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Abstract Marine multichannel and wide-angle seismic data constrain the distribution of seamounts,
sediment cover sequence and crustal structure along a 460 km margin-parallel transect of the Hikurangi Plateau.
Seismic reflection data reveals five seamount up-to 4.5 km high and 35-75 km wide, with heterogeneous
internal velocity structure. Sediment cover decreases south-to-north from ~4.5 km to ~1-2 km. The Hikurangi
Plateau crust (V,, 5.5-7.5 km/s) is 11 = 1 km thick in the south, but thins by 3—4 km further north (~7-8 km).
Gravity models constructed along two seismic lines show the reduction in crustal thickness persists further

east, coinciding with a bathymetric scarp. Gravity data suggest the transition in crustal thickness may reflect
spatial variability in deformation and lithospheric extension associated with plateau breakup. Variability in the
thickness of subducting crust may contribute to differences in megathrust geometry, upper-plate stress state and
high-rates of contraction and uplift along the southern Hikurangi margin.

Plain Language Summary The thickness of crust arriving at subduction zones exerts a major
influence on the configuration, structure, and distribution of stresses at plate boundaries. A region of thickened
oceanic crust, the Hikurangi Plateau, is subducting beneath the North Island of New Zealand. To understand
the structure of this Plateau, we analyze seismic data along a 460 km long transect, which reveals five large
seamounts, and a 3—4 km reduction crustal thickness between the southern and northern areas of the Plateau.
Gravity data show this difference is persistent across the plateau and reveal structures suggesting the crust

may have thinned when the Hikurangi plateau separated from a second plateau (Manihiki), which is thought to
have formed at the same time. We propose that the subduction of thicker crustal along the southern Hikurangi
margin may contribute to the shallow angle of the subducting plate, and high rates of uplift and deformation in
the overthrusting plate.

1. Introduction

The arrival of oceanic plateaux, large igneous provinces and oceanic ridges at active margins can have a major
impact on the structure, configuration and deformation of plate boundaries, and in some cases have caused major,
widespread changes in tectonic plate motions (Knesel et al., 2008; Shulgin et al., 2011; Wessel & Kroenke, 2000;
Wood & Davy, 1994). Thickened oceanic crust increases the buoyancy and rigidity of the incoming plate, impact-
ing the geometry of the subducting slab and promoting uplift, erosion and exhumation of the overriding plate
(Arai et al., 2017; Shulgin et al., 2011; Tetreault & Buiter, 2012; Vogt & Gerya, 2014; Worthington et al., 2012).
These factors may impact the magnitude of normal stresses across the subduction interface (e.g., Contreras-Reyes
et al., 2019) and lateral crustal thickness variations have been linked to changes in both megathrust slip behavior
(Kelleher & McCann, 1976; Shulgin et al., 2011) and stress-state in the subducting slab (Arai et al., 2017).

The Hikurangi Plateau is subducting along New Zealand's Hikurangi margin at a rate of ~20-60 mm/year
(Figure 1) (Mortimer & Parkinson, 1996; Reyners et al., 2011; Wallace et al., 2004). The Plateau is thought to
have formed between ~96 and 118 Ma as part of a larger Hikurangi-Manihiki-Ontong Java Plateau, which would
represent the largest magmatic event preserved at Earth's surface (Coffin & Eldholm, 1994; Davidson et al., 2023;
Hoernle et al., 2010; Taylor, 2006; Tejada et al., 2023; Timm et al., 2011). Rifting, followed by seafloor spreading
at the Osbourn Trough separated the Hikurangi and Manihiki Plateaus, with the Hikurangi Plateau drifting south
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before its collision and incipient subduction at the Gondwana margin, which has been linked to the cessation of
subduction in this region (Billen & Stock, 2000; Davy et al., 2008a; Hoernle et al., 2020; Lonsdale, 1997; Riefstahl
et al., 2020; Wood & Davy, 1994). Dredge samples and scientific drilling show the Plateau sequence consists
predominantly of a 96-118 Ma tholeiitic basaltic basement (Hoernle et al., 2010) overlain by Cretaceous clastic
sedimentary rocks and Late Cretaceous to Early Oligocene chalks and mudstones (Barnes et al., 2020; Davy
et al., 2008b). Seamounts (52-99 Ma), of alkali basalt composition (Hoernle et al., 2010) and younger Cenozoic
intraplate volcanoes (Timm et al., 2010) are prominent features of the Plateau (Barnes et al., 2010, 2018; Collot
et al., 2001; Lewis et al., 1998), the subduction of which along the northern Hikurangi margin has been linked
to the occurrence of tsunami earthquakes (Bell et al., 2014), shallow slow slip events, repeating earthquakes and
tremor (Barker et al., 2018; Shaddox & Schwartz, 2019; Sun et al., 2020; Todd et al., 2018; Wallace et al., 2016).

