
Biochemical Engineering Journal 210 (2024) 109434

Available online 20 July 2024
1369-703X/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

The role of endoplasmic reticulum stress on reducing recombinant protein
production in mammalian cells

R. Chauncey Splichal a,1, Kevin Chen a,1, S. Patrick Walton a,*, Christina Chan a,b,c,d,**

a Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
b Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
c Department of Computer Science and Engineering, Michigan State University, MI, USA
d Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA

A R T I C L E I N F O

Keywords:
Industrial Cell Culture
Protein Production
Secretion
DNA Damage Response
Endoplasmic reticulum stress

A B S T R A C T

Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce
active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture
environment and recombinant protein production can overwhelm the protein synthesis machinery in the
endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells
respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor
proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the
proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests
crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites)
from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome
stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review
focuses on the association between ER stress and processes that affect protein production and secretion. The
processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production,
degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production.
Recombinant protein production can be reduced by ER stress through increased autophagy and protein degra-
dation, reduced protein secretion, and reduced DDR response.

1. Introduction

Biotherapeutics are one of the fastest growing segments of the
pharmaceutical industry. In 2023, the global biotherapeutics market
was valued at $478.20 billion and is expected to grow to $709.91 billion

by 2028 [1]. Since the market release of Humulin (recombinant insulin)
in 1982, biotherapeutic molecules have been developed to treat
numerous conditions, including cancer, heart disease, multiple sclerosis,
anemia, and rheumatoid arthritis [2]. The production of biotherapeutics
is generally more complex and expensive than small molecule drugs,
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often involving recombinant DNA, engineered cell lines, specialized
media components, and complex purification approaches that yield
products sensitive to environmental conditions and transportation
stresses. It is essential, therefore, to continue to investigate improve-
ments to biotherapeutic production processes that increase yield per
unit feed, thereby reducing the production costs of the biotherapeutics.

Biotherapeutics can be divided into distinct classes: blood-derived
products, vaccines, engineered cell therapies, nucleic acids, and re-
combinant proteins, which is the focus of this review. Recombinant
proteins, ranging from insulin to monoclonal antibodies, were the first
biotherapeutics to be approved and continue to dominate the bio-
therapeutics landscape (e.g., there are more than 7000 current clinical
trials for monoclonal antibodies) [3]. Mammalian expression systems
are ideal for production of recombinant protein therapeutics since they
provide proper protein folding, disulfide bond formation, glycosylation,
and other post translational modifications [4], with Chinese hamster
ovary (CHO) cells being the most used host cells due to their similar
post-translational modification machinery to human cells.

Recombinant protein production yield is a function of the number
and specific productivity of the host cells. There are many factors that
affect yield in industrial cultures, e.g., the excessive burden on cells’
protein expression machinery, local nutrient deprivation, mixing
stresses, and high passage numbers. Current industrial attempts to
overcome these problems rely on sequential selection of the highest
yielding cell lines expressing the therapeutic protein - a process that
could be improved or sped up by understanding the mechanisms that
affect productivity of the cell lines [5]. The handling of proteins, their
modification and folding occurs in the endoplasmic reticulum (ER)

which are tightly regulated and determines cell function and survival.
Prior reviews focused on ER stress, and approaches to increase recom-
binant protein yields, including chaperone protein engineering and cell
selection [6–11]. In contrast, this review examined research from cell
biology, bioprocessing, and DNA damage response from cancer studies
to highlight mechanisms that could be monitored to increase recombi-
nant protein production. The impacts of ER stress on protein synthesis
are clear and well-established. However, increasing evidence indicates
that ER stress interplays with genome integrity and damage repair
mechanisms of host cells, which affects cell viability and thereby protein
production. Recombinant protein production generally requires the
product to be secreted into the culture medium to simplify purification.
ER stress can alter this secretory behavior. Maintaining cell health and
specific productivity are essential for achieving long-term productivity
of recombinant proteins through economically feasible processes.
Mounting evidence links ER stress to these essential processes, namely,
regulation of the trafficking of secretory vesicles and genome stability.

2. ER stress and the UPR

Many conditions that involve a dysregulation of proteostasis lead to
the induction of ER stress. Stresses from the environment, e.g., chem-
icals, pathogens, genetic manipulation, oxidative stress, and cytokines,
induce ER stress and alter cellular protein demands. Increasing protein
production in the cells can overwhelm the quality control machinery in
the ER, leading to a buildup of unfolded or misfolded proteins which
induces ER stress [12]. To cope with ER stress the unfolded protein
response (UPR) is activated to restore proteostasis. The UPR is initiated

Fig. 1. : Summary of the Unfolded Protein Response (UPR). The UPR consists of three protein sensors of ER stress: IRE1α, PERK, and ATF6. In response to ER
stress from protein overproduction or stress cues in bioreactors, IRE1α dimerizes and oligomerizes creating an active site for the splicing of XBP1 mRNA which is then
translated into the XBP1s transcription factor. PERK dimerizes to phosphorylate and activate transcription factors eIF2α and ATF4. Activated ATF6 is trafficked to the
Golgi where site-1-protease (S1P) and site-2-protease (S2P) cleaves the ER portion and cytosolic portion of the protein to create the nuclear factor of ATF6. Together
these branches decrease global protein expression, increase chaperone expression, increase proteolysis, and - if ER stress persists – activate apoptosis. ER stress
signaling therefore can alter the number of cells producing recombinant protein and the amount of protein each cell produces.
Created with BioRender.com
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by 3 sensor proteins: Inositol-Requiring transmembrane kinase/endor-
ibonuclease 1α (IRE1α), PRK-like endoplasmic reticulum kinase (PERK),
and Activating Transcription Factor 6 (ATF6). UPR activation (1) de-
creases global protein expression, (2) increases chaperone protein
expression, (3) increases protein degradation and secretion, and, if these
measures do not restore proteostasis, (4) signals apoptosis [11] (Fig. 1).

