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Abstract
In this note, we address the validity of certain exact results from turbulence the-
ory in the deterministic setting. The main tools, inspired by the work of Duchon
and Robert (2000 Nonlinearity 13 249-55) and Eyink (2003 Nonlinearity 16
137), are a number of energy balance identities for weak solutions of the
incompressible Euler and Navier—Stokes equations. As a consequence, we
show that certain weak solutions of the Euler and Navier—Stokes equations
satisfy deterministic versions of Kolmogorov’s %, %, % laws. We apply these
computations to improve a recent result of Hofmanova et al (2023 arXiv:2304.
14470), which shows that a construction of solutions of forced Navier—Stokes
due to Brue et al (2023 Commun. Pure Appl. Anal.) and exhibiting a form of
anomalous dissipation satisfies asymptotic versions of Kolmogorov’s laws. In
addition, we show that the globally dissipative 3D Euler flows recently con-
structed by Giri et al (2023 arXiv:2305.18509) satisfy the local versions of
Kolmogorov’s laws.
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1. Introduction

The purpose of this note is to determine whether some recent deterministic constructions
of weak solutions to the Euler and Navier—Stokes equations satisfy appropriate versions of
Kolmogorov’s famous %, %, and % laws. There have been a number of results over the past
few decades addressing such questions, which we review below. However, we were unable to
find precise statements in the literature which provided satisfactory answers to our motivating
questions, the first of which is the following: when do weak solutions of the 3D incompressible

Euler equations satisfy the distributional equality

o (MY ¢ (a0 (49 1))

3 . : 2
= lim — . _ _ 2
lim 27 ][Szyj (i (t,x+Ly) — i (1,x)) |u(t,x+ Ly) — u(t,x) | dy? (1.1)
Following Duchon and Robert [15] and Eyink [17], we refer to (1.1) as a ‘deterministic, local
% law.” It is well-known that the left-hand side is equal to the Duchon—Robert distribution [15]

D u] (,x) = lim D [u] (1, x)

—1im = [ 9 () (1 (v +3) — 0 (1.3)) [ (1 +3) — 1 (1,) [ dy,
=04 T3
where ¢y is a mollification kernel at scale £. Concerning (1.1), however, both [15, 17] assert that
it holds assuming the distributional limit of the right-hand side exists as £ — 0. As it turns out,
only the mild assumption u € Li . 1s needed in order to define the Duchon—Robert distribution
for Euler weak solutions, and we shall show in theorem 1.1 that the same assumption suffices to
ensure that (1.1) holds, with similar conclusions in the cases of the % and % laws. The proof of
this fact follows the general strategy of Duchon—Robert/Eyink; our contribution is to remove
the conditionality on the existence of the limit. We do so by adding an intermediate step in
the proof, in which we choose a sequence of mollification kernels {( ~ }>0, With gradients
supported in a neighbourhood of size ¢+ around the sphere SZ‘I of radius ¢, and pass to the
limit v — 0. Upon doing so, we obtain an energy balance for £ > 0 which allows us to pass to
the limit £ — 0 and obtain precisely (1.1). Our interest in this question stems from recent joint
work with Giri and Kwon [20, 21], in which we construct energy-dissipating weak solutions

1

to the 3D Euler equations with D[u] > 0 and u € C?Bg,oo (T?). Conversely, it is easy to check
1

that if an Euler weak solution u & LfB;:;)(Td), then D[u] = 0, and thus u conserves energy.

We refer also to work of Eyink [16], Constantin, E, and Titi [8], Cheskidov et al [7], and De

Rosa and Inversi [11] for different proofs of conservation of energy under various conditions.

The second motivation for this work lies in recent results of Brucet al [3] and
Hofmanovaet al [23]. The former constructs a sequence of Leray weak solutions {u, } to the
1

forced! 3D Navier—Stokes equations, uniformly bounded in L} C; ~, for which

! The smooth forcings f,, depend on v and lose some regularity in the limit z — 0, although they remain bounded in
L,1+C2+; this bound rules out the possibility of anomalous dissipation for the heat equation [3].
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v—0 v—0

1
5:limel,:lim1// |Vu,|* > 0. (1.2)
0 T3

The latter shows that this sequence of solutions satisfies the asymptotic relation

1 t 1 . X .
lim limsup sup / [/ f/ ][gzy’(bt’l,(r7x+fy)—”]u(rax))
=0 0 eeftp,e) o o £ Jr
P

4
X |uy (r,x 4+ £y) — uy, (r,x) |2dydr+ 551, (r)| dt=0, (1.3)

where p € [1,00), {p = v1~, and €,(t) replaces 1 with 7 in (1.2). The inspiration for these
works is Kolmogorov’s famous 1941 phenomenological theory of turbulence [28-30], framed
in the context of weak solutions of the 3D Euler or Navier—Stokes equations

Ou+(u-VYu+Vp=vAu+f
divu=0 1.4

U|=0 = up.

