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Abstract
In this work, we develop a wavelet-inspired, L3-based convex integration framework
for constructing weak solutions to the three-dimensional incompressible Euler equa-
tions. The main innovations include a new multi-scale building block, which we call
an intermittent Mikado bundle; a wavelet-inspired inductive set-up which includes
assumptions on spatial and temporal support, in addition to L p and pointwise estimates
for Eulerian and Lagrangian derivatives; and sharp decoupling lemmas, inverse diver-
gence estimates, and space-frequency localization technology which is well-adapted
to functions satisfying L p estimates for p other than 1, 2, or∞. We develop these tools
in the context of the Euler-Reynolds system, enabling us to give both a new proof of
the intermittent Onsager theorem from Novack and Vicol (Invent Math 233(1):223–
323, 2023) in this paper, and a proof of the L3-based strong Onsager conjecture in the
companion paper Giri et al. (The L3-based strong Onsager theorem, arxiv).

Keywords Convex integration · Euler equations · Anomalous dissipation · Onsager
conjecture
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1 Introduction

1.1 The L3-based Strong Onsager Conjecture

We consider the three-dimensional incompressible Euler equations on [0, T ] × T
3,

which are given by {
∂t u + (u · ∇)u +∇ p = 0

div u = 0 .
(1.1)

Smooth solutions of these equations satisfy a pointwise energy balance obtained by
taking the dot product of the first equation in (1.1) with u. Integration of this balance
in time and space then implies that smooth solutions conserve the total kinetic energy
1/2‖u(t, ·)‖2

L2(T3)
. However, there is significant mathematical and physical motivation

behind the study of weak solutions of (1.1) which allow for the dissipation of kinetic
energy. These dissipative weak solutions of (1.1) will satisfy the local energy identity

∂t

(
1

2
|u|2
)
+ div

((
1

2
|u|2 + p

)
u

)
= −D[u] (1.2)

in the sense of distributions, where the Duchon-Robert measure D[u] captures the
dissipation due to possible singularities [19]. For Euler flows arising as vanishing-
viscosity limits of suitable Navier-Stokes flows, this measure is non-negative [19],
and the resulting inequality in (1.2) is referred to as the local energy inequality.

The well-knownOnsager conjecture [33] postulates that L∞t C
1/3
x serves as a thresh-

old, below which weak solutions of the Euler equations (1.1) may dissipate the total
kinetic energy [33], and above which solutions must conserve the kinetic energy.
Recent years have seen remarkable success in the validation of Onsager’s conjecture.
The conservation of kinetic energy for solutions in L3

t B
α
3,∞ for α > 1/3 has been

proven by Constantin, E, and Titi in [9] (see also [7, 16–20]), and the flexibility state-
ment was proven by Isett in [23] and extended by Buckmaster, De Lellis, Székelyhidi,
and Vicol [2]. The proofs in [2, 23] utilize the convex integration framework initiated
by De Lellis and Székelyhidi in [12, 14], inspired by Nash’s work [31] and following
work of Scheffer [34] and Shnirelman [35]; we refer the reader to the survey papers [5,
15] for further history of the Onsager program.

The regularity threshold C1/3 is also intimately connected to Kolmogorov’s 1941
(K41) phenomenological theory of turbulence [27–29], which may be interpreted as
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A Wavelet-Inspired L3-Based Convex Integration… Page 3 of 271 19

suggesting that turbulent fluids enjoy uniform L p
t B

1/3
p,∞,x regularity in the vanishing

viscosity limit for p ∈ [1,∞). Here we define the inhomogeneous Besov norms for
s ∈ (0, 1) and p ∈ [1,∞] by

‖v‖Bs
p,∞(T3) ∼ ‖v‖L p(T3) + sup

|z|>0

‖v(· + z)− v‖L p(T3)

|z|s .

Such uniform regularity bounds would then imply that dissipative solutions of Euler
obtained as vanishing viscosity limits enjoy L∞t C

1/3
x regularity, or the maximum

amount of regularity identified by Onsager as allowing for the dissipation of kinetic
energy. In the case p = 3, K41 scaling is strongly supported by experimental evi-
dence [21, Figure 8.8], [6, Figure5], [25, Figure 3], [26, Figure 1], indicating that
B

1/3
3,∞ may indeed be a natural function space for turbulent flows. In the case p �= 3,

it is convenient to base our discussion on structure function exponents, which for our
purposes will be defined as

ζp,u = p sup{s ∈ (0, 1) : u ∈ L p
t B

s
p,∞,x } .

It is well known that turbulent fluids exhibit deviations from theK41 scaling ζp,u = p/3

when p �= 3. When p < 3, one typically observes that ζp,u/p > 1/3, while for
p > 3, one typically observes that ζp,u/p < 1/3; see [21, Figure 8.8], or [26, Figure 6]
for a recent numerical simulation. These observations suggest that the Hölder space
C1/3 in which Onsager’s theorem has been proven may not be the most reasonable
space for turbulent flows. In this direction, the third author and Vicol recently proved
an intermittent Onsager theorem [32] for non-conservative solutions in C0

t (H
1/2− ∩

L∞−) ⊂ C0
t B

1/3−
3,∞ ; see Theorem 1.2 below.

With the significance of the local energy inequality, the L3-basedBesov space B
1/3
3,∞,

and intermittency in mind, we can now introduce the L3-based Onsager conjecture.

Conjecture (L3-based strong Onsager conjecture). Let β ∈ (0, 1) and T ∈ (0,∞).

(a) (Conservation and local energy equality) For any β > 1/3, if a weak solution
to the Euler equations belongs to C0([0, T ]; Bβ

3,∞(T3)), then it satisfies the local
energy identity (1.2) in the sense of distributions with D[u] ≡ 0.

(b) (Dissipation and local energy inequality) For any β < 1/3, there exist weak
solutions u to the Euler equations belonging to C0([0, T ]; Bβ

3,∞(T3)) which sat-
isfy the local energy balance (1.2) in the sense of distributions, where D[u] is
non-negative and does not identically vanish.

The rigidity part has been established by Duchon-Robert [19]. For the flexibility
part, on the other hand, some partial results are known. The current best result is
due to the second author and De Lellis [11], who showed the existence of Hölder
continuous weak solutions to the Euler equations in Cβ

t,x for any β < 1/7 which also
satisfy the strict local energy inequality (1.2); we also refer to earlier results of De
Lellis and Székelyhidi [13] and Isett [24], the latter of which formulated the strong
C0 Onsager conjecture. In the companion paper [22], we give a proof of the flexible
side for β ∈ [1/7, 1/3), thus resolving the L3-based strong Onsager conjecture.
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19 Page 4 of 271 V. Giri et al.

Theorem 1.1 (Dissipation and local energy inequality [22]). For any fixed β ∈
(0, 1/3) and T > 0, we can find a weak solution u in C0

t (B
β
3,∞ ∩ L

1
1−3β ) to the Euler

equations (1.1) which dissipates the total kinetic energy and satisfies the local energy
inequality (1.2) with D[u] non-negative.
The proof of this theorem is lengthy and technical, and it is the main motivation for
the present work. As a point of comparison, note that the above theorem is strictly
stronger than the following intermittent Onsager theorem from [32].

Theorem 1.2 (Dissipation, but no local energy inequality [32]). For any fixed β ∈
(0, 1/3) and T > 0, there exist weak solutions u to (1.1) belonging toC0

t (B
β
3,∞∩L 1

1−3β )

which dissipate the total kinetic energy.

Not only does Theorem 1.1 imply Theorem 1.2, but also our proof of Theorem 1.1
furnishes a new proof of Theorem 1.2, which we believe to be of independent interest.
In a nutshell, we obtain a new proof of Theorem 1.2 by pursuing a proof of Theo-
rem 1.1 and simply omitting the unnecessary components. We therefore undertake
this task in the present paper, focusing on the elements of the proof of Theorem 1.1
which directly furnish a proof of Theorem 1.2. These include both general “blackbox”
lemmas, applicable to any construction of high regularity, intermittent1 weak solutions
to a variety of fluid equations, and definitions and estimates specific to our particular
construction of high regularity, intermittent weak solutions to the Euler equations. We
describe these various components in subsection 1.2. However, there are portions of
the proof of Theorem 1.1 which are not necessary for the proof of Theorem 1.2, but
which we have included in the present paper, either for convenience, or due to their
technical nature. We shall always isolate and explain these results so that the reader
who wishes to ignore them on the way to proving Theorem 1.2 can safely do so. We
notate these results with an asterisk; for a first example of this notation, we refer to
Sections 7 and 10 from the table of contents.

Remark 1.3 (* Notation). Throughout this article, any section, lemma, theorem, etc.
which is amended with an asterisk * is only essential for the proof of Theorem 1.1
given in [22], and not essential for our proof of Theorem 1.2 in this paper. Readers
interested only in the proof of Theorem 1.2 may skip these sections and need not
consult [22] at any point.

In subsections 1.2–1.4 of the introduction, we outline the contents of this paper,
focusing respectively on the novel aspects of our wavelet-inspired scheme, the role
of the intermittent pressure in pointwise estimates, and the technical tools we have
developed. Then in subsection 1.5, we give two guides to the rest of the paper; one
aimed at understanding the proof of Theorem1.1, and the other aimed at understanding
the proof of Theorem 1.2.

1.2 TheWavelet-Inspired Scheme

From a bird’s-eye view, our wavelet-inspired scheme is a natural generalization of
the classical Fourier-inspired convex integration (Nash iteration) schemes. All convex

1 Here, “intermittent” means that different L p
x norms satisfy very different bounds
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integration arguments, including ours, construct weak solutions to a given PDE as a
limit of a sequence of approximate solutions uq . However, in all previously existing
iterations, the approximate solution uq is equal (up to negligible errors) to the fre-
quency truncation P≤λq of the limiting solution u, where generally λq → ∞ at a
super-exponential rate as q →∞. As a consequence of such a construction, velocity
increments wq = uq − uq−1 and wq ′ = uq ′ − uq ′−1 for q ′ �= q have no significant
overlap in their active frequencies. In our new proof of Theorem 1.2, however, uq
functions as a partial wavelet decomposition of the limiting solution u, in the sense
that wq and wq ′ may have frequency overlap even if q �= q ′. We use the parameter
n̄ to quantify the number of velocity increments which have frequency overlap; that
is, wq and wq ′ have non-trivial frequency overlap if and only if |q − q ′| ≤ n̄/2. Fur-
thermore, the frequency support ofwq+1 in our setting is not contained in between λq
and λq+1, but rather λq+n̄/2 and λq+n̄ . To highlight this distinction, we often use the
notations ŵq+n̄ := wq+1 to emphasize that the maximum frequency ofwq+1 is λq+n̄ ,
and ûq+n̄−1 = uq to emphasize that the maximum frequency present in uq is λq+n̄−1.

This perspective greatly affects the structure of the Euler-Reynolds system at stage
q, which is the system satisfied by uq . In our wavelet-inspired setting, uq satisfies

{
∂t uq + div

(
uq ⊗ uq

)+∇ pq = div
(
Rq − πq Id

)
div uq = 0 ,

(1.3)

where κq := 1/2tr
(
Rq − πq Id

)
. The Reynolds stress Rq and intermittent pressure πq

can be decomposed into components

Rq =
q+n̄−1∑
k=q

Rk
q , πq =

q+n̄−1∑
k=q

πk
q .

The superscript k indicates that the stress or pressure oscillates at frequencies no larger
thanλk . The velocity incrementwq+1 is then designed to cancel out R

q
q−π

q
q Id, leaving

Rk
q−πk

q Id untouched for q+1 ≤ k ≤ q + n̄−1. This stands in contrast to all existing
schemes, in which the entire Reynolds stress is cancelled.

In order to replace the lack of frequency separation between various velocity incre-
ments, we instead impose thatwq andwq ′ have disjoint spatial support if |q−q ′| < n̄.
Therefore spatial support information is a key component of our inductive assump-
tions. In order to successfully propagate the spatial support information we require,
we utilize a new stationary solution to the Euler equations as our main building
block, which we call an “intermittent Mikado bundle.” Intermittent Mikado bun-
dles Bq+1 are multi-scale shear flows consisting of a product of a high frequency,
highly-intermittent shear (Mikado, following [10]) flow Wq+n̄ , and an essentially
homogeneous2 shear (Mikado) flow ρq+1. The frequency support of Wq+n̄ is con-

tained in the set [rqλq+n̄, λq+n̄], where rq = λq+n̄/2λ
−1
q+n̄ , whereas the frequency

support of ρq+1 is highly concentrated around λq+1. We point out that the intermit-

tency ratio rq ≈ (λqλ
−1
q+n̄)

1/2 has been identified as the “Goldilocks ratio” in [32] for

2 Homogeneous here means the opposite of intermittent.
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19 Page 6 of 271 V. Giri et al.

producing solutions to the 3D Euler equations inC0
t B

1/3−
3,∞ . The second key component

of our spatial support toolkit is a synthetic Littlewood-Paley projector P̃≤λq , which
replaces the kernel corresponding to the usual Fourier projector P≤λq onto frequencies
no larger than λq with a kernel which is compactly supported in a ball of size ≈ λ−1

q .
As one would expect, the synthetic Littlewood-Paley projector obeys the usual deriva-
tive estimates with cost λq , but produces outputs supported in the fattened (by λ−1

q )
support of the input. We formulate all the necessary results related to the synthetic
Littlewood-Paley decomposition as standalone lemmas, so that they can be re-used as
blackboxes both in [22] and any future constructions.

Theflexibility afforded by thewavelet-inspired scheme and themulti-scale intermit-
tentMikado bundles allows us to rectify one of the seemingly unnatural components of
the construction in [32] of solutions satisfying Theorem 1.2. In [32], the velocity incre-
mentwq+1 consisted of a collection of sub-incrementswq+1,k , all with varying degrees
of intermittency (i.e. scaling between L2 and L∞ norms). These sub-increments were
designed to cancel a collection of sub-stresses produced at a fixed stage q �→ q+1.Our
wavelet-inspired scheme instead produces a sequence of perfectly self-similar velocity
increments, which obey uniform intermittent scaling laws in terms of the Goldilocks
intermittency ratio. Furthermore, there is no longer a need for the sub-stresses or
sub-increments which complicated the scheme in [32].

1.3 Pointwise Estimates

One of the difficulties of an intermittent scheme, such as those in [1, 4, 8, 30] is the lack
of homogeneity in estimates. For example, inductive assumptions on ∇uq in [32] are
propagated in L2, meaning that the local L∞ norm of ∇uq may vary greatly across
different space-time regions. This affects the stability of solutions to the transport
equation with velocity uq , which is used to flow the intermittent bundles (à la Taylor’s
frozen turbulence hypothesis). Similarly, the size of the Reynolds stress Rq (or Rq

q in
our case) will vary greatly across different space-time regions, forcing us to normalize
wq+1 as roughly |Rq

q |1/2Bq+1 so as to enact a quadratic cancellation between wq+1 ⊗
wq+1 and Rq

q . We approach these issues by defining a novel intermittent pressure πq ,
which streamlines these estimates by building into πq information regarding the local
size of Rq , ∇uq , and their derivatives. Our inductive estimates assert that

|Rq
q | ≤ π

q
q , |∇ûq |2 ≤ r−2

q−n̄λ
2
qπ

q
q ,

with similar bounds holding for Rk
q and ∇ûk for k �= q. Using Dt,q to denote the

material derivative ∂t + ûq ·∇, we are in fact able to show the much stronger estimates
(which we refer to as “pointwise estimates”)

∣∣∣DN DM
t,q R

q
q

∣∣∣ ≤ π
q
q λ

N
q

(
r−1
q−n̄λq(π

q
q )

1/2
)M

, (1.4a)∣∣∣DN DM
t,q∇ûq

∣∣∣ ≤ r−1
q−n̄λq(π

q
q )

1/2λNq

(
r−1
q−n̄λq(π

q
q )

1/2
)M

(1.4b)
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∣∣∣DN DM
t,qπ

q
q

∣∣∣ ≤ π
q
q λ

N
q

(
r−1
q−n̄λq(π

q
q )

1/2
)M

. (1.4c)

These estimates show that we can use πq
q in conjunction with the parameters λq and

rq as multiplicative factors controlling the pointwise size of both spatial and material
derivatives on Rq

q ,∇ûq , and π
q
q . While we still choose to formulate estimates in terms

of carefully constructed cutoff functions as in [32], the intermittent pressure centralizes
all the necessary size and frequency information needed throughout the iteration.

1.4 Toolkit

At a technical level, this manuscript contains generalizations of a number of the tools
from [3] and [32]. First among these is a sharp L p decoupling estimate for products
f g, where f has maximum effective frequency λ and g is periodic to scale �−1 �
λ−1. Estimates for such a product in L1 and L2 were first shown by Buckmaster
and Vicol in [4]. We generalize this estimate to any p ∈ [1,∞]. With a sharp L p

decoupling estimate in hand, we construct an inverse divergence operator inspired
by [3] which is well-adapted to error terms of the form f g ◦	, where f and g satisfy
the same properties as above, 	 is a low frequency flow map, and g can be written
as the iterated divergence of a tensor potential divdG = g. Our inverse divergence
operator can produce estimates in any Lebesgue space, propagates arbitrarily large
numbers of spatial and material derivatives, preserves the spatial support of the inputs
f and G, and can be iterated an arbitrarily large number of times. Finally, we have
generalized the cutoff machinery developed in [3] for intermittent functions with L1

or L2 estimates to intermittent functions with L p estimates for any p ∈ [1,∞); for
the sake of convenience and concreteness, we specify to the cases (L1, L3/2, and L3)
which are used to measure current errors, stress and pressure errors, and velocity fields
in the proofs of Theorems 1.1 and 1.2.

1.5 Guides to the Paper

We present guides to Theorem 1.1 and Theorem 1.2.

1.5.1 Guide to Theorem 1.1

The reader interested in the proof of Theorem 1.1 should begin by reading [22, Sec-
tions 1,2], the former of which contains an introduction and an outline of the main
components of the proof, and the latter of which contains the statement of the crucial
inductive proposition needed for the proof of Theorem 1.1.3 The remaining sections
of [22] contain the proof of this inductive proposition. The proof begins with [22,
Section 3], which contains the convex integration set-up, as well as all of the elements
of the construction in the present paper which are used in [22]. Therefore the reader
may progress through [22, Section 3], following the directions to cited results in this

3 For convenience, we have reproduced the inductive proposition for Theorem 1.1 in Proposition 2.12
below, together with an outline of how this manuscript contributes to the proof of Proposition 2.12.
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19 Page 8 of 271 V. Giri et al.

manuscript as desired, before continuing to read the rest of [22] without reference to
the present paper.

1.5.2 Guide to Theorem 1.2

The reader interested in the proof of Theorem 1.2 need not consult [22] at any point.
The reader has two options, the first of which is to follow the outline to the proof
given in the proof of Proposition 2.13, which includes a treatment of the intermittent
pressure πq . Alternatively, the reader who prefers to ignore the intermittent pressure
can follow the outline given in Remark 2.14, which replaces the intermittent pressure
with methodology more similar to that of [32].

2 Inductive Propositions and Proofs of Main Theorems

In this section, we present the main inductive assumptions and propositions required
for Theorems 1.1 and 1.2. The inductive assumptions which are required for Theo-
rem 1.1 but not 1.2 are sorted into subsection 2.7. Then in subsection 2.8, we present
the inductive propositions required for both the main theorems and outline how the
contents of this paper contribute to the proofs of Theorems 1.1 and 1.2.

2.1 General Notations and Parameters

We first introduce the primary parameters

β , n̄ , b , λq , δq , rq , �q , ε�

which appear in the inductive hypotheses. First, we choose an L3-based regularity
index β ∈ [1/7, 1/3). Since β < 1/3, we can choose n̄ ∈ 6N such that

β <
1

3
· n̄/3

n̄/3+ 2
− 2

n̄/3+ 2
, β <

2

3
· n̄/2− 1

n̄
. (2.1)

This in turn enables a choice of b ∈ (1, 25/24) close to 1 such that

β <
1

3bn̄
· 1+ b + · · · + bn̄/3−1

1+ b + · · · + bn̄/3+1

− 2
(
1+ (b − 1)(1+ · · · + bn̄/2−1)2

)
1+ b + · · · + bn̄/3+1 ,

2

3bn̄/2
· 1+ · · · + bn̄/2−2

1+ · · · + bn̄−1 (2.2a)

bn̄ < 2 ,
(bn̄/2−1 + · · · + b + 1)2

bn̄/2−1 + · · · + b + 1
(b − 1) < (b − 1)1/2 . (2.2b)

Indeed the inequalities in (2.2a) are possible since (2.1) is just (2.2a) evaluated at
b = 1, and both expressions in (2.2a) are continuous in b in a neighborhood of b = 1.
The first inequality in (2.2b) is trivial, and the second is possible since the fraction
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in the expression is continuous at b = 1 and equal to n̄/2 if b = 1. It is clear that as
β → 1/3, we are forced to choose n̄ →∞ and b → 1.

We now define the frequency parameter λq , the amplitude parameter δq , the inter-
mittency parameter rq , and the multi-purpose parameter �q by

λq = 2�(bq ) log2 a� ≈ a(b
q ) , δq = λ−2β

q , (2.3)

rq = λq+n̄/2�q

λq+n̄
, �q = 2

⌈
ε� log2

(
λq+1
λq

)⌉
≈
(
λq+1

λq

)ε�
≈ λ(b−1)ε�

q . (2.4)

The large positive integer a and the small positive number 0 < ε� � (b−1)2 < 1 are
defined in (xviii) and (v) of subsection 11.1, respectively. Note that the intermittency
parameter rq is determined by the “1/2 rule” as in [32].

We now introduce further parameters

τq ,�q ,Tq ,C∞ .

