2024 1EEE International Systems Conference (SysCon) | 979-8-3503-5880-3/24/$31.00 ©2024 1IEEE | DOI: 10.1109/SysCon61195.2024.10553519

Two-stage chance-constrained programming for system optimization
under uncertainty

Yu Yang

Abstract—This study focuses on the two-stage stochastic
program (SP) with chance constraints for decision-making in
system optimization under normally-distributed uncertainties.
At stage-I, the integer decision variables are determined such
that the expected objective function is optimized and oper-
ational constraints can be satisfied with high chance. Once
the uncertainty is realized, the optimal stage-II decision is
made accordingly to adjust recourse operations. The intro-
duction of chance constraints in comparison with traditional
SP helps mitigation of system conservativeness because the
worst-scenario less likely occurs and override operations can
be employed to prevent catastrophic outcomes. The resulting
chance-constrained two-stage SP (CC-SP) is solved through the
linear decision-rule in which stage-1I variables are parameter-
ized by uncertainties. Such an optimization problem can be
reformulated as a mixed-integer second-order cone program
that is solved efficiently. Furthermore, the posterior evaluation
together with the Balas cut is integrated with the CC-SP to
improve the solution quality. A refinery optimization problem is
solved through the proposed scheme to verify the computational
efficiency and probabilistic feasibility.

I. INTRODUCTION

The implementation of model-based sequential system
optimization plays a vital role in enhancing the profitability,
safety, and sustainability of chemical, power, and water
plants. However, because of the uncertainties arising from
the raw material supply, operating conditions fluctuation,
or the incomplete system knowledge, deterministic optimal
solutions may not achieve the desired performance or even
become infeasible in practice. Consequently, the optimization
under uncertainties has emerged as an essential research area
for decades [1], [2], [3], [4], [5], [6]. Several comprehensive
reviews have been published by Sahinidis [7] and Gross-
mann [8] to discuss methodologies and applications related
to this field.

This work aims to address uncertainties in the optimal
decision making through the chance-constrained two-stage
stochastic programming (CC-SP). The entire decision pro-
cess is divided into two stages. At stage-1, before uncertain-
ties are realized, the optimization focuses on maximizing
expected profit by taking all possible scenarios into account
and allowing for a few infeasible cases. At stage-1I, once
uncertainties are realized, the recourse operations are un-
dertaken accordingly. This formula is particularly suitable
when sufficient information is available to characterize the
probabilistic properties of uncertain parameters and override
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operations can be made to mitigate undesired outcomes.
The two-stage SP is traditionally solved by the sampling-
based method. Namely, multiple samples are drawn from the
distribution of uncertain parameters to generate a number of
scenarios. Then, the original SP is approximated by a large-
scale deterministic optimization over all generated scenarios.
This scenario-based approximation leads to high computa-
tional demand and usually requires using the Benders [9],
[10] or Lagrangians [11], [12], [13] decomposition to reduce
the computational complexity.

The integration of chance constraints into two-stage SP
further increases computational complexities. Luedtke [15]
proposed a branch-and-cut method to solve CC-SP. Liu et
al. [14] discussed the two-stage decision process with normal
and recovery operations. The probabilistic constraints were
incorporated into this scheme to avoid abusing recovery
operations. Their algorithms introduced a binary variable
and an additional optimization problem for each scenario
to create tighter cutting planes. Even though it reduced
the solving time, how to handle the unseen scenarios was
not addressed in that paper. The author has proposed an
improved strategy to generate cutting planes without the need
of solving additional optimization problems, and thereby
saving more computational time [16].

In summary, conventional scenario-based methods for CC-
SP suffer from two issues. Firstly, the introduction of bi-
nary variables for each sampled scenario significantly esca-
lates computational demands, rendering the algorithm non-
scalable. Secondly, the probabilistic feasibility of the solution
under unseen scenarios cannot be guaranteed. Compared
with the existing scenario-based methods, two innovations
are presented in this paper to solve CC-SP:

(1) We utilize a linear decision-rule [17] to parameterize
stage-1II variables, allowing the conversion of CC-SP into a
mixed-integer nonlinear program (MINLP) that can be solved
to the global optimum within a certain relative gap. More
importantly, the linear decision-rule is sampling-free, making
its solution universally applicable across any possibilities.
In fact, the capability of linear decision-rule in stochastic
programming has been proved in recent literature [18].