In this study, we present a new 460 km long geophysical transect along the Hikurangi Plateau parallel and outboard
of the active Hikurangi margin to resolve the distribution of seamounts and determine the crustal thickness, struc-
ture, and sediment cover sequence. We integrate regional data sets to provide new insights on Plateau structure and
consider the impact of heterogeneous crustal structure on plate boundary deformation and megathrust slip behavior.

2. Marine Geophysical Data
2.1. Data Acquisition

Multichannel seismic reflection (MCS) and wide-angle seismic data were acquired by the R/V Marcus G. Lang-
seth (Figure 2) as a part of the SHIRE Experiment (Bangs, 2018; Barker et al., 2019). The seismic source was a
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Figure 1. Tectonic settings and geophysical data. Hikurangi subduction zone, New Zealand. Thick blue lines show wide-angle seismic profiles collected during
SHIRE. Yellow dots mark Ocean Bottom Seismometers. Thin blue lines mark HKDC1 and HKDC3 seismic reflection profiles, with thick sections marking the
segments used for the construction of gravity models (Figures 3d and 3e). Orange triangles mark active volcanoes. Note the abrupt contrast in water-depth between the
northern and southern Hikurangi Plateau. Inset shows regional tectonic setting. Annotation: G = Gisborne, TVZ = Taupo Volcanic Zone, WWR = West Wishbone

Ridge. MS = Mahia Seamount.
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tuned air-gun array (6,600 in®, 13.1 MPa) towed at 9 m depth, with Line 4 first acquired using a 50 m shot spacing
for the MCS data, followed by 200 m interval for wide-angle seismic data. MCS data were recorded by a 12.8 km
long, 1,008 channel receiver array towed at 10 m depth. Wide-angle data were recorded using 30 Ocean Bottom
Seismometers (OBSs) deployed at ~15 km intervals by R/V Tangaroa.

2.2. Data Processing and Tomography

The MCS data processing sequence consisted of resampling to 4 ms, band-limited swell noise suppression
(0-3 Hz), velocity analysis, surface-related multiple elimination, parabolic radon transform and amplitude recov-
ery. Pre-stack time migration was applied to obtain the final seismic reflection section (Figure 2a).

Wide-angle seismic data were processed using a 4-20 Hz band-pass filter (Figure S1 in Supporting Informa-
tion S1). From OBS receiver gathers, we picked 19,302 first-arrival travel-times associated with refractions
through the crust (Pg) and mantle (Pn) of the Hikurangi Plateau, and 5,031 wide-angle reflections (PmP) from the
base (Moho) of the Plateau. The OBS data quality is excellent, with first arrivals identified to >100 km offset on
most instruments. Travel-time tomography was undertaken to construct a layered P-wave (Vp) seismic velocity
model, simultaneously solving for seismic velocities of the crust and mantle, and the geometry of the Moho (Fujie
et al., 2013, 2016). Seismic velocities were determined within a regular grid discretized 3.0 km horizontally and
0.25 km vertically. The Moho interface was modeled along nodes with 10 km spacing. Our final P-wave veloc-
ity model replicates observed travel-times with a root mean squared error of 44.7 ms (Figure S2 in Supporting
Information S1).

Spatial resolution and uncertainties in seismic velocities were assessed using Monte Carlo and Checkerboard
recovery approaches, the details and results of which are presented in Supporting Information S1.

3. Results
3.1. Hikurangi Plateau Structure From Seismic Reflection Data

Seismic reflection data along SHIRE Line 4 reveals five seamounts on the Hikurangi Plateau (Figure 2a). These
seamounts are evenly distributed between north and south, typically rising 2-2.5 s (3—4 km) above the volcanic-
lastic sequences (HKB) interpreted to mark the top of the Hikurangi Plateau, with in-profile widths varying from
35 to 70 km. Despite subsurface similarity in seamount heights, their expression at the seafloor progressively
increases from south to north. This is primarily due to reductions in sediment thickness, which decreases from
>2.5s TWTT (~4.5 km) in the south to 1-1.5 s TWTT (~1-2 km) in the north. The flanks of Mahia seamount
appear interbedded within unit CL and stratigraphic inferences of young volcanism are consistent with the Plio-
cene age (3.2 + 0.3 Ma) determined from *°Ar/**Ar dating of dredge samples (Timm et al., 2010).

