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ABSTRACT

Counting the number of triangles is an important task in the com-

putation of several network-related metrics such as transitivity ratio,

link recommendation, near-clique subgraph detection, and clustering

coefficient. This contribution presents a new algorithm based on non-

overlapping subgraph decomposition and matrix partitioning. The

part of the adjacency matrix associated with each submatrix is re-

placed by a low-rank approximation resulting to complexity savings.

The proposed algorithm is also suitable for high-latency architec-

tures as well as graphs whose entries are updated over time. Several

practical and theoretical aspects are discussed while numerical experi-

ments on real-world graphs demonstrate the potential of the proposed

algorithm.

Index Terms— Triangle counting, graph, approximate counting,

domain decomposition

1. INTRODUCTION

Graph triangles are simple yet important motifs [1] that capture the

fundamental notion of transitivity in networks: if a vertex α is con-

nected to a vertex β and β to a vertex γ, is it also the case that α is

connected to γ? Counting triangles of graphs can provide invaluable

information about the structural properties of networks and is an

integral variable in graph analytics metrics such as the ubiquitous

clustering coefficient and the transitivity ratio [2, 3, 4]. In [5] the idea

of associating a common theme to subgraphs in the Web character-

ized by denser clusters of triangles is introduced. Such regions with

high clustering coefficients, or high curvature, have been exploited

to automatically cluster and annotate groups of genes or samples in

the study of networks of co-expressed genes [6]. In [7], the distribu-

tions of clustering coefficients for spam and non-spam Web pages are

found to be statistically different and so they are proposed as a tool

for spam detection. Triangles are abundant in both social and biologi-

cal networks: clustering coefficients in protein interaction networks

can correlate their functional classes with topological properties [8].

Leskovec et al. [9] conduct a microscopic analysis of the edge-by

edge evolution of large online social networks, discover that newly

arriving edges tend to close triangles and faithfully reproduce this be-

havior in their network evolution model. In [10], the role of a user in

online forum discussions is associated with triangle counts of its local

network. Triangles also play a prominent role in topological signal

processing with signals defined over simplices on the graph [11, 12].

Algorithms for exact counting are generally based on one of

three ideas: (i) iterating through vertex triplets, (ii) linear algebra

operations, and (iii) intersecting the adjacency lists of two connected
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vertices. For an n-vertex graph with m edges, a practical counting

algorithm traverses all vertices (nodes) and for each pair of neigh-

bors it checks whether they are connected by an edge, incurring a

complexity O(nd2max) for maximum degree dmax. Another option

is to iterate over all m edges, and for each edge u, v acccumulate

the cardinality of the intersection for the adjacency lists of its end-

points [13]. In [14] an algorithm with complexityO(m3/2), based on

rooted spanning trees is presented; similar complexities are attained

in [15], leveraging the notion of graph arboricity. Direct Matrix-

Matrix multiplications yield triangle counts along the diagonal of

A3, with A the graph adjacency matrix, and results in complex-

ity O(nω) where ω is the matrix multiplication exponent; in [16]

ω < 2.376. A theoretical state-of-the-art algorithm, termed AYZ,

for exact triangle counting which runs in O(m
2 ω

ω+1 ) = O(m1.41),
where ω < 2.376 is the matrix multiplication exponent, was ad-

vocated in [17]. Triangle counting implementations ranging from

shared-memory machines to large distributed-memory clusters can

be found in [18, 19, 20, 21, 22, 23, 24].

The computational complexity incurred by exact counting meth-

ods as well as the rise of applications based on streaming models

motivates the need for approximate counting methods. Algorithms

for approximate counting are often driven by the application scenario,

such as the streaming provision or the distribution of edges and the

particular spectral graph properties or processing budget (space/time)

limitations. The work in [25] applies randomized projections for

the numerical estimation of the trace of the third power of the graph

adjacency matrix, using exclusively Matrix-Vector operations. In

[26, 27] leading eigenvalues of the graph adjacency matrix are used

to approximate triangle counts and this idea is further coupled with a

preprocessing stage for uniform edge sampling and sparsification in

[3]. The study of uniform edge sampling as a specialized sparsifica-

tion framework (to which any triangle counting algorithm can then

be plugged into) is developed in depth in [28]. This idea is revisited

in [29] in conjunction with vertex grouping, which was also used in

[17].