(2) The baseline solution from the linear decision-rule can
be improved through the scenario-based posterior evaluation
and the Balas cut [19]. After solving the MINLP, stage-I
variables are fixed whereas stage-II variables are re-solved
for each scenario separately to quantify the solution quality
more accurately. Then, the Balas cut eliminates previously
visited stage-I integer solutions to enable further explorations
of the solution space.
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This paper is organized as follows. The problem formula-
tion is presented in Section 2. The proposed solving methods
including the linear decision-rule, posterior evaluation, and
Balas cut are introduced in Section 3. A refinery optimization
problem with operational uncertainties is solved to demon-
strate the effectiveness of proposed algorithms in Section 4.
In the final Section, the conclusion is drawn.

Notation. Throughout this paper, vectors and matrices
are denoted by boldface letters. Underline and overline of
variables denote their lower and upper bounds, respectively.

II. PROBLEM FORMULATION

The formulation of CC-SP is shown in (P). Both stage-
I variables « and stage-II variables y are optimized to
minimize the expected cost or maximize the expected profit.

min gz +Ee(Q(x,0)) (P)
s.t. ¢ € {0,1} N1I,
where

Q(x,0) = min piy: + py:
Y1,Y2

K
st. Plajz + Z by, i0xy1 + ¢;y2 < gi,
k=1
Vi=1,2,...,M}>1—¢,
K
Az +) By +C'y2 =0
k=1

0 < y1,0 < yo,

where pi, p2, q, a;, A’, by;, B}, ¢;; C' and g; are
known vectors and matrices, respectively. In this formulation,
0 ~ N(u,o?) represents independent normally-distributed
uncertainties, II is a deterministic constraint set of @, and e
is the user specified risk level.

Note that M joint chance constraints are introduced into
the stage-II formula Q(x,8), which enables us to handle
incomplete recourse problem. These chance constraints can
represent the operational condition or product quality specifi-
cation. In addition, the equality constraint is also considered
in the stage-II formula, which usually represents the mass
balance. Stage-II variables y is divided into two sub-vectors:
y1 € RV and yp € RRV2. The coefficients of y; incorporate
uncertain parameters 6, whereas y, coefficients are all
constant.

III. SOLVING METHOD
A. Reformulation
The linear decision-rule is developed to solve (P). Let y»
to be the function of uncertainties:
y2 = HO +w, (1)

where H = [h];hj;...;h}, ] € RV>*K and w € RN
are coefficients to be determined. Note that y; is not
parameterized because its coefficient already has uncertain
parameters. Otherwise, it will lead to the quadratic terms on

uncertain parameters, which cannot be solved in this paper.
Substituting (1) into (P) leads to the following formula:

min  q'z+Eo(pjy: +p3(HO+w))  (CC-SPI)
z,y1, H,w
st. Plajz+ (y1 B +c;H)0 + c;w < g;,
Vi=1,2,...,M}>1-¢ )
K
A'z+> By + C'(HO +w) =0,
k=1
0< hj6+w;,Vj=12.. Ny, (3)
xze€{0,1}NII, 0 <y,
where BY = [b1;,ba,...,bxn,]. Because ys is a linear

function of uncertainty 6, Eq. (3) represents stochastic con-
straints to enforce the lower limit of variables y5. Based
on Boole’s inequality, joint chance constraints in (2) can
be conservatively approximated by decomposing them into
individuals:
min
z,y1,H,w,v,
st. Plalz+ (y1 B} + c]H)0 + c]w < g;}
21—, Vi=1,2,..., M,
K
A'z+) By +C'(HO+w) =0, 4
k=1
P{O<h;0+w;}>1-);,Vji=12...,No,

No M
S+ = 5)
j=1 i=1

xe€{0,1} NI, 0< i,

\ d"z+plys + py(Hp + w) (CC-SP2)

where « and A are introduced decision variables to determine
the risk level of each constraints in (2) and (3). The lower
limit of y, are also converted to individual chance con-
straints. Eq. (5) requires that the summation of all individual
risks to be e. Here (CC-SP2) is a conservative approximation
of (CC-SP1).