The sediment cover between seamounts is interpreted following well-established seismic stratigraphic frame-
works for the Hikurangi Plateau (Barnes et al., 2010, 2020; Davy et al., 2008a; Gase et al., 2022; Plaza-Faverola
et al., 2012). Following this nomenclature and in order of increasing age, we interpret (a) a siliciclastic
trench-fill sequence of hemipelagic turbidites (Unit TF—~2.5 Ma—present), (b) a plateau cover sequence
of nannofossil chalks interbedded with tephras and clays (Unit CL ~32->2.5 Ma), (c) a strongly reflective
condensed sequence of chalk and shales (Sequence Y—70-32 Ma) underlain by a weakly reflective, possibly
sandstone-rich, sequence of Late Cretaceous sediment (Unit MES—100-70 Ma). These sequences are all under-
lain by a highly reflective and widely distributed HKB unit (110 + 10 Ma) associated with the volcaniclastic
cover of the Hikurangi Plateau. The primary horizons separating these units are a regional erosional uncon-
formity (Reflector 5B) that separates units TF and CL, and Reflector 7, which marks the top of Sequence Y and
has been shown localize the initial formation of the décollement (i.e., megathrust) along the Hikurangi margin
(Barnes et al., 2010; Plaza-Faverola et al., 2012). The base of MES is variably interpreted as underlain by HKB,
or onlapping the flanks of seamounts.

At the southern end of the transect, seismic reflection data image the Mesozoic accretionary wedge of the Gond-
wana margin beneath the Chatham Rise (Model km 0-50—Figure 2a). Unit HKB is imaged underthrusting the
accreted wedge, constraining the geometry of the relict Gondwana plate interface for ~50 km. A change in seis-
mic reflection character (dotted black line) is tentatively interpreted as the boundary between metasedimentary
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basement rocks that had undergone active accretion to the Gondwana margin (Mortimer et al., 2020), and sedi-
ments preserved within the trench or outer-wedge when Gondwana subduction terminated in the Early Creta-
ceous (Bland et al., 2015).

3.2. Hikurangi Plateau Structure From Wide-Angle Seismic Data

The seismic velocity structure of the Hikurangi Plateau derived from wide-angle seismic data is shown in
Figure 3b. It is also shown underlying seismic reflection data in Figure 2b. Seismic velocities in the near-surface
typically increase from 1.8 to 3.0 km/s through Stratigraphic Units TF and CL, before increasing further to
3.5 + 0.2 at the base of MES (Figure 2b). Although we do not image a contiguous reflector marking the base of
HKB, we note that spatial variability in the base of high-reflectivity associated with HKB is well correlated with
seismic velocities of ~5.5-6 km/sec (Figure 2b). The upper 2-3 km of the Hikurangi Plateau is characterized by
wavespeeds of 5.5-6.5 km/s and the lower crust has wavespeeds typically between 6.5 and 7.5 km/s.

The Moho of the Hikurangi Plateau is 18—19 km deep along the southern half of Line 4, but gradually shallows
by 4 km between the northern flanks of Unnamed Seamount 2 (Model km 280—Figure 3b) and Mahia Seamount
(Model km 380—Figure 3b), reaching a depth of 14 km at the northern end of the transect. These Moho depths
are consistent with the results of margin-normal wide-angle seismic profiles traversing the Hikurangi Plateau in
North (SHIRE Line 1) and South Hikurangi (SAHKE) respectively (Gase et al., 2021; Mochizuki et al., 2019).
Excluding surficial volcaniclastics and taking 5.5 km/s to mark the top of the Hikurangi Plateau crust yields a
crustal thickness of 10.5 + 0.3 km south of Unnamed seamount 2 (Model km 280—Figures 3b) and 7 + 0.5 km
further north. Below the Moho, the mantle of the Hikurangi Plateau exhibits a heterogeneous velocity structure
with wavespeeds typically ranging from 7.8 to 8.5 km/s. On average, seismic velocities are 0.2 km/s faster and
appear more homogeneous in their distribution where the crust is thicker in the south, relative to the region of
thinner crust further north.

