2024 |EEE 34th International Workshop on Machine Learning for Signal Processing (MLSP) | 979-8-3503-7225-0/24/$31.00 ©2024 |EEE | DOI: 10.1109/MLSP58920.2024.10734796

2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22-25, 2024, LONDON, UK

COUNTING TRIANGLES OF GRAPHS VIA MATRIX PARTITIONING

Georgios Kollias', Vassilis Kalantzis', Lior Horesh', Shashanka Ubaru', and Panagiotis A. Traganitis*

fIBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
“Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA

ABSTRACT

Counting the number of triangles is an important task in the com-
putation of several network-related metrics such as transitivity ratio,
link recommendation, near-clique subgraph detection, and clustering
coefficient. This contribution presents a new algorithm based on non-
overlapping subgraph decomposition and matrix partitioning. The
part of the adjacency matrix associated with each submatrix is re-
placed by a low-rank approximation resulting to complexity savings.
The proposed algorithm is also suitable for high-latency architec-
tures as well as graphs whose entries are updated over time. Several
practical and theoretical aspects are discussed while numerical experi-
ments on real-world graphs demonstrate the potential of the proposed
algorithm.

Index Terms— Triangle counting, graph, approximate counting,
domain decomposition

1. INTRODUCTION

Graph triangles are simple yet important motifs [1] that capture the
fundamental notion of transitivity in networks: if a vertex « is con-
nected to a vertex B and 3 to a vertex =, is it also the case that « is
connected to y? Counting triangles of graphs can provide invaluable
information about the structural properties of networks and is an
integral variable in graph analytics metrics such as the ubiquitous
clustering coefficient and the transitivity ratio [2, 3, 4]. In [5] the idea
of associating a common theme to subgraphs in the Web character-
ized by denser clusters of triangles is introduced. Such regions with
high clustering coefficients, or high curvature, have been exploited
to automatically cluster and annotate groups of genes or samples in
the study of networks of co-expressed genes [6]. In [7], the distribu-
tions of clustering coefficients for spam and non-spam Web pages are
found to be statistically different and so they are proposed as a tool
for spam detection. Triangles are abundant in both social and biologi-
cal networks: clustering coefficients in protein interaction networks
can correlate their functional classes with topological properties [8].
Leskovec et al. [9] conduct a microscopic analysis of the edge-by
edge evolution of large online social networks, discover that newly
arriving edges tend to close triangles and faithfully reproduce this be-
havior in their network evolution model. In [10], the role of a user in
online forum discussions is associated with triangle counts of its local
network. Triangles also play a prominent role in topological signal
processing with signals defined over simplices on the graph [11, 12].

Algorithms for exact counting are generally based on one of
three ideas: (i) iterating through vertex triplets, (ii) linear algebra
operations, and (iii) intersecting the adjacency lists of two connected

Emails: gkollias@us.ibm.com, vkal@ibm.com, lhoresh@us.ibm.com,
shashanka.ubaru@ibm.com, traganit@msu.edu
The work of P. Traganitis is supported by NSF grant 2312546.

vertices. For an n-vertex graph with m edges, a practical counting
algorithm traverses all vertices (nodes) and for each pair of neigh-
bors it checks whether they are connected by an edge, incurring a
complexity O(ndfmz) for maximum degree d,,q.. Another option
is to iterate over all m edges, and for each edge u, v acccumulate
the cardinality of the intersection for the adjacency lists of its end-
points [13]. In [14] an algorithm with complexity O (m?/?), based on
rooted spanning trees is presented; similar complexities are attained
in [15], leveraging the notion of graph arboricity. Direct Matrix-
Matrix multiplications yield triangle counts along the diagonal of
A3, with A the graph adjacency matrix, and results in complex-
ity O(n®) where w is the matrix multiplication exponent; in [16]
w < 2.376. A theoretical state-of-the-art algorithm, termed AYZ,

for exact triangle counting which runs in O(mjfrwl) = O(m**),
where w < 2.376 is the matrix multiplication exponent, was ad-
vocated in [17]. Triangle counting implementations ranging from
shared-memory machines to large distributed-memory clusters can
be found in [18, 19, 20, 21, 22, 23, 24].