Triangle counting has been mapped to multiple programming

environments and platforms, with carefully optimized computational

primitives for maximizing its efficiency. It is a key benchmarking

kernel1 with implementations ranging from shared-memory machines

to large distributed-memory clusters [30, 18, 31, 19, 20, 21, 22, 23,

24].

1.1. Contributions

In this paper we undertake a linear algebra viewpoint and propose

an algorithm that leverages matrix partitionings by dividing the adja-

cency matrix into a 2-dimensional (2D) grid of submatrices. Counting

of graph triangles can be then decomposed into a series of matrix trace

1https://graphchallenge.mit.edu/champions
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computations involving matrix products. Instead of explicitly forming

these matrix products, we rather approximate them via replacing one

or more matrices via a rank-k truncated SVD. This converts sparse

matrix multiplications to products between sparse matrices and dense

vectors, potentially leading to computational cost savings. The main

contributions of this paper are as follows:

• We analyze triangle counting via subgraph decomposition from

a matrix-based perspective. Following this analysis, a novel

approximate counting algorithm that leverages low-rank decom-

position of the subgraph coupling is proposed. The proposed

algorithm naturally lends itself for parallelization in 2D proces-

sor grids since the low-rank approximation of each submatrix can

be performed embararrassingly parallel.

• Updates of the graph (adding/deleting new edges) do not require a

partial spectral factorization update of the entire adjacency matrix.

Instead, only the truncated SVD of the modified submatrices

needs to be updated, e.g., [32], resulting to fast updates of the

number of triangles. The same holds for graph augmentations

(adding new vertices).

2. TRIANGLE COUNTING AND SUBGRAPH

DECOMPOSITION

Consider a graph G := (V,E,A), where V denotes the set of vertices

of the graph, E := {{x, y} : (x, y) ∈ V × V and x ̸= y} denotes

the set of edges (without loops), and A ∈ R
|V |×|V | denotes the so-

called adjacency matrix whose (j, k) entry is equal to one for each

edge {j, k} ∈ E and zero otherwise. For convenience let n = |V |.
We assume that the vertex set V of the graph G is partitioned into

p ∈ N induced subgraphs Gi=1,...,p with vertex sets {Vi}
p
i=1, such

that Vk ∩Vj = 0, k ̸= j, and V1 ∪ . . .∪Vp = V , i.e., each vertex of

G belongs to one and only one subgraph. Such partitions of a graph

can be either computed via an algebraic partitioner, e.g., METIS [33],

or via performing breadth-first search and assigning each subgraph a

set of roughly n/p contiguously labeled vertices.

Definition 1. The matrix A can be decomposed as

A = D + F,

where

D =




D1

D2

. . .

Dp



, F =




0 E12 . . . E1p

ET
12 0 . . . E2p

...
...

...
...

ET
1p ET

2p . . . 0


 .

The ni×ni matrixDi denotes the coupling between the ni vertices of

subgraph Gi. Similarly, the ni × nj matrix Eij denotes the coupling

between the vertices of subgraphs Gi and Gj . The (α, β) entry of the

matrix Eij is nonzero if and only if vertex α of Gi is connected to

vertex β of Gj . Similarly, the (α, β) entry of the matrix Di is nonzero

if and only if vertex α of Gi is connected to vertex β of Gi.

The k-th power Ak of the adjacency matrix A counts paths of

length k between vertices, i.e., the (α, β)-th entry of Ak is equal to

the number of paths of length k between vertices α and β. A graph

triangle is a closed walk that crosses exactly three unique vertices.

