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Abstract—In this paper we describe the need for a framework
to support collaborative educational research with game data,
then demonstrate a promising solution. We review existing efforts,
explore a collection of use cases and requirements, then propose a
new data architecture with related data standards. The approach
provides modularity to the various stages of game data generation
and analysis, exposing intermediate transformations and work
products. Foregrounding flexibility, each stage of the pipeline
generates datasets for use in other tools and workflows. A
series of interconnected standards allow for the development
of reusable analysis and visualization tools across games, while
remaining responsive to the diversity of potential game designs.
Finally, we demonstrate the feasibility of the approach through
an existing implementation that uses this architecture to process
and analyze data from a wide range of games developed by
multiple institutions, at scale, supporting a variety of research
projects.

Index Terms—games, educational data mining, learning ana-
lytics

I. INTRODUCTION

The digital nature of educational video games affords low
cost distribution to arbitrarily large and diverse audiences.
This effect is highlighted with web-based games which can
be deployed nearly instantly and are popular in schools,
in no small part in connection to the historic investment
into chromebook devices and high speed internet in schools
following the COVID-19 pandemic. A 2021 survey of school
leaders reported that 90 percent of students in grades 6-12
and 84 percent of grade 1-5 in the United States have a
personal chromebook device [1]. Studies over the last few
years demonstrate that game adoption has grown mainstream,
with users of games mimicking the general population across
dimensions such as gender, age and race [2].

Despite the ease of distribution, game interaction data can
be quite rich. As digital systems, players are interacting with
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simulated environments where every attribute is stored as
some part of the systems state. Every interaction made by
a player is similarly well-defined. These state changes and
interactions are both high frequency, but also fine-grained.
When carefully considered through interpretive lenses such as
Evidence Centered Design [3], game interaction data becomes
a method for understanding player beliefs, attitudes and knowl-
edge. Following, games offer an superb tool for educational re-
search, supporting research in fields such as cognitive science,
learning science and learning engineering. Breakthroughs in
Education Data Mining and Learning Analytics [4] provide the
mechanisms to conduct these forms of research with very large
audiences by automating the analysis methods. Researchers
have used these approaches to detect computational thinking
strategies [5], predict quitting [6] and wheel spinning [7], and
assess content knowledge [8].

Unfortunately, there is very little shared research infras-
tructure or even widely adopted conventions that facilitate
research with educational games. Some researchers may have
access to the variety of resources required to develop and
instrument games, recruit audiences, develop data capture and
systems and then analyze the data, but for many individuals
or smaller teams, the scope of these efforts is a significant
barrier. Practically this results in game research either being
conducted by a small number of institutions that have all these
capacities in-house, or much smaller studies that do not benefit
from the affordances of large datasets from large audiences.

This paper is a response to the promise of using large-scale
educational game data in concert with educational data mining
and learning analytic approaches, and offers an initial step
in developing a shared research infrastructure. We begin by
describing the need for a new data pipeline for conducting
educational game data research that enables open collabora-
tion between developers and researchers, flexibility in game
designs and research agendas, and modularity to support the
reuse of tools and methods across games. Next, we provide
a proposed architecture for such a pipeline and standards for
how new games can be added and analysis developed. Finally,
we demonstrate an initial implementation of this pipeline and979-8-3503-5067-8/24/$31.00 ©2024 IEEE
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standards in a production research infrastructure being used
by various institutions across 20 diverse learning games and
millions of players yearly.

II. EXISTING APPROACHES TO DATA IN GAMES
RESEARCH

Commercial tools have been developed to provide analytics
capacities to game developers who do not wish to develop
their own infrastructure. The popular Unity game engine
provides an integrated analytics platform, Unity analytics, that
provides game developers with key metrics and visualizations
of their games performance and player experience, such as the
daily active users and average engagement time. The Game
Analytics product provides similar analysis and works for any
game engine. Both products continue to grow and expand,
recently adding capacities such as A/B testing for developers
to conduct experiments. Both products are primarily focused
on providing analytics that will help monetize games, retain
users, and improve design. Neither attempt to create a pipeline
for data processing, or create or share reusable analysis.

