Us, but note
that U is identical to S;. Additionally, U, is homeomorphic to S> since they are the same
graph up to a relabeling of vertices. Let g(v) = f(v) for all v € V(S)), f_(vi) = uy and
f(vi_1) = uy, which also determines the maps between the newly added edges, giving us a
label-preserving homeomorphism f : S| — S,. O

We now have all the tools to prove Theorem 5.

Proof (Theorem 5) It suffices to show that for X1, Xo € 27, m1(X1) = m1(X3) implies

homeo homeo
X1 =  X». As aresult of Lemma 4, in order to show X; = Xy, it suffices to show

there exists a label-preserving graph homeomorphism between the singular sets of X and
X5 respectively. Since subdivisions of a graph belong to the same homeomorphism class, we
can delete the valence two vertices from the singular sets to obtain S; and S,, and compare
the graphs. By Lemma 5, x; = xlf for1 <i < N, where x; and xi’ are the cycle count vectors
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homeo
of S1 and §> defined in Definition 8. Then by Lemma 6, we can conclude §; = 95, as

desired. ]
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