The problem (CC-SP2) still cannot be solved by the
deterministic solver directly due to its stochastic nature.
With normally-distributed uncertainties, (CC-SP2) can be
equivalently converted into an MINLP [20]:

min  q'z+piy +ps(Hp +w)

z,y1, H,w,v,\
(CC-SP3)
st. ajz+ (yi B} +c H)p+ c;w+
&' (1—7)y/ (BT + TH)TS(y] BY + ¢TH)
<gVi=1,2,...,M,
Az +Cw=0, (6)
By, + (C'H)., = 0, (7N

—hjp—w; + @7 (1— X)), /hISh; <0,

Vi=1,2,...,Na,
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Ny M
Doy
j=1 i=1

xze€{0,1} NI, 0< i,

where ®~! is the standard inverse cumulative distribution
function (CDF) and X = diag(o?) is the covariance matrix.
Egs. (6) and (7) are derived from (4) such that the con-
stant and stochastic terms are zero, respectively. (C'H). j,
represents k' column of the matrix C’H. In next sub-
sections, we will discuss how to solve (CC-SP3) to the global
optimum.

B. Outer Approximation

The function ®~! should be numerically approximated
because it does not have an analytical form. Here we follow
the outer approximation method developed by Cheng et al.
[21]. A graphical demonstration of outer approximation is
shown in Fig. 1 with I*" cutting plane v > t;e + s;. The

tangent ¢; and interception v; are:
d®—1(1 —¢) -1
= = )
de)  f=ey  S(@7M(1—ea))

S = (13_1(1 - El) —t1€g,

where ¢; is the sampled point in the risk level space and ¢ is
the standard probability distribution function of a normal dis-
tribution. In order to tightly approximate the function ®~*, a
large number of sampling points are recommended. In [24],
an adaptive outer approximation scheme was developed to
reduce the computational complexity while improving the
approximation accuracy.

3.2

v>t|e+sI

sampling point: €=0.01

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

€

Fig. 1. The outer approximation of ®~1.
C. Branch-and-Bound

By replacing ®~! with v, (CC-SP3) becomes a mixed
integer bi-convex problem:

min

q'z+piy: +py(Hp +w)
z,y1,H,w,v,A

(CC-SP4)

st. ajx+ (yi B +cl H)p+ c]w+
vy (WI BT + T H)TS(y] BT + ¢ H)
<giVi=1,2,..., M,
Az +C'w=0,
B]/gyl + (C/H):Jg = 0,

—hjp—w; + oz /AISh; <0,Vj=1,2,...,Ny,
No M

oy =e

j=1 i=1

V) P tl(l 7>‘j)+5l7 Vl, vja

Uny; 2 tl(l _’7/2) =+ s1, vza VZ7
xze€{0,1} NI, 0< y;.

Apart from integer variables, the non-convex terms lie in
vx,\/hISh; and vy, \/(yT Bl + cTH)™S(y B] + cTH).
Let us introduce auxiliary variables to represent the following
bilinear terms, respectively.

Zxj,m = Ux; hjm% Zyiymyn = U’Yihm,m dvum = Uy Y1,m;

where h,, , represents the m*" row, j** column element of

H. y,, is m*" element of ;. The bilinear terms can be
convexified by the McCormick relaxation [22] when their
upper and lower bounds are known:

ZXj,m P> Q)\J hj,m + U)\jﬁj_,m - ijﬁﬁm (8)
Zaym 2 Ox, hgm + Ox, Bjom — O, Bjm ©)
Zx;m S Uy Pjm + O, Pjm — Q,\]ﬁj,m (10
Zx;m < Ox g +on By — O3B (1m)
Zy;mon Z Uy Pmon + Uy Ry — 00 By (12)
Zopmn = U P + U . — Oy B (13)
Zsmin < y%hm n+ v,yﬁmm — y,yﬁm’n (14)
Zy;mon S Uy Pmn, + Uy By — O By (15)
viom Z Uy Yim T UYL= Uy Yy (16)
viym Z Uy Y1m + VU1 — Uy U1m 17
dyiom <V Y1m + V3, T1m — Uy, Y1m (18)
Ayiom S VyY1,m + 039 =00y, (19)

Given these relaxations, a lower bounding problem can be
established:

min  q"z+plys +p3(Hp+w) (LBP)

@,y1, H,w,y A
st. ajz+ (yi B} +cH)p+ c;w+

\(d8 B + ¢ 2, )T5(d! B + ¢1 Z,)

<giVi=1,2,..., M,

Ax+C'w=0,

By, + (C'H). . =0,

—hJT-p,—wj + ,/zLEzA]. <0,¥j=1,2,..., No,
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No M
Z)\j —|—Z%‘, =€,

tl(l_A)J'_Sl) VZ vjv
ti(1— ;) + s, VI, Vi,
q. (8) — (19),
mE{O,l}ﬁH,Ogyl.