IRE1α, a ubiquitously expressed serine-threonine kinase, is a type I
transmembrane protein of the ER with an N-terminal luminal domain
(LD) that acts as an ER stress sensor, a C-terminal cytosolic domain (CD)
containing both Ser/Thr kinase and endoribonuclease (RNase) activ-
ities, and a transmembrane domain (TMD) that senses membrane lipid
saturation [13,14]. During ER stress, misfolded proteins bind BH3
interacting-domain death agonist (Bid), releasing IRE1α and allowing
the LD of IRE1α to dimerize/oligomerize and initiate signaling [15].

Dimerization/oligomerization facilitates trans-autophosphorylation
and the activation of the RNase domain [16]. This active form of
IRE1α catalyzes the unconventional processing of the mRNA encoding
X-Box binding protein-1 (XBP1) by splicing a 26-nucleotide intron from
the XBP1 mRNA to generate the coding sequence for an active tran-
scription factor, spliced XBP1 (XBP1s) [17]. XBP1s upregulates genes
involved in enhancing ER protein-folding capacity and degrading
unfolded or misfolded proteins [18]. In addition to catalyzing the
splicing of XBP1, IRE1α induces regulated IRE1-dependent decay
(RIDD), which results in the degradation of RNAs including mRNAs,
microRNAs, and ribosomal RNAs [19,20] with XBP1-like endomotifs
(consensus sequence CNG|CAGN). However, RIDD can also degrade
mRNAs without such motifs through a more promiscuous,
endomotif-independent processing that requires phospho-oligomers
[21]. Through RIDD, IRE1α promotes the degradation of mRNAs
encoding ER-targeted proteins to reduce the protein load in the ER [22,
23].

As with IRE1α, ER stress promotes dimerization of the LD of PERK.
PERK belongs to the eukaryotic translation initiation factor 2α (eIF2α)
kinase subfamily, containing a Ser/Thr kinase domain in the cytosol.
Upon dimerization of the LD, the cytosolic kinase domain undergoes
activation by trans-autophosphorylation [24]. Activated PERK phos-
phorylates eIF2α at Ser 51, and phosphorylated eIF2α impedes global
translation initiation, decreasing the protein expression load in the ER.
However, activated eIF2α also increases the translation of activating
transcription factor 4 (ATF4) [25]. Under prolonged ER stress, ATF4
activates CCAAT/enhancer-binding protein homologous protein
(CHOP), which contributes to the upregulation of apoptotic pathways
[26,27].

ER stress reduces protein expression by phosphorylating eIF2α,
which prevents eIF2ß guanine nucleotide exchange factor from con-
verting eIF2α back into the active form. This prevents recognition of
mRNAs and further translation. Chaperone proteins (e.g., HSP70),
essential proteins (e.g., insulin receptor), and viral RNAs (e.g., picor-
naviral RNAs) avoid decreased expression by using an internal ribosome
entry site (IRES) that is recognized by ribosomes in an eIF2α-indepen-
dent manner [28]. IRESs are currently used in antibody production to
ensure both chains of the antibody are expressed once the mRNA is
recognized at the ribosome [29]. Further use of IRESs to avoid decreased
stress-induced translation is worth considering.

While IRE1α and PERK are type I transmembrane proteins with
single α-helical TMDs and cytosolic kinase domains, ATF6α is a type II
transmembrane transcription factor containing several α-helical TMDs
and a DNA-binding domain with a basic leucine zipper motif [30]. Upon
ER stress, ATF6 localizes to the Golgi apparatus and is further cleaved by
site 1 and 2 proteases (S1P, S2P) allowing translocation of ATF6 to the
nucleus to form the active transcription factor pATF6a [31]. An
important role of ATF6 is to upregulate molecular chaperones and
folding enzymes to increase the protein folding capacity of the ER.
Additionally, if ER stress persists, ATF6 and PERK can work synergisti-
cally to induce CHOP and apoptosis [32].

3. ER stress induced protein degradation

3.1. ER Associated Degradation (ERAD)

ER stress activates ER associated degradation (ERAD) as an addi-
tional mechanism for restoring proteostasis and protein quality control
in the cell. The accumulation of misfolded proteins activates the UPR
and ERAD clears the misfolded proteins through the cytosolic ubiquitin-
proteasomal degradation pathway [33]. Proteins for degradation are
identified, exported from the ER, ubiquitinated, and transported to the
proteasomes for destruction.