The computational complexity incurred by exact counting meth-
ods as well as the rise of applications based on streaming models
motivates the need for approximate counting methods. Algorithms
for approximate counting are often driven by the application scenario,
such as the streaming provision or the distribution of edges and the
particular spectral graph properties or processing budget (space/time)
limitations. The work in [25] applies randomized projections for
the numerical estimation of the trace of the third power of the graph
adjacency matrix, using exclusively Matrix-Vector operations. In
[26, 27] leading eigenvalues of the graph adjacency matrix are used
to approximate triangle counts and this idea is further coupled with a
preprocessing stage for uniform edge sampling and sparsification in
[3]. The study of uniform edge sampling as a specialized sparsifica-
tion framework (to which any triangle counting algorithm can then
be plugged into) is developed in depth in [28]. This idea is revisited
in [29] in conjunction with vertex grouping, which was also used in
[17].

Triangle counting has been mapped to multiple programming
environments and platforms, with carefully optimized computational
primitives for maximizing its efficiency. It is a key benchmarking
kernel' with implementations ranging from shared-memory machines
to large distributed-memory clusters [30, 18, 31, 19, 20, 21, 22, 23,
24].

1.1. Contributions

In this paper we undertake a linear algebra viewpoint and propose
an algorithm that leverages matrix partitionings by dividing the adja-
cency matrix into a 2-dimensional (2D) grid of submatrices. Counting
of graph triangles can be then decomposed into a series of matrix trace

"https://graphchallenge.mit.edu/champions

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



computations involving matrix products. Instead of explicitly forming
these matrix products, we rather approximate them via replacing one
or more matrices via a rank-k truncated SVD. This converts sparse
matrix multiplications to products between sparse matrices and dense
vectors, potentially leading to computational cost savings. The main
contributions of this paper are as follows:

* We analyze triangle counting via subgraph decomposition from
a matrix-based perspective. Following this analysis, a novel
approximate counting algorithm that leverages low-rank decom-
position of the subgraph coupling is proposed. The proposed
algorithm naturally lends itself for parallelization in 2D proces-
sor grids since the low-rank approximation of each submatrix can
be performed embararrassingly parallel.

* Updates of the graph (adding/deleting new edges) do not require a
partial spectral factorization update of the entire adjacency matrix.
Instead, only the truncated SVD of the modified submatrices
needs to be updated, e.g., [32], resulting to fast updates of the
number of triangles. The same holds for graph augmentations
(adding new vertices).

2. TRIANGLE COUNTING AND SUBGRAPH
DECOMPOSITION

Consider a graph G := (V, E, A), where V denotes the set of vertices
of the graph, £ := {{z,y} : (z,y) € V x V and = # y} denotes
the set of edges (without loops), and A € RIVI*IVI denotes the so-
called adjacency matrix whose (j, k) entry is equal to one for each
edge {j, k} € F and zero otherwise. For convenience let n = |V|.
We assume that the vertex set V' of the graph G is partitioned into
p € Ninduced subgraphs G;—1,... , with vertex sets {V;}._;, such
that Vi, NV; =0, k # j,and V1 U...UV, =V, i.e., each vertex of
G belongs to one and only one subgraph. Such partitions of a graph
can be either computed via an algebraic partitioner, e.g., METIS [33],
or via performing breadth-first search and assigning each subgraph a
set of roughly n/p contiguously labeled vertices.

Definition 1. The matrix A can be decomposed as

A=D+F,
where
Dy 0 FEi» ... Ey
D2 EL, 0 ... By
D= , F= . .
D, Ef, E3, ... 0

The n; X ny matrix D; denotes the coupling between the n; vertices of
subgraph G;. Similarly, the n; X n; matrix E;; denotes the coupling
between the vertices of subgraphs G; and G;. The («, B) entry of the
matrix E;; is nonzero if and only if vertex a of G; is connected to
vertex B of G;. Similarly, the (o, B) entry of the matrix D is nonzero
if and only if vertex o of G; is connected to vertex 3 of G.