Turning to conventions for interoperable game data,
Charleer et al. [9] proposed the xVGM specification that
is presented as a simplification of the well known xAPI
specification designed for describing player actions within
competitive multiplayer games like League of Legends. While
the specification is inspired by xAPI it only makes use of the
high level event structure and eschews the use of interoperable
URIs for verb descriptions, instead relying on the fact that each
game would define its own verb set.

The Serious Game Profile for xAPI (xAPI-SG) [10] is
another approach that has been taken in the broader context
of Learning Analytics in games. This specification provides
additional games specific semantics to make it easier to
express game actions within the broader language of xAPI.
This includes activities for levels and missions, as well as
actions for progression and completion of challenges. While
this specification does adhere to established standards, the
authors note challenges related to its verbosity and potential
to face bandwidth issues in the context of highly dynamic
games. Despite these challenges, analytics aggregation and
reporting systems have been built on top of the xAPI-SG
profile. For example, the T-Mon system [11] provides tools
for automatically aggregating and calculating progression and
time metrics.

III. INTENDED AUDIENCES AND USE CASES

This paper is not purely theoretical, but a blueprint for a data
architecture based on previous experiments into game data.
While there are certainly unexplored approaches to come, we
have already seen a number of promising uses of game data
analysis for different stakeholders and use cases that this data
pipeline should support.

We focus on four high level stakeholders for the outputs
of game data analysis: designers, researchers, educators and
players. Designers need ways of understanding players ex-
periences in order to improve the game. Researchers require

ways to discover patterns, and conduct experiments that will
further our understanding about how players think, learn and
feel. Similarly, educators need tools that help them understand
how learners are thinking and progressing so they form inter-
ventions. Finally, players need ways to understand their own
thinking and affect so they can make changes to their own
playing and learning strategies, and their games need ways of
adapting to individual players.

Across these stakeholders and previous research, we focus
on six use cases for a data pipleine:

Learning Engineering with Games. Learning engineering
is an emerging field that uses evidence to inform educational
design. For example, researchers developed and disseminated
different versions of a games script [12] and various conditions
of difficulty and support [13] to large audiences to determine
which versions produced desirable outcomes and inform de-
sign theory.

Player Experience Visualization. Design researchers are
in constant development of new ways to visualize play expe-
riences. Some of the promising directions include simple heat
mapping [15] to more complex analysis to consider pathways
for progression [14].

Player and Player Experience Classification. Player ty-
pologies are useful tools for user-centric design, as well as
uncovering unexpected patterns of play [15].

Replay of Player Experience. Replay is a process of using
game data to recreate a representation of the original play
experience. Among other examples, text replay logs have been
used to qualitatively label segments of gameplay to identify
players who are struggling [16], and video replays have been
used to identify specific computational thinking approaches
[5].

Realtime detectors to support qualitative research. Simi-
lar to replay, machine learning analysis can be used to support
qualitative researchers, but in real time, while the gameplay is
taking place to direct the focus of costly research [17].

Realtime analysis for summarizing player experiences.
Researchers have developed web based [18], and augmented
reality [19] dashboards to synthesize player data and commu-
nicate useful insights to educators to augment their perceptions
of how learners are performing. These models could also be
applied to adapt gameplay in response to player performance.

IV. DESIGN PRINCIPLES FOR THE DATA PIPELINE AND
STANDARD

In response to the opportunities for using game data, the
previous work and the use cases this project intends to support,
we develop a collection of goals and properties of the required
data pipeline and standards.

Principle 1: Data Follows Design. The data structures and
vocabulary needs to be extremely flexible, in the same way
that game design is flexible. While conventions exist and will
emerge, their adoption remains optional. Similarly, adopting
this pipeline and standard should require the minimal amount
of effort as possible of the game studio and pose no risk to
game performance.
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Principle 2: Capture then Analyze. Enough data should be
captured so that unforeseen future analysis can be conducted
by researchers outside the game developers or initial research
team. Optimally, enough data should be present to completely
reconstruct the game experience from telemetry events.

Principle 3: Support a Diversity of Workflows. In contrast
to creating large, integrated infrastructure with many features,
provide users with the easiest to use interfaces so they can
use the tools of their choosing. For example, provide outputs
in simple formats that are widely compatible, such as .TSV
files so that even novice researchers are able to work with
the datasets in the tools that are most comfortable to them.
Similarly, the pipeline should support the development of
many reusable tools that are loosely coupled to any particular
game or research agenda through a series of emergent and
optional standards, minimal requirements for leveraging a
particular tool or analysis, that each developer can choose to
adopt.