The total number of triangles that start/end at vertex i is equal to

the i-th diagonal entry of the matrix A3, and thus the total number

of graph triangles is equal to Tr
(
A3

)
/6, where the operator Tr (.)

denotes the matrix trace. The scalar division results from the fact that

the term Tr
(
A3

)
includes the triangle formed by vertices (α, β, γ)

three times (each one starting from a separate vertex) and for both

possible directions of each edge.

For each subgraph Gi, three types of triangles can be defined

depending on how many triangle vertices are located within its bound-

aries. Since a triangle has three vertices, we will denote by Ti,1, Ti,2,

and Ti,3, the number of triangles that have exactly one, two, and three

vertices located in Gi. A visualization of these three different types

of triangles is shown in Figure 1.

Fig. 1: Three different types of triangles. For each subgraph, Ti,1,

Ti,2, and Ti,3 are represented by dashed, dotted, and solid lines,

respectively.

Proposition 2. Let A be written as in Definition 1. Then,

Tr
(
A3) = Tr

(
D3)+Tr

(
F 3)+ 3Tr (FDF ) .

Proof. Expanding A3 = (D + F )3 yields

Tr
(
A3) = Tr

(
D3)+Tr

(
F 3)+Tr (DFD) +Tr

(
FD2)

+Tr
(
F 2D

)
Tr

(
D2F

)
+Tr (FDF ) +Tr

(
DF 2) .

The proof follows by invoking the cyclic property of the trace op-

erator Tr
(
DF 2

)
= Tr

(
F 2D

)
= Tr (FDF ) and Tr

(
D2F

)
=

Tr
(
FD2

)
= Tr (DFD) = 0.

Note that Tr (DFD) = 0, since a random walker can cross Gi

to Gj but can not return back to Gi to close the triangle. The matrix

Di couples vertices of subgraph Gi, and thus the term Tr
(
D3

i

)

counts the number of triangles that have all three vertices in Gi.

Therefore, the term Tr
(
D3

)
=

∑
i=1,...,p

Tr
(
D3

i

)
is equal to six

times the sum of triangles that have all three vertices located in the

same subgraph, i.e., Tr
(
D3

)
= 6

∑p
i=1 Ti,1. Similarly, it follows

Tr (FDF ) = 6
∑p

i=1 Ti,2 and Tr
(
F 3

)
= 6

∑p
i=1 Ti,3.

Definition 3. Let the set N (i) denote the list of all subgraphs con-

nected to subgraph Gi through at least one edge, i.e., N (i) includes

all Gj such that Eij1 ̸= 0, where 1 denotes the vector of all ones of

appropriate dimension.

Proposition 4. Let F be expressed as in Definition 1. Then:

Tr
(
F 3) = 6

∑

i<j<k
j∈N (i)
i∈N (k)
k∈N (j)

Tr (EijEjkEki) . (1)
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Proof. The term Tr
(
F 3

)
counts the number of triangles that have

no more than one vertex per subgraph. Thus, for any three subgraphs

Gi, Gj , and Gk, that are pairwise connected, we need to compute the

number of walks of length three that cross all three subgraphs and

start/end at the same subgraph. Starting from a vertex in Gi, i < j <
k, a walker needs to pass to Gj (multiplication by Eij), then pass

to Gk (multiplication by Ejk = ET
kj), and finally pass back to Gi to

close the triangle (multiplication by Eki = ET
ik). Starting from Gj or

Gk yields the same result, i.e.,

Tr (EijEjkEki) = Tr (EjiEikEkj) = Tr (EkjEjiEik) .

The second part of the proof consists of a simple verification.

Proposition 5. Let matrices D and F be expressed as in Definition

1. Then,

Tr (FDF ) = 2Tr




p∑

i=1

∑

i<j
j∈N (i)

EijDjE
T
ij


 . (2)

Proof. The term Tr (FDF ) counts the number of triangles formed

between exactly two adjacent subgraphs Gi and Gj . Starting from

a vertex in Gi, a walker needs to pass to Gj (multiplication by Eij),

connect with another vertex in Gj (multiplication by Dj), and finally

pass back to Gi to close the triangle (multiplication by ET
ij). The

multiplication by “2” stems by the constraint i < j since we skip

counting the same triangles starting from Gj .