The k-th power A* of the adjacency matrix A counts paths of
length k between vertices, i.e., the (a, 8)-th entry of A” is equal to
the number of paths of length k between vertices o and 3. A graph
triangle is a closed walk that crosses exactly three unique vertices.
The total number of triangles that start/end at vertex ¢ is equal to
the i-th diagonal entry of the matrix A3, and thus the total number
of graph triangles is equal to Tr (A%) /6, where the operator Tr (.)

denotes the matrix trace. The scalar division results from the fact that
the term Tr (As) includes the triangle formed by vertices (o, 8, 7)
three times (each one starting from a separate vertex) and for both
possible directions of each edge.

For each subgraph G;, three types of triangles can be defined
depending on how many triangle vertices are located within its bound-
aries. Since a triangle has three vertices, we will denote by 75 1, T 2,
and 75 3, the number of triangles that have exactly one, two, and three
vertices located in G;. A visualization of these three different types
of triangles is shown in Figure 1.

Fig. 1: Three different types of triangles. For each subgraph, 75 1,
T2, and T; 3 are represented by dashed, dotted, and solid lines,
respectively.

Proposition 2. Let A be written as in Definition 1. Then,
Tr (A%) = Tr (D®) + Tr (F®) + 3Tx (FDF).
Proof. Expanding A% = (D 4 F)? yields
Tr (4%) = Tr (D°) + Tr (F®) + Tr (DFD) + Tr (FD?)
+ Tr (F?D) Tr (D*F) + Tr (FDF) + Tr (DF?).

The proof follows by invoking the cyclic property of the trace op-
erator Tr (DF?) = Tr (F?D) = Tr (FDF) and Tr (D*F) =
Tr (FD?) = Tr (DFD) = 0. 0

Note that Tr (DF D) = 0, since a random walker can cross G;
to G; but can not return back to G; to close the triangle. The matrix
D; couples vertices of subgraph G;, and thus the term Tr (D7)
counts the number of triangles that have all three vertices in G;.
Therefore, the term Tr (D) = Y= Tr (D) is equal to six

i=1,...,p
times the sum of triangles that have all three vertices located in the
same subgraph, i.e., Tr (D*) = 6 Y_?_, T} 1. Similarly, it follows

Tr(FDF)=6%" Tizand Tr (F*) =6YF | T 3.

Definition 3. Let the set N'(i) denote the list of all subgraphs con-
nected to subgraph G; through at least one edge, i.e., N (2) includes
all G; such that F;;1 # 0, where 1 denotes the vector of all ones of
appropriate dimension.

Proposition 4. Let I be expressed as in Definition 1. Then:

Tr (F*) =6 Y  Tr(EyjExEx). (1)
1<j<k
JEN(3)
iEN (k)
KEN(5)

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



Proof. The term Tr (F'*) counts the number of triangles that have
no more than one vertex per subgraph. Thus, for any three subgraphs
Gi, Gj, and Gy, that are pairwise connected, we need to compute the
number of walks of length three that cross all three subgraphs and
start/end at the same subgraph. Starting from a vertex in G;, ¢ < j <
k, a walker needs to pass to G; (multiplication by Fj;;), then pass
to G, (multiplication by Fj, = Eij)’ and finally pass back to G; to
close the triangle (multiplication by Ey; = E). Starting from G; or
Gy, yields the same result, i.e.,

Tr (EijEjkEr) = Tr (Eji Eix Exj) = Tr (Ey; EjiEi) -
The second part of the proof consists of a simple verification. O

Proposition 5. Let matrices D and F be expressed as in Definition
1. Then,

p
Tr (FDF)=2Tr [ > Y EyD;E] |. 2)

i=1 i<j
JEN (i)

Proof. The term Tr (F'DF’) counts the number of triangles formed
between exactly two adjacent subgraphs G; and G;. Starting from
a vertex in G;, a walker needs to pass to G; (multiplication by F;;),
connect with another vertex in G; (multiplication by D;), and finally
pass back to G; to close the triangle (multiplication by EzT]) The
multiplication by ‘“2” stems by the constraint ¢ < j since we skip
counting the same triangles starting from G;. O