Kolmogorov’s theory assumes a non-vanishing energy dissipation rate € as in (1.2), as well as
homogeneity, isotropy, and self-similarity of velocity increments [19]. Under these assump-
tions, Kolmogorov predicts a scaling relation similar to (1.3), which however should hold for
{e [V%,El]. In other words, the dissipative length scale £p used in [23] is not the one pre-
dicted by Kolmogorov’s theory. Therefore, we revisit this question and prove in corollary 1.6
that in fact (1.3) holds for ¢p = vi~ for the solutions constructed in [3]. More generally, we
show that the choice of dissipative length scale £; can be made using knowledge of the second
order structure function exponent, or in this setting, the number (, such that the sequence u,,
enjoys uniform bounds in L,ZBZ%_ZC>O .- Our proof is a straightforward application of the energy
balance identities we derive in the course of proving theorem 1.1 and is similar in spirit to [23]
(which itself relies on earlier work of Bedrossian, Coti Zelati, Punshon-Smith, and Weber
in the stochastic setting [1] and is essentially an application of the Kolmogorov—Karman—
Howarth/Karman—Howarth—Monin identity). We however make proper use of the uniform

L} Cx%_ regularity of the example from [3] in order to obtain the correct dissipative length
scale. We can similarly treat the versions of (1.3) for the 14—5 and % laws (the former of which
is not mentioned in [1, 23], although it may be treated using the same ideas).

In order to state our main theorems, we first provide a few definitions. We define weak
solutions to (1.4) according to the integral equality

/ [¢i (0,x) uly (x) — &' (T, x) ' (T,x)] dx + / &' (t,x)f (t,x) dedx
Td T4x[0,t]
= _ /11'4 o [(3,¢i ui) (t,x) — (@gbi uiuj) (t,x) — (& qSip) (t,x)+v (aj¢"a,~u") (t,x)] drdx
' (1.5)
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for all ¢' € C> ([0,4] x T¢). If v =0, we only require u € C° ([0,];L*(T¥)), while if v >0,
we additionally require u € L* ([0, t]; ' (T?)). We define the symmetric tensors

M=o, o)=Y T (-7 (1.6
Our first theorem gives three energy balance identities where the dissipation measures are
defined using integrals over spheres, making rigorous the claims regarding these measures
in [15, 17] for the 3-dimensional case; we refer also to Eyink’s notes [18] for the case of
general dimensions d > 2.

Theorem 1.1 (energy balance identities). Let d > 2, t > 0 be given, and let u(t,x) : [0,t] x
T — R? be a weak solution of the d-dimensional Euler or Navier—Stokes equations with u €
L3 ([0,8] x T¢) N C° ([0,4]; L2(T%)); if v#0 we additionally require u € L? ([0,t];H'(T4)).
Assume also that f € L2 ([0,4] x T9) + L' ([0,4]; L*(T“))* and uy € L*(T?). Then the follow-
ing balance laws hold in the sense of distributions:

O (|u*) +0; (ul* +2pid) — 2u'f — v (A (|u]*) — 20 O’ ) = —2D4 [u] , (1.7

where the distributions De[u](t,x) are defined for ¢ = I,L, T by the formulas

2Dy = tim ][Sm/‘ (# (v t9) =00 (40) ) [T ) (o, + ) = u(2,)) P,
(1.8a)
I A [u}—nml][ yf(uf(tx+e)—u/’(tx))|r()(u(tx+e)—u(tx))|2d
dd+2) TFH TS e AT ) JIELI MG ET LY ’ Y
(1.8b)
4(d—1)

Drlu] = 1%% ][S,H)/ (o (5 +-09) =4 (1,20 T (9) 3 o, €9) = 1,3)) .
(1.8¢)

Remark 1.2 (humerology). We note that in the case d = 3, the formulas in (1.8) give local,
deterministic versions of the %, %, and % laws. The discrepancy between the numbers 14—5 and
% in (1.8¢) is due to the fact that Kolmogorov considered only u(z,x 4 £y) — u(t,x), where y
was a particular choice of unit vector perpendicular to y; in 3 dimensions, this constitutes half
of the space perpendicular to y.