The seismic velocity structure of seamounts is also heterogeneous. Unnamed Seamount 1 and Bennett Knoll
are characterized by high-velocities, with wavespeeds exceeding 5 km/s within 2 km of the seamount crest and
>6 km/s within the core of the seamount. Unnamed Seamount 2 and Mahia Seamount, by contrast, exhibit
lower velocities with the top ~5 km of material <5 km/s. Te Kuri-a-Paoa Seamount exhibits an intermediate
velocity gradient, with wavespeeds exceeding 5 km/s within 4 km of the seamount crest. Through the crust,
Unnamed Seamounts 1 and 2, and Te Kuri-a-Paoa Seamount appear associated with reductions in seismic veloc-
ities in the upper crust, and we note that regions where the lower-crust does exhibit higher velocities appear to
be between, rather than beneath, the seamounts imaged at shallow depth. High-resolution geophysical imaging
of subducting and unsubducted seamounts offshore Gisborne show their internal structure to be heterogeneous
with high-velocity and resistive cores embedded within a larger, lower-velocity and more conductive matrix (Arai
et al., 2020; Chesley et al., 2021; Gase et al., 2021). We therefore suggest that differences in the seismic velocity
structure of seamounts imaged along Line 4 reflect their three-dimensionality and position in relation to our 2D
transect, rather than any overall differences in internal structure or composition. It is clear, for example, that
our transect does not traverse the peak of Mahia seamount (Figure 1), which may explain the lower wavespeeds
resolved.

3.3. Hikurangi Plateau Structure From Gravity Modeling
3.3.1. Western Plateau Structure Along SHIRE Line 4

Potential field data provide additional constraints on crustal structure, and we have conducted gravity modeling
to (a) independently assess crustal structure in regions of lower or spatially heterogeneous ray-coverage; and (b)
compare the crustal structure along SHIRE Line 4 with two MCS profiles father east on the Hikurangi Plateau
(Figure 1). Our modeling strategy involves building an initial density model that preserves crustal structure where
this is well determined, before adjusting less well constrained regions via perturbations to the density structure
of the lower-crust, mantle and Moho geometry as required to replicate the observed Free-Air gravity anomaly.
The construction of our starting model and the steps governing its subsequent refinement to replicate observed
Free-Air gravity anomalies are detailed in Supporting Information S1 (Text S2).

The gravity model in Figure 3c shows the south-to-north increase in Free-Air gravity anomalies is highly consist-
ent with the reduction in crustal thickness and Moho depth suggested by wide-angle data. Assuming the Moho
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Figure 3. Hikurangi Plateau crustal structure (a) Bathymetry (blue) and observed (black) and calculated (red) Free-Air gravity anomalies along SHIRE Line4. (b)
P-wave (V) seismic velocity along SHIRE Line 4. Red triangles mark Ocean Bottom Seismometers. Solid green line marks the top of Hikurangi Plateau volcaniclastic
cover sequence (HKB). (c) Density models along SHIRE Line 4, (d) HKDC1 and (e) HKDC3.
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geometry from wide-angle data is correct, then the reduction in seafloor bathymetry and crustal thickness must
be accompanied by a south-to-north reduction in crustal and/or mantle densities. A reduction in mantle densities
is consistent with average mantle velocities being 0.2 km/s slower beneath the region of thinner crust, relative to
the southern portion of the model.

3.3.2. Central Plateau Structure Along HKDC MCS Lines

On the central Hikurangi Plateau, two additional seismic reflection lines (HKDC1 and HKDC3) cross the bathy-
metric step that broadly coincides with the reduction in crustal thickness along SHIRE Line 4 (Figure 1). These
data were acquired in 2001 by the Geco Resolution (Davy et al., 2008a) and provide the requisite constraints
on shallow crustal structure and sediment thickness for the construction of gravity models investigating crustal
thickness variations farther east on the Hikurangi Plateau. HKDC1 and HKDC3 reveal the same stratigraphic
sequences identified along SHIRE Line 4 (Figures S8 and S9 in Supporting Information S1) (Davy et al., 2008b).
We have therefore used average 1-D velocity-depth functions determined along SHIRE Line 4 to build initial
velocity and density models for HKDC lines, before following the same automated procedure of adjusting crustal
densities and the geometry of the Moho to fit the short (<80 km) and long wavelength (>80 km) components of
the Free-Air gravity anomaly respectively (Text S2 in Supporting Information S1).