ERAD depends on chaperone protein function. Chaperone proteins
(Table 1) were first identified from cellular responses to heat stress.
Therefore, many of the chaperone proteins are named heat shock protein
(HSP) followed by their approximate size in kDa (an alphabet-based
system is replacing these historical names [34]). Given the importance
of chaperone proteins to protein synthesis and production, the field of
“chaperone engineering” was developed to optimize the expression
levels of key chaperone proteins to maximize recombinant protein
production. Previous attempts at chaperone engineering of mammalian
cell factories achieved varying levels of effectiveness. HSPA5 over-
expression in CHO cells has been shown to reduce production of von
Willebrand factor (a blood glycoprotein that promotes platelet adhe-
sion) but did not change production of macrophage colony-stimulating
factor [35], indicating substrate-specific effects. siRNA silencing of
HSPA5 improved secretion of recombinant tissue plasminogen activator
in CHO cells [36]. Thus, chaperone proteins appear to impact produc-
tion rates in a cell/client-specific manner [37]. Investigations into
chaperone engineering at industrial scales remains largely unstudied
because similar results are accomplished by cell line evolution and se-
lection to create high expressing cell lines that tend to have high levels of
stabilizing/refolding chaperones and low levels of degrading or
apoptotic chaperones [38,39]. An individual chaperone protein can
interact with several different substrates and an individual substrate can
interact with many chaperone proteins complicating which chaperone
protein to overexpress to increase the expression of a given recombinant
protein. Recent developments in computer modeling and protein iden-
tification may mitigate these challenges of chaperone engineering. The
ability to predict which chaperone proteins will interact with a given
client may allow for genetic alterations to create a better cell line for
biomanufacturing.

3.2. ER induced autophagy and degradation

In addition to ubiquitin-proteasome degradation, autophagy traffics
material to lysosomes for degradation (Fig. 2). Autophagy-lysosomal
degradation can be divided into three categories: microautophagy,
chaperone-mediated autophagy, and macroautophagy [64]. Micro-
autophagy is the basal level breakdown of bulk materials, such as or-
ganelles and proteins by the lysosome through direct encapsulation
[64]. Chaperone-mediated autophagy (CMA) occurs when chaperone
proteins like Hsc70/HSPA8 recognize the CMA-targeting motif of mis-
folded proteins and translocate the protein to the lysosome for degra-
dation [65]. CMA targets the KFERQ or similar motif and through
careful sequence selection can be avoidable for recombinant proteins
[66] (Dice, Autophagy, 2007). Macroautophagy, commonly known as
autophagy, starts with the formation of a phagophore from
ER-associated components that matures into a new membrane bound
vesicle called an autophagosome [64]. The autophagosome fuses with
lysosomes for degradation of the autophagosome’s contents [64]. In
contrast with proteasomal degradation, autophagy can degrade protein
aggregates, organelles, and insoluble material [64]. For proteins that
can be degraded by either proteasomes or autophagy, the half-life of the
protein dictates the degradation pathway, with longer half-life proteins
being more prone to degradation by autophagy [67].

Chemical and physiological inducers of ER stress can promote
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autophagy, and are context-specific, depending on the intensity and
duration of the stress and the cell type. Autophagy is considered pro-
survival [68]. The n-glycosylation inhibitor tunicamycin has been
shown to upregulate autophagy in LNCaP cells [69], while the
ER-calcium transport inhibitor thapsigargin does not alter autophago-
some creation but does prevent autophagosome degradation in MEFs

[70]. Glucose starvation can either increase or decrease autophagy [71].
The fatty-acid palmitate upregulates autophagy [72]. Activation of the
JNK, AMPK1, MAPK8, ATK1, mTOR, or BECN1 pathways is associated
with increased autophagy [73]. Degradation by autophagy is counter-
balanced with proteasome-mediated degradation, with ER stressors that
downregulate autophagy being associated with upregulation of

Table 1
Chaperone Proteins Potential Impact on Secretion of Recombinant Therapeutic.

Protein
Family

Protein Alternative names Description Potential Role in Protein Production

HSPA [40]
(HSP70)

HSPA1 Hsp72 Binds, stabilizes, and folds newly synthesized proteins
[41].

Resists apoptosis under stress.
Secreted as a cytokine by cancer cells,
may carry proteins with it [42].

HSPA5 [43] BiP, Grp78, Mif−2, HSP70 Under normal conditions, binds, stabilizes, and folds
newly synthesized proteins. Under stress conditions,
regulates protein production and ER calcium levels.

Under stress conditions HSPA5
ubiquitinates misfolded proteins for
degradation

HSPA8 [44] Hsc70, Hsc71, Hsp71, Hsp73 Assists in protein folding with HSPBs. Decreased expression under ER stress
may prevent clathrin coated vesicles
from disassembling

HSPB [45]
(less than
40 kDa)

HSPB1 HSP27, HSP28 Forms large complexes that become phosphorylated
under stress releasing dimers and tetramers to stabilize
misfolded proteins.