Remark 1.3 (dissipation measures and energy flux). It is natural to interpret D[u], or D4 [u],
as the local energy flux of u. The solutions constructed by Giri, et al in [20, 21] then have
local energy flux given by a non-negative L,lvx function (in fact a smooth function). We remark
that in general, the distributional inequality D[u] > 0 ensures that D[u] is actually a locally
finite positive measure, thus justifying the common terminology ‘Duchon—Robert measure.’
The laws in (1.8) apply as well as to any of the constructions of (nearly) Onsager-critical
solutions to 3D Euler due to Isett [24], Buckmaster, De Lellis, Székelyhidi, and Vicol [4], and
the author and Vicol [32], or Giri and Radu [22] for the 2D Euler equations. However, none of
the latter set of examples mentioned above satisfy D[u] > 0, and so D[u] is only a distribution,
but not an Lll, . function or a positive measure. Furthermore, such solutions cannot arise as an

2By this, we mean that there exists a decomposition f=f; +f, where fi EL%([O,t] xT9) and f> €
L'([0,4);L2(T)).
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inviscid limit of suitable solutions to the Navier—Stokes equations, which by definition satisfy
D[u”] = 0. For C* constructions of Euler solutions satisfying D[u] > 0, where « is however
bounded away from the Onsager threshold %, we refer to work of Isett [26] and De Lellis and
Kwon [9].

Remark 1.4 (dissipation measures and intermittency). Incompressible fluids for which the
turbulent region is not space-filling are referred to as ‘intermittent,” contrasting with the K41
prediction of a turbulent region with full measure; indeed Kolmogorov himself addressed
this phenomenon in his 1962 work [31]. Intermittent solutions may then belong to H{ for
some « > % and Cff for some [ < 1. such solutions to 3D Euler were first constructed by
Buckmaster, Masmoudi, the author, and Vicol [5]. There is substantial evidence indicating
that physical flows are in fact intermittent and have space-time energy dissipation measure,
given by either the formula of Duchon—Robert or any of the formulas in (1.8), concentrating
on lower-dimensional sets [19]. We refer to recent work of Isett [25], De Rosa and Isett [12],
De Rosa et al [10], Cheskidov and Shvydkoy [6], and references therein for mathematical
examples and quantifications of this phenomenon.

Remark 1.5 (the  law and self-regularization). We note that in [13], Drivas adopts a hypo-
thesis on anti-alignment of velocity increments and assumes that (1.8) holds in order to prove
that an Lix Euler solution enjoys higher regularity. Theorem 1.1 shows that this latter assump-
tion may be removed.

In order to present our next corollary, we define

ST (t,0) = %/ﬂrd ][Sd—l (uy (t,x+0y) —up (£,%)) -y |uw (t,x + £y) —up (t,)c)|2 dydx, (1.9a)

st = A5 /T ][s (1 1,4+ £5) =t (,3)) ¥ | T (s (1,54 €9) = s (1,))* iy,
(1.9b)

500 = G100 [ oot ox09) = 020) 1T t+-9) = (1,0) P dy,
(1.9¢)

where we have included the appropriate constants in order to streamline the following
statement.

Corollary 1.6 (2, %, and - laws in the inviscid limit v — 0). Let u,, v € (0,1) be Leray—

Hopf solutions of the d-dimensional forced Navier—Stokes system (1.4) on [0,1] x T¢ with a
fixed initial datum ug € L* such that there exist o, > 0 satisfying

sup [Hu’/”erB?wr+“f”HL,l+”L2} < 0. (1.10)

ve(0,1) P *

Set
1 2 1 2 '

ev (1) = EH“O”U(W) - EHMV (O |72¢pe) + ; (o (r),uy (r))dr. (1.11)

Then for
1
ZD(V):VL7 where L < m, (112)

5
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and any p € [1,00), we have that

p

/ %d;ur&,(t) dr=0. (1.13)
0

If in addition there exists & > 0O such that u” is uniformly bounded in L>°BS’ in which case