Principle 4: Transparency and Openness. The pipeline
should expose both the logic as well as the intermediate work
outputs and many phases for outside review and secondary
analysis.

V. OPEN GAME DATA PIPELINE V0.1
The proposed pipeline (see Fig. 1) contains several com-

ponents that operate primarily in a linear fashion and are
each designed to take the results of the prior component as
input, starting with the games themselves. The first stage of
the pipeline is a data Logger. This component captures the
time series telemetry events directly from the games, commits
them to long term storage, and makes them available for
use as downloadable files and via an API. The next stage in
the pipeline is the Detector component. Detectors are simple
algorithms or models that inspect the time series, raw data
in order to infer events that are not logged from the games
themselves e.g detecting a idleness, or frustration. Detectors
insert calculated events within the time series in-between the
raw events from the game.

From this stage forward, each of the components are operat-
ing as some level of aggregation, transforming the sequences
of events into features that describe the different attributes
of play experience. In each case, a row in the output is the
level of aggregation (player or population) and columns define
individual features. The first step in this process is to calculate
the features that describe a specific Player. These featured are
then further aggregated into Populations. Populations are used
for any segmentation of players, such as all players or player
of a specific game version.

In the first break from a purely linear progression, Higher
Order Features consider Players in context of entire Popula-
tions. The simplest example of this would be a player feature
that considers that single players session count in comparison
of the number of sessions of all the players in the population.
In thus case, the result of the analysis would be additional
features added back to Players after the Population features
had been calculated.

Fig. 1. The proposed data pipeline.

VI. DATA STANDARDS V0.1

We now propose initial specifications for the standards
identified in the previous section. As we have discussed above,
our goal is not to create a new set of detailed, rigorous
standards that require significant implementation effort. In-
stead, our intent is to create simple, flexible conventions
that balance the advantages of shared data formats against
the disadvantages of high-maintenance implementations of
high-detail specifications. The standards we propose include
interchange formats for time-series event and aggregate feature
data, both for tabular dataset distribution (i.e. .tsv files) and
for web APIs. We also propose a series of smaller ”ontology”
standards that can be implemented by individual games to
ensure compatibility with external tools and reusable analysis
methods.

A. Event Data Standard
In table I, we document the set of properties every individual

event must include, and indicate whether ”null” is a valid value
for each. Our standard for events includes elements within
five categories, namely identifiers, sequencing, versioning, user
metadata, game state, and event data. As described in the
pipeline segment on event data, events may be generated
directly from the game, or inferred from the content of game-
logged events. We call the latter “calculated events.” The
structure of a calculated event does not differ from the standard
game-generated event; we distinguish between log events and
calculated events with the event source element. Event detec-
tors that generate calculated events should fill in all elements
implemented by the game whose data the detector operates on.
In general, the best practice is to copy identifier, versioning,
and sequencing items from whatever game event triggered
the detector. There is one exception, namely for instance
and session sequence indices. Simply copying these would
result in redundant indexing. Instead, a system implementing
event detectors should re-index subsequent events whenever a
calculated event is inserted into the event stream.

We now describe each category of event properties and, as
necessary, specific rules for each property:

1) Identifiers: are used to indicate the application, game
instance, user, and user-session from which a given event is
logged. The instance ID is optional, supporting multiplayer
games where instances of the game system exist independently
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TABLE I
STANDARD PROPERTIES FOR EVENT DATA

Property Data
Type

Allow
NULL

Description Example

game id String,
32

NO A string identifying which game from which the event came MY GAME

instance id String,
32

YES For multiplayer games, an ID for the instance of the game that generated
the event.

48272075

player id String,
32

YES A custom, per-player ID that may be re-used across game sessions BlueWhale

session id String,
32

NO Unique identifier for the gameplay session 24020195392739482

timestamp Datetime NO A UTC timestamp for when the event was logged 2024-02-22 00:00:11
offset timedelta NO The local offset of the event time from GMT +6:00:00
instance sequence index Int YES Counter of events in the game instance, for multiplayer games that use

instancing, starting from 0. A row with index = i is the (i+1)-th event on
the game instance

78

session sequence index Int NO Counter of events in the session,starting from 0. A row with index = i is
the (i+1)-th event of the session

13

event name String,
32

NO The type of event logged start game

event source String,32 NO GAME if the event was logged directly from the game, or the name of
the event detector module that generated the event.