We shall often decompose uq = ûq + (uq − ûq), and heuristically speaking, the
gradient of velocity∇ûq ′ will have spatial derivative cost≈ λq ′ and L3 norm≈ τ−1

q ′ ≈
δ
1/2

q ′ r
−1/3

q ′−n̄λq ′ . We in fact adjust the definition of τ−1
q using the parameter �q (slightly

larger than λq ), which accounts for small spatial frequency losses due to mollification,
and introduce the parameter T−1

q (much larger than τ−1
q ), which accounts for temporal

frequency losses due to mollification. We set

λq < �q = λq�
10
q , τ−1

q = δ
1/2
q λqr

−1/3
q−n̄�

35
q � T−1

q , (2.5)

and refer to (11.12) for the precise definition of Tq . For the L∞ norm of Rq
q (and other

inductive objects), we use the parameter C∞, which will satisfy (we refer to (11.8) for
the precise choice of C∞)

λ
1
n̄
q � �C∞

q � λ
12
n̄
q .

Finally, we will inductively propagate spatial and material derivative estimates,
where we use the notation and parameters

Dt,q = ∂t + (̂uq · ∇) , Ncut,t ,Nind,t ,Nind ,Nfin .

The integersN• above quantify the number of spatial and material derivative estimates
propagated inductively and satisfy the ordering (see subsection 11.1 for the precise
choices)

1 � Ncut,t � Nind,t � Nind � Nfin .

In particular, Nind,t helps us keep track of both sharp and lossy material derivative
estimates. For this purpose, we use the following notation, which roughly says that
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“the first N∗ material derivatives cost τ−1, while additional derivatives cost T−1.” We
also list a few other notations in the subsequent two remarks.

Remark 2.1 (Geometric upper bounds with two bases). For all n ≥ 0, we define

M
(
n, N∗, τ−1,T−1

)
:= τ−min{n,N∗}T−max{n−N∗,0} .

Remark 2.2 (Space-time norms). In the remainder of the paper, we shall always mea-
sure objects using uniform-in-time norms supt∈[T1,T2] ‖ · (t)‖, where ‖ · (t)‖ is any of
a variety of norms used to measure functions defined on T

3 × [T1, T2] but restricted
to time t . In a slight abuse of notation, we shall always abbreviate these space-time
norms with simply ‖ · ‖.

Remark 2.3 (Space-time balls). For any set� ⊆ T
3 ×R, we shall use the notations

B(�, λ−1) :=
{
(x, t) : ∃ (x0, t) ∈ � with |x − x0| ≤ λ−1

}
(2.6a)

B(�, λ−1, τ ) :=
{
(x, t) : ∃ (x0, t0) ∈ � with |x − x0| ≤ λ−1 , |t − t0| ≤ τ

}
(2.6b)

for space and space-time neighborhoods of � of radius λ−1 in space and τ in time,
respectively.

2.2 Relaxed Equations

We assume that there exists an approximate solution (uq , pq , Rq ,−πq) at the q th

step, q ≥ 0, where uq : T
3 × [−τq−1, T + τq−1]4 → R

3 is the velocity field, pq :
T
3×[−τq−1, T +τq−1] → R is the pressure, Rq : T

3×[−τq−1, T +τq−1] → R
3×3
symm

is the symmetric stress tensor, and πq : T
3×[−τq−1, T + τq−1] → R is a scalar field

which we shall refer to as the intermittent pressure. We assume that the approximate
solution satisfies the Euler-Reynolds system

{
∂t uq + div(uq ⊗ uq)+∇ pq = div(Rq − πq Id)

div uq = 0 .
(2.7)

We use the decomposition and notations

uq = ûq−1 + ŵq︸ ︷︷ ︸
=:̂uq

+ŵq+1 + · · · + ŵq+n̄−1 =: ûq+n̄−1 (2.8)

4 We adopt the convention that τ−1 := 1.
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for the velocity field; one purpose of the notation ûq+n̄−1 is to emphasize that uq has
effectivemaximum spatial frequency λq+n̄−1. The stress error Rq has a decomposition

Rq =
q+n̄−1∑
k=q

Rk
q , (2.9)

where each Rk
q is a symmetric stress tensor. The intermittent pressure πq has a decom-

position

πq =
∞∑
k=q

πk
q . (2.10)

In our wavelet-inspired scheme, the Reynolds stress Rq will have a wide band of
frequency support in between λq and λq+n̄−1 (effectively speaking). We correct the
portion of it which lives at frequencies no higher than λq . We denote this portion by
Rq
q . More generally, we denote the portions of Rq with spatial derivative cost λk by

Rk
q .

2.3 Inductive Assumptions for Velocity Cutoff Functions

The inductively-defined velocity cutoff functions ψi,q ′ partition space-time into dis-
tinct level sets of the gradient of velocity. We first record here the key properties which
will be required throughout the inductive assumptions, and the local L∞ estimates for
velocity increments ŵq ′ and velocity ûq ′ , obtained as a consequence of the definition
of ψi,q ′ , can be found in subsection 2.6. The concrete construction of ψi,q+n̄ and the
verification of (2.11)–(2.17) for q �→ q + 1 (i.e., q ′ = q + n̄) will be given in Section
9.

All assumptions in subsection 2.3 are assumed to hold for all 0 ≤ q − 1 ≤ q ′ ≤
q+ n̄−1. First, we assume that the velocity cutoff functions form a partition of unity:

∑
i≥0

ψ6
i,q ′ ≡ 1, and ψi,q ′ψi ′,q ′ = 0 for |i − i ′| ≥ 2 . (2.11)

Second, we assume that there exists an imax = imax(q ′) ≥ 0, which is bounded
uniformly in q ′ by

imax(q
′) ≤ C∞ + 12

(b − 1)ε�
, (2.12)

such that

ψi,q ′ ≡ 0 for all i > imax(q
′) , and �

imax(q ′)
q ′ ≤ �

C∞/2+18
q ′−n̄ δ

−1/2

q ′ r−2/3

q ′−n̄ .

(2.13)
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19 Page 12 of 271 V. Giri et al.

For all 0 ≤ i ≤ imax, we assume the following pointwise derivative bounds for the
cutoff functionsψi,q ′ . First, formixed space andmaterial derivatives andmulti-indices
α, β ∈ N

k , k ≥ 0, 0 ≤ |α| + |β| ≤ Nfin, we assume that

1suppψi,q′

ψ
1−(K+M)/Nfin
i,q ′

∣∣∣∣∣
(

k∏
l=1

Dαl Dβl
t,q ′−1

)
ψi,q ′

∣∣∣∣∣
≤ �q ′(�q ′λq ′)

|α|M
(
|β|,Nind,t − Ncut,t, �

i+3
q ′ τ−1

q ′−1, �q ′−1T
−1
q ′−1

)
. (2.14)

Next, with α, β, k as above, N ≥ 0 and Dq ′ := ŵq ′ · ∇, we assume that

1suppψi,q′

ψ
1−(N+K+M)/Nfin
i,q ′

∣∣∣∣∣DN

(
k∏

l=1

Dαl
q ′ D

βl
t,q ′−1

)
ψi,q ′

∣∣∣∣∣
≤ �q ′(�q ′λq ′)

N (�i−5
q ′ τ−1

q ′ )
|α|M

(
|β|,Nind,t − Ncut,t, �

i+3
q ′ τ−1

q ′−1, �q ′−1T
−1
q ′−1

)
(2.15)

for 0 ≤ N + |α| + |β| ≤ Nfin. Finally, for 0 ≤ i ≤ imax(q ′), we assume the L1 bound

∥∥ψi,q ′
∥∥
1 ≤ �

−3i+Cb
q ′ where Cb = 6+ b

b − 1
. (2.16)

Lastly, we assume that local timescales dictated by velocity cutoffs at a fixed point
in space-time are decreasing in q. More precisely, for all q ′ ≤ q + n̄ − 1 and all
q ′′ ≤ q ′ − 1, we assume

ψi ′,q ′ψi ′′,q ′′ �≡ 0 �⇒ τq ′�
−i ′
q ′ ≤ τq ′′�

−i ′′−25
q ′′ . (2.17)

This will be useful when we upgrade material derivative from Dt,q ′′ to Dt,q ′ .

2.4 Inductive Bounds on the Intermittent Pressure�q

The intermittent pressure πq is designed to majorize derivatives of errors and velocity
increments pointwise. In this subsection, we introduce estimates for πq which are part
of the proof of Theorem 1.2, and establish precise relations between the intermittent
pressure and errors/velocity increments. The reader who is interested in the proof of
Theorem 1.1 should refer to [22, subsection 2.4] for a complete listing of the inductive
assumptions related to the intermittent pressure. On the other hand, the reader only
interested in the proof of Theorem 1.2 can refer to the proof of Proposition 2.13 for an
outline of how to verify the inductive assumptions from this subsection. Alternatively,
it is possible to prove Theorem 1.2 by treating the more familiar L p bounds on the
Reynolds stress in Remark 2.5 as the main inductive assumptions and ignoring the
rest of the content of this subsection. This approach is completely analogous to that
of [32], and we discuss this further in Remark 2.14.
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2.4.1 L3/2, L∞, and Pointwise Bounds for�k
q

We assume that for q ≤ k ≤ q + n̄ − 1 and N + M ≤ 2Nind, πk
q satisfies

∥∥∥ψi,k−1D
N DM

t,k−1π
k
q

∥∥∥
3/2

≤ �q�kδk+n̄�
N
k M

(
M,Nind,t, �

i
k−1τ

−1
k−1,T

−1
k−1

)
.

(2.18a)∥∥∥ψi,k−1D
N DM

t,k−1π
k
q

∥∥∥∞ ≤ �q�
C∞+1
k �N

k M
(
M,Nind,t, �

i
k−1τ

−1
k−1,T

−1
k−1

)
,

(2.18b)∣∣∣ψi,k−1D
N DM

t,k−1π
k
q

∣∣∣ ≤ �q�kπ
k
q�

N
k M

(
M,Nind,t, �

i
k−1τ

−1
k−1,T

−1
k−1

)
. (2.18c)

Throughout the paper, we shall use the phrase “pointwise estimates” to refer to bounds
on stress errors, current errors, or velocities in terms of various π ’s which resemble
(2.18c).

2.4.2 Pointwise Bounds for Errors, Velocities, and Velocity Cutoffs

We assume that we have the pointwise estimates

∣∣∣ψi,k−1D
N DM

t,k−1R
k
q

∣∣∣ < �q�
−8
k πk

q�
N
k M

(
M,Nind,t, �

i+20
k−1 τ

−1
k−1,T

−1
k−1�

10
k−1

)
,

(2.19a)∣∣∣ψi,k−1D
N DM

t,k−1ŵk

∣∣∣ < �qr
−1
k−n̄(π

k
q )

1/2�N
k M

(
M,Nind,t, �

i
k−1τ

−1
k−1,T

−1
k−1�

2
k−1

)
,

(2.19b)

where the first bound holds for q ≤ k ≤ q+ n̄−1 and N+M ≤ 2Nind, and the second
bound holds for N +M ≤ 3Nfin/2. While the main L p estimates on the Reynolds stress
will follow from the pointwise estimates in terms of the pressure (see Remark 2.5),
we are forced to assume that Rk

q has a decomposition Rk
q = Rk,l

q + Rk,∗
q , where Rk,∗

q
satisfies the stronger bound

∥∥∥DN DM
t,k−1R

k,∗
q

∥∥∥∞ ≤ �2
qT

2Nind,t
k δk+2n̄�

N
k M

(
M,Nind,t, τ

−1
k−1,T

−1
k−1

)
(2.20)

for all N + M ≤ 2Nind. The extra superscript l stands for “local,” in the sense that
Rk,l
q is a stress error over which we maintain control of the spatial support, whereas

∗ refers to non-local terms which are negligibly small. The reader can safely ignore
such non-local error terms.

Finally, we assume that for all q ≤ q ′ ≤ q + n̄ − 1,

imax∑
i=0

ψ2
i,q ′δq ′r

−2/3

q ′−n̄�
2i
q ′ ≤ 2q−q ′�q ′r

−2
q ′−n̄π

q ′
q . (2.21)

123



19 Page 14 of 271 V. Giri et al.

Combining this bound with (2.30) and (2.5) shows that for N + M ≤ 3Nfin/2,

∣∣∣DN DM
t,q∇ûq

∣∣∣ ≤ �50
q r−1

q−n̄�q(π
q
q )

1/2�n
q

(
�50
q r−1

q−n̄�q(π
q
q )

1/2
)N

.

Remark 2.4 (Velocity cutoffs, timescales, and intermittent pressure). Using the
timescale parameter τ−1

q ≈ δ
1/2
q λqr

−1/3
q−n̄ defined precisely in subsection 11.1, item (v),

we may now record the following version of (2.21) for q ′ = q;

ψi,qτ
−1
q �i

q ≤ λq�q
(
π
q
q
)1/2

r−1
q . (2.22)

Remark 2.5 (Lp estimates on Reynolds errors from pointwise estimates). The esti-
mates on Rk

q in (2.19a) and the estimates on πk
q in (2.18) imply that for q ≤ k ≤

q + n̄ − 1 and N + M ≤ 2Nind, Rk
q satisfies

∥∥∥ψi,k−1D
N DM

t,k−1R
k
q

∥∥∥
3/2

≤ �2
q�

−7
k δk+n̄�

N
k M

(
M,Nind,t, �

i+20
k−1 τ

−1
k−1,T

−1
k−1�

10
q

)
,

(2.23a)∥∥∥ψi,k−1D
N DM

t,k−1R
k
q

∥∥∥∞ ≤ �2
q�

−7
k �

C∞
k �N

k M
(
M,Nind,t, �

i+20
k−1 τ

−1
k−1,T

−1
k−1�

10
q

)
.

(2.23b)

2.5 Dodging Principle Ingredients

As discussed in the introduction, one of the crucial elements for the wavelet-inspired
scheme is dodging between velocity increments, which is elaborated upon in Hypoth-
esis 2.6. To construct a new velocity increment with such dodging, it is necessary to
keep a record of the density of previous velocity increments as stated inHypothesis 2.7.
These two hypotheses can be seen as improved and inductive versions of the “pipe
dodging” technique used in [3] or [32], and will be verified rigorously for q �→ q + 1
in [22, section 4]. We however outline the main heuristics behind the proof following
the statement of Lemma 6.2.

Hypothesis 2.6 (Effectivedodging).Forq ′, q ′′ ≤ q+n̄−1 that satisfy 0 < |q ′′−q ′| ≤
n̄ − 1, we have that5

B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
∩ B

(
supp ŵq ′′, λ

−1
q ′′ �q ′′+1

)
= ∅ . (2.24)

Hypothesis 2.7 (Density of old pipe bundles). There exists a q-independent constant
CD such that (2.25)–(2.27), which are described below, hold. Let q̄ ′, q̄ ′′ satisfy q ≤

5 Here we are considering the support of ŵq in time and space, then expanding to a ball of radius λ−1
q �q+1

in space only; see (2.6).

123



A Wavelet-Inspired L3-Based Convex Integration… Page 15 of 271 19

q̄ ′′ < q̄ ′ ≤ q + n̄ − 1, and set6

d(q̄ ′, q̄ ′′) := min
[
(λq̄ ′′�

7
q̄ ′′)

−1, (λq̄ ′−n̄/2�q̄ ′−n̄)
−1
]
. (2.25)

Let t0 ∈ R be any time and� ⊂ T
3 be a convex set of diameter at most d(q̄ ′, q̄ ′′). Let

i be such that �× {t0} ∩ suppψi,q̄ ′′ �= ∅. Let 	q̄ ′′ be the flow map such that

{
∂t	q̄ ′′ +

(̂
uq̄ ′′ · ∇

)
	q̄ ′′ = 0

	q̄ ′′(t0, x) = x .

We define �(t) = 	q̄ ′′(t)−1(�).7 Then there exists a set8 L = L(q̄ ′, q̄ ′′,�, t0) ⊆
T
3 × R such that for all t ∈ (t0 − τq̄ ′′�

−i+2
q̄ ′′ , t0 + τq̄ ′′�

−i+2
q̄ ′′ ),

(∂t + ûq̄ ′′ · ∇)1L(t, ·) ≡ 0 and supp x ŵq̄ ′(x, t) ∩�(t) ⊆ L ∩ {t} . (2.26)

Here, the first identity holds in distribution sense. Furthermore, there exists a finite
family of Lipschitz curves {� j,L}CDj=1 of length at most 2d(q̄ ′, q̄ ′′) which satisfy

L ∩ {t = t0} ⊆
CD⋃
j=1

B
(
� j,L , 3λ

−1
q̄ ′
)
. (2.27)

Remark 2.8 (Segments of deformed pipes of thickness λ−1
q̄ ′ ). We will sometimes

refer to a 3λ−1
q̄ ′ neighborhood of a Lipschitz curve of length at most 2(λq̄ ′−n̄/2�q̄ ′−n̄)

−1

as a “segment of deformed pipe” - see Definition 4.8. Since (λq̄ ′−n̄/2�q̄ ′−n̄)
−1 will be

the scale to which our high-frequency pipes will be periodized, Hypothesis 2.7 then
asserts that at each step of the iteration, our algorithm can use at most a finite number
of high-frequency pipe segments inside any single periodic cell.

2.6 Inductive Velocity Bounds

In this subsection, we present inductive L∞-bounds for velocity increments and
velocity, which are derived from the construction of velocity cutoffs. All inductive
assumptions in subsection 2.6 except for (2.46) at q �→ q + 1 will be verified in
Section 9.

6 The reasoning behind the choice of d(q̄ ′, q̄ ′′) is as follows. The set should be small enough that it can
be contained in the support of a single q̄ ′′ velocity cutoff. Since these functions oscillate at frequencies no
larger than≈ λq ′′ , the first number inside the minimum ensures that this is the case. The set should also be
no larger than the size of a periodic cell for pipes of thickness q̄ ′, which is ensured by the second number
inside the minimum.
7 For any set �′ ⊂ T

3, 	q̄ ′′ (t)−1(�′) = {x ∈ T
3 : 	q̄ ′′ (t, x) ∈ �′}. We shall also sometimes use the

notation � ◦	q̄ ′′ (t).
8 Heuristically this set is ∪t suppx ŵq̄ ′ (·, t) ∩ �(t), but in order to ensure that (∂t + ûq̄ ′′ · ∇)1L ≡ 0, L
does not include any “time cutoffs” which turn pipes on and off.
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Assume that 0 ≤ q ′ ≤ q + n̄ − 1. First, for 0 ≤ i ≤ imax, k ≥ 1, α, β ∈ N
k , we

assume that

∥∥∥∥∥
(

k∏
l=1

Dαl Dβl
t,q ′−1

)
ŵq ′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ �i+2
q ′ δ

1/2

q ′ r
−1/3

q ′−n̄(λq ′�q ′)
|α|M

(
|β|,Nind,t, �

i+3
q ′ τ−1

q ′−1, �q ′−1T
−1
q ′−1

)
(2.28)

for |α| + |β| ≤ 3Nfin/2+ 1. We also assume that for N ≥ 0,

∥∥∥∥∥DN
( k∏
l=1

Dαl
q ′ D

βl
t,q ′−1

)
ŵq ′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ (�i+2
q ′ δ

1/2

q ′ r
−1/3

q ′−n̄)
|α|+1(λq ′�q ′)

N+|α|M
(
|β|,Nind,t, �

i+3
q ′ τ−1

q ′−1, �q ′−1T
−1
q ′−1

)
(2.29a)

≤ �i+2
q ′ δ

1/2

q ′ r
−1/3

q ′−n̄(λq ′�q ′)
N (�i−5

q ′ τ−1
q ′ )

|α|M
(
|β|,Nind,t, �

i+3
q ′ τ−1

q ′−1, �q ′−1T
−1
q ′−1

)
(2.29b)

whenever N + |α| + |β| ≤ 3Nfin/2+ 1. Next, we assume

∥∥∥∥∥
(

k∏
l=1

Dαl Dβl
t,q ′

)
Dûq ′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ τ−1
q ′ �

i−4
q ′ (λq ′�q ′)

|α|M
(
|β|,Nind,t, �

i−5
q ′ τ−1

q ′ , �q ′−1T
−1
q ′−1

)
(2.30)

for |α| + |β| ≤ 3Nfin/2. In addition, we assume the lossy bounds

∥∥∥∥∥
(

k∏
l=1

Dαl Dβl
t,q ′

)
ûq ′

∥∥∥∥∥
L∞(suppψi,q′ )

≤ τ−1
q ′ �

i+2
q ′ λq ′(λq ′�q ′)

|α|M
(
|β|,Nind,t, �

i−5
q ′ τ−1

q ′ , �q ′−1T
−1
q ′−1

)
(2.31a)∥∥∥D|α|∂ |β|t ûq ′

∥∥∥
L∞

≤ �
1/2

q ′ �
|α|
q T−|β|q ′ , (2.31b)

hold, where the first bounds holds for |α| + |β| ≤ 3Nfin/2 + 1, and the second bound
holds for |α| + |β| ≤ 2Nfin.

Remark 2.9 (Upgradingmaterial derivatives).By applying LemmaA.6 and (2.29b),
we have the bound∥∥∥DN DM

t,q ′ŵq ′
∥∥∥
L∞(suppψi,q′ )
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� �i+2
q ′ δ

1/2

q ′ r
−1/3

q ′−n̄(λq ′�q ′)
NM

(
M,Nind,t, �

i−5
q ′ τ−1

q ′ , �q ′−1T
−1
q ′−1

)
(2.32)

for all N + M ≤ 3Nfin/2+ 1. Specifically, we set B = Dt,q ′−1 and A = Dq ′ , so that
A+B = Dt,q ′ . Then the estimate (2.32) follows from the aforementioned Lemma and
(11.7b). We similarly have that (2.15) and (11.15) imply that for all N + M ≤ Nfin,

1suppψi,q′

ψ
1−(N+M)/Nfin
i,q ′

∣∣∣DN DM
t,q ′ψi,q ′

∣∣∣
≤ �q ′(λq ′�q ′)

NM
(
M,Nind,t − Ncut,t, �

i−5
q ′ τ−1

q ′ , �q ′−1T
−1
q ′−1

)
� �q ′(λq ′�q ′)

NM
(
M,Nind,t, �

i−4
q ′ τ−1

q ′ , �
2
q ′−1T

−1
q ′−1

)
. (2.33)

2.7 * Inductive Assumptions for the Local Energy Inequality

In this subsection, we record several extra inductive assumptions which are only used
in the proof of Theorem 1.1, but not in the proof of Theorem 1.2. All assumptions in
this subsectionwill be verified for q �→ q+1 in the companion paper [22], andwe refer
to [22, section 2] for a presentation of these inductive assumptions which is integrated
with the rest of the inductive assumptions required for the proof of Theorem 1.1.