1}>\j

>
U% >

(LBP) is a mixed-integer second-order cone program (MI-
SOCP) that can be solved by CPLEX to generate possible
risk level solution ~;" and A if it is feasible. Substituting such
risk level solutions into (CC-SP3), the resulting problem is
still an MI-SOCP, serving as the upper bound (UB) solution.
The relaxation gap of (LBP) is dependent on the distance
between lower and upper bounds. As the variable range
becomes smaller, the relaxation gap can be tightened. To
this end, we continuously branch the variable in h or y; to
lift the solution of (LBP). A conventional way to choose the
branching variable at each iteration is comparing the products
and auxiliary variable in the solution of (LBP):

{i',j',m',n'} = argmax {|z;‘\j’m — v}ijh;,m\,
*

‘Z'yi,m,n - (U::i h:z,n|v ‘diky“m - U;yim‘}

Then, we branch the chosen variable at the current (LBP)
solution value and create two nodes, representing new (LBP),
on the searching-tree. If the solution of that (LBP) is greater
than the existing UB, then such a node can be discarded
without branching. The lower bound solution (LB) is defined
as the lowest value of the (LBP) solution on the searching-
tree. When LB is equal to UB, a global optimum solution is
found. Here we need to remark that finding a true global op-
timum solution, namely, UB = LB can be time-consuming.
To this end, the relative gap, defined as U"BL’BL‘B , is specified
to terminate the global optimization and forward such an
optimal solution for posterior evaluation. Alternatively, the
global optimization can be terminated if all nodes in the
searching tree have been enumerated.

D. Bound Tightening

Branch-and-bound can only reduce the range of one vari-
able at each time whereas the proposed optimization-based
bound tightening (OBBT) scheme updates H and y; bounds
at each iteration. The (OBBT) needs to solve the following
MI-SOCP optimizations for each variable in vector y; and
H:

max or min ¥i,m, OF Ry p (OBBT)

st. ajx+ (y B} +c H)p+ cjw+
\/(d"l;zBlT + CIZWi)TZ(dEiB;F + C?Z’W)
<gVi=1,2,..., M,
A/:I: —+ C//U_} =
By, + (C'H).;, =0,

N27

Ns M
Z/\j+2% =€

tl(l—/\ )+ s, Vi, V9,
ti(1 =)+ s, VI, Vi,

q. (8) —(19),

q'z+piyr +py(Hp +w) <

xze{0,1} NI, 0 <y,

UAJ

Z
U% >

UB, (20)

(OBBT) inherits the formula of (LBP) but changes the
objective function. In addition, (OBBT) introduces constraint
(20) to eliminate the variable range resulting to non-optimal
(greater than the existing UB) solution value. The bound
tightening is critical to the optimization of (CC-SP3) because
the range of H is unknown in prior. A wide interval of
variables in H is assumed initially, which should be further
reduced through the bound tightening. There are 2(Na x K +
N;) MI-SOCP to solve at each iteration for bound tightening.
If the dimensions of H and y; are high, we may relax the
integer constraint to solve a SOCP instead of MI-SOCP for
each variable to yield loose but valid bounds.

E. Posterior Evaluation and Balas Cut

The linear decision-rule offers a conservative solution for
stage-II variables. However, once the stage-I decision is made
and the uncertainty is revealed, the actual performance in
stage-II can be improved through optimization rather than
relying solely on the decision-rule. To this end, we propose
the scenario-based posterior evaluation to further quantify the
quality of each stage-I solution. Namely, when a satisfactory
solution of (CC-SP3) is achieved, the stage-I variables are
fixed and the stage-II variables are optimized according
to the parameters of each sampled scenario. The expected
objective function value can be approximated by the mean
of all sampled objective function value. The probabilistic
feasibility is verified by counting the number of infeasible
scenarios. In order to find a satisfactory solution, this solving
procedure should be repeated. Because stage-I variables
should be integers, the Balas cut can be employed to exclude
the stage-I solution previously visited. The form of Balas cut
is shown in Eq (21).

Sooa— Y m<{riar=1}-1, @D
je{rxr=1} i€{r:xy=0}
where | - | is the cardinality of a set and z* represents

the stage-I solution of (LBP). By integrating the Balas cut
into (LBP) and (OBBT), any (LBP) solutions obtained in
the previous iterations will not be revisited again. We can
thus search for the first, second, and more optima to form
a solution pool. The posterior evaluation will show the true
performance of the stage-I solution pool. The overall solving
procedure of CC-SP is shown in Fig. 2. Here we can pre-
specify the required number of solutions in the pool to
determine when the posterior evaluation algorithm can be
terminated.
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Fig. 2. The Algorithm Scheme.