2,00,x?
we allow o =0 so that f,, is bounded in L' L2, then

/ISZ U ar 20t
0

Remark 1.7 (commentary on the assumptions of corollary 1.6). We have assumed in (1.10)
a uniform bound for u, in L,ngi oo« 10 analogy with second-order structure function expo-
nents, which pertain to averages in space and time of squared velocity increments. In fact this
assumption may be weakened by replacing the uniform Besov bound on #”, which bounds a
supremum over translations by |y| > 0 of an appropriate integral, by a uniform-in- bound for
the supremum over translations by |y| € [(p, ;] of the same integral. We thank T Drivas for
pointing out this strengthening, and for pointing us to his paper with Nguyen [14], which uses
this assumption and the same choice of dissipative length scale as in (1.12) to ensure that weak
limits of Leray—Hopf solutions of Navier—Stokes produce weak Euler solutions in L,ZBS“, o
We emphasize that the choice of length scale £ depends only on o and not @ from the optional
assumption. In [23], the authors assume a uniform L! H* bound, whichever however implies a

1
lim limsup sup /
=0 y0 eefep,e) o

lim limsup sup sup =0.

=0 u50 geep 0] rel0,1]

uniform L?Hx% bound by interpolation with the uniform L> L2 bound implied by the assump-
tion of Leray solutions emanating from a fixed initial datum uy € L?. We remark that the initial
data ug in [23] is taken to belong to HP for some 5> 0, although this is in fact not necessary
for the proof.

Remark 1.8 (an example of Kolmogorov’s laws in the inviscid limit). In [3, theorem A],
Brue et al construct a sequence of Leray—Hopf solutions u,, to the 3D Navier—Stokes equations
forced by a family of smooth forces f,, emanating from a single initial data up, which sat-

1_
isfy (1.10) forg=3 and o = %— (actually L>C; ). From corollary 1.6, we therefore have that
the sequence satisfies Kolmogorov’s laws in a range of length scales (nearly) commensurate
with the usual K41 dissipative length scale £p(v) ~ Vi,

We prove theorem 1.1 in section 2. Then in section 3, we prove corollary 1.6. Finally,
appendix contains a few technical tools used throughout.

2. Proof of theorem 1.1

Throughout this section, we shall use the following notations. Set

0oy =", (Z) : 2.1

for any radially symmetric, non-negative kernel ¢, with gradient supported in a neighbour-
hood of size v around S?~!, where ~y € [0, 1]; note that then ¢ - has gradient supported in a
neighbourhood of size «¢ around S?il. We do not necessarily assume that ¢, ., integrates to
1, as it will be convenient later to choose a particular kernel which does not have unit mass.
Then for f an integrable function, we set

oty @)= [ 0 ) L0 o1, ) . @.20)

6
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(tef) ., () = /Tr ) LI +) e () dy, (2.2b)

(i), ) = [ 0 e T Gty 0y @20

Note that when v =0, ¢,  is not smooth, and convolution with ¢, -, induces a weighted
integral over the ball of radius £ > 0. We split the proof up into steps, in which we first per-
form some test function computations in Step 0, before addressing the cases ¢ = I, L, T in the
following steps.

Step 0: Test function computations

Let ©¢ .y, x,0(Y) = ©t,4(¥)Cr,e(v), Where if @ =L, T, ¢, o is smooth, radially symmetric, non-
decreasing in |y, takes values in [0, 1], and satisfies ¢, «(0) =0 and ¢, o(y) =1 for y > &,
where K < £,7, or ¢,; o = 1 if @ = I. Since the computations in Step 0 only require c,; o to be
smooth, we shall suppress the dependence on e and write simply ¢y - .. Note that TZW,%R is
now a smooth kernel for v > 0 since the possible singularity at y =0 has been excised. For a
smooth test function ¢ : [0, x T¢ — RY, set

Gy % Pp e (1,X) = ) & (x4 ) TL(Y) ey (v) dy,
T

and define versions which depend on x of the quantities in (2.2) similarly. Now testing (1.4)
with ¢, * ¢y -, using (1.5), changing variables x4y — x and y — —y, and using the radial
symmetry of ¢y - and T4, we have that

s Pt 0 )t [ [ 0.0 (5) oty (T (9]

/[Ot]w/w e ( )[ o (1,x )ui(t7x+y),@k¢/([7x)(ukui)(t,ery)

=000 (1X)p (634 ) + w0k (1) - Ol (,x-+y)] dydrdr. 2.3)

We claim that we can actually choose ¢’ = ¢u' in the above computation, where ¢ is a scalar-
valued test function, and that the integral identity remains valid. To do so, we must justify
passing to the limit ¢!, — ' in each term, where {¢},},>1 are smooth test functions approx-

imating ' in appropriate topologies. First, we see that if f € L L orfe L'L2, orif it may be

t x’
3

decomposed into a sum f = f; +f, with fj € L}, and f, € L, L)zc, then the first term from the

first line can be bounded using the Li . and/or the C?L? bound on u. For the second term on

the first line, we use the C’L2 bound on u. For the first term following the equals sign (with
the time derivative), we note that the above expression implies that 0,u), > I the sense of
distributions, is equal to