Works with HSPAs to refold or tag
proteins for degradation

HSPC [46]
(HSP90)

HSPC1,2,4,5 HSP90AA1, HSPN, LAP2, HSP86, HSPCA,
HSP89, HSP90, HSP90A, HSP90N,
HSPCAL1, HSPCAL4, FLJ31884

Contains ATPase activity and folding domains of DNAJ
and HSPA; proteins that repair DNA damage are
HSPC1 clients

Activation of HSPCs promote cell
survival through apoptosis inhibition

HSPC3 HSP90AB1, HSPC2, HSPCB, D6S182,
HSP90B, FLJ26984, HSP90-Beta

HSPC3 interacts with a non-overlapping set of client
proteins compared with HSPC1

Activation of HSPCs promote cell
survival through apoptosis inhibition

HSPH [45]
HSPH1–4 Acts as a nucleotide exchange factors for HSPAs and

prevents protein aggregation.
Improves HSPA turnover and prevents
aggregation.

DNAJ
DNAJA1-C30
[45]

Assists HSPA in supporting protein folding with
ATPase domain

Under normal conditions, improves
protein folding; when overexpressed,
increases degradation

DNAJB1 Hsp40, Hdj1, jDj−1, HSPF1, Sis1, RSPH16B Increases cell proliferation and reduces p53-linked
apoptosis [47]

Increases cell number

DNAJB4 human liver DnaJ-like protein, HLJ−1, Hlj1,
DjB4, Dnajw

Increases ERAD [48] Increases degradation

DNAJB9 ER-resident protein ERdj4, Mdg1, mDj7 Recruits ERAD proteins, Derlin−1, and BiP [49] Increases degradation
DNAJB12 Dj10,mDj10 Degradation of DNAJB12 allows BOK accumulation

and apoptosis [50]
Increases cell number

DNAJB14 ER-resident EGNR9427, PRO34683,
FLJ14281

Promotes ERAD [51] Increases degradation

DNAJC3 ER-resident protein ERdj6, p58, Prkri,
protein kinase inhibitor p58 (p58IPK)

Promotes ERAD [52] Increases degradation

DNAJC5 cysteine string protein (Csp) alpha Promotes cell proliferation, neurotransmitter release,
and misfolding-associated protein secretion [53]

May increase secretion of proteins
with high cysteine content

DNAJC8 splicing protein spf31, Hspc315, Hspc331 Regulates glycosylation [54] May increase protein production in
glucose-starved cells.

DNAJC9 DnaJ protein SB73, HdjC9 Regulates cell cycle through H3 and H4 binding [55] Inhibits cell proliferation
DNAJC10 ER-resident protein ERdj5,

macrothioredoxin (MTHr), JPD1
Regulates disulfide-bonds and traffics misfolded
proteins to proteasomes [56]

May improve secretion of high sulfide
content proteins. Likely to reduce
secretion in stress states

DNAJC13 DNA J-domain containing protein Rme−8
(RME−8), mKIAA0678, Gm1124

Increases autophagy [57] Increases degradation

DNAJC14 Hdj3, hDj−3, LYST-interacting protein 6
(LIP6), dopamine receptor-interacting
protein of 78 kDa (DRIP78, Drip−78)

Under ER stress, promotes unconventional secretion
[58]

May increase secretion

DNAJC16 ERdj8, mKIAA0962 Controls size of autophagosomes [59] Increases autophagy.
DNAJC21 Dnaja5, GS3, Jjj1 Assists in folding of nuclear ribosomes and 60 S

ribosome maturation [60].
Improves ribosome activity

DNAJC23 ER-resident protein ERdj2, Sec63L, Dnajc23 Accompanies small proteins to secretory vesicles [61]. May increase protein production of
small proteins

DNAJC26
[62]

Cyclin-G-associated kinase (GAK), auxilin−2 Recruits clathrin for endocytosis and assists in clathrin
disassembly.

Increases membrane turnover,
enhancing production

CCT
CCT1–6 Assists in cytoskeleton formation [63]. Protein secretion depends on proper

cytoskeleton formation
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proteasomal degradation [66].
Autophagy-lysosomal degradation is used for eliminating cellular

machinery associated with protein production. The phospholipids that
make autophagosomes originate in the ER. Degradation of ribosomes by
autophagy reduces protein production and secretion [74]. Build-up of
non-soluble protein aggregates induces ER shedding of phagophores for
targeted degradation of bulk ER contents [75]. That said, protein
secretion of inflammasome associated proteins such as IL-1ß can in-
crease under some stress conditions (starvation) [76]; however, it is
unlikely therapeutic recombinant proteins use this atypical,
autophagy-mediated secretion pathway because of the lower overall
secretory flux. Nonetheless, the autophagy inhibitor 3-methyladenine
has been used to improve therapeutic protein secretion in CHO cells
[77,78].

4. The role of the ER in protein secretion

Secretion of recombinant proteins begins in the rough ER (Fig. 3),
where soluble proteins are translated and inserted into the ER lumen. In
the ER, proteins are post-translationally modified, including disulfide
bond formation and glycosylation. Proteins are subsequently trans-
ported in COPII-coated vesicles from the ER to the Golgi apparatus,
which is made up of a series of cis and trans compartments (cisternae).
The trans Golgi network (TGN) is responsible for protein secretion,
where clathrin-coated vesicles bud off the TGN and traffic to the plasma
membrane. Simultaneously, retrograde transport from the Golgi to the
ER is occurring in COPI-coated vesicles. The TGN also transports vesicles
to the early endosome, where the fate of the vesicle contents is deter-
mined by the proteins present on the vesicle membranes (e.g., Rab4,
Rab5, Rab7, or Rab11) [79]. Transport of membrane bound vesicles
requires cytoskeletal rearrangement which under stress is mediated by
HSPBs. While there are additional mechanisms available to the cell for
protein secretion, including: lysosome secretion, transport through
protein transporters, multivesicular body secretion, and membrane

blebbing, the canonical secretion pathway, through the TGN, is the most
common mechanism for protein secretion [80].