3. APPROXIMATING THE NUMBER OF TRIANGLES VIA
TRUNCATED SVD

Following the above discussion, computing Tr (A3) requires the
computation of Tr (D?), Tr (F?), and Tr (FDF). Since the ma-
trix D is block-diagonal, the computation of Tr (D?) breaks into p
independent triangle counting problems with the ¢-th problem con-
cerned with the computation of the number of triangles in G, ,, i.e.
Tr (D}). The default option is to compute each Tr (D7) via an ex-
act counting algorithm such as the ones mentioned in Sec. 1. Indeed,
when p is large relative to n one expects n; < n and thus computing
the number of triangles associated with G;,7 = 1,.. ., p, introduces
a relatively small overhead. Alternatively, each term Tr (Df ) can
be approximated using the truncated eigendecomposition of D; by
Tr (UlkAfk UlTk) A i is a diagonal matrix holding the & largest
modulus eigenvalues of D; and U; , denotes the corresponding eigen-
vectors. Since the matrix D; is symmetric, the leading k eigenpairs of
D; can be computed via the Lanczos algorithm [34]. This approach
is known as EigenTriangle [3].

The next task is the computation of the expressions in (1) and (2).
Without loss of generality, let F;; = 17,] kiu kTA/gk denote the rank-
k truncated SVD of the matrix E;;. Then, we can approximate the
number of triangles for which at least one edge connects subgraphs
G; and G; as follows.

PI‘OpOSitiOH 6. Let Eij = ﬁij,kiij,k‘?@g‘tk’ Xijk = Tr (EijEjkEki),
and Xiji, denote the approximation of xiji if Eij is replaced by
its rank-k truncated SVD, where aij’k+1 denotes the largest non-
computed singular value of E;;. Then,

Ixijk — Xijhll2 < Tigymt1l| Eikll2]| Brill2-

Similarly, let v;; = E;;Dj E]T1 and replace E;; by its rank-k trun-
cated SVD. Then,

lvi; — bijllz < Tijea || Eajll2]| Dy l2-
Proof. Replacing E;; by ﬁmki\)”k‘z;k gives:
EijEjrEy = ﬁz;kizyk‘?;?kE]kEkz

The proof concludes by taking norms on both sides and recalling that
IVij.ellz2 = [|Uij,k|l2 = 1. The same idea applies to the approxima-
tion vi; = UsjuSiju Vi s D B O

According to Proposition 6, the approximation of x;;x depends
on how close to & the rank of E;; is. Replacing either E;j or Ej; with
their respective rank-k truncated SVD instead of E;; is equivalent
to relabeling subgraphs G; and G;. In principle, it is not possible to
determine a priori which one of the three matrices should be replaced
by its rank-k truncated SVD; in the proposed algorithm the matrix
that provides the smallest upper error bound is chosen.

Algorithm 1 provides a high-level description of the proposed
framework. The inputs of Algorithm 1 are the number of subgraphs
p and the target rank k. These are assumed user-given; alternatively,
both of these inputs can be set after performing greedy optimization
on random snapshots (with replacement) of the input graph G. The
following theorem bounds the error of using Algorithm 1.

Theorem 7. Let Gij i1 < o € RT foranyi,j=1,...,p, i #j,
and denote by T € N the approximation returned by Algorithm 1.
Moreover, let \g(A) denote the g-th algebraically largest eigenvalue
of A and set Amax = maxg—1,.. n|Ag(A)|. Then, the absolute
approximation error is asymptotically equal to O(pAZ ).

Proof. Following the results of Proposition 6 and recalling that

~max  {[|Eilla, [ Dill2} < [|A]l2, we get
i,j=1,..., p, 1#£]

P
ITe (A%) =7l <p|2>0 > lAlz+6 > (1413

i=1 i<j i<j<k
JEN(4) JEN(4)
i€N (k)
keN (j)
The proof concludes by noticing that || Al|2 = Amax- O
Following Theorem 7, it follows that
I Tx (As) ol - 2 2 3
gy SH| 2L L Awe k8 D Ane | /T (4,
=1 i<j 1<j<k
JEN () JEN (i)
iEN (k)
kEN(5)

which leads to the following Corollary.