These models show the depth of the Moho decreasing from south-to-north by 4 km along HKDC1 and ~3 km
along HKDC3 (Figures 3d and 3e). Taking 2600 kg/m? (equivalent to 5.5 km/s) to represent the top of the crust
suggests a 3—4 km reduction in crustal thickness along both profiles. The magnitude of south-to-north reductions
in both Moho depth and crustal thickness are similar to the results of SHIRE Line 4 and for all three models, the
location of these reductions is well correlated with the SE-NW trending bathymetric step and the concomitant
increase in water depth (Figure 1).

4. Discussion

Seismic velocity models derived from SHIRE wide-angle seismic transects and two seismically constrained grav-
ity models further east on the Hikurangi Plateau (Figure 3) show that crustal thickness is 3—4 km thicker beneath
the southern plateau highs (~10-11 km), relative to the northern areas of the plateau (~7-8 km). This contrast
in crustal thickness may have existed prior to, or been generated during, the initial formation of the Ontong
Java-Hikurangi-Manihiki Plateau. Alternatively, it may have developed during the subsequent rifting phase that
accompanied plateau break-up.

In addition to constraining variability in crustal thickness, the regional Free-Air gravity field reveals structures
that may inform both the origin of crustal thickness variability and its impact on contemporary tectonics. Along
the Kermadec arc, the Free-Air gravity field of the incoming plate is dominated by a ~500 km wide ~40 mGal
outer gravity-high that extends south of Osbourn Trough (Figures 4a and 4b). The dashed black-white lines
show that the outer-gravity high is approximately parallel with iso-depth contours of the subducting slab (Hayes
et al., 2018), with the similar spatial separation suggesting the radius of curvature of the Pacific Plate only
changes gradually along the Kermadec arc. Figure 4a also shows the Kermadec gravity high extending through
the Hikurangi Plateau to its juxtaposition with the Chatham Rise. One key difference, however, is that the strike
of the gravity high is now oblique to the geometry of the subducting slab (Williams et al., 2013), suggesting a
north-to-south increase in the radius of curvature of the Hikurangi Plateau. The obliquity and divergence of these
structures is greatest within ~100 km of the transition in crustal thickness (Figure 4a).

Global analyses of plate flexure at subduction zones show the broad wavelength of the outer-rise reflects the initial
effective elastic thickness of the incoming plate, and that this strength must then reduce by as much as ~40%—65%
to replicate the steepness of the seaward wall of the trench (Garcia et al., 2019; Hunter & Watts, 2016). This
strength reduction has been attributed to inelastic yielding (Wessel, 1992). As the width of outer-rise appears
approximately constant (Figure 4a), we suggest thicker Hikurangi Plateau crust may be contributing to the shal-
lower geometry of the subducting slab beneath the southern Hikurangi margin, potentially on account of both
added buoyancy and by reducing the magnitude of the strength reduction due to inelastic yielding as the Plateau
bends into the subduction zone.

Applying spectral averaging routines to remove the outer-gravity high reveals a contrast in structural fabric that
may inform the origin of the transition in crustal thickness (Figure 4c). The northern plateau shows a strong
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Figure 4. (a) Free-Air gravity anomalies along the Tonga-Kermadec-Hikurangi subduction zone (Sandwell et al., 2014). Dashed black-white lines approximate the
trenchward limit of the outer-gravity high and the 30-km iso-depth contour for the subducting slab (Hayes et al., 2018; Williams et al., 2013).) Arrows highlight linear
structures in the gravity field and alignments of seamounts. Spectral average of trench-normal gravity anomalies revealing the expression of the outer-gravity high. (c)
Residual gravity anomalies after subtracting the spectral average of trench-normal gravity (Bassett & Watts, 2015a, 2015b). Note (1) the contrast in structure across
the bathymetric scarp and (2) the similar orientation of gravity lineaments and seamounts through the northern Hikurangi Plateau with spreading related structure in
the Pacific Ocean crust. In panel 4c, differences in gravity anomalies west of the outer-gravity high simply reflect differences in trench-depth and do not impact our
interpretation of Hikurangi Plateau structure.