GAME

source hash String,
32

YES A hash string indicating the precise revision or version of the source that
generated the event

a63eb9

event data JSON NO Data specific to an event type, encoded as a JSON-formatted string {
"continue":TRUE,
"language":"ENG"

}
game state JSON YES Metadata about the state of the game when the event occurred {

"score" : 72,
"level" : 5

}
player metadata JSON YES Metadata specific to a player ID {

"join_date" :
1/1/2022

}
game version String,

32
NO The version of the game from which the event

came. Convention is a semantic versioning-style string:
[Major].[Minor].[Patch]-[Branch]

1.2.1-no narrative

game log version Int NO The version of the logging code for the game from which the event came.
Format is a single, strictly-increasing number.

7

of the individual players. For non-multiplayer games, this
element may be left null. Similarly, user ID is optional, used
by games that implement some form of player identification
for repeat plays. Other games may leave this item null and
use only the session ID.

2) Sequencing: The sequencing elements include a UTC-
formatted timestamp and timezone offset, as well as an in-
stance sequence index and session sequence index that indicate
a strict ordering of events within a given game instance and
session, respectively. These indices help avoid any potential
issues with timestamp precision on older storage systems that
may lead to ambiguous event sequencing. Note, while we
specify the timestamp and offset as datetime and timedelta
data types, respectively, appropriately formatted strings may
be used for systems that do not implement equivalent data
types.

3) User Metadata: This category consists of a single,
JSON-formatted object tracking information about an individ-
ual user. Games that do not implement a user identification
scheme may leave this element null. The specific members
of the JSON-formatted object are left to the implementer, but

all events from games sharing a common user identity system
should also share a common set of elements in this object.

4) Game State: This consists of a single, JSON-formatted
object to track the state of a given game at the instant an
event occurred. As with user metadata, the specific members
of the JSON-formatted object are left to the implementer.
However, all events within a single game should use the
same set of elements. Game state is optional, and may be left
null; the recommended best practice is to include elements of
game state that are generally useful in contextualizing player
behaviors in later analysis, such as current level or player total
score.

5) Event Data: This consists of a name of the specific event
type, an event source, and a JSON-formatted object for the
specific details of the event that occurred. Again, the specific
elements of the JSON object are left to the implementer.
Unlike the other JSON objects, the event data object will
contain a different set of elements for each unique type of
event. Where game state records some contextual state data at
the moment the event occurred, the event data JSON object
records information about changes in state as a result of the
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event. For example, an event for completing a puzzle would
record the score immediately before the puzzle was completed
in the game state, and the new score as a result of finishing
the puzzle in the event data.

6) Versioning: These elements are used to independently
track the game experience, event logging set, and code revision
that collectively led to the generation of an event. The app
version refers to the version of the game experience itself.
This should be specified with a semantic versioning scheme
[20]; we relax the usage of the pre-release version to allow
any branch name. For example, a game may have an official
release that logs the app version as 1.0.0-main, as well as a
temporary release with an edited script for a research study,
whose version is 1.0.0-newscript. This allows experimental
versions of a game to be used without needing to fit into the
sequential progression of the games development.

The “log version,” on the other hand, is a single, strictly-
increasing integer value that reflects the version of the game’s
event specification. Note that because logging code exists only
to record the occurrences within a game, it is assumed that
there are no branching versions, only an increasing set of
possible events. The log version should be increased any time
new changes to the logging code are deployed, and must
be increased when the internal structure of any events data
elements are changed.

Finally, the “source version” is a precise identifier of the
version of the event source that generated the event. Generally,
this should be a revision hash from a version control system.
The source hash must be unique for the given source. Then
the combination of game id and source hash gives a unique
identifier for the source of a game-generated event, and
event source + source hash provides a unique identifier for
detector-generated events.