2.7.1 * Approximate Solution

First, we assume that the approximate solution now includes a scalar field ϕq : T
3 ×

[−τq−1, T + τq−1], which is called the current error. The current error plays the role
of the Reynolds stress in the relaxation of the local energy inequality, given by

∂t

(
1

2
|uq |2

)
+ div

((
1

2
|uq |2 + pq

)
uq

)
= (∂t + ûq · ∇)κq + div((Rq − πq Id)̂uq)

+ divϕq − E(x, t) . (2.34)

We use the notation κq = tr (Rq−πq Id)/2, and E(x, t) is given continuous function which
independent of q andwill become theDuchon-Robertmeasure of the limiting solution.
The current error ϕq has a decomposition

ϕq =
q+n̄−1∑
k=q

ϕk
q . (2.35)

Analogous to Rk
q , the portions ϕ

k
q of ϕq have spatial derivative cost λk in an effective

sense.
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2.7.2 * Bounds for Intermittent Pressure�k
q for k ≥ q + n̄

For q + n̄ ≤ k ≤ q + Npr − 1 (where Npr is defined in subsection 11.1, item ix) and
N + M ≤ 2Nind, we assume that πk

q satisfies

∥∥∥ψi,q+n̄−1D
N DM

t,q+n̄−1π
k
q

∥∥∥
3/2

≤ �q�kδk+n̄�
N
q+n̄−1M

(
M,Nind,t, �

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
(2.36a)∥∥∥ψi,q+n̄−1D

N DM
t,q+n̄−1π

k
q

∥∥∥∞
≤ �q�

C∞+1
q+n̄−1�

N
q+n̄−1M

(
M,Nind,t, �

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
, (2.36b)∣∣∣ψi,q+n̄−1D

N DM
t,q+n̄−1π

k
q

∣∣∣
≤ �qπ

k
q�

N
q+n̄−1M

(
M,Nind,t, �

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1

)
. (2.36c)

2.7.3 * Lower and Upper Bounds for�k
q

For k ≥ q, we assume that πk
q has the lower bound

πk
q ≥ δk+n̄ . (2.37)

For all q + n̄ − 1 ≤ k′ < k ≤ q + Npr − 1, we assume that πk
q has the upper bound

πk
q ≤ πk′

q . (2.38)

For all k ≥ q + Npr, we assume that

πk
q ≡ �kδk+n̄ . (2.39)

We finally assume that for all q ≤ q ′ < q ′′ < ∞,

δq ′′+n̄

δq ′+n̄
π
q ′
q < 2q

′−q ′′πq ′′
q , if q + n̄/2 ≤ q ′′ (2.40a)

δq ′′+n̄

δq ′+n̄
π
q ′
q < π

q ′′
q , otherwise . (2.40b)

This final bound says that the πk
q ’s obey a scaling lawwhich may be roughly translated

as “any πk+m
q for m > 0 can be bounded from below by an appropriately rescaled

πk
q .”
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2.7.4 * Pointwise Bounds for Current Error

We assume that we have the pointwise estimate

∣∣∣ψi,k−1D
N DM

t,k−1ϕ
k
q

∣∣∣ < �q�
−12
k (πk

q )
3
2 r−1

k �N
k M

(
M,Nind,t, �

i+20
k−1 τ

−1
k−1,T

−1
k−1�

10
k−1

)
(2.41)

for N + M ≤ Nind/4.

2.7.5 * More Dodging Hypotheses

In order to treat several current errors related to the term (Rq − πq Id)̂uq appearing in
(2.34), we require the following two additional dodging assumptions, which state that
certain velocity increments are either disjoint from pressures and stresses, or may be
controlled pointwise via already existing intermittent pressure.

* Hypothesis 2.10 (Stress dodging). For all k, q ′′ such that q ≤ q ′′ ≤ k − 1 and
q ≤ k ≤ q + n̄ − 1, we assume that

B
(
supp ŵq ′′ , λ

−1
q ′′ �q ′′+1

)
∩ supp Rk,l

q = ∅ . (2.42)

* Hypothesis 2.11 (Pressure dodging). We assume that for all q < k ≤ q + n̄ − 1,
k ≤ k′, and N + M ≤ 2Nind,∣∣∣ψi,k−1D

N DM
t,k−1

(
ŵkπ

k′
q

)∣∣∣
< �q�

−100
k

(
πk
q

)3/2
r−1
k �N

k M
(
M,Nind,t, �

i+1
k−1τ

−1
k−1, �

−1
k T−1

k

)
. (2.43a)

2.7.6 * Velocity Increment Potentials

We assume that for all q − 1 < q ′ ≤ q + n̄ − 1 and ŵq ′ as in (2.8), there exists a
velocity increment potential υ̂q ′ and an error êq ′ such that ŵq ′ can be decomposed as

ŵq ′ = divdυ̂q ′ + êq ′ , (2.44)

which written component-wise gives ŵ•
q ′ = ∂i1 · · · ∂id υ̂(•,i1,··· ,id)q ′ + ê•q ′ . Next, we

assume that υ̂q ′ and êq ′ satisfy

B

(
supp (ŵq ′′),

1

4
λq ′′�

2
q ′′

)
∩ (supp (υ̂q ′) ∪ supp (̂eq ′)

) = ∅ (2.45)

for anyq+1 ≤ q ′′ < q ′. In addition,weassume that υ̂•q ′,k := λd−k
q ′ ∂i1 · · · ∂ik υ̂(•,i1,...,id)q ′ ,

0 ≤ k ≤ d, satisfies the estimates
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∣∣∣ψi,q ′−1D
N DM

t,q ′−1υ̂q ′,k
∣∣∣

< �q�q ′
(
π
q ′
q

)1/2
r−1
q ′−n̄(λq ′�q ′)

NM
(
M,Nind,t, �

i
q ′−1τ

−1
q ′−1,T

−1
q ′−1�

2
q ′−1

)
(2.46)

for N + M ≤ 3Nfin/2. Finally, we assume that êq ′ satisfies the estimates

∥∥∥DN DM
t,q ′−1êq ′

∥∥∥∞ ≤ δ3q ′+2n̄T
5Nind,t
q ′ λ−10

q ′ (λq ′�q ′)
NM

(
M,Nind,t, τ

−1
q ′−1,T

−1
q ′−1�

2
q ′−1

)
.

(2.47)

for N + M ≤ 3Nfin/2. The velocity increment potential is used in [22, section 5.3]
to help invert the divergence on a product of a velocity increment with stresses and
intermittent pressures.

2.8 Inductive Propositions

In this section, we first introduce the inductive proposition required for Theorem 1.1,
and point out the inductive assumptions for q �→ q+1which are verified in this article.
The proof of Theorem 1.1 is contained in [22, subsection 2.7], and [22, Section 3]
includes a discussion of the portion of the proposition which is verified in this article.
Next, we present a simplified inductive proposition which is sufficient for flexibility
statements analogous to that contained in Theorem 1.2.

* Proposition 2.12 (Inductive proposition for Theorem 1.1). Fix β ∈ [1/7, 1/3), and
choose n̄ satisfying (2.1), b ∈ (1, 25/24) satisfying (2.2), T > 0, and a continuous
positive function E(x, t) ≥ 0. Then there exist parameters ε� , C∞, Npr, Ncut,t, Nind,t,
Nind, Nfin, depending only on β, b, and n̄ (see section 11.1 and subsection 2.1) such
that we can find sufficiently large a∗ = a∗(b, β, n̄, T ) such that for a ≥ a∗(b, β, n̄, T ),
the following statements hold for any q ≥ 0. Suppose that an approximate solution
(uq , pq , Rq , ϕq ,−πq) of the Euler-Reynolds system (2.7) and the relaxed local energy
identity (2.34) with dissipation measure E on the time interval [−τq−1, T + τq−1] is
given, and suppose that there exist partitions of unity {ψ6

i,q ′ }i≥0 of [−τq−1, T+τq−1]×
T
3 for q − 1 ≤ q ′ ≤ q + n̄ − 1 such that

• ψi,q ′ satisfies (2.11)–(2.17), and
• the velocity uq and the errors Rq ,ϕq , andπq may be decomposed as in (2.8)–(2.10)

and (2.35) so that (2.18)–(2.21), (2.36)–(2.41), Hypotheses 2.6–2.7 and 2.10–2.11,
(2.28)–(2.31), and (2.44)–(2.47) hold.

Then there exist a new partition of unity {ψ6
i,q+n̄}i≥0 of [−τq , T + τq ] × T

3

satisfying (2.11)–(2.17) for q ′ = q + n̄, and a new approximate solution
(uq+1, pq+1, Rq+1, ϕq+1,−πq+1) satisfying (2.7) and (2.34) on [−τq , T + τq ] with
dissipation measure E and also the following conditions. The approximate solution
may be decomposed as in (2.8)–(2.10) and (2.35) for q �→ q+1 so that (2.18)–(2.21),
(2.36)–(2.41), Hypotheses 2.6–2.7 and 2.10–2.11, (2.28)–(2.31), and (2.44)–(2.47)
hold for q �→ q + 1.
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Partial proof of Proposition 2.12 In section 6, we construct a new velocity uq+1 =
uq+ŵq+n̄ , and in section 10, we construct the associated velocity increment potential.
In section 8, we construct a stress error Rq+1 defined on T

3× [−τq , T + τq ]. Finally,
in section 9, we construct a new partition of unity {ψ6

i,q+n̄}i≥0 of T
3×[−τq , T + τq ].

From the results in the aforementioned sections, the new velocity, stress error, and
partition of unity satisfy the following conditions.

• ψi,q+n̄ satisfies (2.11)–(2.17) for q ′ = q + n̄.
• The pair (uq+1, pq , Rq+1,−(πq − π

q
q )) solves

∂t uq+1+div(uq+1 ⊗ uq+1)+∇ pq = div(−(πq − π
q
q )Id+Rq+1), divuq+1 = 0 ,

analogous to (2.7).
• The new velocity uq+1 can be decomposed as in (2.8), and the stress Rq+1 can be
decomposed as

Rq+1 =
q+n̄∑

k=q+1

R
k
q+1, R

k
q+1 = R

k,l
q+1 + R

k,∗
q+1 ,

analogous to (2.9). Furthermore, we have that (2.28)–(2.31), (2.44), (2.45), (2.47)

hold for q ′ = q + n̄, and Rk,l
q+1 := R

k,l
q+1 verifies Hypothesis 2.10 for q �→ q + 1.

• Hypotheses 2.6–2.7 hold, provided that Lemma 6.2 holds true. This lemma will
be verified in [22, section 4].

For the full proof of this proposition, we refer to [22]. In particular, [22, section 3]
recalls the set-up of the proof of the inductive proposition and contains a summary of
the specific results from this paper which the proof requires. ��

For the purpose of proving Theorem 1.2, it is enough to propagate the following
subset of the inductive assumptions.

Proposition 2.13 (Inductive proposition for Theorem 1.2). Fix β ∈ [1/7, 1/3), and
choose n̄ satisfying (2.1), b ∈ (1, 25/24) satisfying (2.2), and T > 0. There exist
parameters ε� , C∞, d, Npr, Ncut,t, Nind,t, Nind, Nfin, depending only on β, b, and n̄
(see section 11.1 and subsection 2.1) such that we can find sufficiently large a∗ =
a∗(b, β, n̄, T ) such that for a ≥ a∗(b, β, n̄, T ), the following statements hold for
any q ≥ 0. Suppose that we have an approximate solution (uq , pq , Rq ,−πq) which
satisfies the Euler-Reynolds system (2.7) on the time interval [−τq−1, T + τq−1],
and suppose there exist partitions of unity {ψ6

i,q ′ }i≥0 of T
3 × [−τq−1, T + τq−1] for

q − 1 ≤ q ′ ≤ q + n̄ − 1 such that

• ψi,q ′ satisfies (2.11)–(2.17).
• The velocity uq , the error Rq , and the intermittent pressure πq may be decomposed

as in (2.8)–(2.10) so that (2.18)–(2.21), Hypotheses 2.6 and 2.7, and (2.28)–(2.31)
hold.
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Then there exist a new partition of unity {ψ6
i,q+n̄}i≥0 of T

3×[−τq , T + τq ] satisfying
(2.11)–(2.17) for q ′ = q + n̄ and a new approximate solution (uq+1, pq+1, Rq+1,

−πq+1) satisfying (2.7) for q �→ q+1 onT
3×[−τq , T +τq ] as well as the following.

The approximate solution may be decomposed as in (2.8)–(2.10) for q �→ q + 1 so
that (2.18)–(2.21), Hypothesis 2.6 and 2.7, and (2.28)–(2.31) hold for q �→ q + 1.

Outline of the proof of Proposition 2.13 Throughout this proof, we restrict our attention
to the Euler-Reynolds system. The main components of the proof, drawing from the
rest of the article, are as follows.

• First, we construct the new premollified velocity incrementwq+1 in subsection 6.1
by setting wq+1,ϕ = 0, and hence wq+1 = wq+1,R . In the definition of wq+1,R ,
furthermore, we set Rq,i,k = −∇	(i,k)(R� − π�Id)∇	T

(i,k) in (6.8). The velocity
increment ŵq+n̄ is then defined in (6.17).

• A new partition of unity {ψ6
i,q+n̄}i≥0 is defined on T

3 × [−τq , T + τq ] as in
Definition 9.4. Then, under the restricted inductive assumptions listed in Proposi-
tion 2.13, (2.11)–(2.17), (2.28)–(2.31), and (2.8) for q �→ q + 1 are verified, by
the arguments given in section 9.

• Hypotheses 2.6– 2.7 are verified in [22, section 4], and we refer to the discussion
following the statement of Lemma 6.2 for an outline of the proof.

• Referring to Definition 8.15, we set Rq+1 = Rq+1 and define Rk
q+1, R

k,l
q+1 and

Rk,∗
q+1 in a similar fashion. Then by definition, Rq+1 satisfies the decomposi-

tion (2.9) at level q + 1 from (8.104)–(8.105). We now have from (8.3) that the
triple (uq+1, pq , Rq+1,−(πq − π

q
q )) solves

∂t uq+1+div(uq+1 ⊗ uq+1)+∇ pq = div(−(πq − π
q
q )Id+Rq+1), divuq+1 = 0 .

(2.48)

• Lastly, we define πq+1 = πq − π
q
q + σq+1 and pq+1 = pq − σq+1, where

σq+1 =∑q+n̄
k=q+n̄/2+1 σ

k
q+1 and σ

k
q+1 are defined by

σ k
q+1 = σ+

SkO
+ σ+

SkC
+ 1m=q+n̄(σ

+
SkT N

+ σ+υ )+ δq+3n̄ ,

using the pressure increments associated to stress errors which are defined in
Section 8. Combined with (2.48), this shows that (2.7) and (2.10) are satisfied at
level q + 1.

• In order to verify (2.18), we appeal to the definition of πq+1 above, the inductive
assumptions in (2.18) for πq , and Lemmas 8.4, 8.8, 8.12, and 10.4. In order to
verify (2.19a), we refer again to Lemmas 8.4, 8.8, and 8.12, while for (2.19b) we
refer to Lemma 10.4. The nonlocal estimate in (2.20) follows by the same estimate
at level q, the definition of Rq+1 above, and Lemmas 8.1, 8.6, and 8.10. Finally,
(2.21) at level q+1 follows from the same estimate at level q, the above definition
of πq+1, and Lemma 10.8. ��

Remark 2.14 (Inductive proposition without intermittent pressure). It is worth
pointing out that for the purpose of proving Theorem 1.2, we do not need to propa-
gate pointwise estimates for πk

q+1 and Rk
q+1. As in [32], it actually suffices to remove
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πq from the inductive assumptions entirely and propagate the L p-estimates given in
Remark 2.5. Upon doing so, (2.7) no longer contains πq and (2.10) and (2.18)–(2.21)
are no longer needed. Then in order to prove the iterative step, one may proceed as
follows.

• Define cutoffs for R�, analogous for those of π� in Definition 5.6, by

g2i,q(x, t) = 1+
Ncut,x∑
k=0

Ncut,t∑
m=0

δ−2
q+n̄(�q�q)

−2k(�i
qτ

−1
q )

∣∣∣DkDm
t,q R�(x, t)

∣∣∣2 ,
ωi, j,q(x, t) = γ0,q

(
�
−2 j
q gi,q(x, t)

)
, j ≥ 1 ,

ωi,0,q(x, t) = γ̃0,q

(
�
−2 j
q gi,q(x, t)

)
where γ0,q and γ̃0,q are defined as inLemma5.5. This definition is completely anal-
ogous to that of [32, (5.24)–(5.26)]. Then following the method of [3, section 6.7],
one can obtain estimates for ωi, j,q on the support of ψi,q exactly analogous to
those obtained for ω j,q in subsection 5.

• Define

Rq, j,i,k = ∇	(i,k)

(
δq+n̄�

2 j
q Id− R�

)
∇	T

(i,k) , (2.49)

substituting for the definition of Rq,i,k in (6.8). Then define the velocity increment
exactly as in (6.9)–(6.11), except choosing K = 1 in Proposition 4.1.

• At this point, no modifications are needed to the rest of the argument - only omis-
sions. Specifically, one may skip sections 7 and 10, and simply go through the
portions of sections 8 without asterisks, and all of section 9. This will suffice to
prove a reduced inductive proposition which is sufficient for the construction of
weak solutions to Euler which however do not satisfy the local energy inequality.

Remark 2.15 (Theorem 1.2 and different flavors of flexibility results). With the
above inductive proposition in hand, the proof of any flexibility result, such as that
contained in Theorem 1.2, may be carried out in a manner essentially identical to that
of [32] or [3]. Achieving a decreasing kinetic energy profile will require an inductive
assumption measuring the difference between the energy profile of uq and the desired
energy profile. This can be done in the same manner, for example, as in [4]. We refer
the reader to these references for further details.

3 Mollification and UpgradingMaterial Derivatives

In this section,we introduce suitablemollifications ofπk
q , R

k
q , κ

q
q , andϕ

q
q in preparation

of later analysis; we have opted to include the mollification of the current error ϕqq in
this section since the method of proof is identical as for the stress or pressure. The
following lemma says that themollified functions satisfy the same estimates essentially
as the unmollified ones, ignoring extra �k costs. The difference between the mollified
function and the original function, on the other hand, can be made small.
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Lemma 3.1 (Mollification and upgrading material derivative estimates). Assume
that all inductive assumptions listed in subsections 2.2-2.6 hold. Let Pq,x,t be a
space-time mollifier for which the kernel is a product of Pq,x (x), which is compactly

supported in space at scale �−1
q �

−1/2
q−1 , and Pq,t (t), which is compactly supported in

time at scale Tq−1�
1/2
q−1; we further assume that both kernels have vanishing moments

up to 10Nfin and are C10Nfin -differentiable. Define

R� = Pq,x,t R
q
q , π� = Pq,x,tπ

q
q , (3.1)

on the space-time domain [−τq−1/2, T + τq−1/2] × T
3. For q ′ such that q < q ′ ≤

q+n̄−1, we definePq ′,x,t in an analogouswayaftermaking the appropriate parameter

substitutions, and we set Rq ′
� = Pq ′,x,t R

q ′
q and πq ′

� = Pq ′,x,tπ
q ′
q . For q ′ with q + n̄ ≤

q ′ < q + Npr, we define Pq+n̄−1,x,t analogously at the spatial scale �
−1
q+n̄−1�

−1/2
q+n̄−1

and temporal scale Tq+n̄−1�
−1/2
q+n̄−1 and set π

q ′
� = Pq+n̄−1,x,tπ

q ′
q . Then the following

hold.

(i) The following relaxed equation (replacing (2.7) ) is satisfied:

∂t uq + div(uq ⊗ uq)+∇ pq

= div

⎛
⎝R� +

q+n̄−1∑
k=q+1

Rk
q −

⎛
⎝π� +

q+Npr−1∑
k=q+1

πk
q

⎞
⎠ Id

⎞
⎠

+ div
(
Rq
q − R� +

(
π� − π

q
q
)
Id
)
. (3.2)

(ii) The inductive assumptions for πq
q in (2.18) are replaced with the following

upgraded bounds for π� for all N + M ≤ Nfin:∥∥∥ψi,q D
N DM

t,qπ�

∥∥∥
3/2

� �2
qδq+n̄

(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
,

(3.3a)∥∥∥ψi,q D
N DM

t,qπ�

∥∥∥∞ � �2+C∞
q

(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
,

(3.3b)∣∣∣ψi,q D
N DM

t,qπ�

∣∣∣ � �3
qπ�

(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
. (3.3c)

While we do not replace the inductive bounds in (2.18) and (2.36) for k �= q, we
do record the following additional bounds for πk

� with q < k ≤ q + n̄ − 1 and
N + M ≤ Nfin,

∥∥∥ψi,k−1D
N DM

t,k−1π
k
�

∥∥∥
3/2

� �2
k δk+n̄

(
�k�k−1

)N M
(
M,Nind,t, �

i+2
k−1τ

−1
k−1,T

−1
k−1�k−1

)
,

(3.4a)∥∥∥ψi,k−1D
N DM

t,k−1π
k
�

∥∥∥∞ � �
2+C∞
k

(
�k�k−1

)N M
(
M,Nind,t, �

i+2
k−1τ

−1
k−1,T

−1
k−1�k−1

)
,

(3.4b)
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∣∣∣ψi,k−1D
N DM

t,k−1π
k
�

∣∣∣ ≤ 2�3
kπ

k
� (�k�k )

N M
(
M,Nind,t, �

i+3
k−1τ

−1
k−1,T

−1
k−1�

2
k−1

)
.