4.1. Links between the UPR and secretion machinery

The UPR also directly regulates the secretion machinery. IRE1α
regulates protein secretion through XBP1s. XBP1 overexpression in-
creases the capacity of the ER and secretory machinery and thereby the
secreted proteins [81]. Upregulating XBP1s increased IL-6 and IgM
secretion in CHO-K1 cells expressing the human placental secreted
alkaline phosphatase (SEAP) [82]. Additionally, IRE1α may impact
protein secretion through RIDD, as the mRNA of many secreted proteins,
e.g., secretory µ chains of IgM heavy chains, are RIDD targets [83].
Activated PERK also impacts secretion by interacting with actin-binding
protein Filamin A. Cells without PERK do not form ER-plasma mem-
brane contact sites and have dysregulated F-Actin/G-actin localization
[84]. Proper F-actin mechanics, which depends on its localization, are
required for protein secretion [85]. Impacts of ATF6 on secretion are
poorly studied. ATF6 overexpression reduced the secretion of some
amyloid disease-causing proteins through increased quality control and
degradation [86]. All three branches of the UPRmodulate lipid synthesis
and processes in the ER, altering lipogenesis, lipolysis, triglyceride
synthesis, fatty acid content, cholesterol synthesis, and phospholipid
content [87]. Over expression of sterol regulatory element binding
factor 1 (SREBF1) which activates de novo lipogenesis and fatty acid
synthesis has been used to engineer the lipid composition of CHO cells to
increase productivity at the expense of cell survival [88].

In summary, protein secretion is known to be a limiting factor in
recombinant protein therapeutic production. Current studies have dif-
ficulty resolving the effects of increased degradation and decreased
secretion as both processes are regulated by both the UPR and endo-
membrane systems. In general, ER stress is to be avoided, since it traffics
secretory proteins to degradation pathways, i.e., autophagy and pro-
teasomal, and decreases the overall production of therapeutic proteins.

Fig. 2. : Recombinant proteins exit the secretory pathway for degradation. Proteins can be ubiquitinated, transported across the ER membrane, and trafficked
to proteasomes for degradation (ERAD). Chaperone-mediate autophagy can remove proteins from the secretion pathway be transporting them across the ER
membrane and into autophagosomes. Finally, proteins can be rerouted from the canonical secretion pathway by being encapsulated in vesicles leaving the ER or
Golgi which include ATG proteins that merge with autophagosomes rather than progressing toward the cell membrane for release.
Created with BioRender.com
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However, overexpressing XBP1 to increase secretory machinery size
demonstrates a potential use of UPR-related genes to enhance protein
production. Further studies are needed to determine the regulatory
changes induced by XBP1 on the secretory pathway and chaperone-
mediated protein synthesis that could lead to increased protein secre-
tion for improved production of recombinant therapeutic proteins.

5. Genome instability in production hosts

Maximizing protein product yield requires high specific productivity
in long-term culture. Maintaining CHO cell productivity in long-term
culture has proven to be a major challenge [89–95]. One reason for
declining productivity is reduction in transgene copy number due to
genome instability [96,97]. Genome instability arises from DNA muta-
tions and chromosomal rearrangements, resulting in subpopulations of
CHO cells with lower copy number and reduced expression of the
therapeutic protein [95]. Due to the increased metabolic demand to
express the transgene, subpopulations with lower productivity outgrow
higher productivity populations, resulting in reduced titers [98]. Ap-
proaches that enhance genome stability are important for cellular pro-
ductivity and viability, which are critical for maintaining the yield of
recombinant protein production in long-term culture.

Genome instability, defined as the increase in frequency of genomic
alterations during cell division, was first reported in CHO cells in the
1970s [99] and has been extensively studied in relation to cancer
[100–102]. Genome instability is linked to the inability of cells to
properly perform DNA damage repair induced by double-strand breaks
(DSBs) [103–105]. Accumulation of DNA DSBs compromises genome

stability through chromosomal aberrations. Karyotype variation, which
is a type of genome instability, has been identified in cultured CHO cells
[96,106]. Furthermore, recent studies showed that variations in karyo-
type were related to artificial culture conditions (e.g. elevated oxygen
levels, rapid cell division), which may increase DSBs [106–108].
Different lineages of CHO lines were associated with deficiencies in DNA
repair [109,110]. A recent study showed that methotrexate, used for
gene amplification in CHO cells, induced DSBs and subsequently led to
extensive chromosomal rearrangement [111]. Furthermore, the ability
of CHO cells to repair DSBs was shown to decrease with time (increased
passage numbers), which could contribute to increased chromosomal
instability and losses of productivity [112]. To enhance chromosomal
stability and prevent loss in productivity, it is important to understand
the mechanisms of DNA repair and their support of chromosomal/ge-
nome stability.