Corollary 8. The relative approximation error is asymptotically

)\2
equal to O (,u&) and decreases either as 1 becomes smaller

NS Sy
or >\max < Zi:l >\1

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



bio-SCHT, p=4 Mogqri/MISKi p=4 socfb-Colgate, p=4
= =T = 0.9 T I 09 T = == =
0%fF — e E 08 = = 7 } - 1
0.98 3 08 e
509 E oy 307 ]
g o g ]
5096 s 2 3 ]
o o o 1
< < <06 1
0.95 = 1
0.94 — Algorithm 1(a) s — Algorithm 1(a)[{ o A — Algorithm 1(a)|]|
== Algorithm 1(b) N == Algorithm 1(b)|] -5 . == Algorithm 1(b)||
0.93 i === EigenTriangle 0.2 o | | === EigenTriangle [] [ | | === EigenTriangle
10 15 20 5 10 15 20 5 10 15 20
Index Index Index
bio-SCHT, p=8 Mogri/MISK I p= socfb-Colgate, p=8
- = £ L B B e T T P e
0.99 - 3 gs - Ei 0.85F - = e
0.98 R - 3 06 PR 08F E
’ ¢ CE T 7 T 3 0.75F E
0.97 9 05¢ E 07k 3
50.96 3 5041 o ] £065p =
8 g g 8 o6k E
< < ' < U
0.95 3 03/
3 ] 0.55F 4
0.94 = Algorithm 1(a) === Algorithm 1(a) ] 05F = Algorithm 1(a)
== Algorithm 1(b) = Algorithm 1(b)|] ) == Algorithm 1(b)
0.93 === EigenTriangle 0.2 i === EigenTriangle g === EigenTriangle
L L 0.45 L L
15 20 5 10 15 20 5 10 15 20

Index

Index

Index

Fig. 2: Triangle counting approximation accuracy. Top: p = 4. Bottom: p = 8.

Algorithm 1 Triangle counting

Imput: A € {0,1}"*", peN, keN, =0

Output: estimated number of triangles 7 € N

[Inparallel:] Update 7 =7+ Tr (D}), i=1,...,p

[In parallel:] Compute ﬁij,k, iij,k, ‘Zj,k;, ]

Option (a): Update 7 with the sum of (1) and (2) after replacing
E;; by its rank-k truncated SVD; round up 7 to the nearest
integer

6: Option (b): Update 7 with the sum of (1) after replacing E;;
by its rank-k truncated SVD; update 7 with the exact sum of (2)
round up 7 to the nearest integer

A

Algorithm 1 lists two separate options depending on whether
(2) is computed exactly or approximately via replacing F;; with its
rank-k£ SVD. Indeed, in contrast to (1), the computations in (2) are
embarrassingly parallel across each subgraph and thus the cost of
computing the exact value of (2) can be amortized over p different
processors. In particular, in our experiments we set k£ and p using
greedy optimization of twenty randomly extracted induced subgraphs
of G where each snapshot was an induced subgraph retaining about
5% of the total vertices of G. We note that setting an optimal value
for k is less crucial since it can be adjusted dynamically at no extra
costs (i.e., iterative eigenvalue/SVD solvers can exploit previously
computed rank-k factorizations).

3.1. Low-rank modifications

Algorithm 1 is highly suitable for updating the number of triangles
subject to modifications of the adjacency matrix. Without loss of
generality, assume that a modification of A leads to a modification
only in the entries of F;;. Then, triangle estimates need to be updated
only for those triangles that have edges with endpoints on both G; and
G;. In addition to avoiding the update of the entire partial spectral
factorization of A, the rank-k updated of each modified submatrix
E;; can take place in an embarrassingly parallel fashion. In summary:

1. Update the rank-k truncated SVD of E;; on-the-fly, e.g., [32,
35].

2. Update the triangle estimates in (1) and (2) only for those
indices that involve the submatrix E;;, i.e., triangles that have
edges with endpoints on both G; and G;.