IV. CASE STUDIES

A petroleum refinery with flowchart shown in Fig. 3 is
optimized under the allowable risk level € = 3%. We want
to determine the amount of crude oil procurement at stage-I
while operational conditions are subject to uncertainty. When
crude oil is processed at stage-II, the flows of each unit can
be adjusted to adapt uncertainties. The resulting two-stage SP
is solved through GAMS 32.2.0 with an optimization solver
CPLEX. The hardware platform is a laptop with i7-7500U
CPU 2.70 GHZ with 8 GB memory.

t 16

RG [ rerinery ——
FUEL —
16 RG] 16
i PGS8
N %G N ome—
GASOLINE
6 ISOMERIZATION 0
[rss] | B RYS
HN £S5
REFORMERf=75 200
8 N
Crude1™3 /
—| U JF
FLORF2
KE
60 e [~
( \RG | DES-GOi DIESEL
V6o %GN__ B | DESULFURIZATION|  pes.cgo| DIESEL ——
; CRACKER == T
—B
— HF
VRi HE
Fig. 3. The Refinery Flowchart.

A. Stage-1

At stage-I, three types of crude oil are purchased with
maximum capacity 1800000 bbl for each crude. The minimal
procurement is 50000 bbl if such crude is selected. The crude
oil yield is shown in Table I. The following constraints for

TABLE I
CRUDE OIL YIELD (%)

RG LG LN HN KE GO VGO VR
Cl 02 091 698 1598 10.03 28.76 26.82 10.32
c2 02 080 610 1206 8.61 24.14 2646  21.63
C3 04 2 851 1532 947 2539 2535 13.56

stage-1 variables are introduced [23]:

9
Z 2j_1$Crudei7j5OOO > 50000-’Epurchasei7
=1
Teruderj < Tpurehase,» Vi € {1,2,3}, Vj € {1,2...,9},

where Zcrde;,; € {0,1} is a binary variable to count
purchase quantity. Tpyrchase, = 1 implies choosing Crude; and
Tpurchase, = 0 means no purchase of that crude. We assume
that one lot may incorporate 5000 bbl. The decision maker
needs to decide how many lots have to be purchased such
that the profit is maximized and all quality specifications
are met. Here we use 9 binary variables to represent the
decimal number and thus the Balas cut can be adopted
to eliminate previously visited stage-I solutions. Liquefied
gas (LG), liquefied naphtha (LN), Gasoline98, Gasoline95,
kerosene (KE), jet fuel, diesel and heavy fuel oil (HF)
are products to be sold in the market. The cost includes
desulfurization and crude oil procurement. Therefore, the
objective function for optimization including stage-I and II
is shown in Eq. (22):

Profit = Revenue of LG, LN, Gasoline98, Gasoline95,
KE, Jet Fuel, Diesel, and HF — Desulfurization cost

— Crude oil procurement cost (22)

B. State-I11

At stage-II, the inflows and outflows of each unit are
determined after the uncertainty realization. The quality
specification of each product, demands, and the capacity
of each unit are shown in Table II. The mass balance and
quality inequalities can be found from [16]. However, three
uncertain parameters are newly introduced into the stage-II
model, including s ~ N(0,0.004%): the remained sulfur
content after defurization; Ocrackerago ~ N(0,0.04%) and
OCracker-Mogas ™~ N (0,0.042) : change of cracker yield in
AGO and Mogas modes, respectively. The equations directly
involving these uncertainty parameters are listed below.
Sulfur in Diesel:

> ypieseLco, Sco, + Y ypEsco, Sco, (2% + 0s)+

YDIESEL,KESKE + YDIESEL DESCGOScGo (2% + 6s)

+ yDIESEL,CGOSCGo < 50ppm (yDIESEL,KE + YDIESEL,DESCGO

+ Z (YDIESEL.GO, + YDIESEL.DESGO, ) + yDIESEL,CGO) .

i
where S denotes the sulfur content in the flow. Here we
assume that the desulphurization unit may remove 98% of
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sulfur on average. However, the catalyst uncertainty 6g may
degrade the desulphurization unit performance and result in
the sulfur constraint violation.