similarity to structures in the Pacific oceanic crust further north, with SW-NE striking lineaments identified
in the residual gravity field, some of which can be tracked across Rapuhia Scarp (Figure 4c). We also interpret
six SW-NE trending alignments of seamounts. The southern Hikurangi Plateau, by contrast, does not show a
well-defined fabric and the West Wishbone Ridge is the only structure that can be traced with confidence across
the bathymetric step (Barrett et al., 2018). The northeast-trending orientation of structures north of the bathy-
metric step is similar to the inferred direction of rifting between the Hikurangi and Manihiki Plateaux (Davy
et al., 2008b). We suggest these structures may constrain the distribution of deformation associated with plateau
breakup and that regional extension occurring over a similar area may have contributed to the contrast in crus-
tal thickness resolved in this study. These alignments may be analogous to transverse alignments of seamounts
observed at mid-ocean ridges and back-arc rifts, and may reflect transform structures that accommodate differ-
ences in the rates or orientation of rifting potentially providing larger and/or longer-lived structural pathways to
be exploited by ascending melt.

The crust of the southern Hikurangi Plateau is similar in thickness (10-11 km) and velocity structure to the
Western Manihiki Plateau and Tokelau Basin, and we note that variability in crustal thickness across the west-
ern Manihiki Plateau (Hochmuth et al., 2019), and south of the Chatham Rise (Riefstahl et al., 2020), has been
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similarly attributed to extensional deformation. Juxtaposing the Hikurangi and Western Manihiki Plateaux before
seafloor spreading implies asymmetric rifting where the northern Hikurangi Plateau has extended and thinned
during rifting.

This model, which would impose additional coeval tectonic and long-lived thermal subsidence due to lithospheric
extension across the northern Hikurangi Plateau may help explain bathymetric data showing the subsidence of
guyots decreases almost linearly south of Rapuhia Scarp over a distance of ~400 km (Hoernle et al., 2004).
Spatial variability in deformation may also be expressed by differences in mantle seismic velocities. SHIRE
wide-angle seismic surveys (Bassett et al., 2022; Gase et al., 2021; Mochizuki et al., 2019) and tomographic
models (Eberhart-Phillips & Bannister, 2015) show that mantle velocities are systematically lower beneath the
northern region of thinner crust. This may be due to differences in crustal thickness and curvature impacting the
hydration and stress-state of the mantle (Arnulf et al., 2022; Fujie et al., 2023).

Collectively, we suggest observations of increased crustal thickness, a weaker structural fabric and deformation
signature, and potentially differences in subsidence rates and mantle velocities are all consistent with the south-
ern portion of the Hikurangi Plateau representing a more rigid and coherent lithosphere relative to the region
further north. This rigidity and added buoyancy may contribute to spatial variability in short-term and long-term
plate coupling and deformation associated with the Hikurangi subduction thrust. Present geodetic models show
the plate interface is locked to ~30 km depth along the southern Hikurangi margin (Wallace et al., 2012) and
the thicker subducting crust, wider radius of curvature and shallower slab geometry (Williams et al., 2013) will
contribute to the wide areal extent of this locked zone. Differences in crustal thickness and curvature will also
influence the stress-state and permeability of the subducting plate, and may contribute to along-strike differences
in the volume, chemistry and residence times of fluids derived from the subducting plate, the episodic release
of which have been shown to play a key role in the generation of slow slip events along the north Hikurangi
margin (Eberhart-Phillips et al., 2017; Mochizuki et al., 2021; Reyes et al., 2022; Warren-Smith et al., 2019).
The contemporary stress state and long-term deformation of the upper plate may also have been impacted by
variability in subducting crustal thickness (Nicol et al., 2007; Townend et al., 2012). Only the southern portion of
the margin has rocks associated with basement terranes—composite Torlesse supergroup—uplifted and exposed
in the coastal ranges (Heron, 2014), and we suggest higher rates of uplift and contraction in the southern North
Island, may, in part, have been driven by north-south differences in the thickness and buoyancy of the Hikurangi
Plateau (Jiao et al., 2017; Litchfield et al., 2007; Nicol et al., 2007; Nicol & Wallace, 2007).

Data Availability Statement

Raw and processed marine multi-channel seismic (MCS) data used in this study are available through Bangs
etal. (2017). Ocean Bottom Seismograph data are available from GNS Science., 2017 and the JAMSTEC Seismic
Survey Database (Barker, 2017).
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