Genome instability has been associated with mutation of tumor
suppressor gene p53 [103,113]. p53 is a transcription factor that plays
an important role in cell cycle arrest, DNA repair, and apoptosis
[113–115]. Interestingly, CHO-K1 cells possess a missense mutation at
codon 211 [116]. This missense mutation does not affect CHO-K1 cells’
ability to repair DNA damage induced by UV irradiation. However, a
target of p53, p21, is not activated in CHO-K1 cells, which affects the
cell’s ability to induce G1 arrest [117,118]. Inability to induce G1 arrest
could explain the increase in genome instability/chromosomal rear-
rangement as unrepaired DNA damage is propagated to the daughter
cells. The p53 protein, known to be mutated in CHO-K1 cells [118,119],
could explain, in part, the intrinsic genome instability of CHO cells.
Thus, the intrinsic genome instability of CHO cells may be a result of

Fig. 3. : ER stress interrupts endomembrane homeostasis and secretion. The ER is intrinsically linked to the cell membrane, Golgi, lysosome, and other vesicles
through control of shared membrane components. Beginning at the cell membrane, endosomes are trafficked to the early/sorting endosome. From the sorting
endosomes, endosomal vesicles can be recycled or trafficked to the ER, Golgi, or lysosome. COPII coated vesicles transport material from the ER to the Golgi and COPI
coated vesicles transport from the Golgi to the ER. Additional vesicles can leave the ER and Golgi for secretion or degradation in lysosomes. Lysosomal membrane
components can be transported to the cell membrane to re-enter the endomembrane system. ER stress alters endosome recycling, lysosome recycling, ER to Golgi
transport, and lysosome formation processes (red arrows).
Created with BioRender.com
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mutated p53 or reduced capacity to repair DNA DSBs.

5.1. DNA damage repair and mitochondria membrane potential pathways

A recent study found that CHO cell lines expressing difficult-to-
express bispecific molecules generated from mitochondrial membrane
potential (MMP)-enriched host outperformed the parental host [120].
High MMP influences production, while the loss of MMP leads to
mitochondria dysfunction. Increasing evidence suggest that the ER and
mitochondria crosstalk during ER stress [121]. The mitochondrial DNA
(mtDNA) is more affected by DNA damaging agents than nuclear DNA,
and unrepaired mtDNA can accumulate and lead to mitochondrial
dysfunction [122]. Thus, DNA repair in the mammalian cells is impor-
tant for proper mitochondrial function. To maintain genome integrity
and mitochondrial function requires that DNA damage be repaired. DNA
damage and repair pathways can be divided into subtypes depending on
the type of DNA lesion. Table 2 compares the different DNA repair
pathways.

5.1.1. SSB repair
For single-strand breaks (SSBs), the repair pathways are mismatch-

mediated repair (MMR), nucleotide excision repair (NER), and base
excision repair (BER) [113,123,124]. SSBs are considered to be the most
common type of DNA lesion in mammalian cells [125,126]. Accumu-
lation of unrepaired SSBs can contribute to DNA replication stress,
transcriptional stalling, and, subsequently, genomic instability [127,
128]. Excision repair is a major DNA damage response pathway for SSBs.
Its function includes recognition and removal of damaged base-
s/nucleotides from the DNA [129]. The twomain repair pathways under
excision repair are NER and BER. NER recognizes and removes localized,
bulky DNA adducts that occur when DNA is covalently modified by
chemicals, radiation, or mutagens (e.g. UV light or aromatic hydrocar-
bons) [130–133]. BER is used for smaller areas of DNA damage or
apurinic/apyrimidinic sites induced by DNA alkylation (e.g., alkylating
agent temozolomide), deamination (removal of amino group via DNA
glycosylases), or oxidation (via reactive oxygen species (ROS))
[134–136]. DNAmismatch repair corrects base-base mismatches as well
as insertion/deletion errors that occur during DNA replication and
recombination [137–139]. Defects in MMR have been linked to

increased mutation rate as defects in G2/M cell cycle arrest [123,140].
Both are key regulators of genome stability.

5.1.2. DSB repair
For DSB repair, non-homologous end-joining (NHEJ) and homolo-

gous recombination (HR) are activated [124,141,142]. Accumulation of
DSBs can lead to chromosomal aberrations, genome instability, and
apoptosis [105,125]. The two major DSB repair mechanisms are clas-
sical NHEJ (cNHEJ) and HR. cNHEJ is a rapid repair pathway in which
the two-ends of the DNA break can be quickly ligated without strict
sequence requirements [143]. HR, unlike NHEJ, is a multistep process
that requires sequence homology near the break site as well as a refer-
ence template (e.g. sister chromatid) to complete the repair [144–148].
This difference makes HR a higher fidelity DNA repair pathway than
NHEJ. However, due to the requirement of a repair template, HR is
available for DSB repair only during the S and G2 phase of the cell cycle
[149]. It has been suggested that RNA-based repair templates (via RNA:
DNA hybrids/R-loops) are used in HR repair near transcriptionally
active regions of the genome [150,151]. In addition to NHEJ and HR,
other DSB repair pathways such as single-strand annealing (SSA) and
alternative end joining (aEJ) are also available depending on specific
requirements such as sequence homology near the damaged site or the
expression of specific repair factors [141,152–155].