Another important point is that A need not be available since the SVD
update mechanism does not directly involve the adjacency matrix;
only the existing rank-k SVD and the location of the modified entries
of A is needed.

4. NUMERICAL EXPERIMENTS

Experiments are conducted in a Matlab environment using 64-bit
arithmetic on a single core of a computing system equipped with a 2.3
GHz Quad-Core Intel Core 19 processor and 64 GB of system memory.
We consider the performance of Algorithm 1 on three separate graphs
obtained by the Network Repository [36]: a) bio—SCHT, a gene as-
sociation network with n = 2, 084 vertices and m = 63, 027 edges,
b) MISK, an article similarity network with n = 2,427 vertices and
m = 28,511 edges, and d) socfb-Colgate, a Facebook social
network with n = 3,482 vertices and m = 155,043 edges. Note
that the number of non-zero entries in the corresponding adjacency
matrices is twice the number of edges.

Figure 2 plots the relative error accuracy percentage of the ap-
proximation returned by Algorithm 1 for p = {4, 8} versus k =
2,4,...,20. For illustration purposes, we also plot the accuracy
percentage returned by EigenTriangle which approximates the
number of graph triangles via Zle 2. We present the obtained ac-
curacy using both options suggested in Algorithm 1. Naturally, option
“Algorithm 1 (b)” achieves higher accuracy since (2) is computed
exactly rather than approximated via truncated SVD as in option
“Algorithm 1 (a)”. For both options, we observe a decline of the
obtained accuracy for larger p, since there are more computations that
are performed approximately, i.e., the number triangles associated
with Tr(F?) now increases.

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



socfb-Colgate, p=4

-

Accuracy
o
3

o
=)

— T T T T o = = =

T E———

0.5

. === Algorithm 1(a)
:' == Algorithm 1(b)
e === EigenTriangle

5 10 15
Index

_—__d

Moqri/MISKnowledgeMap, p=4

=== Algorithm 1(a)
== Algorithm 1(b)

=== EigenTriangle

5 10 15
Index

bio-SCHT, p=4

n
o

0.99

>
[}
g
30.96
()

<

— T T T e T —"————

FETTTT T -|--|--|--|-|-

== Algorithm 1(a) [
== Algorithm 1(b) |

=== EigenTriangle f}

095F
0.94F &
0.93 PRI R T S SRR RS T
5 10 15
Index

Fig. 3: Triangle counting approximation accuracy for the graph
perturbation scenario. The horizontal axis denotes the dimension of

the low-rank approximation at each time-step.

20

Next, we consider the problem of triangle counting under graph
updates for the graphs bio-SCHT, MISK, and socfb-Colgate.
Our experiment is set up as follows. First, we randomly choose half
of the edges of the graph and remove them. We then run either Algo-
rithm 1 (p = 4)orEigenTriangleusingarank k = 2,4, ..., 20,
and compute the approximate number of triangles of the graph formed
by the remaining graph edges. Finally, we add back the edges re-
moved in the previous phase in batches, with each batch containing

% edges.? Therefore, we have exactly five graph updates. For

each update, instead of computing partial matrix factorizations from
scratch, the rank-% truncated SVD of each E;; is updated on-the-
fly via the algorithm in [35]. Similarly, the spectral factorization
of EigenTriangle is updated via the TRIP algorithm [37]. We
repeat the same experiment for a total of ten times, each time with
a new random set of removed edges. Figure 3 plots the (averaged)
relative error accuracy percentage of the approximation returned by
Algorithm 1 and EigenTriangle after the last (fifth) update. As
expected, both schemes are able to deliver a better triangle counting
update as the dimension & of the respective low-rank approximations
become more accurate. Recall now, that the update of Algorithm
1 involves only the matrices E;; who overlap with modified graph
edges. This is in contrast to TRIP which requires a spectral factoriza-
tion update of all matrix entries. As a result, sparse graph updates
are more likely to favor Algorithm 1 since it becomes more likely
that only a small portion of the submatrices of the matrix F’ will be
updated. As in the previous experiment “Algorithm 1 (a)” is, as ex-
pected, less accurate than “Algorithm 1 (b)” since the latter computes
the quantity in (2) exactly. Finally, both versions of Algorithm 1 are
more accurate than EigenTriangle, although the latter does not
require the use of the partitioning parameter p.