B. Events File Format
For distribution of full datasets, a tab-delimited file should

be used. Character-delimited files are unparalleled in their
compatibility with existing data tools. Nearly every package
for data analysis is capable of reading comma-delimited files,
and typically this capability spreads to other character de-
limiters. Our standard uses tab-delimitation in order to allow
for the usage of comma-delimited JSON data elements. This
is a conscious compromise between flexibility across games,
consistency between games, and compatibility with analysis
tools. Each element of the event data structure, then, is a
column of the tabular TSV file. Any complex data types, such
as timestamp and JSON elements, should be rendered into an
appropriately formatted string. Event files containing only the
original game-logged events should be named with a suffix
of _raw-events, and event files containing both game and
generated events should be given a suffix of _all-events.
Additionally, every TSV dataset file should be accompanied
by a README.md and a META.json file.

The README.md file is intended as human-readable doc-
umentation of the dataset contained in the TSV. It should
include license information, a suggested dataset citation,

TABLE II
ELEMENTS OF A META.JSON FILE

Key Description
dataset id An identifier for the dataset.
dataset type ”Event”, ”Player”, or ”Population”, indicating

whether the dataset contains event, player feature,
or population feature data.

game id The name of the game whose data is included in
the dataset.

instance count The number of unique instance IDs in the dataset.
player count The number of unique player IDs in the dataset.
session count The number of unique session IDs in the dataset.
start date The date of the earliest event or session in the

dataset.
end date The date of the latest event or session in the

dataset.
event collections A list of event collection standards implemented

by the game whose data is included in the dataset,
if the dataset contains event data.

and some information about the dataset itself, as well as
documentation of the game state data and event types for
the game whose data is stored in the file. We recom-
mend a Creative Commons CCO 1.0 Universal license, (see
https://creativecommons.org/publicdomain/zero/1.0/). Dataset
citations can be generated through the citation file format tool
[21] The dataset metadata should include the version of the
event data standard to which the data conforms, the name and
URL of the game whose data is contained in the file, the name
and URL of the games developer. Finally, the exact format of
the game state and event type information is left to the user,
but must include a name, data type, and description of each
element of the game state object, and a name, description, and
listing of elements in the event data column for each event
type. These elements, in turn, must be given a name, data
type, and description.

The META.json is machine-readable documentation that a
compatible tool can read to determine its compatibility with
the dataset. Table II describes the elements that must be
included in the META file.

C. Feature Data Standard

Like our Event Data Standard, the Feature standard contains
elements in several categories. In this case, the categories are
identifiers, feature data, and versioning.

1) Identifiers: These are largely the same as in the case
of event data. Game, instance, player, and session identifiers
carry the same meaning as the corresponding identifiers in
event data. The feature standard introduces a ”unit” ID as well,
which indicates a unit of gameplay for which the feature was
calculated. For example, a unit ID of ”lvl01” would indicate
the feature was calculated for level 01 of the given game.

In addition, we allow any of the identifiers to hold a special
value of ”*”, which indicates the feature was calculated by
aggregating across all identifiers of that type. Thus, a feature
with session ID and unit ID set to ”*” would indicate the
feature value was calculated for the identified player, across
all gameplay sessions and units of play.
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TABLE III
STANDARD PROPERTIES FOR FEATURE DATA

Property Data
Type

Allow
NULL

Description Example

game id String, 32 NO A string identifying which game from which the event came. MY GAME
population id String, 32 YES For higher-order features calculated at a population level of granularity, and ID

for the group of players or sessions making up the population. By default, this
is just “dataset,” i.e. the population made up of all data in the given set.

version 8

instance id String, 32 YES For multiplayer games, an ID for the instance of the game that generated the
event, or * if aggregated across instances.

48272075

player id String, 32 YES A custom, per-player ID that may be re-used across game sessions, or * if
aggregated across players.

BlueWhale

session id String, 32 NO Unique identifier for the gameplay session, or * if aggregated across sessions. 24020195392739482
unit id String, 32 YES An identifier of an in-game unit of interaction, such as a level or a questionnaire;

* if aggregated across gameplay units.
lvl1

feature name String, 32 NO The name of the feature. AverageScore

feature value Int | Float
| String |
JSON

NO The value of the feature, across all data in the dataset for the specified instance,
user, session, and unit IDs. Feature values may be a single number, a string, or
a complex JSON object.