5.2. Connection between genome integrity and ER stress/UPR

Emerging evidence suggests crosstalk between ER stress signaling
and genome integrity [102,156–161]. XBP1-ChIP (chromatin immuno-
precipitation) sequencing in mouse models identified XBP1 could
regulate many DNA damage repair (DDR) repair genes [162]. DNA
damage from the treatment of DNA damaging agent etoposide and
γ-irradiation triggered the activation of c-Abl tyrosine kinase (part of the
DSB repair pathways), which phosphorylates IRE1α [161,163]. Inter-
estingly, Dufey and coworkers found the phosphorylation of IRE1α by
c-Abl in mouse embryonic fibroblasts (MEFs) selectively activate RIDD
to regulate downstream DNA damage signaling and response [161].

Methotrexate, previously used extensively in biomanufacturing
further supports connections between ER stress and genome integrity.
Given its role also in chemotolerance, these studies could provide in-
sights on DNA repair pathways [164,165] and improvements to thera-
peutic protein production. Phosphorylation of IRE1α is elevated in
chemotolerant cells [166]. Inhibiting IRE1α with various small molec-
ular inhibitors (e.g., MKC8866, a salicylaldehyde analog, 4μ8 C,
STF-083010) reduced chemotolerance [167–170] suggesting that acti-
vation of IRE1α signaling may enhance cell viability in the presence of
DNA damage-causing agents like methotrexate. Thus, factors used in
biomanufacturing that induce DNA damage could be mitigated through
modulating IRE1α signaling.

Studies suggest potential roles of PERK in DDR. Knockdown of PERK
increased ROS and oxidative DNA damage in cells [171]. Phosphoryla-
tion of PERK by nuclear factor (erythroid-derived 2)-like 2 (nrf2) tran-
scription factor increased production of glutathione, an antioxidant
[172–178]. Furthermore, knockdown of the
PERK-ATF4-lysosome-associated membrane protein 3 (LAMP3)-arm
was found to increase the radiosensitivity in human breast cancer [179].
Specifically, knockdown of LAMP3 limited DNA damage recognition by
reducing the level of histone H2A.X phosphorylation (γH2A.X), and
possibly diminishing the overall DNA damage repair capacity [179].
H2A.X is a variant of histone H2A. Unlike H2A, it is non-randomly
distributed in the genome but is localized near/at the site of DSBs
[180]. Upon the generation of DSBs, H2A.X is phosphorylated at the
serine-139 position (γH2A.X) and serves as a checkpoint for downstream
repair pathways such as HR and NHEJ [181]. Similar to IRE1α, activa-
tion of PERK signaling promotes DDR pathways, which contributes to
enhancing genome stability and thereby could increase the yield of
protein production in long-term culture.

Table 2
Comparison among different DNA repair pathways.

Type of
DNA
Damage

Repair
Pathway

Repair factors Targets/Mechanism

Single-
strand
break

NER XPC, RAD23,
CETN2, TFIIH

DNA modification by covalent
alteration, bulky DNA adducts
[130–133]

BER DNA glycosylases,
APE1, FEN1

DNA modification by small base
damage or apurinic/
apyrimidinic sites [134–136]

MMR MSH2, MSH3,
MSH6, MLH1,
PSM2

DNA modification by base-base
mismatches, insertions/deletions
[137–139]

Double-
strand
break

NHEJ DNA-PKcs,
XRCC4, LIG4

Available in all stages of cell
cycle, less accurate compared to
HR. Break ends ligatable (no
long-range resection) [143]

aEJ Pol Q, RPA RAD51 defective, long-range
DNA resection at break site,
required microhomology [155]

HR MRN, BRCA1,
RPA, RAD51

Only available in G2/S phase of
cell cycle, less error-prone,
requires homology template
[144–149]

SSA RAD52, XPF,
ERCC1

RAD51 defective, long-range
DNA resection at break site,
required sequence repeats
flanking break site [152–154]
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Similarly, studies indicate that ATF6 also has a pro-survival/DNA
repair role [182–184]. Knockdown of ATF6 increased
irradiation-sensitivity and altered ROS regulation [184]. In addition,
ATF6 knockdown decreased BRCA-1 expression and increased DNA
damage and γH2A.X expression [183]. ATF6 also regulates catalase, an
enzyme known to reduce hydrogen peroxide (a ROS) and oxidative DNA
damage [185]. The role of γH2A.X is contradictory in the literature. One
study suggest that an increase in γH2A.X is directly proportional to the
amount of DNA damage, in contrast, another study indicated that γH2A.
X is directly proportional to DNA damage repair since γH2A.X serves as a
checkpoint for HR and NHEJ [181]. Table 3 lists connections between
the UPR sensor proteins and DDR pathways. Interestingly, different
synthetic pathways have been considered for producing etoposide,
which is a popular chemotherapy drug [186]. However, since etoposide
is very efficient at generating DNA damage, it might significantly affect
the productivity of the cell of choice for biomanufacturing etoposide.
Taken together, these studies suggest UPR sensor proteins contribute to
DNA damage repair, a potential consideration for improving long-term
cell viability and, in turn, protein production.