(3.4c)

and for πk
� with q + n̄ ≤ k < q + Npr and N + M ≤ Nfin,

∥∥∥ψi,q+n̄−1D
N DM

t,q+n̄−1π
k
�

∥∥∥
3/2

� �2
k δk+n̄

(
�q+n̄−1�q+n̄−1

)N
×M

(
M,Nind,t, �

i+2
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
,

(3.5a)∥∥∥ψi,q+n̄−1D
N DM

t,q+n̄−1π
k
�

∥∥∥∞ � �
2+C∞
q+n̄−1

(
�q+n̄−1�q+n̄−1

)N
×M

(
M,Nind,t, �

i+2
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
,

(3.5b)∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1π
k
�

∣∣∣ ≤ 2�3
kπ

k
�

(
�q+n̄−1�

2
q+n̄−1

)N
×M

(
M,Nind,t, �

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�

2
q+n̄−1

)
.

(3.5c)

The inductive assumptions (2.39) and subsection 2.3 remain unchanged. While
we do not discard the estimate in (2.37), we however record the additional esti-
mate

1

2
δq+n̄ ≤ π� ≤ 2πq

q ≤ 4π� ,
1

2
δk+n̄ ≤ πk

� ≤ 2πk
q ≤ 4πk

� . (3.6)

(iii) The inductive assumptions in (2.19a)–(2.19b) for k = q are replaced with the
following upgraded bounds for all N + M ≤ Nfin in the first two inequalities,
and N + M ≤ 3Nfin/2 in the third:

∣∣∣ψi,q D
N DM

t,q R�
∣∣∣ � �−7

q π�
(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
(3.7a)∣∣∣ψi,q D

N DM
t,qŵk

∣∣∣ � r−1
k−n̄π

1/2
�

(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
. (3.7b)

For k such that q < k ≤ q + n̄ − 1, we have for N + M ≤ Nfin the additional
bound∣∣∣ψi,k−1D

N DM
t,k−1R

k
�

∣∣∣ � �−7
q πk

� (�k�k)
N M

(
M,Nind,t, �

i+23
k−1 τ−1

k−1,T
−1
k−1�

12
k−1

)
.

(3.8)

(iv) The symmetric tensor R� − Rq
q and the pressure πq

q − π� satisfy

∥∥∥DN DM
t,q

(
π� − π

q
q
)∥∥∥∞ +

∥∥∥DN DM
t,q

(
R� − Rq

q
)∥∥∥∞

� �q+1T
4Nind,t
q+1 δ2q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q , �−1

q T−1
q

)
(3.9)
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for all N +M ≤ 2Nind. For k such that q < k ≤ q+ n̄−1 and N +M ≤ 2Nind,
we have that∥∥∥DN DM

t,k−1

(
πk
q − πk

�

)∥∥∥∞ +
∥∥∥DN DM

t,k−1

(
Rk
q − Rk

�

)∥∥∥∞
� �k+1T

4Nind,t
k+1 δ2k+3n̄(�k�k−1)

NM
(
M,Nind,t, τ

−1
k−1�k−1,T

−1
k−1�

11
k−1

)
.

(3.10)

and for k with q + n̄ ≤ k < q + Npr and N + M ≤ 2Nind,∥∥∥DN DM
t,q+n̄−1

(
πk
q − πk

�

)∥∥∥∞ � �q+n̄+1T
4Nind,t
q+n̄+1δ

2
q+4n̄(�q+n̄−1�q+n̄−1)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1�q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

(3.11)

* Lemma 3.2 (Mollification and upgradingmaterial derivative estimates).Assume
that all inductive assumptions listed in subsections 2.2–2.7 hold. LetPq,x,t andPq ′,x,t
be defined as in Lemma 3.1. Define

ϕ� = Pq,x,tϕ
q
q (3.12)

on the space-timedomain [−τq−1/2, T+τq−1/2]×T
3. Forq ′ such that q < q ′ ≤ q+n̄−1,

set ϕq
′

� = Pq ′,x,tϕ
q ′
q .

(i) The following relaxed equation (replacing (2.34)) is satisfied:

∂t

(
1

2
|uq |2

)
+ div

((
1

2
|uq |2 + pq

)
uq

)

= (∂t + ûq · ∇)κq + div

⎛
⎝
⎛
⎝R� +

q+n̄−1∑
k=q+1

Rk
q −

⎛
⎝π� +

q+Npr−1∑
k=q+1

πk
q

⎞
⎠ Id

⎞
⎠ ûq

⎞
⎠

+ div
((

Rq
q − R� + (π� − π

q
q )Id

)
ûq
)
+ div

⎛
⎝ϕ� +

q+n̄−1∑
k=q+1

ϕkq

⎞
⎠

+ div
(
ϕ
q
q − ϕ�

)
− E(t) . (3.13)

(ii) The inductive assumptions in (2.41) for k = q are replaced with the following
upgraded bounds for all N + M ≤ Nfin:

∣∣∣ψi,q D
N DM

t,qϕ�

∣∣∣ � �−11
q π

3/2
�

r−1
q
(
�q�q

)N M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q

)
. (3.14a)

The difference ϕ� − ϕ
q
q satisfies

∥∥∥DN DM
t,q

(
ϕ� − ϕ

q
q
)∥∥∥∞ ≤ δ

3/2
q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q , �−1

q T−1
q

)
(3.15)

for all N + M ≤ Nind/4.
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Proof of Lemmas 3.1 and 3.2 We first note that (3.2) and (3.13) are immediate from
(2.7), (2.34) and the definitions in (3.1). At this point, we split the proof into steps, in
which we first carry out the mollifications, and then upgrade the material derivatives.

Step 1: Mollifying the pressure πk
q.We first consider the case k = q

and apply the abstract mollification Proposition A.24 with the following choices:

p = 3/2,∞ , Ng, Nc as in (xii) , Mt = Nind,t , N∗ = 2Nind ,

Nγ = Nfin , � = suppψi,q−1 , v = ûq−1 , i = i ,

λ = �q−1 , � = �q�q−1 , � = �q−1 , τ = τq−1�q−1 , T = Tq−1,

f = π
q
q , C f ,3/2 = �2

qδq+n̄, C f ,∞ = C̃ f = �C∞+2
q Cv = �

1/2
q−1 .

First, we have that the assumptions on the parameters in (A.115a) are satisfied by
(11.16c), (11.17a),(11.21a), (11.12) and (2.13). The assumptions in (A.115b) are sat-
isfied from (11.16b), and the assumptions in (A.116) are satisfied from (2.31b). Next,
the assumptions in (A.117a) are satisfied from (2.18) (where we apply the bound
with ψi±,q−1 in order to obtain a bound for L p(suppψi,q−1)). Finally, in order to
verify (A.117b), we apply Remark A.10 with the following choices. We set p = ∞,
Nx = Nt = ∞, N∗ = 2Nind,� = T

3×R, v = −w = ûq−1, Cw = �
imax+2
q−1 δ

1/2
q−1λ

2
q−1,

λw = λ̃w = �q−1, μw = μ̃w = �−1
q−1T

−1
q−1 in (A.34), while in (A.27) and (A.28)

we set v = ûq−1, Cv = Cw, λv = λ̃v = �q−1, μv = μ̃v = �−1
q−1T

−1
q−1, f = π

q
q ,

C f = �
C∞+2
q , λ f = λ̃ f = �q , μ f = μ̃ f = T−1

q−1. Then (A.27) and (A.28) are sat-
isfied from (2.30) at level q − 1, (2.18), (2.13), and (11.12). Next, (A.34) is satisfied
from (2.31a) at level q − 1. Thus from (A.35) and (11.12), we obtain that∥∥∥DN ∂Mt π

q
q

∥∥∥∞ � �C∞+2
q �N

q T
−M
q−1 (3.16)

for N +M ≤ 2Nind, thus verifying the final assumption (A.117b) from Lemma A.24.
We first apply (A.118) to conclude that for N + M ≤ Nfin,∥∥∥ψi,q−1D

N DM
t,q−1π�

∥∥∥
3/2

� �2
qδq+n̄

(
�q�q−1

)N M
(
M,Nind,t, �

i+2
q−1τ

−1
q−1,T

−1
q−1�q−1

)
(3.17a)∥∥∥ψi,q−1D

N DM
t,q−1π�

∥∥∥∞ � �
C∞+2
q

(
�q�q−1

)N M
(
M,Nind,t, �

i+2
q−1τ

−1
q−1,T

−1
q−1�q−1

)
.

(3.17b)

Next, we have from (A.119) and (11.16a) that the difference πq
q − π� satisfies∥∥∥DN DM

t,q−1

(
π
q
q − π�

)∥∥∥∞
� �q+1T

4Nind,t
q+1 δ2q+3n̄(�q�q−1)

NM
(
M,Nind,t, τ

−1
q−1�q−1,T

−1
q−1�q−1

)
(3.18)

for N + M ≤ 2Nind. Note also that since we have a lower bound on π
q
q given by

(2.37), the above estimate implies that (after a sufficiently large choice of λ0 so that
the implicit constant is absorbed)
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π� ≥ π
q
q − δq+2n̄ ≥ 1

2
δq+n̄ ,

which is the first inequality for π� and π
q
q in (3.6). The other two inequalities there

follow similarly. Finally, we note that by (2.18c) and (3.6),

∣∣∣ψi,q−1D
N DM

t,q−1π�

∣∣∣ ≤ ∣∣∣ψi,q−1D
N DM

t,q−1π
q
q

∣∣∣+ ∣∣∣DN DM
t,q−1

(
π
q
q − π�

)∣∣∣
≤ �2

qπ
q
q�

N
q M

(
M,Nind,t, �

i
q−1τ

−1
q−1,T

−1
q−1

)
+ δ2q+3n̄(�q�q−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1�q−1

)
≤ �3

qπ�(�q�q−1)
NM

(
M,Nind,t, �

i
q−1τ

−1
q−1,T

−1
q−1�q−1

)

for N + M ≤ 2Nind. For 2Nind < N + M ≤ Nfin, we have from (3.17b) and (11.17b)
that∣∣∣DN DM

t,q−1π�

∣∣∣ ≤ δ2q+n̄(�q�
1/2
q−1�

1/2
q )NM

(
M,Nind,t, �

i+3
q−1τ

−1
q−1,T

−1
q−1�

2
q−1

)
.

In the case k �= q, we may obtain the bounds (3.4a), (3.4b), (3.5a), (3.5b), and the
second inequality of (3.6), via an argument identical to the proof of (3.3) and the first
inequality of (3.6).We additionally have the pointwise bound for q+1 ≤ k ≤ q+n̄−1
and N + M ≤ Nfin∣∣∣ψi,k−1D

N DM
t,k−1π

k
�

∣∣∣ ≤ (�3
kπ

k
q + δ2k+n̄)(�k�

1/2
k−1�

1/2
k )NM

(
M,Nind,t, �

i+3
k−1τ

−1
k−1,T

−1
k−1�

2
k−1

)
≤ 2�3

kπ
k
� (�k�

1/2
k−1�

1/2
k )NM

(
M,Nind,t, �

i+3
k−1τ

−1
k−1,T

−1
k−1�

2
k−1

)
, (3.19)

and for q + n̄ ≤ k < q + Npr and N + M ≤ Nfin∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1π
k
�

∣∣∣
≤ (�3

kπ
k
q + δ2k+n̄)(�q+n̄−1�

2
q+n̄−1)

NM
(
M,Nind,t, �

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�

2
q+n̄−1

)
≤ 2�3

kπ
k
� (�q+n̄−1�

2
q+n̄−1)

NM
(
M,Nind,t, �

i+3
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�

2
q+n̄−1

)
,

(3.20)

which again follows from a similar argument as in the proof of the corresponding
bounds for q = k and (3.6). Furthermore, we have that the difference πk

q −πk
� satisfies

(3.10) and (3.11), which follows directly from the mollification lemma and (11.16a)
with q replaced by k − 1 or q + n̄, as in the case k = q. Finally, the bounds in (3.6)
for πm

� follow similarly as before. At this point we have completed the proofs of the
required estimates in (3.4)–(3.6) and (3.10)–(3.11) for πk

� .

Step 2: Mollifying the stress and current errors. We apply
the abstract mollification Proposition A.24 with the same choices as before, except
for the stress error we choose
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f = Rk
q , q ≤ k ≤ q + n̄ − 1 , p = ∞ , C f ,∞ = �

C∞+2
k , τ = τk−1 ,

c = 20 , T = Tk−1�
−10
q .

We then have that (A.115a)–(A.115b) are satisfied as in the previous step, as is (A.116).
In order to verify (A.117a), we appeal to (2.19a) and (2.18b). In order to verify
(A.117b), we use Remark A.10 exactly as in the previous step, but with Rk

q replacing
πk
q . Thus from (A.118)–(A.119) and (11.16a), we have that for q ≤ k ≤ q + n̄ − 1

(we denote R� by Rq
� for concision here)

∣∣∣ψi,k−1D
N Dt,k−1R

k
�

∣∣∣
� �

C∞+2
k (�k�k−1)

NM
(
M,Nind,t, �

i+22
k−1 τ

−1
k−1,T

−1
k−1�

11
k−1

)
(3.21a)∣∣∣DN DM

t,k−1

(
Rk
� − Rk

q

)∣∣∣
� �k+1T

4Nind,t
k+1 δ2k+3n̄(�k�k−1)

NM
(
M,Nind,t, τ

−1
k−1,T

−1
k−1�

11
k−1

)
, (3.21b)

where the first bound holds for N + M ≤ Nfin, and the second bound holds for
N + M ≤ 2Nind. The second bound verifies (3.10) for the difference Rk

q − Rk
� .

Appealing to (2.19a), (3.21b), and (3.6), we then may write that in the case k = q,

∣∣∣ψi,q−1D
N DM

t,q−1R�
∣∣∣ ≤ ∣∣∣ψi,q−1D

N DM
t,q−1R

q
q

∣∣∣+ ∣∣∣DN DM
t,q−1

(
Rq
q − R�

)∣∣∣
≤ �−7

q π
q
q�

N
q M

(
M,Nind,t, �

i+20
q−1 τ

−1
q−1,T

−1
q−1�

11
q

)
+ δ2q+3n̄(�q�q−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1�

11
q−1

)
� �−7

q π�(�q�q−1)
NM

(
M,Nind,t, �

i
q−1τ

−1
q−1,T

−1
q−1�

11
q−1

)

for N + M ≤ 2Nind. For 2Nind < N + M ≤ Nfin, we have from (3.21a) and (11.17b)
that

∣∣∣DN DM
t,q−1R�

∣∣∣ ≤ δ2q+n̄(�q�
1/2
q−1�

1/2
q )NM

(
M,Nind,t, �

i+23
q−1 τ

−1
q−1,T

−1
q−1�

12
q−1

)
.

In the case q �= k, we have that for N + M ≤ Nfin,

∣∣∣ψi,k−1D
N DM

t,k−1R
k
�

∣∣∣
� (�−7

k πk
� + δ2k+n̄)(�k�

1/2
k−1�

1/2
k )NM

(
M,Nind,t, �

i+23
k−1 τ

−1
k−1,T

−1
k−1�

12
k−1

)
,

giving the desired bound in (3.8) after using (2.40a) again.
In the case of the current error, we again apply Proposition A.24 with the same

choices as in the first portion of this step, except we choose
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f = ϕ
q
q , C f ,∞ = �

3C∞
2 +3

q r−1
q c = 20 , T = Tq−1�

10
q , N∗ = Nind/4.

We then have that (A.115a)–(A.115b) are satisfied exactly as in the previous step, as
is (A.116). In order to verify (A.117a), we appeal to (2.41) and (2.18b). In order to
verify (A.117b), we use Remark A.10 exactly as in the first part of this step, but with
ϕ
q
q replacing Rq

q . We conclude that (A.117b) is satisfied with C̃ f = C f ,∞. Thus from
(A.118)–(A.119), we have that

∣∣∣ψi,q−1D
N Dt,q−1ϕ�

∣∣∣
� �

3C∞
2 +3

q r−1
q (�q�q−1)

NM
(
M,Nind,t, �

i+22
q−1 τ

−1
q−1,T

−1
q−1�

11
q−1

)
(3.22a)∣∣∣DN Dt,q−1

(
ϕ� − ϕ

q
q
)∣∣∣

� �q+1T
4Nind,t
q+1 δ2q+3n̄(�q�q−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1�

11
q−1

)
, (3.22b)

where the first bound holds for N + M ≤ Nfin, and the second bound holds for
N + M ≤ Nind/4. Appealing to (2.41), (3.22b), and (3.6), we then may write that

∣∣∣ψi,q−1D
N DM

t,q−1ϕ�

∣∣∣ ≤ ∣∣∣ψi,q−1D
N DM

t,q−1ϕ
q
q

∣∣∣+ ∣∣∣DN DM
t,q−1

(
ϕ
q
q − ϕ�

)∣∣∣
≤ �−11

q (π
q
q )

3/2r−1
q �N

q M
(
M,Nind,t, �

i+20
q−1 τ

−1
q−1,T

−1
q−1�

10
q

)
+ δ2q+2n̄(�q�q−1)

NM
(
M,Nind,t, τ

−1
q−1,T

−1
q−1�

11
q−1

)
� �−11

q π
3/2
�

r−1
q (�q�q−1)

NM
(
M,Nind,t, �

i+20
q−1 τ

−1
q−1,T

−1
q−1�

11
q−1

)

for N + M ≤ Nind/4. For Nind/4 < N + M ≤ Nfin, we have from (3.22a) and (11.17b)
that

∣∣∣DN DM
t,q−1ϕ�

∣∣∣ ≤ δ2q+n̄(�q�
1/2
q−1�

1/2
q )NM

(
M,Nind,t, �

i+23
q−1 τ

−1
q−1,T

−1
q−1�

12
q−1

)
.

Step 3: Upgrading material derivatives for k = q. We begin
with the pointwise bounds for π�. Combining the bounds from Step 1 with (2.17)
with q ′ = q and q ′′ = q − 1, we have that for N + M ≤ Nfin,

∣∣∣ψi,q D
N DM

t,q−1π�

∣∣∣ ≤ 2�3
qπ�

(
�q�

1/2
q−1�

1/2
q

)N M
(
M,Nind,t, τ

−1
q �i−2

q ,T−1
q−1�

2
q−1

)
.

(3.23)

We shall applyRemarkA.10 (with the adjustment inRemarkA.8 for derivative bounds)
with the following choices, at a point (t, x) ∈ int

(
suppψi,q

)
for which the neighbor-

hood �t,x ⊂ suppψi,q :
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(A.34) choices: p = ∞ , Nx = ∞ , Nt = Nind,t , N∗ = Nfin , w = ŵq ,

� = �t,x , v = ûq−1 , Cw = �i+2
q δ

1/2
q r−1/3

q−n̄ ,

λw = λ̃w = �q , μw = �i+3
q−1τ

−1
q−1 , μ̃w = �−1

q T−1
q ,

(A.27) choices: Cv = �i+2
q δ

1/2
q r−1/3

q−n̄ , λv = λ̃v = �q ,

μv = �i
qτ

−1
q , μ̃v = T−1

q �−1
q , � = �t,x ,

(A.28) choices: f = π� , C f = sup
�t,x

π� , λ f = λ̃ f = �q(�q−1�q)
1/2 , μ f = μv ,

μ̃ f = μ̃v , � = �t,x .

Thenwe have that (A.34) holds from (2.28) at level q, (A.27) holds from (2.30) at level
q, and (A.28) holds from (3.23). Taking �t,x to be arbitrary and using the continuity
of π�, we thus have from (A.35) that for N + M ≤ Nfin,

∣∣∣ψi,q D
N DM

t,qπ�

∣∣∣ � �3
qπ�

(
�q(�q−1�q)

1/2
)N M

(
M,Nind,t, τ

−1
q �i

q ,T
−1
q �−1

q

)
,

matching (3.3c). In order to obtain (3.3a) and (3.3b), we use the L3/2 and L∞ bounds
on π� shown in (3.3). Combined with Step 1, this concludes the proof of (ii).

In order to prove (3.7a), we argue in a manner very similar to the proof of (3.3c)
carried out just previously. The only difference is that from Step 2, we have the bound

∣∣∣DN Dt,q−1R�
∣∣∣��−7

q π�

(
�q(�q−1�q)

1/2
)N M

(
M,Nind,t, �

i+23
q−1 τ

−1
q−1,T

−1
q−1�

12
q−1

)
.

(3.24)

Carrying out the same steps with the obvious modifications, we deduce that (3.7a)
holds as desired. The proof of (3.14a) is again quite similar, and we omit the details.
To conclude the proof of (iii), we must show (3.7b). Following the exact same steps as
before but beginning instead with the bound (2.19b) and appealing to (3.6), we obtain
the desired estimate, concluding the proof of item (iii).

Finally, wemust upgrade the material derivatives to Dt,q on the differences in order
to conclude the proofs of (3.9)–(3.15) from item (iv). Arguing in a similar fashion
as in the first part of this step but applying Remark A.10 to the differences, choosing

Cw = μw = μ̃w = Cv = μv = μ̃v = T−1
q+1 and using the extra prefactors from T

4Nind,t
q+1

to absorb the lossy material derivative cost yields the desired estimates in (3.9)–(3.15).
��
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4 Intermittent Mikado Bundles and Synthetic Littlewood-Paley
Decompositions

In this section, we recall the geometric lemmas which enact the cubic and quadratic
cancellations and the basic definitions of intermittent Mikado flows in subsection 4.1.
Then in subsection 4.2, we introduce intermittent Mikado bundles. Finally, in subsec-
tion 4.3, we introduce the synthetic Littlewood-Paley decomposition.