3. APPROXIMATING THE NUMBER OF TRIANGLES VIA

TRUNCATED SVD

Following the above discussion, computing Tr
(
A3

)
requires the

computation of Tr
(
D3

)
, Tr

(
F 3

)
, and Tr (FDF ). Since the ma-

trix D is block-diagonal, the computation of Tr
(
D3

)
breaks into p

independent triangle counting problems with the i-th problem con-

cerned with the computation of the number of triangles in Gi,, i.e.

Tr
(
D3

i

)
. The default option is to compute each Tr

(
D3

i

)
via an ex-

act counting algorithm such as the ones mentioned in Sec. 1. Indeed,

when p is large relative to n one expects ni j n and thus computing

the number of triangles associated with Gi, i = 1, . . . , p, introduces

a relatively small overhead. Alternatively, each term Tr
(
D3

i

)
can

be approximated using the truncated eigendecomposition of Di by

Tr
(
Ui,kΛ

3
i,kU

T
i,k

)
. Λi,k is a diagonal matrix holding the k largest

modulus eigenvalues ofDi and Ui,k denotes the corresponding eigen-

vectors. Since the matrixDi is symmetric, the leading k eigenpairs of

Di can be computed via the Lanczos algorithm [34]. This approach

is known as EigenTriangle [3].

The next task is the computation of the expressions in (1) and (2).

Without loss of generality, let Eij = Ûij,kΣ̂ij,kV̂
T
ij,k denote the rank-

k truncated SVD of the matrix Eij . Then, we can approximate the

number of triangles for which at least one edge connects subgraphs

Gi and Gj as follows.

Proposition 6. LetEij = Ûij,kΣ̂ij,kV̂
T
ij,k, χijk = Tr (EijEjkEki),

and χ̃ijk denote the approximation of χijk if Eij is replaced by

its rank-k truncated SVD, where σ̂ij,k+1 denotes the largest non-

computed singular value of Eij . Then,

∥χijk − χ̃ijk∥2 f σ̂ij,κ+1∥Ejk∥2∥Eki∥2.

Similarly, let ψij = EijDjE
T
ji and replace Eij by its rank-k trun-

cated SVD. Then,

∥ψij − ψ̃ij∥2 f σ̂ij,κ+1∥Eij∥2∥Dj∥2.

Proof. Replacing Eij by Ûij,kΣ̂ij,kV̂
T
ij,k gives:

EijEjkEki = Ûij,kΣ̂ij,kV̂
T
ij,kEjkEki.

The proof concludes by taking norms on both sides and recalling that

∥V̂ij,k∥2 = ∥Ûij,k∥2 = 1. The same idea applies to the approxima-

tion ψ̃ij = Ûij,kΣ̂ij,kV̂
T
ij,kDjE

T
ij .

According to Proposition 6, the approximation of χijk depends

on how close to k the rank ofEij is. Replacing eitherEik orEjk with

their respective rank-k truncated SVD instead of Eij is equivalent

to relabeling subgraphs Gi and Gj . In principle, it is not possible to

determine a priori which one of the three matrices should be replaced

by its rank-k truncated SVD; in the proposed algorithm the matrix

that provides the smallest upper error bound is chosen.

Algorithm 1 provides a high-level description of the proposed

framework. The inputs of Algorithm 1 are the number of subgraphs

p and the target rank k. These are assumed user-given; alternatively,

both of these inputs can be set after performing greedy optimization

on random snapshots (with replacement) of the input graph G. The

following theorem bounds the error of using Algorithm 1.

Theorem 7. Let σ̂ij,κ+1 f µ ∈ R
+ for any i, j = 1, . . . , p, i ̸= j,

and denote by τ ∈ N the approximation returned by Algorithm 1.