/ ¢lo *Ply,k ([,X)ﬁ (t,x) dtdx+/ [4510 *Pl v,k (0,x) Mé) (x) = ¢lo *Ply,k (T,x) ' (T,x)} dx
[0,4] X T¢ Td

Il s P OTEO) [0 00 (4) 49) — 010 G0 )

O (%) - Oyt (1,5 + y)} dydrdx
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and therefore is a bounded linear functional on ¢ € L] N CYLY if v=0,and ¢ € L] N CILIN

. 3
L}H, if v>0. Indeed if v=0and f€ L7, or f€ LIL}, up € L}, u € (C°LY) NL} ., or if v >0

and additionally u € L?H., then the above expression is bounded by the L} 1 C?L2 norm of
¢. Under these assumptions, we then have that (2.3) becomes, upon plugging in ¢’ = ¢u' and
integrating by parts,
/ (60) # e (1) (1.0) e
0,¢]xT¢
= [ ot OTEO) [600w ()0 )+ 00000 (.0) 0 () (-5 3)
[0, xT¢ J7¢

0 (e ) <r,x>)p<z,x+y> + 00 (6 (13)0 (13)) - O (13 +y)| dydrdx. 24)

Next, we claim that we can test (1.4) with

U (1,x) = 6 (1,%) / W (1349 T () 9o () dy = B (1,0) e o, (13)
’]I‘d

where ¢ is any smooth test function. Indeed by the same arguments that allowed us to
obtain (2.4), §,U* is a bounded linear functional on L} N CYL? and 9;U* € L}, while if v >0

we additionally have U* € L2H!. We therefore deduce that "~
[0 (0f (0) i
[0,4] x T4
[ 1000 10 0 0.8)18 (9= 6 (1.5) s (7o) ()]
[ oo [ w0 0 @ )it )
[0,4] x T4 Td
=0y (000 [ 40+ T 0) 1 0) 8 (o) 10
—0; (¢ (1,x) /T (x4 TI0)Pey s () dy) p(t,x)

#001 (00.0) [ leac 0T, 00 ) O 0. . @)

We now split into cases based on e =1, L, T.

Step 1: e=]
We first prove that

L. .. . 1 Lo 1
O (u’ u}’gﬁ) +0; <u‘u’,’eﬁu’ + 3 (u}u}u’)[ P (u,u,) u’> +0 (pu,e . +po it )

— U fy — g f — v (A (u'if ) — 20w Oy ) = —2Dy g [u] (2.6)
where
Drio i =y [ 3501 0) (4 x+9) ~d (10) lrx ) ~w(t) Py, 7 >0,
2.7)

and if y=0,
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—d
40

Adding together (2.4) and (2.5) and using that 7; = Id and c,; = 1 to simplify, we obtain that

Dyoolu] = sy (i (1,4 0y) — i (1,x) ) [u (t,x + £y) — u(2,x)|* dy.

3 L9100 00 + 900, (50 0]t
+ /T ) [0(0,2)u5 4 -, (0,x)ugs(x) — (T, x)uf o (T,x)u* (T, x)] dx
= [ [t [z o
— [ 000 1.3+ + 60100 (1.5+3)) 1 )0 ) (1.5)
+ [ ot 0y )00l ) e )
— [0 0) (1t 3+ 3)p(0.5) = B 0.0 (10 04)
(= O (1, XY (1, ), + 20(8,X) D], (1,%) D (1,) | de.

Now we add

1 - ‘ X
2‘/[0,t]><r]1~d¢(l,x) {81 (l/t]|ul| )f,'y - u’aj (|M1‘ )eﬁ] drdx 2.8)

to both sides, note that

/ =000 (V) f(x+y)dy = /{lw,y(y)ajf(ﬁy)dy:/jrdwﬁ(y)ajf(x—y)dy

= /T . Ojpe~ (¥)f(x—y) dy
=0 fur 2.9)

due to the radial symmetry of ¢y ., and rearrange to deduce that

/[O,E]XTI’ |:78’¢ (ukuhﬁ) - ajd} (ug,z,w”i”/JF % <(uj‘ul‘2)€,w B u’ <|u1|2)€,w>) - VA¢ ( e W)

+2V¢3k i A/Bku" — 8,(;5 (”5;57“/174'”[171,@,«,)} drdx
= [ (o) e 0 10+ 6 () (o0f (1.0
[0,4] xTd

+ [ (00000 0 (9= (1) (7o) (T0)]

+/1rdx[o,t] ¢ [8 AT (u’u;)m + %3;‘ ((u"lmlz)M —u (|u1|2)m>} drdx.