4.1 Definition of Intermittent Mikado Flows and Basic Properties

We shall require the following lemmas regarding decompositions of symmetric pos-
itive definite tensor fields. Typically such lemmas are stated and applied for tensors
in a neighborhood of the identity. Since it will be convenient for us to decompose
tensors for which some rescaling of the original tensors belongs to a neighborhood of
the identity, and later estimates (see Lemma 6.5) will depend on the rescaling factor,
we include a slightly altered statement with full proof.

Proposition 4.1 (Geometric lemma I). Let � ⊂ Q
3 ∩ S

2 denote the set{
3/5ei ± 4/5e j

}
1≤i< j≤3. Then there exists ε > 0 such that every symmetric 2-tensor in

B(Id, ε) can be written as a unique, positive linear combination of ξ ⊗ ξ for ξ ∈ �.
Furthermore, for a given large number K > 1, let CK denote the set

CK :=
⋃

1≤k≤K

B(kId, kε) , (4.1)

which we note is contained in the set of positive definite, symmetric 2-tensors for ε
sufficiently small. Then there exist functions γξ,K for ξ ∈ � such that every element
R ∈ CK can also be written as a unique, positive linear combination

R =
∑
ξ∈�

(
γξ,K (R)

)2
ξ ⊗ ξ . (4.2)

Additionally, we have that for all 1 ≤ N ≤ 3Nfin,

1 �
∣∣γξ,K ∣∣ � K 1/2,

∣∣∣DNγξ,K

∣∣∣ � 1 , on CK (4.3)

where the implicit constants above depend on � and Nfin but not K .

Proof By direct computation, we have that the identity matrix can be written as a
strictly positive linear combination of ξ ⊗ ξ for ξ ∈ �, and that the set of simple
tensors {ξ⊗ξ}ξ∈� is linearly independent in the set of symmetric matrices. Therefore,
there exists ε < 1 and linear functions (γξ )2 for ξ ∈ � such that for all R ∈ B(Id, ε),

R =
∑
ξ∈�

γ 2
ξ (R)ξ ⊗ ξ ,
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and there exist implicit constants depending only on � such that for all R ∈ B(Id, ε),

1 � γξ (R) � 1 ,
∣∣∣D[γ 2

ξ (R)]
∣∣∣ � 1 , DN [γ 2

ξ (R)] ≡ 0 ∀N ≥ 2 . (4.4)

Now let K be given. We define γξ,K : CK → R by

γ 2
ξ,K (R) := γ 2

ξ (R) = kγ 2
ξ

(
R

k

)
. (4.5)

In the last identity, 1 ≤ k ≤ K is chosen to satisfy R/k ∈ B(Id, ε) (cf. (4.1)), and the
identity holds because of linearity of (γξ )2. Then, we have

∑
ξ∈�

γ 2
ξ,K (R)ξ ⊗ ξ =

∑
ξ∈�

γ 2
ξ

(
R

k

)
kξ ⊗ ξ = R ,

and (4.2) is satisfied. Also, we have that for all R ∈ CK ,

1 � γξ,K (R) � K 1/2 ,

∣∣∣D[γ 2
ξ,K (R)]

∣∣∣ � 1 , DN [γ 2
ξ,K (R)] ≡ 0 ∀N ≥ 2 ,

where the implicit constants are those from (4.4) and depend only on �. We immedi-
ately deduce from the lower bound for γξ,K (R) that

∣∣Dγξ,K (R)∣∣ ≤
∣∣∣D[γ 2

ξ,K (R)]
∣∣∣∣∣γξ,K (R)∣∣ � 1 .

Now for N ≥ 1, we may write that

2γξ,K (R)D
N+1γξ,K (R) = DN+1

(
γ 2
ξ,K (R)

)
+

∑
0<N ′<N+1

cN ,N ′DN ′ (
γξ,K (R)

)
DN+1−N ′ (

γξ,K (R)
)
.

Assuming by induction that |DN ′′
γξ,K (R)| � 1 for 1 ≤ N ′′ ≤ N , we use the lower

bound for γξ,K (R) to divide both sides by γξ,K (R) and deduce that |DN+1γξ,K (R)| �
1, concluding the proof of (4.3). ��

We now recall [11, Lemma 3.3].

* Proposition 4.2 (Geometric lemma II). Let {ξ1, ξ2, ξ3, ξ4} ⊂ Z
3 be a set of nonzero

vectors satisfying

{ξ1, ξ2, ξ3} is an orthogonal basis of R
3 and ξ4 := −(ξ1 + ξ2 + ξ3).
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Fix C0 > 0 and let BC0 := {φ ∈ R
3 : |φ| ≤ C0}. Then, there exist positive functions

{γ̃ξi }4i=1 ⊂ C∞(BC0) such that for each φ ∈ BC0 , we have

φ = 1

2

4∑
i=1

(γ̃ξi (φ))
3ξi .

In particular, the set {e1, 2e2, 2e3,−(e1 + 2e2 + 2e3)} satisfies the assumption. We
denote the set of their normalized vectors by�′ := {e1, e2, e3,−1/3(e1+2e2+2e3)} ⊂
Q

3 ∩ S
2, and with slight abuse of the notation we redefine γ̃ξ to have

2φ =
∑
ξ∈�′

(γ̃ξ (φ))
3ξ . (4.6)

Definition 4.3 For any ξ ∈ � ∪ �′, we choose ξ ′, ξ ′′ ∈ Q
3 ∩ S

2 such that {ξ, ξ ′, ξ ′′}
is an orthonormal basis of R

3. We then denote by n∗ the least positive integer such
that n∗ξ, n∗ξ ′n∗ξ ′′ ∈ Z

3 for all ξ ∈ � ∪�′.

We now recall [3, Proposition 4.3], which details the choices for shifts enjoyed by
a function with sparse support. In our setting, such functions will be pipe densities, or
equivalently the densities associated to their potentials.

Proposition 4.4 (Rotating, Shifting, and Periodizing). Fix ξ ∈ � (or ∈ �′), where
� is as in Proposition 4.1 (or as in Proposition 4.2). Let r−1, λ ∈ N be given such that
λr ∈ N. Let κ : R

2 → R be a smooth function with support contained inside a ball
of radius 1/4. Then for k ∈ {0, ..., r−1 − 1}2, there exist functions κ

k
λ,r ,ξ : R

3 → R

defined in terms of κ, satisfying the following additional properties:

(1) We have that κk
λ,r ,ξ is simultaneously

(
T
3

λr

)
-periodic and

(
T
3
ξ

λrn∗

)
-periodic. Here,

by T
3
ξ we refer to a rotation of the standard torus such that T

3
ξ has a face perpen-

dicular to ξ .

(2) Let Fξ be one of the two faces of the cube
T
3
ξ

λrn∗ which is perpendicular to ξ . Let

Gλ,r ⊂ Fξ ∩ 2πQ
3 be the grid consisting of r−2-many points spaced evenly at

distance 2π(λn∗)−1 on Fξ and containing the origin. Then each grid point gk for
k ∈ {0, ..., r−1 − 1}2 satisfies

(
suppκ

k
λ,r ,ξ ∩ Fξ

)
⊂ {x : |x − gk | ≤ 2π (4λn∗)−1}. (4.7)

(3) The support of κ
k
λ,r ,ξ is a pipe (cylinder) centered around a

(
T
3

λr

)
-periodic and(

T
3
ξ

λrn∗

)
-periodic line parallel to ξ , which passes through the point gk. The radius

of the cylinder’s cross-section is as in (4.7).
(4) We have that ξ · ∇κ

k
λ,r ,ξ = 0.

(5) For k �= k′, suppκ
k
λ,r ,ξ ∩ suppκ

k′
λ,r ,ξ = ∅.
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We now state a slightly modified version of [3, Proposition 4.4] or equivalently [32,
Proposition 3.3], which rigorously constructs the L2-normalized intermittent pipe
flows and enumerates the necessary properties.

Proposition 4.5 (Intermittent pipe flows for Reynolds corrector). Fix a vector ξ
belonging to the set of rational vectors� ⊂ Q

3∩S
2 from Proposition 4.1, r−1, λ ∈ N

with λr ∈ N, and large integersNfin andD. There exist vector fieldsWk
ξ,λ,r : T

3 → R
3

for k ∈ {0, ..., r−1 − 1}2 and implicit constants depending on Nfin and D but not on λ
or r such that:

(1) There exists� : R
2 → Rgiven by the iterated divergence divDϑ =: � of a pairwise

symmetric tensor potentialϑ : R
2 → Rwith compact support in a ball of radius 1

4
such that the following holds. Let �kξ,λ,r andϑ

k
ξ,λ,r be defined as in Proposition 4.4,

in terms of � and ϑ (instead of κ). Then there exists Uk
ξ,λ,r : T

3 → R
3 such that

if {ξ, ξ ′, ξ ′′} ⊂ Q
3 ∩ S

2 form an orthonormal basis of R
3 with ξ × ξ ′ = ξ ′′, then

we have9

Ukξ,λ,r = −1

3
ξ ′ λ−Dξ ′′ · ∇

(
divD−2

(
ϑk
ξ,λ,r

))i i
︸ ︷︷ ︸

=:ϕ′′kξ,λ,r

+1

3
ξ ′′ λ−Dξ ′ · ∇

(
divD−2

(
ϑk
ξ,λ,r

))i i
︸ ︷︷ ︸

=:ϕ′kξ,λ,r

,

(4.8)
and thus

curlUk
ξ,λ,r = ξλ−DdivD

(
ϑk
ξ,λ,r

)
= ξ�kξ,λ,r =: Wk

ξ,λ,r , (4.9)

and
ξ · ∇ϑξ,λ,r = (ξ · ∇)Wk

ξ,λ,r = (ξ · ∇)Uk
ξ,λ,r = 0 . (4.10)

(2) The sets of functions {Uk
ξ,λ,r }k , {�kξ,λ,r }k , {ϑk

ξ,λ,r }k , and {Wk
ξ,λ,r }k satisfy items 1–5

in Proposition 4.4.
(3) Wk

ξ,λ,r is a stationary, pressureless solution to the Euler equations.

(4) −
ˆ
T3

Wk
ξ,λ,r ⊗Wk

ξ,λ,r = ξ ⊗ ξ .

(5) −
ˆ
T3
|Wk

ξ,λ,r |2Wk
ξ,λ,r = −

ˆ
T3
(�kξ,λ,r )

2Uk
ξ,λ,r =

ˆ
T3
�kξ,λ,rUk

ξ,λ,r = 0 .

(6) For all n ≤ 3Nfin,

∥∥∥∇nϑk
ξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p−1

)
,

∥∥∥∇n�kξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p−1

)
(4.11)

and

∥∥∥∇nUk
ξ,λ,r

∥∥∥
L p(T3)

� λn−1r

(
2
p−1

)
,

∥∥∥∇nWk
ξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p−1

)
. (4.12)

9 The double index i i indicates that divD−2
(
ϑk
ξ,λ,r

)
is a 2-tensor, and we are summing over the diagonal

components. The factor of 1/3 appears because each component on the diagonal of this 3 × 3 matrix is
�−1�kξ,λ,r . The formula then follows from the identity curl curl = −� for divergence-free vector fields.
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(7) We have that suppϑk
ξ,λ,r ⊆ B

(
supp�ξ,λ,r , 2λ−1

)
.

(8) Let 	 : T
3 × [0, T ] → T

3 be the periodic solution to the transport equation

∂t	+ v · ∇	 = 0 , 	|t=t0 = x , (4.13)

with a smooth, divergence-free, periodic velocity field v. Then

∇	−1 ·
(
Wk

ξ,λ,r ◦	
)
= curl

(
∇	T ·

(
Uk
ξ,λ,r ◦	

))
. (4.14)

(9) For any convolution kernel K , 	 as in (4.13), A = (∇	)−1, and for i = 1, 2, 3,

[
∇ ·
(
A K ∗

(
Wk

ξ,λ,r ⊗Wk
ξ,λ,r

)
(	)AT

)]
i

= A j
mK ∗

(
(Wk

ξ,λ,r )
m(Wk

ξ,λ,r )
l(	)

)
∂ j A

i
l

= A j
mξ

mξ l∂ j A
i
l K ∗

((
�kξ,λ,r

)2
(	)

)
. (4.15)

In the above display, k indicates the choice of placement, i is the component of
the vector field on either side of the equality, and m, l, and j are repeated indices
over which summation is implicitly encoded.

Proof The only small changes relative to the cited Propositions are as follows. First,
we write the pipe density � as the iterated divergence of a pairwise symmetric vector
potential divDϑ = � to match the form required for our inverse divergence operator
(cf. Proposition A.13). By “pairwise symmetric,” we mean that permuting the 2n − 1
and 2n components for 1 ≤ n ≤ D/2 leaves ϑ unchanged. Since one can always rewrite
the identity � f = g as ∂i∂ jδi j f = g, it is easy to convert the equality �D/2ϑ̃ = �

into divDϑ = � where ϑ is a pairwise symmetric tensor (see (4.35)).
Second, (5) is new. We will show that the second and third integrals vanish for any

radial pipe density, while the first vanishes by choosing a suitable radial pipe density
to have

´
T3(�

k
ξ,λ,r )

3dx = 0. In order to compute the second and third integrands, we
shall assume that ξ = e3 and leave the case for general ξ ∈ �,�′ to the reader. Since
Ue3,λ,r is mean-zero and divergence free, it can be written as the curl of a radial scalar
potential V(r) according to the formula

Ue3,λ,r = (−∂yVe3,λ,r , ∂xVe3,λ,r , 0) .

Writing out the above expression in axial coordinates (x, y, z) �→ (R, θ, z) centered
around the axis of a single cylinder of the pipe, we have

Ue3,λ,r (R) = (− sin(θ)V′e3,λ,r (R), cos(θ)V′e3,λ,r (R), 0) .
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Then since

ˆ z2

z1

ˆ 2π

0

ˆ R2

R1

sin(θ) f (R) dR dθ dz =
ˆ z2

z1

ˆ 2π

0

ˆ R2

R1

cos(θ) f (R) dR dθ dz

for any R1, R2, z1, z2 and radial function f (R), and both the second and third integrals
from (5) can be written in this form, we see that the second and third integrals vanish
as desired.

Finally, (7) is new, but it follows immediately from definitions and (4.7). ��

We shall require a set of intermittent pipe flows which possess nearly the same
properties as above, but which are however normalized in L3, and have non-vanishing
cubic mean.

* Proposition 4.6 (Intermittent pipe flows for current corrector). Fix a vector ξ
belonging to the set of rational vectors �′ ⊂ Z

3 from Proposition 4.2. The statement
is same as in Proposition 4.5, but item 4 is not imposed, and items 5–6 are replaced
by

(5) −
ˆ
T3
|Wk

ξ,λ,r |2Wk
ξ,λ,r = |ξ |2ξ , −

ˆ
T3
(�kξ,λ,r )

2Uk
ξ,λ,r = −

ˆ
T3
�kξ,λ,rUk

ξ,λ,r = 0.

(6) For all n ≤ 3Nfin,

∥∥∥∇nϑk
ξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p− 2

3

)
,

∥∥∥∇n�kξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p− 2

3

)
(4.16)

and

∥∥∥∇nUk
ξ,λ,r

∥∥∥
L p(T3)

� λn−1r

(
2
p− 2

3

)
,

∥∥∥∇nWk
ξ,λ,r

∥∥∥
L p(T3)

� λnr

(
2
p− 2

3

)
.

(4.17)

Proof The differences in (6) relative to (6) from the preceding proposition are simply
a result of the L3 normalization and require no further justification. In order to ensure
(5), it remains to show that one can construct a radial pipe density �ξ,λ,r which has
non-vanishing cubic mean and is the iterated Laplacian of a scalar potential, and
then convert the scalar potential to a pairwise symmetric tensor potential. As the
latter task has already been carried out in the previous proposition, we can focus
on the former. One can start with a smooth function f : (1/2, 1) → R for which´ 2π
0 ( f (D))3(x) dx �= 0, and then define F(r) = f (λ1r + λ2), where λ1 and λ2 are

chosen to ensure that to leading order,�
D/2
r F ≈ λD1 f (D)(λ1r + λ2). Then periodizing

concludes the proof. ��

In order to control the geometry of pipes which are deformed by a velocity field on
a local Lipschitz timescale, we recall [32, Lemma 3.7].
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Lemma 4.7 (Control on Axes, Support, and Spacing). Consider a convex neighbor-
hood of space � ⊂ T

3. Let v be an incompressible velocity field, and define the flow
X(x, t) and inverse 	(x, t) = X−1(x, t), which solves

∂t	+ v · ∇	 = 0 , 	|t=t0 = x .

Define �(t) := {x ∈ T
3 : 	(x, t) ∈ �} = X(�, t). For an arbitrary C > 0, let

τ > 0 be a timescale parameter and � > 3 a large multiplicative prefactor such that
the vector field v satisfies the Lipschitz bound

sup
t∈[t0−τ,t0+τ ]

‖∇v(·, t)‖L∞(�(t)) � τ−1�−2 .

LetWk
ξ,λ,r : T

3 → R
3 be a set of straight pipe flows constructed as in Proposition 4.4,

Proposition 4.5, and Proposition 4.6 which are (T/λr)3-periodic and concentrated
around axes {Ai }i∈I oriented in the vector direction ξ for ξ ∈ �,�′, passing through
the grid-points in item 2 of Proposition 4.4. Then W := Wk

ξ,λ,r (	(x, t)) : �(t) ×
[t0 − τ, t0 + τ ] satisfies the following conditions:

(1) We have the inequality

diam(�(t)) ≤
(
1+ �−1

)
diam(�) . (4.18)

(2) If x and y with x �= y belong to a particular axis Ai ⊂ �, then

X(x, t)− X(y, t)

|X(x, t)− X(y, t)| =
x − y

|x − y| + δi (x, y, t) (4.19)

where |δi (x, y, t)| < �−1.
(3) Let x and y belong to Ai ∩ � for some i , where the axes Ai are defined above.

Denote the length of the axis Ai (t) := X(Ai ∩ �, t) in between X(x, t) and
X(y, t) by L(x, y, t). Then

L(x, y, t) ≤
(
1+ �−1

)
|x − y| . (4.20)

(4) The support ofW is contained in a
(
1+ �−1

)
2π(4n∗λ)−1-neighborhood of the

set ⋃
i

Ai (t) . (4.21)

(5) W is “approximately periodic” in the sense that for distinct axes Ai , A j with
i �= j , we have

(
1− �−1

)
dist (Ai ∩�, A j ∩�) ≤ dist

(
Ai (t), A j (t)

)
≤ (1+ �−1

)
dist (Ai ∩�, A j ∩�) . (4.22)
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A consequence of Lemma 4.7 is that a set of (T/λr)3-periodic intermittent pipe
flows which are flowed by a locally Lipschitz vector field on the Lipschitz timescale
can be decomposed into “segments of deformed pipe” in the sense of Remark 2.8.
Furthermore, any neighborhood of diameter≈ (λr)−1 contains at most a finite number
of such segments of deformed pipe.

Definition 4.8 (Segments of deformed pipes). A single “segment of deformed pipe
with thickness λ−1 and spacing (λr)−1” is defined as a 3λ−1 neighborhood of a
Lipschitz curve of length at most 2(λr)−1.

4.2 Intermittent Mikado Bundles

In the continuous scheme, the building block flows are intermittent Mikado bundles,
which are bundles of pipes carefully designed to dodge previously placed intermittent
Mikado bundles. To give the idea, suppose that intermittentMikado bundles comprised
of deformed pipes of thickness λ−1

q+1, · · · λ−1
q+n̄ are given in a rectangular prism �0 of

particular dimensions. If certain conditions are satisfied with respect to the spacing of
the new bundles and the dimensions of the prism �0, we can successfully place new
bundles of thickness λ−1

q+n̄ that dodge all given bundles. Furthermore, the pipes in each

new bundles will be placed to be at least at a distance λ−1
q+i�q+i away from a given

deformed pipe of thickness λ−1
q+i . We call this additional property effective dodging,

and it will play a crucial role throughout our scheme.
The key observation is that the intermittency alone need not dictate the spacing

of the pipes in a bundle. For example, consider a set of pipes of thickness λ−1
q+n̄ and

spacing λ−1
q+n̄/2 restricted to the support of a set of a small number of pipes of thickness

and spacing λ−1
q+1. An intermittent Mikado bundle is precisely such an object; a low

frequency, small number of nearly homogeneous pipes on which high frequency, large
numbers of intermittent pipes live. We call the nearly homogeneous pipes bundling
pipes.

Proposition 4.9 (“Bundling” pipe flows ρk
ξ, forReynolds and current correctors).

Fix a vector ξ belonging to either of the sets of rational vectors fromPropositions 4.1 or
4.2. Then for k ∈ {1, . . . , �6

q}, there exist master scalar functions ρξ,k and subsidiary

bundling pipe flows ρk
ξ,R := ρ3

ξ,k for Reynolds correctors and ρk
ξ,ϕ := ρ2

ξ,k for current
correctors satisfying the following.

(i) ρk
ξ, is

(
T/λq+1�

−4
q

)3
-periodic and satisfies ξ · ∇ρk

ξ, ≡ 0, where either  = R or
 = ϕ.

(ii) The set of functions {ρk
ξ, }k satisfies the conclusions of Proposition 4.4 with

r−1 = �3
q , λ = λq+1�

−1
q . In particular, suppρk

ξ, ∩ suppρk′
ξ, = ∅ for k �= k′,

and there are �6
q disjoint choices of placement.

(iii)
ˆ
T3

ρ6
ξ,k = 1.
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(iv) For all n ≤ 3Nfin and p ∈ [1,∞],
∥∥∥∇nρk

ξ,R

∥∥∥
L p(T3)

�
(
�−1
q λq+1

)n
�
−3
(
2
p−1

)
q ,

∥∥∥∇nρk
ξ,ϕ

∥∥∥
L p(T3)

�
(
�−1
q λq+1

)n
�
−3
(
2
p− 2

3

)
q . (4.23)

Proof The proof is a straightforward adaptation of the proofs of Propositions 4.5 or
4.6 after construction of an L6 normalized master function ρξ,k which satisfies the
shift and support properties from Proposition 4.4. We omit further details. ��

Now we further divide the support of the bundling pipes using the following
anisotropic cutoffs and assign different pipes on the support of different cutoffs. We
remark that these cutoffs have the same dimensions as the analogous objects in [32,
Definition 5.17] and correspond to a length just larger than the scale to which the pipes
have been periodizied, which is (λq+n̄rq)−1.