100

feature source String, 32 NO The name of the feature extraction module that generated the feature ScoringModule
source hash String, 32 NO A precise identifier of the version of the feature extractor module that generated

the feature value. Generally, this should be a revision hash from a version control
system. The source hash must be unique for the given feature extractor.

a63eb9

feature dependencies List
[Tuple
[str, str]]

YES A compound JSON-style object, which contains a list of pairs. Each pair is the
name of an event detector or feature extractor whose outputs are accepted as input
by the given feature, and the source hash of that module.

2) Feature Data: This category includes the name and
value of the feature, as well as information on the “source” of
the feature. The feature source is equivalent to event source,
with the only exception being that “GAME” is no longer
a valid source. We recommend but do not require the fea-
ture name match the feature source; this allows the flexibility
for a single source module to calculate multiple features.

3) Versioning: Because features may use outputs from
event detectors as well as (in the case of 2nd- and higher-order
features) feature extractors in order to calculate the feature
value, versioning is a somewhat property to track. For feature
data, we include a source hash, which is equivalent to the
source hash for detector-generated event data. We also require
a feature dependencies property, which is a JSON-formatted
list of pairs. Each pair indicates a detector or feature module
that generates input for the given feature, and the source hash
of the module. In this way, the full chain of data-generating
modules leading to a given feature value can be traced.

D. Feature File Format

As with events files, we define a standard reshaping of
feature data into a form suitable for file-based dataset dis-
tribution. Again, files should be distributed in a tab-delimited
format, reserving comma-delimitation feature properties that
may use JSON formatting for their values. In this case,
however, we do not recommend a direct translation of elements
from the data standard into TSV columns. Instead, feature data
should be provided in one of two kinds of file. Specifically,
these are population and player files. A player file includes
features within player, session, and game units, which collec-
tively describe individual gameplay experiences. Population
files include features across players and sessions. These files

essentially describe the game itself, based on the collective
outcomes of many players. We discuss each in detail below:

1) Player Feature Files: These files include data only for
individual players and sessions. That is, features which do
not have ”*” as the value of both player id and session id.
The first three columns of a feature file should be player id,
session id, and unit id, leaving aside the population and
instance IDs. Then each row of the file will contain data for a
unique combination of those IDs. The remaining columns of
the file should be the unique feature names across the entire
set of feature data, with the corresponding feature values in
those columns. This format is illustrated in table IV.

In this example, we see various levels of analysis for the
BlueWhale user and one record for GreenGiant to illustrate
that this file is for multiple players. In the topmost record, we
output a * for both Session ID and Unit ID, indicating that
these analysis are utilizing all sessions and all units of game
play to derive the player features. In the next two records, only
session contains a * and the Unit ID has a value. This indicates
that the analysis will use all the sessions for the player to
make calculations, but the only features that are reasonable to
report are the individual unit features. In the forth record from
the top, we see that the BlueWhale player also has a session
specified, but still has a * for the Unit ID. This indicates that
the analysis will be considering all the possible game units, but
only for one session for the player. Therefore, only the session
features are populated. Finally, we see a record where Player
ID, Session ID and Unit ID all have values. This describes the
most narrow use of the common aggregation levels, describing
the features of a specific unit of game play within a specific
session of a specific player.
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TABLE IV
STRUCTURE OF A PLAYER FILE

Player ID Session ID Unit ID Player Features Session Features Unit Features
BlueWhale * * values null null
BlueWhale * lvl1 null null values
BlueWhale * lvl2 null null values
BlueWhale 123456 * null values null
BlueWhale 123456 lvl1 null null values
Green Giant 213456 lvl1 null null values

TABLE V
STRUCTURE OF A POPULATION FILE

Population ID Instance ID Unit ID Population Features Instance Features... Unit Features
dataset null * values null null
dataset null lvl1 null null values
dataset null lvl2 null null values

2) Population Feature Files: Population files contain fea-
tures that represent aggregations of play experiences, rather
than aggregations over time series data. That is, they always
contain data only from higher-order features. Thus, instead
of session and player ID columns, a population file uses
the population id and instance id of its features, in addition
to the unit id. Then each row represents data for a unique
combination of population group, game instance (in the case
of multiplayer games), and gameplay unit. Like player files,
the remaining columns are feature names, whose values corre-
spond the feature value matching the combination of feature
name, population ID, instance ID, and unit ID.