5.3. Factors contributing to DNA damage in CHO cells in industrial
processes

Environmental and internal factors (e.g., metabolites and hormones)
can affect UPR signaling and as discussed above, the viability and
thereby the productivity of cells in a bioreactor (Table 4). Thus,

understanding how these factors affect genome integrity would provide
insight into improving cell viability and productivity. Accumulation of
metabolic waste products, specifically ammonia and lactate, can lead to
genome instability of CHO cells [190]. “Old” (passage 35) CHO cells
have decreased productivity and reduced DNA damage repair (but not
damage recognition) relative to “young” (passage 21) cells. Specifically,
genes associated with HR (Rad51, XRCC2) were reduced [112].

Environmental factors, such as saturated and unsaturated fatty acids
have different effects on CHO cells. Unsaturated fatty acids suppressed
chemically-induced chromosomal aberrations unlike saturated fatty
acids that shared the same number of carbons [191]. Monosaturated
fatty acid oleate induced autophagy with minimal effects on apoptosis,
while saturated fatty acids inhibited autophagy (which could improve
therapeutic protein secretion [56,57]), generated ROS, and induced
apoptosis [192]. Saturated fatty acid-induced apoptosis was further
enhanced by a loss-of-function of p53 (important for genome integrity)
[193,194]. Thus, fatty acids have multi-faceted effects, both beneficial
and deleterious.

Ammonia stress induced by waste products causes mutations in the
forms of indels and single nucleotide polymorphisms [190]. Many of
these mutations were found in genes regulating DDR, which accelerated
mutations and resulted in the propagation of genome instability and
reduced productivity in culture [190]. Increased hydrodynamic stress
(measured as average energy dissipation rate) decreased productivity
and correlated with increased DNA damage in CHO cells [195].

In summary, many environmental and internal factors can lead to
DNA damage and genome instability. Given that the UPR sensor proteins
play a role on genome stability, more studies are needed to determine
the contexts when the ER stress sensor proteins can be used to mitigate
the effects of these environmental and internal factors that reduce cell
viability and productivity.

6. Summary

Production of the recombinant proteins will continue to grow as an
essential part of the development of biotherapeutics. Two important
cellular processes to consider when optimizing recombinant protein
production are cellular productivity and long-term viability. Both pro-
cesses have been shown to be regulated by ER stress/UPR. Specifically,
UPR can influence the balance between protein secretion and degrada-
tion (affects productivity) as well as DNA damage repair/genome sta-
bility (affects viability and in turn productivity). As such, it is important
to consider how the bioprocess environment induces ER stress on host
cells and how to manage that stress signaling to ensure maximal product

Table 3
Connections between UPR and DNA repair pathways across cell types.

Cell lines ER stress
sensor/
pathway

Source of DNA
damage/
cellular
toxicity

Mechanism
of DDR

Details

Hepatocellular
carcinoma
SKHep1,
Hep3B,
Huh7,
HCCLM3

IRE1-XBP1 Tunicamycin,
XRCC2 siRNA
knockdown

XRCC2/HR XBP1s reduces
XRCC2
transcription/
mitochondrial
DNA repair
[187]

Human
Multiple
Myeloma
SKO−007
(J3)

IRE1-XBP1 PARP and
CHK1
inhibitors
(AZD2461
and UCN−01)

HR/BRCA1 Inhibition of
PARPs and
CHK1 reduces
XBP1s and
increase DNA
damage [188]

MEF, HEK IRE1-RIDD Etoposide Cell cycle
regulation/
chromatin
remodeling

IRE1α-RIDD
signaling
induces cell
cycle arrest
and DNA
repair [161]

Human lung
carcinoma
A549

Unspecified Ionizing
radiation (IR)

RAD51/HR Tunicamycin
used to induce
ER stress
which
suppresses
Rad51 protein
via 26 S
proteasome
[189]

Human breast
MDA-
MB−468 and
T47D

PERK None added,
observed
elevated ROS

DSB repair,
unspecified

PERK
knockdown
correlates with
increased
γH2A.X
without any
genotoxic
agents [171]

Human breast
MDA-
MB−231 and
MCF−7

PERK Ionizing
radiation (IR)

DSB repair,
unspecified

Increases DNA
damage repair
signaling
[179]

Table 4
ER stress induction by metabolites.

Metabolites/others ER stress
sensor

UPR activities Cell line

Glucose IRE1α IRE1α phosphorylation,
XBP1 splicing

Beta cells
[196–198]

Palmitate, oleate IRE1α,
PERK,
ATF6

IRE1α phosphorylation,
PERK, eIF2a, XBP1
splicing

Beta cells
[199]

Palmitate, oleate,
Stearate

IRE1α,
PERK

IRE1α phosphorylation,
PERK, eIF2a, XBP1
splicing

Myeloid cells
[200]

7-ketocholesterol*, 4-
hydroxynonenal*

IRE1α,
PERK,
ATF6

IRE1α phosphorylation,
PERK, eIF2a, XBP1
splicing

Endothelial
cells [201]

Insulin IRE1α IRE1α phosphorylation,
XBP1 splicing

Hepatocytes
[202]

Glucagon/epinephrine IRE1α IRE1α phosphorylation,
no XBP1 splicing

Hepatocytes
[203]

Glucagon/(PA, OA,
SA, LA at equimolar)

IRE1α IRE1α phosphorylation,
XBP1 splicing

Hepatocytes
[204]

IL−4 IRE1α IRE1α phosphorylation,
XBP1 splicing

Macrophage
[205]
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yields.
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