5. CONCLUSION

This paper presented and analysed a domain decomposition algorithm
to approximate the number of triangles in graphs. The first step is to
decompose the triangle counting problem into three separate tasks
where each task is associated with how many triangle vertices reside
within a unique subgraph. Computing the number of triangles involv-
ing exactly one or two vertices per subgraph can be accomplished
independently and in trivial parallelism among each different sub-
graph. The number of triangles with at most one vertex per subgraph
is approximated via low-rank approximation of the coupling matrices.
The proposed algorithm can be efficient for networks with higher
average degree or networks whose edges are modified over time. As
part of our future work we plan to develop a distributed memory
implementation of Algorithm 1 via the Message Passing Interface.

6. REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,
and U. Alon, “Network motifs: simple building blocks of
complex networks,” Science, vol. 298, no. 5594, pp. 824-827,
2002.

[2] M. E. Newman, “The structure and function of complex net-
works,” SIAM review, vol. 45, no. 2, pp. 167-256, 2003.

[3] C. Tsourakakis et al., “Spectral counting of triangles in power-
law networks via element-wise sparsification,” in 2009 Interna-
tional Conference on Advances in Social Network Analysis and
Mining. IEEE, 2009, pp. 66-71.

2The last batch might contain slightly more or less than 1—”[; edges.

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

J. Gu, C. Song, H. Dai, L. Lu, and M. Liu, “Compact esti-
mator for streaming triangle counting,” IEEE Transactions on
Knowledge and Data Engineering, 2024.

J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers
hidden thematic layers in the world wide web,” Proceedings of
the national academy of sciences, vol. 99, no. 9, pp. 5825-5829,
2002.

J. Rougemont and P. Hingamp, “DNA microarray data and
contextual analysis of correlation graphs,” BMC bioinformatics,
vol. 4, no. 1, pp. 15, 2003.

L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient
semi-streaming algorithms for local triangle counting in massive
graphs,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM,
2008, pp. 16-24.

S.-H. Yook, Z. N. Oltvai, and A.-L. Barabasi, “Functional and
topological characterization of protein interaction networks,”
Proteomics, vol. 4, no. 4, pp. 928-942, 2004.

J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, “Mi-
croscopic evolution of social networks,” in Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2008, pp. 462—470.

H. T. Welser, E. Gleave, D. Fisher, and M. Smith, “Visualiz-
ing the signatures of social roles in online discussion groups,”
Journal of social structure, vol. 8, no. 2, pp. 1-32, 2007.

S. Barbarossa and S. Sardellitti, “Topological signal process-
ing over simplicial complexes,” IEEE Transactions on Signal
Processing, vol. 68, pp. 2992-3007, 2020.

M. T. Schaub, Y. Zhu, J.-B. Seby, T. M. Roddenberry, and S.
Segarra, “Signal processing on higher-order networks: Livin’

on the edge... and beyond,” Signal Processing, vol. 187, pp.
108149, 2021.

T. Schank, Algorithmic Aspects of Triangle-Based Network
Analysis, Ph.D. thesis, 2007.

A. Itai and M. Rodeh, “Finding a minimum circuit in a graph,”
SIAM J. Comput., vol. 7, no. 4, pp. 413-423, 1978.

N. Chiba and T. Nishizeki, “Arboricity and subgraph listing
algorithms,” SIAM Journal on computing, vol. 14, no. 1, pp.
210-223, 1985.

D. Coppersmith and S. Winograd, ‘“Matrix multiplication via
arithmetic progressions,” Journal of symbolic computation, vol.
9, no. 3, pp. 251-280, 1990.