Definition 4.10 (Strongly anisotropic cutoffs). To each ξ ∈ �, we associate a parti-
tion of the orthogonal space ξ⊥ ∈ T

3 into a grid10 of squares of sidelength ≈ λ−1
q+n̄/2.

We index the squares S in this partition by Iξ which we will also denote by simply I .
To this grid, we associate a partition of unity ζ I

ξ , i.e.,

ζ I
ξ =

{
1 on 3

4SI

0 outside 5
4SI

,
∑
I

(ζ I
ξ )

6 = 1 , (4.24)

which in addition satisfies (ξ · ∇)ζ ξ = 0 and
∥∥∥∇N ζ I

ξ

∥∥∥∞ � λNq+n̄/2 for all N ≤ 3Nfin

and all I , where the implicit constants depend only on �.

Remark 4.11 We note that the number of grid squares of sidelength λ−1
q+n̄/2 partitioning

the orthogonal space ξ⊥ ⊂ T
3 is � λ2q+n̄/2. Consequently, we bound the cardinality

of the index set I as

|{I ∈ S}| � λ2q+n̄/2 .

We now introduce intermittent pipe bundles. These objects are multi-scale and
consist of nearly homogeneous bundling pipes at scale λ−1

q+1, upon which various
intermittent pipes are placed on the support of the strongly anisotropic cutoffs.

Definition 4.12 (Intermittent pipe bundles).We define intermittent pipe bundles by

Bξ,R = ρξ,R

∑
I

(ζ I
ξ )

3
W

I
ξ,R and Bξ,ϕ = ρξ,ϕ

∑
I

(ζ I
ξ )

2
W

I
ξ,ϕ.

10 We refer to the grid used in Proposition 4.4, as any periodicity issues have been avoided there.
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where ρξ, = ρm
ξ, defined as in Proposition 4.9 for some m = mξ, and W

I
ξ, :=

Wm′
ξ,λq+n̄ ,λq+n̄/2�q/λq+n̄

, constructed as in Propositions 4.5 or 4.6, for some m′ = m′
ξ, ,I .

We use  as a stand-in for either R or ϕ in order to streamline notation.

Remark 4.13 (Choice of the placement). The placements m and m′ will be chosen to
have effective dodging with deformed pipes of thickness λ−1

q+1, · · · , λ−1
q+n̄/2 and that of

thickness λ−1
q+n̄/2+1, · · · , λ−1

q+n̄ , respectively. The requisite properties of these pipes are
contained in Hypothesis 2.7. The specifics of the placement procedure are contained
in [22, section 4]; see also the discussion following Lemma 6.2.

Remark 4.14 (Notational conventions). We shall frequently denote the intermittent
pipe bundles defined above as follows:

B(ξ), = ρ (ξ)
∑
I

ζ
I , 
ξ W

I
(ξ), . (4.25)

The meaning of this notation is as follows:

(i) We assign a different intermittent Mikado bundle (where the difference is in
terms of the placement mentioned in Remark 4.13) to each mildly anisotropic
checkerboard cutoff function ζq, ,i,k,ξ,"l defined in Definition 5.13. Therefore,
the choice of placements m for the bundling pipes will depend on all the indices
for ζq, ,i,k,ξ,"l , as well as the index j for the pressure cutoffs defined in Def-
inition 5.6. We will suppress these indices most of the time and simply write
(ξ) in parentheses, where the parentheses is a stand-in for the omitted indices
q, i, k, "l, j . As a result, the bundling pipe has dependence on (ξ), , and so does
the intermittent Mikado bundle.

(ii) The subscript “ ” inB(ξ), will be equal to either ϕ or R, corresponding to veloc-
ity increments designed to correct current errors or stress errors, respectively.

(iii) We abbreviate the bundling pipes ρ(ξ), by ρ (ξ). We write the  in the exponent
to emphasize that the only difference between  = ϕ and  = R is the power of
the scalar function ρξ,k used to define them.

(iv) We abbreviate the very anisotropic cutoff functions by ζ
I , 
ξ . We do not write ξ in

parentheses, since ζ
I , 
ξ does not depend on anything besides the vector direction

ξ and the index I used to index the partition of unity. Also, the only difference
between  = ϕ and  = R is the power, so we write  in the exponent.

(v) We write W
I
(ξ), for the following reasons: first, the pipe flow depends on more

indices than just ξ , so we write (ξ) to denote the omitted indices; we include the
index I to emphasize that the placement of the intermittent pipe flow depends
not just on the omitted indices in (ξ), but on the index I as well. Finally, we leave
 in the subscript since the difference between W

I
(ξ),R and W

I
(ξ),ϕ is more than

just a power; the former has vanishing cubic mean, while the latter does not. We
note that the placement of W

I
(ξ), will depend on (ξ), , I .
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4.3 Synthetic Littlewood-Paley Decomposition

When we estimate material derivatives of oscillation stress errors, we need dodging
in order to estimate the application of the differential operator

(̂
uk−1 − ûq

) · ∇ to the
error; this operator appears in the material derivative estimates of the error term. To
ensure that the error term enjoys a spatial support property even though it is defined
using an inverse divergence operator and a frequency projection operator, we intro-
duce a synthetic Littlewood-Paley projector P̃(λ1,λ2]. This operator is defined using
convolution with a compactly supported kernel, and thus behaves like the original
projection operator P(λ1,λ2] in estimates but allows control on the spatial support of
the output.

Definition 4.15 (Synthetic Littlewood-Paley projector). Let ϕ̄ ∈ C∞
c (R) satisfy

supp (ϕ̄) ⊂ (−1/
√
2, 1/

√
2) ,

ˆ
R

ϕ̄ds = 1 ,
ˆ
R

sn ϕ̄ds = 0

for n = 1, . . . , 10Nfin. Define ϕ̄λ(·) = λϕ̄(λ·), and set ϕλ(x) = ϕ̄λ(x1)ϕ̄λ(x2). For
f ∈ C∞(T2), we define the synthetic Littlewood-Paley projectors by

P̃λ f (x) :=
ˆ
R2

ϕλ(y) f (x − y)dy , P̃(λ1,λ2] f := (̃Pλ2 − P̃λ1) f , (4.26)

where in the convolution we consider f as a periodic function defined on R
2.

From the definition, it is easy to see that supp (ϕλ2 − ϕλ1) ⊆ supp (ϕλ1) and hence
supp (̃P(λ1,λ2] f ) ⊂ B(supp ( f ), λ−1

1 ). With a bit of care, this property persists even
after inverting the divergence.

Lemma 4.16 (Inverse divergence with spatial support property). For given f ∈
C∞(T2) and D ≥ 1,11 there exists a symmetric tensor field�λ1,λ2

f : T
2 → R

(2D) such
that

P̃(λ1,λ2]( f ) = P̃(λ1,λ2]( f − 〈 f 〉) =
(
λ−1
1 div

)(D)
�
λ1,λ2
f , supp

(
�
λ1,λ2
f

)
⊂ B(supp ( f ), λ−1

1 ) .

(4.27)

Proof By a simple computation, we have

ϕλ2(x)− ϕλ1(x) = (ϕ̄λ2(x1)− ϕ̄λ1(x1))ϕ̄λ2(x2)+ ϕ̄λ1(x1)(ϕ̄λ2(x2)− ϕ̄λ1(x2)) .
(4.28)

Now define g0(z) = ϕ̄λ2(z) − ϕ̄λ1(z). We first construct a function gD(z) : R → R

with zero mean such that upon differentiating D many times,

g(D)D = g0 , supp (gD) ⊂ (−(√2λ1)
−1, (

√
2λ1)

−1) .

11 The value of this number will be specified using the parameter d from item (xvi).
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The construction follows from applying the following claim iteratively: if gi ∈ C∞
c (R)

for some i ∈ {0, . . . ,D− 1} satisfies ´ sngids = 0 for all n = 0, · · · ,D− i , then we
can find gi+1 such that

g′i+1 = gi , supp (gi+1) ⊂ (−(√2λ1)
−1, (

√
2λ1)

−1) ,ˆ
R

sngi+1ds = 0 for n = 0, . . . ,D− i − 1 .

Assuming the claim, then g0 satisfies
´
R
sng0(s)ds = 0 for n = 0, · · · ,D, so we can

find gD with zero-mean such that

g(D)D = g(D−1)
D−1 = · · · = g0 , supp (gD) ⊂ (−(√2λ1)

−1, (
√
2λ1)

−1) .

To prove the claim, we define gi+1 by gi+1(t) :=
´ t
−a gids, where a is chosen so that

supp (gi ) ⊂ (−a, a). Since gi has zero-mean, we can easily see that supp (gi+1) ⊂
(−a, a), and gi+1(a) = gi+1(−a) = 0. Using the latter, the vanishing moment
condition follows from

ˆ
R

sngi+1ds = 1

n + 1

ˆ a

−a
(sn+1)′gi+1ds = − 1

n + 1

ˆ a

−a
sn+1gids = 0 .

Now, we set θ(1,...,1)1 (x1, x2) = gD(x1)ϕ̄λ2(x2), and otherwise θ
(i1,...,iD)
1 is zero, and

θ
(2,...,2)
2 (x1, x2) = ϕ̄λ1(x1)gD(x2), and otherwise θ(i1,...,iD)2 is zero. Then

∂i1···iDθ
(i1,··· ,iD)
1 = g0(x1)ϕ̄λ2(x2) , supp (θ(i1,··· ,iD)1 ) ⊂ B(0, λ−1

1 )

∂i1···iDθ
(i1,··· ,iD)
2 = ϕ̄λ1(x1)g0(x2) , supp (θ(i1,··· ,iD)2 ) ⊂ B(0, λ−1

1 ) . (4.29)

Lastly, we define the desired tensor function �λ1,λ2
f by

(�
λ1,λ2
f )(i1,...,iD)(x1, x2) := � ∗ f (x1, x2) := λD1 [(θ1 + θ2)

(i1,··· ,iD)] ∗ f (x1, x2) ,

(4.30)

which by (4.28) and direct computation satisfies
(
λ−1
1 div

)(D)
�
λ1,λ2
f = P̃(λ1,λ2] f . The

desired spatial support property follows from (4.30) and (4.29). We note that since
ϕλ2 − ϕλ1 has zero mean, P̃(λ1,λ2]〈 f 〉 = 0. ��

With the previous Lemma in hand, we aim to apply various synthetic Littlewood-
Paley projectors to smooth functions (such as squared pipe densities) and derive
estimates for the projected function, and its “inverse divergence potentials.” We shall
generally decompose a smooth, (T/λr)3-periodic function ρ which has derivative cost
λ as a sum of the form

P̃λ0(ρ)+
(

K∑
k=1

P̃(λk−1,λk ](ρ)
)
+ (Id− P̃λK

)
(ρ) , (4.31)
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whereλ0 is slightly larger thanλr , andλK is slightly larger thanλ. The terms in the sum
are precisely of the form to which the previous lemma applies, and we estimate these
in Lemma 4.18. The bottom and top shells which correspond to the two terms not in the
summand are slightly unique cases; for these we record the following Lemma. Note
that spatial localization is not relevant for these unique cases, as the lowest shell will
have no spatial localization properties at all, and the highest shell will be vanishingly
small.

Lemma 4.17 (Inverse divergence, special cases). Fix q ∈ [1,∞]. Let N a positive
integer, N∗∗ ≤ N/2 a positive integer, r , λ such that λr , λ ∈ N, and ρ : (T/λr)2 → R a
smooth function such that there exists a constant Cρ,q with

∥∥∥DNρ

∥∥∥
Lq (T2)

� Cρ,qλN . (4.32)

for N ≤ N. Let λ0, λK be given with λr < λ0 < λ < λK . If the kernel ϕ used in
Definition 4.15 has N∗∗ vanishing moments, then for p ∈ [q,∞] we have that

∥∥∥DN (̃
Pλ0ρ

)∥∥∥
L p

� Cρ,q
(
λ0

λr

)2/q−2/p

λN0 ∀N ≤ N , (4.33a)

∥∥∥DN ((Id− P̃λK

)
ρ
)∥∥∥

L∞
�
(

λ

λK

)N∗∗
Cρ,qλN+3 ∀N ≤ N− N∗∗ − 3 . (4.33b)

Furthermore, for any chosen positive even integer D and any small positive number α,
there exist adjacent-pairwise symmetric12 rank-D tensor potentials ϑ0 and ϑK such
that for 0 ≤ k ≤ D and N in the same range as above,

divDϑ0 = P̃λ0P�=0ρ ,

∥∥∥DNdivkϑ0
∥∥∥
L p

� λα0Cρ,q
(
λ0

λr

)2/q−2/p

(λr)k−DM (N ,D− k, λr , λ0) , (4.34a)

divDϑK = (Id− P̃λK )ρ ,

∥∥∥DNdivkϑK

∥∥∥
L∞

�
(

λ

λK

)N∗∗
Cρ,qλ3(λr)k−DM (N ,D− k, λr , λ) . (4.34b)

The implicit constants above depend on α but do not depend on λ, λ0, λK , or r .

Proof For the proof of (4.33a),wefirst define F(x) = (̃Pλrρ)(x/λr) to be the 1-periodic
rescaling of P̃λrρ. Then we can write that

sup
x∈T2

∣∣∣DN (̃
Pλrρ

)∣∣∣ (x) = (λr)N sup
x∈T2

∣∣∣DN F
∣∣∣ (x)

12 By “adjacent-pairwise symmetric,” we mean that permuting the 2n− 1 and 2n components for 1 ≤ n ≤
D/2 leaves ϑ unchanged.
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= (λr)N sup
x∈T2

∣∣∣∣DN
x

ˆ
R2

ρ(x/λr − y)ϕλ0(y) dy

∣∣∣∣
= (λr)N sup

x∈T2

∣∣∣∣DN
x

ˆ
R2

ρ

(
x − z

λr

)
ϕλ0

λr
(z) dz

∣∣∣∣
= (λr)N sup

x∈T2

∣∣∣∣
ˆ
R2

ρ

(
x − z

λr

)
(DN

z ϕλ0
λr
)(z) dz

∣∣∣∣
� (λr)N

(
λ0

λr

)N (
λ0

λr

)2/q

Cρ,q = λN0

(
λ0

λr

)2/q

Cρ,q

for all N , and in particular for all N ≤ N. This proves (4.33a) for p = ∞, and the full
estimate follows from interpolation with the trivial Lq estimate. To prove the second
estimate, we use the vanishing moments condition to expand ρ as a Taylor series and
eliminate the first N∗∗ − 1 terms; in particular, we have that

∣∣∣DN ((Id− P̃λK

)
ρ
)∣∣∣ (x)

=
∣∣∣∣∣∣
ˆ
R2

ϕλK (x − y)

⎛
⎝ ∑
|β|=N∗∗

|β|(y − x)β

β!
ˆ 1

0
(1− η)N∗∗−1DβDNρ(x + η(y − x)) , dη

⎞
⎠ dy

∣∣∣∣∣∣
�
∥∥∥DN+N∗∗�

∥∥∥
L∞ (λK )

−N∗∗

�
(

λ

λK

)N∗∗
λN+3Cρ,q .

The above computation holds for N + N∗∗ + 3 ≤ N, concluding the proof of the
second estimate.

To prove the estimates for the tensor potentials, for k = 0, K we first define

ϑ
i1i2...iD−1iD
0 = δi1i2 · · · δiD−1iD�− D

2 P̃λ0P�=0ρ , (4.35a)

ϑ
i1i2...iD−1iD
K = δi1i2 · · · δiD−1iD(Id− P̃λK )�

− D
2 P�=0ρ (4.35b)

where δ jl is the usual Kronecker delta. Then by direct computation and standard
Littlewood-Paley analysis, (4.34a) and (4.34b) hold. The α loss in the first estimate is
due to the failure of the Calderon-Zygmund inequality in endpoint cases. ��

We now move to the middle cases from (4.31), for which the spatial localization
will be important.

Lemma 4.18 (General localized inverse divergence). Fix q ∈ [1,∞]. Let ρ : T
2 →

R be a smooth function which is (T/λr)2-periodic and for N ≤ 2Nfin satisfies

∥∥∥DNρ

∥∥∥
Lq (T2)

� Cρ,qλN . (4.36)
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For λr < λ1 < λ2, define�
λ1,λ2
ρ using Lemma 4.16. Then for p ∈ [q,∞], 0 ≤ k ≤ D,

0 < α � 1, and N ≤ Nfin, we have

(
λ−1
1 div

)(D)
�
λ1,λ2
ρ = P̃(λ1,λ2](ρ) = P̃(λ1,λ2](ρ − 〈ρ〉) (4.37a)

∥∥∥DN ∂i1···iD−k (λ
−D
1 �

λ1,λ2
ρ )(i1,··· ,iD)

∥∥∥
L p(T2)

�D,α Cρ,q
(
min (λ, λ2)

λr

) 2
q − 2

p+α
λ−k
1 min (λ, λ2)

N ,

(4.37b)

supp (�
λ1,λ2
ρ ) ⊂ B(supp (ρ), λ−1

1 ) . (4.37c)

The implicit constants above depend on α but do not depend on λ, λ1, λ2, or r .

Proof The spatial property immediately follows from Lemma 4.16. To obtain L p-
norm estimates, we will obtain Lq and L∞ norm estimates and then interpolate them.
We first rescale by setting

ρ̃(·) = ρ
( ·
λr

)
, λ̃1 = λ1

λr
, λ̃2 = λ2

λr
, λ̃ = λ

λr
= r−1 , (4.38)

so that ρ̃ is T
2 periodic and satisfies

∥∥∥DN ρ̃

∥∥∥
Lq (T2)

� Cρ,q λ̃N .

Constructing θ1 and θ2 as in the previous lemma but for the choices in (4.38), we have

∂D−k
1 θ

(1,...,1)
1 (x1, x2) = gk(x1)ϕ̄̃λ2(x2) , ∂D−k

2 θ
(2,...,2)
2 (x1, x2) = ϕ̄̃λ1(x1)gk(x2) .

By direction computation, i.e. simply integrating a difference of mollifiers, we have
that g̃k satisfies∥∥∥DNgk

∥∥∥
L1(R)

�D λ̃−k
1 M (

N , k − 1, λ̃1, λ̃2
)
,∥∥∥DNgk

∥∥∥
L∞(R)

�D λ̃1−k
1 M (

N , k − 1, λ̃1, λ̃2
)
, k ≥ 1 ,∥∥∥DNg0

∥∥∥
L1(R)

�D λ̃N2 ,

∥∥∥DNg0
∥∥∥
L∞(R)

�D λ̃N+1
2 .

Then we have the bounds∥∥∥DN ∂D−k
1 θ

(1,...,1)
1

∥∥∥
L1(R2)

�D λ̃N2 λ̃
−k
1 ,

∥∥∥DN ∂D−k
1 θ

(1,...,1)
1

∥∥∥
L∞(R2)

�D λ̃N+2
2 λ̃−k

1 ,∥∥∥DN ∂D−k
2 θ

(2,...,2)
2

∥∥∥
L1(R2)

�D λ̃N2 λ̃
−k
1 ,

∥∥∥DN ∂D−k
2 θ

(2,...,2)
2

∥∥∥
L∞(R2)

�D λ̃N+1
2 λ̃−k+1

1 .

Thus it follows by interpolation for 1/q ′ = 1− 1/q that∥∥∥DN ∂D−k
1 θ

(1,...,1)
1

∥∥∥
Lq′ (R2)

�D λ̃
N+2/q
2 λ̃−k

1 ,

∥∥∥DN ∂D−k
2 θ

(2,...,2)
2

∥∥∥
Lq′ (R2)

�D λ̃
N+1/q
2 λ̃−k+1

1 .
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We therefore have that for k = 0, . . . ,D,

∥∥∥DN ∂i1···iD−k (�
λ̃1 ,̃λ2
ρ̃ )(i1,··· ,iD)

∥∥∥
Lq (T2)

� λ̃D−k
1 min

(̃
λ, λ̃2

)N Cρ,q∥∥∥DN ∂i1···iD−k (�
λ̃1 ,̃λ2
ρ̃ )(i1,··· ,iD)

∥∥∥
L∞(T2)

�D λ̃D−k
1 min

(̃
λ, λ̃2

)N+2/q+α Cρ,q ,

where if λ̃2 ≤ λ̃, we let the derivatives fall on θi , and if λ̃2 > λ̃, we let the derivatives
fall on ρ̃. Using the interpolation inequality, we obtain

∥∥∥DN ∂i1···iD−k (�
λ̃1 ,̃λ2
ρ̃ )(i1,··· ,iD)

∥∥∥
L p(T2)

�D λ̃D−k
1 min(̃λ, λ̃2)

N+2/q−2/p+αCρ,q .

Undoing our original rescaling, we find that

∥∥∥DN ∂i1···iD−k (�
λ1,λ2
ρ )(i1,··· ,iD)

∥∥∥
L p(T2)

�D (λr)N+D−k
∥∥∥DN

[
∂i1···iD−k (�

λ̃1 ,̃λ2
ρ̃ )(i1,··· ,iD)

]∥∥∥
L p(T2)

≤
(
min(λ, λ2)

λr

) 2
q− 2

p+α
Cρ,qλD−k

1 min(λ, λ2)
N .