(2.10)
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We now consider the last term on the right-hand side. After using that divu = 0 and (2.9) to
simplify the expression

1 . .
3 L [ o0 0) (et )~ () (e 3) ~ () dyerd
Tdx[0,4] J T4
@2.11)

coming from (2.7) multiplied by —2, we find that the last term on the right-hand side of (2.10)
is in fact equal to (2.11), completing the proof of (2.6) when v > 0.

We now work to prove (2.6) when v = 0, which requires passing to the limit v — 0in (2.10)
and (2.11). We first pass to the limit in every term from (2.10) except the very last term (which
is now (2.11)), using the integrability assumptions on all involved quantities and the dom-
inated convergence theorem. Now in order to pass to the limit v — 0 in (2.11), we will use
that ¢y (y) = £=%0, (]y|/{), where ., is smooth, positive, integrates to 1, and has gradient
supported in a y-neighbourhood around the sphere of radius 1. Then changing to spherical
variables y — (r,0), we rewrite (2.11) (ignoring the f% prefactor) as

/T(, /OT/OOO /Sd,, ¢ (t:x) %Uj (Mi (tx+ro)— wj(fﬂ)) |u(t,x + ro) — u(t,x)|* dodrdrdx
00 / / nd
_/Td/OT/O ¢(r,x)“"’y(r£2/(r)/§ﬂgj (uj(t,x—}—ér/a)_uj([’x))

X ‘u (Lx—i—(r'a) - u(nx)‘z dodr’drdx.

When v — 0, we use (A.2) to pass to the limit and obtain that (2.11) converges to
d

fadl de—](b(t,x)yj (i (t,x+by) — o (t,x)) |u(t,x + Ly) — u(r,x)* dydrdx,
20 Jyaxo,q

concluding the proof of (2.6) for v = 0. In order to prove (1.7), we have that the left-hand side
of (2.6) converges in the sense of distributions as ¢ — 0 to the left-hand side of (1.7), which
guarantees that limy_,o Dy ¢ 0[] = D[u] by the uniqueness of distributional limits, concluding
the proof of theorem 1.1 for e = 1.

Step 2: e=L,T

Using that 7; = % and Ty = T; — Ty, and the fact that for the radially symmetric kernels
©t,y,k,0 = Pr,~Cr,e and points [y| # 0, we have that 0; g, x,e(y) = 5’1‘%,%%,0%’ we now
simplify the terms from (2.4) and (2.5) involving the pressure above by noting that

. ik oo _
00 (1£0) 91 0)) =01 (L5000 0)) =0 (s@ e dy>

N [yl
=: 0V nL
0; (T;( () PeymL (y)) =0 ((T}k ) - T (y)) W,v,n,r) = O Ve, ,m,T

are gradients of potentials. Using this to simplify and adding together (2.4) and (2.5), we
find that
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[ o e 0) 4 00000 1 1)

[0,4] x T4
[0, 0.0~ AT 0 (T (7.0

Td
[ st [ e o) .00

[0, xT¢ Td
~ [ (@005 9) + 0000 15 9)) TGt s ) 00 0.0
+ [, S DTNt e OO () (054 3)dy

- /T (Or00u x4 DTED) P10 GIP(E2) = SN XV e s (P14 3) ) dy

+v(— O (8, )10 (£,X)id,

e 20000, (62) 0l (t,x)] drdx. (2.12)

We now pass to the limit £ — 0 using the integrability assumptions on u and p and the dom-
inated convergence theorem, obtaining that an identical version of (2.12) holds, with the &
however removed. Next, we add the analogue of (2.8), but with e = L, T instead of e =1, to
both sides, obtaining (after abbreviating the convolution of ¥, ., , with p by p; o)

[ 790 () =00 (ot 5 (), =t (eF), )] v (1)
+206 0, 4 Ol = i (Mi.,zz,qp +u ptz,y,.)} drdx

_ /[0 - [qﬁuk (6 (1,3) + & (6,2) o (1,2) 4 (t,x)] drdx

+ /T ) [qﬁ (0,x)tdh o, (0,x) 1t (x) — & (T, x) s .-, (T, x) uk(T,x)] dx

+/de[07[] ¢ {@'uk.,z,wuku" —u' (u"u".)M + %aj ((u’-|u.|2)m — (\uolz)eﬁ” drdx.