Moreover, let λg(A) denote the g-th algebraically largest eigenvalue

of A and set λmax = maxg=1,...,n |λg(A)|. Then, the absolute

approximation error is asymptotically equal to O(µλ2
max).

Proof. Following the results of Proposition 6 and recalling that

max
i,j=1,...,p, i ̸=j

{∥Eij∥2, ∥Di∥2} f ∥A∥2, we get

∥Tr
(
A3)− τ∥ f µ




2

p∑

i=1

∑

i<j
j∈N (i)

∥A∥22 + 6
∑

i<j<k
j∈N (i)
i∈N (k)
k∈N (j)

∥A∥22




.

The proof concludes by noticing that ∥A∥2 = λmax.

Following Theorem 7, it follows that

∥Tr
(
A3

)
− τ∥

Tr (A3)
f µ




2

p∑

i=1

∑

i<j
j∈N (i)

λ2
max + 6

∑

i<j<k
j∈N (i)
i∈N (k)
k∈N (j)

λ2
max




/Tr
(
A3),

which leads to the following Corollary.

Corollary 8. The relative approximation error is asymptotically

equal toO

(
µ

λ2
max∑n
i=1 λ

3
i

)
and decreases either as µ becomes smaller

or λ2
max j

∑n
i=1 λ

3
i .
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Fig. 2: Triangle counting approximation accuracy. Top: p = 4. Bottom: p = 8.

Algorithm 1 Triangle counting

1: Input: A ∈ {0, 1}n×n, p ∈ N, k ∈ N, τ = 0
2: Output: estimated number of triangles τ ∈ N

3: [In parallel:] Update τ = τ +Tr
(
D3

i

)
, i = 1, . . . , p

4: [In parallel:] Compute Ûij,k, Σ̂ij,k, V̂ij,k, i ̸= j
5: Option (a): Update τ with the sum of (1) and (2) after replacing

Eij by its rank-k truncated SVD; round up τ to the nearest

integer

6: Option (b): Update τ with the sum of (1) after replacing Eij

by its rank-k truncated SVD; update τ with the exact sum of (2)

round up τ to the nearest integer

Algorithm 1 lists two separate options depending on whether

(2) is computed exactly or approximately via replacing Eij with its

rank-k SVD. Indeed, in contrast to (1), the computations in (2) are

embarrassingly parallel across each subgraph and thus the cost of

computing the exact value of (2) can be amortized over p different

processors. In particular, in our experiments we set k and p using

greedy optimization of twenty randomly extracted induced subgraphs

of G where each snapshot was an induced subgraph retaining about

5% of the total vertices of G. We note that setting an optimal value

for k is less crucial since it can be adjusted dynamically at no extra

costs (i.e., iterative eigenvalue/SVD solvers can exploit previously

computed rank-k factorizations).

3.1. Low-rank modifications

Algorithm 1 is highly suitable for updating the number of triangles

subject to modifications of the adjacency matrix. Without loss of

generality, assume that a modification of A leads to a modification

only in the entries ofEij . Then, triangle estimates need to be updated

only for those triangles that have edges with endpoints on both Gi and

Gj . In addition to avoiding the update of the entire partial spectral

factorization of A, the rank-k updated of each modified submatrix

Eij can take place in an embarrassingly parallel fashion. In summary:

1. Update the rank-k truncated SVD of Eij on-the-fly, e.g., [32,

35].

2. Update the triangle estimates in (1) and (2) only for those

indices that involve the submatrix Eij , i.e., triangles that have

edges with endpoints on both Gi and Gj .

Another important point is thatA need not be available since the SVD

update mechanism does not directly involve the adjacency matrix;

only the existing rank-k SVD and the location of the modified entries

of A is needed.

4. NUMERICAL EXPERIMENTS

Experiments are conducted in a Matlab environment using 64-bit

arithmetic on a single core of a computing system equipped with a 2.3

GHz Quad-Core Intel Core i9 processor and 64 GB of system memory.