N. Alon, R. Yuster, and U. Zwick, “Finding and counting given
length cycles,” Algorithmica, vol. 17, no. 3, pp. 209-223, 1997.

A. Azad, A. Bulug, and J. Gilbert, “Parallel triangle count-
ing and enumeration using matrix algebra,” in 2015 IEEE
International Parallel and Distributed Processing Symposium
Workshop, 2015, pp. 804-811.

T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task,
“Counting triangles in massive graphs with mapreduce,” SIAM
J. Sci. Comp., vol. 36, no. 5, pp. S48-S77, 2014.

T. M. Low et al., “First look: Linear algebra-based triangle
counting without matrix multiplication,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE,
2017, pp. 1-6.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

R. Pearce, “Triangle counting for scale-free graphs at scale in
distributed memory,” in 2017 IEEE High Performance Extreme
Computing Conference (HPEC), 2017, pp. 1-4.

A. S. Tom and G. Karypis, “A 2d parallel triangle counting
algorithm for distributed-memory architectures,” in Proceedings
of the 48th International Conference on Parallel Processing,
New York, NY, USA, 2019, ICPP 2019, pp. 45:1-45:10, ACM.

M. M. Wolf et al., “Fast linear algebra-based triangle counting
with kokkoskernels,” in 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2017, pp. 1-7.

Y. Zhang, H. Jiang, F. Wang, Y. Hua, D. Feng, and X.
Xu, “LiteTE: Lightweight, communication-efficient distributed-
memory triangle enumerating,” IEEE Access, vol. 7, pp. 26294—
26306, 2019.

H. Avron, “Counting triangles in large graphs using randomized
matrix trace estimation,” in Workshop on Large-scale Data
Mining: Theory and Applications, 2010, vol. 10, pp. 10-9.

C. E. Tsourakakis, “Fast counting of triangles in large real
networks without counting: Algorithms and laws,” in 2008
Eighth IEEE International Conference on Data Mining, Dec
2008, pp. 608-617.

C. E. Tsourakakis, “Counting triangles in real-world networks
using projections,” Knowledge and Information Systems, vol.
26, no. 3, pp. 501-520, 2011.

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos,
“Doulion: counting triangles in massive graphs with a coin,” in
Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2009, pp. 837—
846.

M. N. Kolountzakis et al., “Efficient triangle counting in large
graphs via degree-based vertex partitioning,” in Algorithms and
Models for the Web-Graph. 2010, pp. 15-24, Springer Berlin
Heidelberg.

S. Arifuzzaman, M. Khan, and M. Marathe, “Patric: A paral-
lel algorithm for counting triangles in massive networks,” in
Proceedings of the 22nd ACM international conference on Infor-
mation & Knowledge Management. ACM, 2013, pp. 529-538.

J. Cohen, “Graph twiddling in a mapreduce world,” Computing
in Science & Engineering, vol. 11, no. 4, pp. 29, 2009.

V. Kalantzis, G. Kollias, S. Ubaru, A. N. Nikolakopoulos, L.
Horesh, and K. Clarkson, “Projection techniques to update
the truncated svd of evolving matrices with applications,” in
International Conference on Machine Learning. PMLR, 2021,
pp- 5236-5246.

G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
scientific Computing, vol. 20, no. 1, pp. 359-392, 1998.

Y. Saad, Numerical methods for large eigenvalue problems:
revised edition, vol. 66, Siam, 2011.

H. Zha and H. D. Simon, “On updating problems in latent
semantic indexing,” SIAM Journal on Scientific Computing, vol.
21, no. 2, pp. 782-791, 1999.

R. A. Rossi and N. K. Ahmed, “The network data repository

with interactive graph analytics and visualization,” in AAAI,
2015.

C. Chen and H. Tong, “Fast eigen-functions tracking on dy-
namic graphs,” in Proceedings of the 2015 SIAM international
conference on data mining. SIAM, 2015, pp. 559-567.

Authorized licensed use limited to: Michigan State University. Downloaded on May 27,2025 at 17:12:03 UTC from IEEE Xplore. Restrictions apply.