(2.13)

Now by direct computation, using that divu = 0, (u, Teut) = (Teu, Teut), and the spherical sym-
metry of ¢, T, and anti-symmetry of its gradient V (¢, ,7,), we may rewrite the last term
from (2.13) as

k ki i 1 o2 j 2
/de[o?t] 1) [ajubgﬁu W —u' 0 (”]”L)e,y + 55’, ((u’|uL\ )6,7 - (|uL| )eﬂ)} drdx

1 ; i i
= _Z/de[o,q Td¢8yk (TLWW) [(u (t,x+y)—u'(t,x))
(0 (1x-+3) = (0.0) (0 (1) = (0.0)] dydd
1
— 2/%[0’{] /T,,¢ {way Sutx+y) —u(t,x) |t x+y) —u(t,x) T,

2
et (e 9) — () |+ ) —u(e.0) Trf | dydias @14

1
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ife=L, and

L2 [t —ates (), 500 (((hant), = (), )] e

- 7%/1rdx[o,t] ¢8}‘( A 7) [(”i(t’ery) 7ui(t’x))

X (u’ (t,x+y)— Ltj(l,x)) (uk (t,x+y) —u (t,x))] dydrdx

_ir e . - z

=5 ][0 (S Boenn ) uleat) = (o) o) = u(0.0) P dyaras
(2.15)

ife=T.

We first work to prove an analogue of (2.6), but for e = L. We pass to the limit v — 0
in (2.13) and the last line of (2.14), obtaining for the latter

37 g f 1000 (09 U T 0 0+89) ()P

/Td [0 O ) e a9 ) Ty,

We wish to eliminate the second term in the above expression, so that we obtain an energy
balance with the proper third-order longitudinal structure function on the right-hand side. To
do so, we choose in (2.15) and (2.13)

s pum——" ) PP
£,y B, (0)] \ ¢ {o<y|<e} )

which is a smooth function except at |y| = ¢, where it is however continuous; this choice may
be justified by an application of the dominated convergence theorem. Note that

_ 2 L 2y 2 (D 2y
OBy (v) — Ww,w () = Loogpyi<ey () 1B.(0)] (KT A L)) = leﬁ(o) ) -

We use this choice of [ in (2.13) for @ = T and subtract the resulting balance from (2.13)
with @ = L and v =0, obtaining that

[ o) (it (), ) -0 o)
206 0ty Ol =016 (up o+ 1 pre) | drdx
- /[O,q T4 [¢ W (20110 (6%) + 6 (L) up g (1,2)f* (z,x)} drdx
_ /T [60.9)00 0.0 ) — 6 (T (700 (7,9 e

=50 Loy fr 000y @) DL ) 0 i
(2.16)
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where

uiL,Z (t7x) = /T‘/ <|Bel(0)|1{0<|yéé} (y) TZ (y) _¢Z,'y (y) Tl]j" (y)> Ltl (t’x+y) dya

and p; ¢ is defined analogously. In order to pass to the limit on both sides of (2.16), we first
claim that for any L vector field g,

tim [ g, 00— -0 ¢l ar=o

50 S |81 T d @+ 2)8 -
To prove this, we use that [;,, %, . (y)dy = 75, and [, Ti(y)dy , so that the integral of
T = _21(;12; 67; in addition, we use that [, TV (y)dy = 5— Computmg similarly for py o,

combining these results and passing to the limit £ — 0 in (2. 16) we obtain that the left- hand
side converges to i) +2) multiplied by the left-hand side of (2.6). Dividing the factor of on

the right-hand side of (2.16) by twice m concludes the proof of (1.95).