Cat Cracked Gasoline (CN):

YCracker-Mogas, VGO (PCracker—Mogas,CN + 9Cracker—M0gas)

+ YCracker-AGO,VGO (PCracker—AGO,CN + 9Cracker—AGO)

= Y93,CN + Y95,CN; (23)

Light Cycle Oil (CGO):

YCracker-Mogas, VGO (PCracker—Mogas,CGO - 0Cracker—Mogas)

+ yCracker—AGO,VGO(PCraCker—AGO,CGO - eCracker—AGO)

=YDIESEL,CGO T ¥Des,CGO T YHECGO, (24)

where P is the portion of each yield. The cracker may work
on the Mogas and AGO modes with different yields. The CN
and CGO yields may fluctuate under these modes. Because
Ocracker-Mogas aNd Ocracker-aco directly affect the flow of CN
and CGO based on Egs. (23) and (24), they indirectly impact
the qualities of Gasoline98, Gasoline95, and diesel such
that their specification may not fully met if only nominal
parameters are considered in the optimization. All chance
constraints are listed in Table II. Here max means the upper
bound and min means lower bound on that quality.

TABLE I
QUALITY, DEMAND, AND CAPACITY

Constraints Bound  Risk level (%)
Gasoline98 RON (min) 98 0.010
Gasoline95 RON (min) 95 0.010

Gasoline98 Sulfur (max, ppm) 15 0.0125
Gasoline95 Sulfur (max, ppm) 30 0.010
Diesel Sulfur (max, ppm) 50 2.170
HFO Viscosity (max) 30 0.638
Gasoline98 (demand) 15 0.010
Diesel (demand) 100 0.010
Cracker (capacity) 135 0.010
Desulphur (capacity) 130 0.010
Reformer (capacity) 65 0.010
Distillation (capacity) 700 N/A

To reduce the computational burden, we require the unit
capacity and non-negative variable constraints to be satisfied
with 99.99%. The distillation unit operation is determined
at stage-I and thereby not affected by uncertainties. The
remained risk budget should be distributed to totally 8 quality
and demand constraints. In addition, the lowest violation
ratio of each chance constraint is set as 0.01%. By using the
proposed algorithm and setting the relative gap to be 0.1%,
we explore top 8 solutions of (CC-SP4) and use 500 scenar-
ios to evaluate their actual performance at stage-II. The risk
level of each chance constraint is shown in the last column
of Table II. The diesel sulfur is assigned with the largest risk
level (2.17%) among all constraints due to the desulfurization
uncertainty. The resulting scenario-based posterior evaluation
profit, decision-rule derived profit, and crude procurement
are shown in Table III. We can see that all these solutions
have similar profit, which shows the challenge to find the

global optimum. Due to the non-zero relative gap, we find the
best solution at 37¢ iteration. The joint constraints violation
ratio in the posterior evaluation is 1.2%, much lower than
the desired 3%. The profit obtained through the decision-
rule is slightly lower than that of posterior evaluation for
each scenario, which implying the conservativeness of linear
decision-rule. However, the proposed method spends only
673 seconds to obtain all these 8 solutions and avoids solving
the large-scale MILP formula introduced by the scenario tree.

TABLE III
OPTIMIZATION RESULTS

Decision-rule
profit (103$)

Posterior evaluation
profit (103$)

Three crude oil
procurement (ton)

48.311, 241.555, 218.871 110755.7 110035.3
48.311, 240.884, 219.537 110752.5 110032.7
47.640, 241.555, 219.537 110761.4 110038.1
48.982, 241.555, 218.206 110750.0 110032.4
48.982, 240.884, 218.871 110746.9 110029.8
49.653, 241.555, 217.541 110744.3 110029.0
49.653, 240.884, 218.206 110741.2 110026.5
50.324, 241.555, 216.876 110738.6 110026.2

V. CONCLUSION

This paper presents a methodology to solve the two-
stage chance-constrained SP in complex system optimization.
The linear decision-rule is employed to parameterize the
stage-II variable as a function of normally-distributed un-
certainty. The resulting formulation can be transferred into a
lower bounding problem using outer approximation and Mc-
Cormick relaxation techniques. Additionally, an upper bound
problem can be established by fixing the risk level of joint
chance constraints. By iteratively solving the lower and upper
bounding problems, a global optimum of linear decision-
rule can be obtained. Furthermore, scenario-based posterior
evaluation and Balas cut are applied to quantify and improve
the stage-II decisions. The crude oil procurement and plant
operations for a simplified refinery model is optimized to
show the effectiveness of proposed algorithms. In the future
work, more flexible decision-rule can be integrated into this
framework to improve the optimality of the solution.
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