��

5 Non-inductive Cutoffs

In this section, we introduce all the non-inductive cutoffs which will be required
throughout the proof. First, we introduce a collection of time cutoffs in subsection 5.1.
Then in subsection 5.2, we can estimate flow maps related to the flow of ∇ûq ′ for
q ′ ≤ q + n̄ − 1 on the support of time and velocity cutoffs. Then in subsection 5.3,
we introduce the intermittent pressure cutoffs for π�. Subsection 5.4 contains the
definitions and estimates for the mildly and strongly anistropic checkerboard cutoffs,
whose properties are put to use in the discussion following Lemma 6.2. Finally, in
subsection 5.5, we introduce the cumulative cutoff functions given as a product of all
previously defined types of cutoffs. The last subsection of this section then contains a
number of “cutoff aggregation lemmas” which allow us to turn estimates in localized
regions of space-time into global pointwise and L p bounds.

5.1 Time Cutoffs

Letχ : (−1, 1) → [0, 1]be aC∞ functionwhich induces a partitionof unity according
to

∑
k∈Z

χ6(· − k) ≡ 1 . (5.1)
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Consider the translated and rescaled function

χ
(
2tτ−1

q �i+2
q − k

)
,

which is supported in the set of times t satisfying∣∣∣t − 1/2τq�
−i−2
q k

∣∣∣ ≤ 1/2τq�
−i−2
q ⇐⇒ t ∈

[
(k − 1)1/2τq�

−i−2
q , (k + 1)1/2τq�

−i−2
q

]
.

(5.2)
We then define temporal cut-off functions

χi,k,q(t) = χ
(
2tτ−1

q �i+2
q − k

)
. (5.3)

It is then clear that

|∂mt χi,k,q | � (�i+2
q τ−1

q )m (5.4)

for m ≥ 0 and
χi,k1,q(t)χi,k2,q(t) = 0 (5.5)

for all t ∈ R unless |k1 − k2| ≤ 1. In analogy to ψi±,q , we define

χi,k±,q(t) :=
(
χ6
i,k−1,q(t)+ χ6

i,k,q(t)+ χ6
i,k+1,q(t)

) 1
6
, (5.6)

which are cutoffs with the property that

χi,k±,q ≡ 1 on supp (χi,k,q) . (5.7)

Next, we define the cutoffs χ̃i,k,q by

χ̃i,k,q(t) = χ
(
tτ−1

q �i
q − k�−2

q

)
. (5.8)

For comparison with (5.2), we have that χ̃i,k,q is supported in the set of times t
satisfying ∣∣∣t − τq�

−i−2
q k

∣∣∣ ≤ τq�
−i
q . (5.9)

Let (i, k) and (i∗, k∗) be such that suppχi,k,q ∩ suppχi∗,k∗,q �= ∅ and i∗ ∈ {i −
1, i, i + 1}. Then as a consequence of these definitions and a sufficiently large choice
of λ0,

suppχi,k,q ⊂ supp χ̃i∗,k∗,q . (5.10)

5.2 Estimates on FlowMaps

Wecan nowmake estimates regarding the flows of the vector field ûq ′ for q ′ ≤ q+n̄−1
on the support of a velocity and time cutoff function. This section is completely
analogous to [3, Section 6.4], and we omit the proofs.
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Lemma 5.1 (Lagrangian paths don’t jump many supports). Let q ′ ≤ q + n̄ − 1
and (x0, t0) be given. Assume that the index i is such that ψ2

i,q ′(x0, t0) ≥ κ2, where

κ ∈ [ 1
16 , 1

]
. Then the forward flow (X(t), t) := (X(x0, t0; t), t) of the velocity field

ûq ′ originating at (x0, t0) has the property thatψ2
i,q ′(X(t), t) ≥ κ2/2 for all t such that

|t − t0| ≤ τq ′�
−i+4
q ′ .

We note thatψi,q ′ for q ′ ≤ q+ n̄−1 are given inductively. The proof of the lemma
uses their properties recorded in subsection 2.3 only.

Corollary 5.2 (Backwards Lagrangian paths don’t jumpmany supports). Suppose
(x0, t0) is such that ψ2

i,q ′(x0, t0) ≥ κ2, where κ ∈ [1/16, 1]. For |t − t0| ≤ τq ′�
−i+3
q ′ ,

define x to satisfy
x0 = X(x, t; t0) .

That is, the forward flow X of the velocity field ûq ′ , originating at x at time t, reaches
the point x0 at time t0. Then we have

ψi,q ′(x, t) �= 0 .

Definition 5.3 (Flow maps). We define 	i,k,q ′(x, t) = 	(i,k)(x, t) to be the flows
induced by ûq ′ with initial datum at time kτq ′�−i−2

q given by the identity, i.e.

{
(∂t + ûq ′ · ∇)	i,k,q ′ = 0
	i,k,q ′(x, kτq ′�

−i−2
q ′ ) = x .

(5.11)

We will use D	(i,k) to denote the gradient of 	(i,k) (which is a thus matrix-valued

function). The inverse of the matrix D	(i,k) is denoted by
(
D	(i,k)

)−1, in contrast to
D	−1

(i,k), which is the gradient of the inverse map 	−1
(i,k).

Corollary 5.4 (Deformation bounds). For k ∈ Z, 0 ≤ i ≤ imax, q ′ ≤ q + n̄ − 1,
and 2 ≤ N ≤ 3Nfin/2 + 1, we have the following bounds on the support of
ψi,q ′(x, t)χ̃i,k,q ′(t).

∥∥D	(i,k) − Id
∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

� �−1
q ′ (5.12a)∥∥∥DN	(i,k)

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

� �−1
q ′ (λq ′�q ′)

N−1 (5.12b)∥∥∥(D	(i,k))
−1 − Id

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

� �−1
q ′ (5.12c)∥∥∥DN−1

(
(D	(i,k))

−1
)∥∥∥

L∞(supp (ψi,q′ χ̃i,k,q′ ))
� �−1

q ′ (λq ′�q ′)
N−1 (5.12d)∥∥∥DN	−1

(i,k)

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

� �−1
q ′ (λq ′�q ′)

N−1 (5.12e)
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Furthermore, we have the following bounds for 1 ≤ N+M ≤ 3Nfin/2 and 0 ≤ N ′ ≤ N:

∥∥∥DN−N ′
DM
t,q ′D

N ′+1	(i,k)

∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≤ (λq ′�q ′)
NM

(
M,Nind,t, �

i
q ′τ

−1
q ′ ,T

−1
q ′−1�q ′−1

)
(5.13a)∥∥∥DN−N ′

DM
t,q ′D

N ′
(D	(i,k))

−1
∥∥∥
L∞(supp (ψi,q′ χ̃i,k,q′ ))

≤ (λq ′�q ′)
NM

(
M,Nind,t, �

i
q ′τ

−1
q ′ ,T

−1
q ′−1�q ′−1

)
. (5.13b)

5.3 Intermittent Pressure Cutoffs

In this section, we introduce cutoff functions for the level sets of π�. Estimates for π�
are provided by (3.3a)–(3.3c).

5.3.1 Definition of the Intermittent Pressure Cutoffs

We first introduce a partition of unity which is slightly more general than is needed
at the moment; however, the generality will prove useful in the construction of the
velocity cutoffs. The statement is almost identical to [3, Lemma 6.2]. The only slight
difference is that (5.14) holds for the sixth power (the least common multiple of two
and three, corresponding to cubic and quadratic error terms, respectively), and the
estimates in (5) hold for arbitrary integer powers of the cutoff functions. The more
general bounds follow from the fact that since the cutoff functions are defined by
gluing together exponential functions, raising to a power is (locally) equivalent to
dilation.

Lemma 5.5 For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, there exist smooth cutoff functions
γ̃m,q , γm,q : [0,∞) → [0, 1] which satisfy the following.

(1) The function γ̃m,q satisfies 1[0, 14�2(m+1)
q ] ≤ γ̃m,q ≤ 1[0,�2(m+1)

q ].
(2) The function γm,q satisfies 1[1, 14�2(m+1)

q ] ≤ γm,q ≤ 1[ 14 ,�2(m+1)
q ].

(3) For all y ≥ 0, a partition of unity is formed as

γ̃ 6
m,q(y)+

∑
i≥1

γ 6
m,q

(
�−2i(m+1)
q y

) = 1 . (5.14)

(4) γ̃m,q and γm,q(�
−2i(m+1)
q ·) satisfy

supp γ̃m,q(·) ∩ suppγm,q
(
�−2i(m+1)
q ·) = ∅ if i ≥ 2,

suppγm,q
(
�−2i(m+1)
q ·) ∩ suppγm,q

(
�−2i ′(m+1)
q ·) = ∅ if |i − i ′| ≥ 2 . (5.15)
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(5) For 0 ≤ N ≤ Nfin, when 0 ≤ y < �
2(m+1)
q we have

|DN γ̃m,q(y)| � (γ̃m,q(y))
1−N/Nfin�−2N (m+1)

q . (5.16)

For 1
4 < y < 1 we have

|DNγm,q(y)| � (γm,q(y))
1−N/Nfin , (5.17)

while for 1
4�

2(m+1)
q < y < �

2(m+1)
q we have

|DNγm,q(y)| � �−2N (m+1)
q (γm,q(y))

1−N/Nfin . (5.18)

In each of the above inequalities, the implicit constants depend on N but not m
or q. If γm,q or γ̃m,q is replaced on the left hand side with γ

p
m,q , respectively γ̃

p
m,q

for p ∈ N, then a similar inequality holds after substituting the same power on
the right-hand side and changing implicit constants.

We now introduce the intermittent pressure cut-off functions.

Definition 5.6 (Intermittent pressure cutoff functions). For j ≥ 1 the cut-off func-
tions are defined by

ω j,q(x, t) = γ0

(
�
−2 j
q (δq+n̄)

−1π�(x, t)
)
, (5.19)

while for j = 0 we let

ω0,q(x, t) = γ̃0

(
(δq+n̄)

−1π�(x, t)
)
, (5.20)

where γ0 := γ0,q and γ̃0 := γ̃0,q .

An immediate consequence of (5.14) with m = 0 is that {ω6
j,q} j≥0 satisfies

∑
j≥0

ω6
j,q = 1 , ω j,qω j ′,q ≡ 0 if | j − j ′| > 1 (5.21)

on T
3 × R.

5.3.2 Estimates for Intermittent Pressure Cutoffs

Lemma 5.7 (Simple derivative bounds). For all m + k ≤ Nfin and j ≥ 0, we have
that

1supp (ω j,qψi,q )|DkDm
t,qπ�(x, t)| ≤ �

2 j+6
q δq+n̄(�q�q)

kM
(
m,Nind,t, �

i
qτ

−1
q ,T−1

q

)
,

(5.22a)
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1/4δq+n̄�
2 j
q ≤ 1supp (ω j,q )π� (5.22b)

1/8
∑
j

ω j,qδq+n̄�
2 j
q ≤ π� , (5.22c)

1supp (ω j,qψi,q )|DkDm
t,q R�(x, t)| ≤ �

2 j−4
q δq+n̄(�q�q)

kM
(
m,Nind,t, �

i
qτ

−1
q ,T−1

q

)
.

(5.22d)

Proof First, observe that by the construction of ω j,q , we have that for all j ≥ 0,

1supp (ω j,q )|π�| = 1supp (ω j,q )π� ≤ �
2( j+1)
q δq+n̄ . (5.23)

Then, recalling the pointwise estimate (3.3c) and using (5.23), we have that

1supp (ω j,q )|ψi,q D
k Dm

t,qπ�(x, t)| � 1supp (ω j,q )�
3
qπ�(�q�q )

kM
(
m,Nind,t, �

i
qτ

−1
q ,T−1

q

)
≤ �

2( j+3)
q δq+n̄(�q�q )

kM
(
m,Nind,t, �

i
qτ

−1
q ,T−1

q

)
.

To obtain the lower bounds on π� on the support of ω j,q , we appeal to (3.6) in the case
j = 0 and the definition of ω j,q in the case j ≥ 1. Summing over j and appealing to
(5.21) yields (5.22c). Next, we can obtain the pointwise estimates (5.22d) for Rq

q in
a similar way by using (3.7a). Finally, we obtain (5.22c) from (3.6), the definition of
ω j,q for j ≥ 0. ��
Corollary 5.8 (Higher derivative bounds). For q ≥ 0, 0 ≤ i ≤ imax, and α, β ∈ N

k
0

with |α| + |β| ≤ Nfin, we have

∥∥∥∥∥
(

k∏
�=1

Dα�Dβ�
t,q

)
π�

∥∥∥∥∥
L∞(supp (ψi,qω j,q ))

� �
2 j+6
q δq+n̄(�q�q)

|α|M
(
|β|,Nind,t, �

i
qτ

−1
q ,T−1

q

)
(5.24a)∥∥∥∥∥

(
k∏

�=1

Dα�Dβ�
t,q

)
R�

∥∥∥∥∥
L∞(supp (ψi,qω j,q ))

� �
2 j−4
q δq+n̄(�q�q)

|α|M
(
|β|,Nind,t, �

i
qτ

−1
q ,T−1

q

)
. (5.24b)

Proof of Corollary 5.8 We only work on the estimate for π� because the estimates for
Rq
q can be obtained in a completely analogous way from Lemma 5.7 and Lemma A.7,

Remark A.8. We then apply Lemma A.7 with v = ûq , f = π�, � = suppψi,q ∩
suppω j,q , and p = ∞. In view of estimate (2.30) at level q, the assumption (A.27)
holds with Cv = τ−1

q �i
q�

−1
q , λv = λ̃v = �q , Nx = ∞, μv = �i

qτ
−1
q , μ̃v = �−1

q T−1
q ,

and Nt = Nind,t. On the other hand, the bound (5.22a) implies assumption (A.28) with
C f = �

2 j+6
q+1 δq+n̄ , λ f = λ̃ f = �q�q , μ f = �i

qτ
−1
q , μ̃ f = T−1

q , and Nt = Nind,t. We
then deduce from the bound (A.31) that (5.24a) holds, thereby concluding the proof.

��
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* Lemma 5.9 (Current error estimates). For all m + k ≤ Nfin and j ≥ 0, we have
that

1supp (ω j,qψi,q )|DkDm
t,qϕ�(x, t)| ≤ �

3 j−7
q δ

3
2
q+n̄r

−1
q (�q�q )

kM
(
m,Nind,t, �

i
qτ

−1
q ,T−1

q

)
.

(5.25)
For q ≥ 0, 0 ≤ i ≤ imax, and α, β ∈ N

k
0 with |α| + |β| ≤ Nfin, we have

∥∥∥(∏k
�=1 D

α�Dβ�
t,q

)
ϕ�

∥∥∥
L∞(supp (ψi,qω j,q ))

� �
3 j−7
q δ

3
2
q+n̄r

−1
q (�q�q)

|α|M
(
|β|,Nind,t, �

i
qτ

−1
q ,T−1

q

)
. (5.26)

Proof Theproof is completely analagous to the proofs of Lemma5.7 andCorollary 5.8,
and we omit the details. ��
Lemma 5.10 (Maximal j index). Fix q ≥ 0. There exists a jmax = jmax(q) ≥ 1,
determined by the formula

jmax = inf

{
j : 1

4
�
2 j
q δq+n̄ ≥ �3+C∞

q

}
(5.27)

and which is bounded independently of q, such that

ω j,q ≡ 0 for all j > jmax . (5.28)

Moreover, we have the bound

�
2 jmax
q ≤ δ−1

q+n̄�
C∞+6
q . (5.29)

Proof of Lemma 5.10 The proof of (5.28) follows immediately from the definition in
(5.27), the bound (5.22a), and the bound (3.3b), where the extra factor of �q absorbs
the implicit constant in (3.3b). Checking that jmax is independent of q is a simple
calculation, as is the bound in (5.29). ��
Lemma 5.11 (Derivative bounds). For q ≥ 0, 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, and
N + M ≤ Nfin, we have

1suppψi,q |DN DM
t,qω j,q |

ω
1−(N+M)/Nfin
j,q

� (�5
q�q)

NM
(
M,Nind,t, �

i+4
q τ−1

q ,T−1
q

)
. (5.30)

Proof of Lemma 5.11 We shall apply the mixed-derivative Fa’a di Bruno formula
from [3, Lemma A.5] with the following choices, where we use the parameter names
from there:

ψ = γ0 or γ̃0 , �ψ = �q , v = ûq ,
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� = δ
1/2
q+n̄�

− j
q , λ = λ̃ = �q�q , μ = τ−1

q �i
q , μ̃ = T−1

q ,

Nx = ∞ , Nt = Nind,t , h = π� , Ch = δq+n̄�
2 j+6
q .

The assumption [3,A.24] is verified due to (5.16)–(5.18), and [3, (A.25)] is verified due
to (5.24a), which holds on the support ofω j,qψi,q . From conclusion [3, (A.26)] and the
equality (�ψ�)−2Ch = �4

q , we find that (5.30) holds; note that for the N = M = 0
case, we just use the fact that ω j,q ≤ 1 rather than incur the loss Ch�−2 from [3,
(A.26)]. ��
Lemma 5.12 (Support bounds). For any r ≥ 3/2 and 0 ≤ j ≤ jmax, we have that

∥∥ω j,q
∥∥
Lr � �

3(1− j)
r

q . (5.31)

Proof of Lemma 5.12 We prove only the case r = 3/2, at which point the remaining
estimates follow from Lebesgue interpolation and the fact that ω j,q ≤ 1 for all j, q.
For j = 0, 1 the estimate is trivial from the pointwise bound for ω j,q , and so we
consider now j ≥ 2. Using Chebyshev’s inequality, (3.3a), and (5.22b), we have that

∥∥ω j,q
∥∥3/2
3/2

≤ sup
t∈R

ˆ
T3

1{π�(t,·)≥1/4δq+n̄�
2 j
q }dx �

‖π�‖3/23/2

δ
3/2
q+n̄�

3 j
q

� �
3(1− j)
q .

��

5.4 Mildly and Strongly Anisotropic Checkerboard Cutoffs

We first construct mildly anisotropic checkerboard cutoff functions which are well-
suited for intermittent pipe flows with axes parallel to e1. The construction for general
ξ ∈ � follows by rotation. We include all the details since the power for which the
partition is summable to 1 is absolutely crucial for the definition of the perturbation
in (6.8) and its estimates in Lemma 6.5, and the Reynolds oscillation errors in subsec-
tions 8.2. These summability properties are also crucial in the estimates for the current
oscillation errors in [22, section 5.2].
Step 1: Partitioning the space perpendicular to x1.Consider
a partition of T

2
x2,x3 into the squares defined using the periodized base square

{
(x2, x3) ∈ T

2 : 0 ≤ x2, x3 ≤ π

8
�5
q

(
λq+1

)−1
}

(5.32)

and its periodized translations by

(
l2 · π/8 · �5

q(λq+1)
−1, l3 · π/8 · �5

q(λq+1)
−1)

for
l2, l3 ∈ {0, . . . , 16�−5

q λq+1 − 1} .
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Note that the periodized squares evenly partition [−π, π ]2. We let l⊥ := (l2, l3) be
an ordered pair using the indices defined above, and choose {Xq,e1,l⊥}l⊥ to be a C∞
partition of unity adapted to these periodized squares such that

∑
l⊥

X2
q,e1,l⊥(x2, x3) ≡ 1, ∀(x2, x3) ∈ T

2
x2,x3 ,

Xq,e1,l⊥Xq,e1 ,̃l⊥ ≡ 0 if |l2 − l̃2| > 1 |l3 − l̃3| > 1 , (5.33a)

suppXq,e1,l⊥0
= [−1/8�5

qλ
−1
q+1,

5/8�5
qλ

−1
q+1]2 for l⊥0 = (0, 0) . (5.33b)

We shall later need that 〈∑
l⊥

χ3
q,e1,l⊥(x2, x3)

〉
= c3 , (5.34)

where the constant c3 is geometric and bounded independently of q.
Step 2: Partitioning the space parallel to x1. Next, consider
a partition of Tx1 into the line segments defined using the base line segment

{
x1 ∈ T : 0 ≤ x1 ≤ π

8
λ−1
q �−8

q

}
(5.35)

and its translations by

l · 1/2 · λ−1
q �−8

q , l ∈ {0, . . . , 16λ−1
q �−8

q − 1} .

Note that the segments evenly partition [−π, π ]. Choose {Xq,e1,l}l to be aC∞ partition
of unity adapted to these segments such that for N ≤ 3Nfin,

∑
l

X6
q,e1,l(x1) ≡ 1 ∀(x1) ∈ Tx1 ,

Xq,e1,lXq,e1 ,̃l ≡ 0 if |l − l̃| > 1 ,
∣∣∣DNXq,ξ ′,l ′

∣∣∣ � (λq�
8
q)

N , (5.36a)

supp (Xq,e1,0) = [−1/8λ−1
q �−8

q , 5/8λ−1
q �−8

q ] . (5.36b)

Step 3: Reynolds cutoffs. Combining l, l⊥ into integer triples "l =
(l, l2, l3) = (l, l⊥), we now have a division of T

3 into rectangular prisms indexed
by "l. We define

Xq,e1,"l,R(x1, x2, x3) = X3
q,e1,l(x1)Xq,e1,l⊥(x2, x3)

and note that

∑
"l
X2
q,e1,"l,R(x1, x2, x3) ≡ 1 ∀ (x1, x2, x3) ∈ T

3 .
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Step 4: Current cutoffs. We combine l, l⊥ into integer triples "l as above
but now define

Xq,e1,"l,ϕ(x1, x2, x3) = X2
q,e1,l(x1)Xq,e1,l⊥(x2, x3)

and note that for each fixed value of l = l0,∑
"l : l=l0

X2
q,e1,"l,ϕ(x1, x2, x3) ≡ X4

q,e1,l0(x1) ∀ (x1, x2, x3) ∈ T
3 .

Conversely, for each fixed value of l⊥ = l⊥0 , we have that∑
"l : l⊥=l⊥0

X3
q,e1,"l,ϕ(x1, x2, x3) ≡ X3

q,e1,l⊥0
(x2, x3) .

With the time-independent cutoffs in hand, we define the time-dependent cutoff which
is adapted to the flows of the velocity field ûq .