In order to prove (1.9¢), we use that |Tjv|> = |TLv|2 + |T7v|?* for any vector v. Then writing

the coefficient on the left-hand side of (1.8¢) as —~ for Cr undetermined, we find C7 must
solve
dd+2) " dc; T a7t ah  d+2 " 4cr " a@-1)

3. Proof of corollary 1.6

We treat only the 2 3 law (or 4 5 in d dimensions), using (2 6) with v =0. The proof of the 2 3
law follows identically using (2.16), and the proof of the - 15 law follows again from additivity.
Applying the distributional equality (2.6) with y =0, a test function ¢(z,x) = 1} - (#) for some

€ (0,1], using uy ,, (x) to denote the function of x which computes the average of u,, on a ball
of radius ¢ € [(p,¢] centred at x, and recalling (1.9) and (1.11), we have that

)

TSy (r, 1
[ e, (1)< 5 [ )~ 0 )+ (70 () — s (7200 )
0 T4
—|—/ So (8,%) - [uy, (8,x) — ug,,, (¢,x)] drdx
T4 x[0,7]
+ / v, O, dedx. (3.1)
Tdx[0,7] ’
Examining the first term from (3.1), we may bound it by

| frnoh o) (st ) s ) )

+ H%B‘(O)u’k/ (7,%) (ulf, (r,x+2y) — ub (7,%) dy)

L

The first term approaches zero as ¢ — 0 due to continuity of the integral with respect to trans-
lations for L?(T¢) functions, while the second may be bounded by

S Moty (T) [z gpay € (| (7)

13
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Assuming that we have the optional uniform L*B5 _  bound for u,, this term goes to zero
as {7, £p go to zero, no matter the precise choice of /p. In the case the optional bound is not
satisfied, we may interpolate the L>°L? and Ltng‘) . bounds to find, for any p € [1,00), an
a(p)

2,00,x"

a(p) < a such that u, is uniformly bounded in L} B

uniform-in-v L‘;B; (Q,x bound, and integrating (3.2) raised to the p™ power with respect to 7

proves that this term goes to zero as ¢ — 0.
For the second term from (3.1), we may bound it by

Then fixing p in (1.13), using the

|Vu||L}L2€a||uu||L,°°B§mv or vaHL,‘“’LEEQ||“z/‘|La;1Bu :
t 2,00

In either case, we have that the limit as ¢, {p — 0 of this term is zero, uniformly in 7.
Thus it remains only to treat the final term. By straightforward computations, we have that

/ u@ku’é Daku{, drdx
Tdx[0,7] ’

< limsup
¥—0

L vomonn 0) e (e 3) = (0] B, (0 s
T Jo JTd

1 L,
5 v? HVMVHLIZ,XVZE 1 HMUHL,ZB;,OQ,X .

By the assumption that ¢p = vF with L < ﬁ from (1.12) and the uniform bounds

from (1.10) (note that we are using that 2 || Vu, || 12, is uniformly bounded in v by the assump-
tion that u,, are Leray—Hopf solutions), we find that the above quantity tends to zero as v — 0,
uniformly in 7.
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Appendix

Proposition A.1. Letf € [7(T9), and let o € S*~! with do the normalized surface measure on
S, Then for any 0 < £ < 1,

fx):= [ flx+to)do (A1)
S§d—1

is an integrable function of x with LV norm bounded by ||f||;y(re). Furthermore, if V., :
(—7,7) = [0,00) for v > 0 are smooth, even functions with unit L' norm defining a sequence
of approximate identities {U - }~o and ¢ : T¢ — R belongs to L (T9), we have that

14
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oo ()s=lim [ 9,0 [ 600 [ e (n)0) doasar

:/Td it ¢(0)f(x+Lo) dode:=Tp(f) (A.2)
im 7. (/) = /Tdf(x)qs(x) dx. (A.3)

Proof. Itis clear that all the claims hold for smooth functions. Considering (A.1) for arbitrary
fe [P(T9), we have that f(x + £o) is measurable on the product T¢ x S?~!, and we can apply
Tonelli’s theorem to find that

|[f(x+€cr) HII)J’(T"XS"*‘) = / lf(x+€0) ‘pdde' = |V||Z)(Td) .
sd—1 Jpa

Now from Fubini’s theorem and Jensen’s inequality, we have that the projection ?(x) is a
measurable function of x with I norm no larger than ||f{|;»rs), as desired. Next, in order
to prove (A.2), let f € LP(T9) and f, be a smooth approximant of f in L7 (T¢). Then we have
that

limsup |Zy, ¢ (f) — Ze,e (f)| < limsup|Ze,,¢ (f,) — e, (f,)| +limsup [Ze 6 (f = 1)
~—0 ~—0 ~—0

+limsup |Zy 4 (f, —f)|

y—0
The first term above goes to zero, and the latter two are bounded by [|f — £, || » (1) [| ¢ Huﬁ -
after performing a change of variables and applying Holder’s inequality. A completely ana-
logous argument shows that (A.3) holds. O
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