We consider the performance of Algorithm 1 on three separate graphs

obtained by the Network Repository [36]: a) bio-SCHT, a gene as-

sociation network with n = 2, 084 vertices and m = 63, 027 edges,

b) MISK, an article similarity network with n = 2, 427 vertices and

m = 28, 511 edges, and d) socfb-Colgate, a Facebook social

network with n = 3, 482 vertices and m = 155, 043 edges. Note

that the number of non-zero entries in the corresponding adjacency

matrices is twice the number of edges.

Figure 2 plots the relative error accuracy percentage of the ap-

proximation returned by Algorithm 1 for p = {4, 8} versus k =
2, 4, . . . , 20. For illustration purposes, we also plot the accuracy

percentage returned by EigenTriangle which approximates the

number of graph triangles via
∑k

i=1 λ
3
i . We present the obtained ac-

curacy using both options suggested in Algorithm 1. Naturally, option

“Algorithm 1 (b)” achieves higher accuracy since (2) is computed

exactly rather than approximated via truncated SVD as in option

“Algorithm 1 (a)”. For both options, we observe a decline of the

obtained accuracy for larger p, since there are more computations that

are performed approximately, i.e., the number triangles associated

with Tr(F 3) now increases.
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Fig. 3: Triangle counting approximation accuracy for the graph

perturbation scenario. The horizontal axis denotes the dimension of

the low-rank approximation at each time-step.

Next, we consider the problem of triangle counting under graph

updates for the graphs bio-SCHT, MISK, and socfb-Colgate.

Our experiment is set up as follows. First, we randomly choose half

of the edges of the graph and remove them. We then run either Algo-

rithm 1 (p = 4) or EigenTriangle using a rank k = 2, 4, . . . , 20,

and compute the approximate number of triangles of the graph formed

by the remaining graph edges. Finally, we add back the edges re-

moved in the previous phase in batches, with each batch containing
m

10
edges.2 Therefore, we have exactly five graph updates. For

each update, instead of computing partial matrix factorizations from

scratch, the rank-k truncated SVD of each Eij is updated on-the-

fly via the algorithm in [35]. Similarly, the spectral factorization

of EigenTriangle is updated via the TRIP algorithm [37]. We

repeat the same experiment for a total of ten times, each time with

a new random set of removed edges. Figure 3 plots the (averaged)

relative error accuracy percentage of the approximation returned by

Algorithm 1 and EigenTriangle after the last (fifth) update. As

expected, both schemes are able to deliver a better triangle counting

update as the dimension k of the respective low-rank approximations

become more accurate. Recall now, that the update of Algorithm

1 involves only the matrices Eij who overlap with modified graph

edges. This is in contrast to TRIP which requires a spectral factoriza-

tion update of all matrix entries. As a result, sparse graph updates

are more likely to favor Algorithm 1 since it becomes more likely

that only a small portion of the submatrices of the matrix F will be

updated. As in the previous experiment “Algorithm 1 (a)” is, as ex-

pected, less accurate than “Algorithm 1 (b)” since the latter computes

the quantity in (2) exactly. Finally, both versions of Algorithm 1 are

more accurate than EigenTriangle, although the latter does not

require the use of the partitioning parameter p.

5. CONCLUSION

This paper presented and analysed a domain decomposition algorithm

to approximate the number of triangles in graphs. The first step is to

decompose the triangle counting problem into three separate tasks

where each task is associated with how many triangle vertices reside

within a unique subgraph. Computing the number of triangles involv-

ing exactly one or two vertices per subgraph can be accomplished

independently and in trivial parallelism among each different sub-

graph. The number of triangles with at most one vertex per subgraph

is approximated via low-rank approximation of the coupling matrices.

The proposed algorithm can be efficient for networks with higher

average degree or networks whose edges are modified over time. As

part of our future work we plan to develop a distributed memory

implementation of Algorithm 1 via the Message Passing Interface.
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