As with player files, this format is illustrated in table V.
That example assumes a non-multiplayer game, leaving the
instance ID null. In all other respects, the function is the same
as a player feature file; only the meaning of the data differs.

3) Readme and Meta Files: As with event datasets,
any player or population feature dataset must include a
README.md and META.json file, again providing human-
readable and machine-readable documentation of the data.
The readme file is principally the same, including license
information, a recommended citation, and names and URLs of
the game and game developer. Instead of a version of the game
logging set and descriptions of individual events, however,
the readme should contain a list of all dataset features,
including the name, type, source, source hash, dependencies,
and description of the feature. Thus, the properties of a
feature that are not included directly in the dataset (which
unlikely to be useful for analysis) are instead provided to
analysts via the readme. The meta file, on the other hand,
is nearly identical to the meta for an event dataset. However,
it should not include an event collections key, and instead
should include “units”. This element should be a list of types
of gameplay units, each paired with a count. For example, a
game with 20 levels and 4 questionnaires would list its units
as: [(’lvl’, 20), (’qst’, 4)] or similar.

E. Ontologies
Finally, we introduce standard ontologies, collections of

common sets of events and/or features seen across many games

that enable the use of analysis methods or external tools.
Detectors, feature extractors and external tools may specify
specific game events and features that, if implemented, will
enable use of their tool. Every ontology is optional for any
given game or data pipeline; it is up to implementers to
identify any tools or standard features that are desired for use
with the games data, and to implement the corresponding event
collections. While formal definitions are dynamic and outside
of the scope of this document, examples include:

1) sessions-0.1: - Provides player and population features
to describe active play duration, platforms, and new vs.
continued play.

2) achievements-0.1: - Provides player and population fea-
tures to describe achievement sequences and popularity. En-
ables the use of the progression web tool.

3) challenges-0.1: - Provides player and population fea-
tures to describe how players accept, fail and complete differ-
ent challenges. Used to understand both linear and non-linear
sequences and popularity. Enables the use of the progression
web tool.

4) replay-vr-deterministic-0.1: - Enables the use of the VR
replay tool which constructs videos of gameplay sessions from
log data.

VII. CURRENT OPEN GAME DATA IMPLEMENTATION

We now discuss an implementation of the proposed pipeline
and several of these standards in a series of packages collec-
tively referred to as Open Game Data. Source for all of these
components is available at https://github.com/opengamedata.
First, we provide packages for logging event data from Unity-
and JavaScript-based game applications in accordance with
the format described in the event data standard. The event
output from these packages is directed to an instance of
[opengamedata-logger], which collects events into a short-
term database. We have implemented logging in 21 games
to date that use this system, collectively contributing 2-10
million new events per day to a growing public repository of
gameplay data. We use nightly automations via the GitHub
Actions service to move event data to long-term storage
in a BigQuery database. The feature processing portion of
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the pipeline is implemented in [opengamedata-processor]. We
have created event detectors and feature extractors for 12 of the
21 games, and feature processing uses a monthly automation.
At the beginning of each month, we process all the previous
months data for each game, releasing all event and feature
data to the website [opengamedata-website] instantiated at
https://opengamedata.fielddaylab.wisc.edu.

However, some future work remains. Our [opengamedata-
processor] implementation is not yet compliant with all pro-
posed standards. Specifically, feature data currently uses an
older format that does not align with the feature data format
outlined above. Additionally, we do not yet support the system
feature modules to be paired with event collection standards,
and our implementation of event detectors is not fully com-
pliant with the rules for sequence indexing.

VIII. CONCLUSION

While promising, the use of large scale game data for educa-
tional research is a complex endeavour, requiring significant
existing infrastructure. Through a review of previous efforts
and defining a collection of specific use cases, we propose
a modular data architecture and related data standards that
provide a number of interfaces with a shared infrastructure,
from integrating new games to developing new analysis and
visualization tools. We then demonstrated the feasibility of
the approach through an initial infrastructure that contains a
portfolio of games developed by a number of studios and
collects large amounts of data used by researchers. While
much ongoing effort is required to continue developing these
approaches and standards, this paper creates a foundation
to invite participation from a variety of educational game
designers and researchers.
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