Definition 5.13 (Mildly anisotropic checkerboard cutoff functions). Given q, ξ ∈
�, i ≤ imax, and k ∈ Z, we define

ζq, ,i,k,ξ,"l (x, t) = Xq,ξ,"l, 
(
	i,k,q(x, t)

)
. (5.37)

These cutoff functions satisfy properties which we enumerate in the following
lemma.

Lemma 5.14 The cutoff functions {ζq, ,i,k,ξ,"l}"l satisfy the following properties.

(i) The material derivative Dt,q(ζq, ,i,k,ξ,"l) vanishes.
(ii) We have the summability properties for all (x, t) ∈ T

3 × R;

∑
"l

(
ζq,R,i,k,ξ,"l (x, t)

)2 ≡ 1 , (5.38a)

∑
"l : l=l0

ζ 2
q,ϕ,i,k,ξ,"l(x, t) ≡ X4

q,ξ,l0(	i,k,q(x, t)) , (5.38b)

∑
"l : l⊥=l⊥0

ζ 3
q,ϕ,i,k,ξ,"l(x1, x2, x3) = X3

q,ξ,l⊥0
(	i,k,q(x, t)) . (5.38c)

(iii) Let A = (∇	(i,k))
−1. Then we have the spatial derivative estimate

∥∥DN1DM
t,q(ξ

�A j
�∂ j )

N2ζq, ,i,k,ξ,"l
∥∥
L∞(suppψi,q χ̃i,k,q)

�
(
�−5
q λq+1

)N1
(
�8
qλq

)N2

×M
(
M,Nind,t, �

i
qτ

−1
q ,T−1

q �−1
q

)
. (5.39)

for all N1 + N2 + M ≤ 3Nfin/2+ 1.
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(iv) There exists an implicit dimensional constant Cχ independent of q, k, i , and "l
such that for all (x, t) ∈ suppψi,q χ̃i,k,q , the support of ζq, ,i,k,ξ,"l (·, t) satisfies

diam(supp (ζq, ,i,k,ξ,"l (·, t))) � �−8
q λ−1

q . (5.40)

Proof of Lemma 5.14 The proof of (i) is immediate from (5.37). The first equality in
(5.38) follows from (i) and the definition of the Reynolds cutoffs in Step 3 above. The
second and third equalities follow from (i) and the definition of the current cutoffs in
Step 4 above. To verify (iii), the only nontrivial calculations are those including the
differential operator ξ�A j

�∂ j . Using the Leibniz rule, the contraction

ξ�A j
�∂ jζq, ,i,k,ξ,"l = ξ�A j

�(∂mXq,ξ,"l, )(	i,k,q)∂ j	
m
i,k,q = ξm(∂mXq,ξ,"l, )(	i,k,q) ,

the diameter of the cutoffs defined in Steps 1 and 2 above, and (5.13a)–(5.13b) gives
the desired estimate. The proof of (5.40) follows from the construction ofXq,ξ,"l, and
the Lipschitz bound obeyed by ûq on the support of ψi,q ; see for example (4.18). ��

We may similarly obtain estimates on the flowed cutoff functions ζ I
ξ which come

from Definition 4.10. The proof is quite similar to the one above, and we omit the
details.

Lemma 5.15 (Strongly anisotropic checkerboard cutoff function). The cutoff func-
tions ζ I

ξ ◦	(i,k) satisfy the following properties:

(1) The material derivative Dt,q(ζ
I
ξ ◦	(i,k)) vanishes.

(2) For all fixed values of q, i, k, ξ , each t ∈ R, and all x = (x1, x2, x3) ∈ T
3,

∑
I

(ζ I
ξ ◦	(i,k))

6(x, t) = 1 . (5.41)

(3) Let A = (∇	(i,k))
−1. Then we have the spatial derivative estimate

∥∥DN1DM
t,q(ξ

�A j
�∂ j )

N2ζ I
ξ ◦	(i,k)

∥∥
L∞(suppψi,q χ̃i,k,q)

� λ
N1
q+(n̄/2)M

(
M,Nind,t, �

i
qτ

−1
q ,T−1

q �−1
q

)
. (5.42)

for all N1 + N2 + M ≤ 3Nfin/2+ 1.
(4) There exists an implicit dimensional constant Cχ independent of q, k, i , and ξ

such that for all (x, t) ∈ suppψi,q χ̃i,k,q , the support of ζ I
ξ ◦	(i,k)(·, t) satisfies

diam(supp (ζ I
ξ ◦	(i,k)(·, t))) � �−8

q λ−1
q . (5.43)

We also need the following lemma that bounds the cardinality of these anisotropic
cut-offs.
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Lemma 5.16 For fixed q, i, k, ξ , we have that

#
{
("l, I ) : supp

(
ζq,i,k,ξ,"l ζ

I
ξ ◦	(i,k)

)
�= ∅

}
� �8

qλqλ
2
q+n̄/2 . (5.44)

Proof Note first that for a fixed I , there are at most 4 values of l⊥0 such that
supp (Xq,ξ,l⊥0

ζ I
ξ ) �= ∅. Also note that for a fixed l⊥0 , we have #{"l : l⊥ = l⊥0 } � λq�

8
q .

Putting these together along with the bound on the number of I given by Remark 4.11,
we get that

#{("l, I ) : supp (Xq,ξ,"l, ζ
I
ξ ) �= ∅} � �8

qλqλ
2
q+n̄/2 .

Now the desired conclusion follows as all these cut-offs are flowed by the same
	(i,k). ��

5.5 Definition of the Cumulative Cutoff Function

Finally, combining the cutoff functions defined in subsection 2.3, Definition 9.4, Defi-
nition 5.6, (5.3), and the previous subsection, we define the cumulative cutoff functions
by

ηi, j,k,ξ,"l, (x, t) = ψ 
i,q(x, t)ω

 
j,q(x, t)χ

 
i,k,q(t)ζq, ,i,k,ξ,"l (x, t) , (5.45)

where the  in the superscript of the first three functions is equal to 2 if  = ϕ (so that
they are cubic-summable to 1) and 3 if  = R (so that they are square-summable to
1). We conclude this section with estimates on the L p norms of the cumulative cutoff
functions.

Lemma 5.17 (Cumulative support bounds for cutoff functions).Forr1, r2 ∈ [1,∞]
with 1

r1
+ 1

r2
= 1 and any 0 ≤ i ≤ imax, 0 ≤ j,≤ jmax, ξ ∈ �,�′, and  = ϕ, R, we

have that for each t,

∑
"l

∣∣∣supp x

(
ηi, j,k,ξ,"l, (t, x)

)∣∣∣ � �

−3i+Cb
r1

+−3 j
r2

+3
q . (5.46)

We furthermore have that

∑
i, j,k,ξ,"l,I , 

1suppηi, j,k,ξ,"l, ρ
 
(ξ)

ζ I
ξ
≈

∑
i, j,k,ξ,"l, 

1suppηi, j,k,ξ,"l, ρ
 
(ξ)

� 1 . (5.47)

Proof of Lemma 5.17 We shall prove the first bound for  = ϕ. Then from (5.45), the
only differences between  = R and  = ϕ are the powers to which various cutoff
functions are raised, and so we shall omit the proof for  = R. To prove the bound for
 = ϕ, we have that
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∑
"l

∣∣∣suppηi, j,k,ξ,"l,ϕ∣∣∣
�
∥∥∥(ψ6

i−1,q + ψ6
i,q + ψ6

i+1,q)
1/6(ω6

j−1,q + ω6
j,q + ω6

j+1,q)
1/6
∥∥∥
L1

�
∥∥∥(ψ6

i−1,q + ψ6
i,q + ψ6

i+1,q)
1/6
∥∥∥
Lr1

∥∥∥(ω6
j−1,q + ω6

j,q + ω6
j+1,q)

1/6
∥∥∥
Lr2

� �

−3(i−1)+Cb
r1

q �

−3( j−1)
r2

q .

To achieve the final inequality, we have used interpolation, (2.16) at level q, and (5.31).
Using that 1

r1
+ 1

r2
= 1 gives the desired estimate. Finally, to prove (5.47), we appeal to

(2.11) at level q, (5.1) and (5.5), (5.21), item (ii) from Proposition 4.9, Definition 4.10,
and Lemma 5.14. ��

5.6 Cutoff Aggregation Lemmas

Corollary 5.18 (Aggregated L p estimates). Let θ ∈ (0, 3], and θ1, θ2 ≥ 0 with θ1 +
θ2 = θ . Let H = Hi, j,k,ξ,"l, or H = Hi, j,k,ξ,"l,I , be a function with

supp Hi, j,k,ξ,"l, ⊆ suppηi, j,k,ξ,"l, or

supp Hi, j,k,ξ,"l,I , ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ ◦	(i,k) . (5.48)

Let p ∈ [1,∞) and let θ1, θ2 ∈ [0, 3] be such that θ1 + θ2 = 3/p. Assume that there
exists CH , N∗,M∗, Nx ,Mt and λ,�, τ,T such that∥∥∥DN DM

t,q Hi, j,k,ξ,"l, 
∥∥∥
L p

� sup
t∈R

(∣∣∣supp x (ηi, j ,k,ξ,"l, (t, x)
)∣∣∣1/p)

× CH�θ1i+θ2 jq M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i
q ,T

−1
)

(5.49a)∥∥∥DN DM
t,q Hi, j,k,ξ,"l,I , 

∥∥∥
L p

� sup
t∈R

(∣∣∣supp x (ηi, j ,k,ξ,"l, ζ
I , 
ξ ◦	(i,k)(t, x)

)∣∣∣1/p)

× CH�θ1i+θ2 jq M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i
q ,T

−1
)

(5.49b)

for N ≤ N∗,M ≤ M∗. Then in the same range of N and M,

∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l, 

DN DM
t,q Hi ′, j,k,ξ,"l, 

∥∥∥∥∥∥
L p

� �3+θ1Cb
q CHM (N , Nx , λ,�)M

(
M,Mt , τ

−1�i+1
q ,T−1

)
(5.50a)∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∥∥∥∥∥∥
L p

� �3+θ1Cb
q CHM (N , Nx , λ,�)M

(
M,Mt , τ

−1�i+1
q ,T−1

)
. (5.50b)
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Proof Weprove only (5.50b), as (5.50a) is slightly easier and follows the samemethod.
Using (5.48), (2.11) at levelq, (5.49b), Lemma5.17with r1 = 3

pθ1
, r2 = 3

pθ2
, θ1+θ2 =

3/p, we may write that

∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∥∥∥∥∥∥
p

p

≤ sup
t∈R

ˆ
T3
ψi,q

∣∣∣∣∣∣∣∣∣
∑

i−1≤i ′≤i+1
j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∣∣∣∣∣∣∣∣∣

p

(t, x) dx

≤ sup
t∈R

∑
i−1≤i ′≤i+1
j,k,ξ,"l,I , 

∣∣∣supp x

(
ηi, j,k,ξ,"l, ζ

I , 
ξ ◦	(i,k)(t, x)

)∣∣∣ Cp
H�

pθ1i+pθ2 j
q

×
(
M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
))p

� sup
t∈R

∑
i−1≤i ′≤i+1

j,k,ξ,"l, 

∣∣∣supp x

(
ηi, j,k,ξ,"l, (t, x)

)∣∣∣ Cp
H�

pθ1i+pθ2 j
q

(
M (N , Nx , λ,�)M

(
N , Nt , τ

−1�i
q ,T

−1
))p

≤ Cp
H�

pθ1Cb+3p
q

(
M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
))p

,

concluding the proof. ��

Remark 5.19 (Aggregated L1 estimates with �i
q ). Assume that (5.48)–(5.49b) hold

for p = 3/2, but with CH = �i
q C̃H . Then we can obtain the L1 estimates

∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l, 

DN DM
t,q Hi ′, j,k,ξ,"l, 

∥∥∥∥∥∥
1

� C̃H�2Cb+3
q M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)

(5.51a)∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∥∥∥∥∥∥
1

� C̃H�2Cb+3
q M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)
. (5.51b)
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Indeed, considering (5.51b), we have

∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∥∥∥∥∥∥
1

≤ sup
t∈R

∑
i−1≤i ′≤i+1
j,k,ξ,"l,I , 

ˆ
T3
ψi,q1supp x

(
ηi, j,k,ξ,"l, ζ

I , 
ξ ◦	(i,k)

) ∣∣∣DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∣∣∣(t, x) dx

≤ sup
t∈R

⎡
⎢⎢⎢⎣

∑
i−1≤i ′≤i+1
j,k,ξ,"l,I , 

�3i
q

∥∥∥∥ψi,q1supp x

(
ηi, j,k,ξ,"l, ζ

I , 
ξ ◦	(i,k)

)∥∥∥∥
3

3

⎤
⎥⎥⎥⎦

1/3

⎡
⎢⎢⎢⎣

∑
i−1≤i ′≤i+1
j,k,ξ,"l,I , 

�
−3/2i
q

∥∥∥DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∥∥∥3/2
3/2

⎤
⎥⎥⎥⎦

2/3

� sup
t∈R

⎡
⎣ ∑

j,k,ξ,"l, 

∣∣∣supp x

(
ηi, j,k,ξ,"l, (t, x)

)∣∣∣�3i
q

⎤
⎦

1/3

⎡
⎣ ∑

j,k,ξ,"l, 

∣∣∣supp x

(
ηi, j,k,ξ,"l, (t, x)

)∣∣∣�3/2(θ1i+θ2 j)
q

⎤
⎦

2/3

· C̃HM (N , Nx , λ,�)M
(
M,Mt , τ

−1�i
q ,T

−1
)

≤ C̃H�2Cb+3
q M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)
.

In the last inequality, we used Lemma 5.17 with r1 = 1, r2 = ∞ and with r1 =
3
pθ1

, r2 = 3
pθ2

, and θ1 + θ2 = 3/p.

We now state two similar corollaries which allow us to aggregate pointwise esti-
mates.

Corollary 5.20 (Aggregated pointwise estimates). Let H = Hi, j,k,ξ,"l, or H =
Hi, j,k,ξ,"l,I , be a function with

supp Hi, j,k,ξ,"l, ⊆ suppηi, j,k,ξ,"l, or supp Hi, j,k,ξ,"l,I , ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ ◦	(i,k)

(5.52)

and let # = #i, j,k,ξ,"l, or# = θi, j,k,ξ,"l,I , be a non-negative function such that

supp#i, j,k,ξ,"l, ⊆ suppηi, j,k,ξ,"l, or supp#i, j,k,ξ,"l,I , ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ ◦	(i,k)

(5.53)

123



19 Page 62 of 271 V. Giri et al.

Let p ∈ (0,∞) and assume that there exists λ,�, τ such that

|DN Dt,q Hi, j,k,ξ,"l, | � #
p

i, j,k,ξ,"l, M (N , Nx , λ,�)M
(
N , Nt , τ

−1�i
q ,T

−1
)

(5.54a)

|DN Dt,q Hi, j,k,ξ,"l,I , | � #
p

i, j,k,ξ,"l,I , M (N , Nx , λ,�)M
(
N , Nt , τ

−1�i
q ,T

−1
)

(5.54b)

for N ≤ N∗,M ≤ M∗. Then in the same range of N and M,

∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l, 

DN DM
t,q Hi ′, j,k,ξ,"l, 

∣∣∣∣∣∣
�

⎛
⎝ ∑

i, j,k,ξ,"l, 
#i, j,k,ξ,"l, 

⎞
⎠

p

M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i+1
q ,T−1

)
(5.55a)∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∣∣∣∣∣∣
�

⎛
⎝ ∑

i, j,k,ξ,"l,I , 
#i, j,k,ξ,"l,I , 

⎞
⎠

p

M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i+1
q ,T−1

)
.

(5.55b)

* Corollary 5.21 (Aggregated pointwise estimates with �i
q ). Let H = Hi, j,k,ξ,"l,I , 

be a function with

supp Hi, j,k,ξ,"l, ⊆ suppηi, j,k,ξ,"l, or supp Hi, j,k,ξ,"l,I , ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ ◦	(i,k)

(5.56)

and let# be a non-negative function and assume that there exists λ,�, τ,T such that
for H = Hi, j,k,ξ,"l, or Hi, j,k,ξ,"l,I , 
∣∣∣DN DM

t,q H
∣∣∣ � τ−1

q �i
qψi,q#M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)

(5.57a)

for N ≤ N∗,M ≤ M∗. Then in the same range of N and M,

∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l, 

DN DM
t,q Hi ′, j,k,ξ,"l, 

∣∣∣∣∣∣
� �qr

−1
q λq

(
π
q
q
)1/2

#M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i+1
q ,T−1

)
(5.58a)
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∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∣∣∣∣∣∣
� �qr

−1
q λq

(
π
q
q
)1/2

#M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i+1
q ,T−1

)
. (5.58b)

Proofs of Corollaries 5.20 and 5.21 We will give the full details for estimate (5.58b)
from Corollary 5.21, since the proofs of all the other estimates are slightly easier
and follow the same method. We first note that summing the estimate in (5.57a) over
j, k, ξ, "l, I , and using (5.21), (5.5), (5.33a), (5.36a), and (4.24), we find that

∣∣∣∣∣∣
∑

j,k,ξ,"l,I , 
DN DM

t,q Hi, j,k,ξ,"l,I , 

∣∣∣∣∣∣
� ψi±,qτ−1

q �i
q#M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)

since suppHi, j,k,ξ,"l,I , ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ ◦ 	(i,k) ⊆ suppψi,q and ψi±,q =

(ψ6
i−1,q +ψ6

i,q +ψ6
i+1,q)

1/6. Now summing on i and using (2.11) and Remark 2.4, we
find that

∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q Hi ′, j,k,ξ,"l,I , 

∣∣∣∣∣∣
�
(∑

i

�i
qτ

−1
q ψi±,q

)
#M (N , Nx , λ,�)M

(
M,Mt , τ

−1�i
q ,T

−1
)

� �qr
−1
q (π

q
q )

1/2λq#M (N , Nx , λ,�)M
(
M,Mt , τ

−1�i+1
q ,T−1

)
.

��

6 Velocity Increment

In this section, we define and estimate the velocity increment. The first subsection
contains the definition of wq+1, save for the choice of placements of the bundles (see
Remark 4.13), which is addressed in the second subsection. The final subsection then
estimates both the pre-mollified velocity increment wq+1 and the mollified velocity
increment ŵq+n̄ .

6.1 Definition of the Corrector

In this subsection, we define the premollified velocity increment wq+1, except for
the choice of placement, which we treat in [22, section 4]; see also the discussion
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following Lemma 6.2. None of the discussion or properties in this subsection depend
on the choice of placement.

6.1.1 * Definition of the Current Corrector

For any fixed values of i , k, we recall the constant c3 from (5.34) and define

ϕq,i,k = −1/c3∇	(i,k)ϕ� . (6.1)

Let ξ ∈ �′, cf. Proposition 4.2. For all ξ ∈ �′, we define the coefficient function
a
ξ,i, j,k,"l,ϕ by

a
ξ,i, j,k,"l,ϕ = a(ξ),ϕ

= δ
1/2
q+n̄r

−1/3
q �

j−1
q ψ

ϕ
i,qω

ϕ
j,qχ

ϕ
i,k,qζq,ϕ,i,k,ξ,"l |∇	−1

(i,k)ξ |−2/3γ̃ξ

⎛
⎝ ϕq,i,k

δ
3/2
q+n̄r

−1
q �

3 j−3
q

⎞
⎠ ,

(6.2)

where γ̃ξ is defined in Proposition 4.2, ζq,ϕ,i,k,ξ,"l is defined in Definition 5.13, and

ψ
ϕ
i,q := ψ2

i,q , ω
ϕ
j,q := ω2

j,q , χ
ϕ
i,k,q := χ2

i,k,q . (6.3)

From Corollary 5.8 and estimate (5.12a) from Corollary 5.4, we have that |ϕ�| �
�
3 j−7
q δ

3/2
q+n̄r

−1
q , and so ϕq,i,k is well-defined on the support of ψϕ

i,qω
ϕ
j,q once λ0 is

sufficiently large.
The coefficient function a(ξ),ϕ is then multiplied by an intermittent pipe bundle

∇	−1
(i,k)B(ξ),ϕ ◦ 	(i,k), where we have used Proposition 4.6 (with λ = λq+n̄ and

r = rq ), Definition 4.12, and the shorthand notation

B(ξ),ϕ = ρ
ϕ

(ξ)

∑
I

ζ
I ,ϕ
ξ W

I
(ξ),ϕ (6.4)

to refer to the pipe bundle associated with the region �0 = supp ζq,ϕ,i,k,ξ,"l ∩ {t =
kτq�−i

q } and the index j . The choice of placement of this pipe bundle will be detailed

in subsection 6.2. We will use U
I
(ξ),ϕ to denote the potential satisfying curlUI

(ξ),ϕ =
W

I
(ξ),ϕ . Applying the algebraic identity (4.14) from Proposition 4.5, we define the

principal part of the current corrector by

w
(p)
q+1,ϕ =

∑
i, j,k,ξ,"l,I

a(ξ),ϕ
(
ρ
ϕ

(ξ)ζ
I ,ϕ
ξ

)
◦	(i,k)curl

(
∇	T

(i,k)U
I
(ξ),ϕ ◦	(i,k)

)
︸ ︷︷ ︸

=:w(p),I
(ξ),ϕ

. (6.5)
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The notation w
(p),I
(ξ),ϕ refers to fixed values of the indices i, j, k, ξ, "l, I . We add the

divergence corrector

w
(c)
q+1,ϕ =

∑
i, j,k,ξ,"l,I

∇
(
a(ξ),ϕ

(
ρ
ϕ

(ξ)ζ
I ,ϕ
ξ

)
◦	(i,k)

)
×
(
∇	T

(i,k)U
I
(ξ),ϕ ◦	(i,k)

)
︸ ︷︷ ︸

=:w(c),I
(ξ),ϕ

,

(6.6)
so that the mean-zero, divergence-free total current corrector is given by

wq+1,ϕ = w
(p)
q+1,ϕ + w

(c)
q+1,ϕ

=
∑

i, j,k,ξ,"l,I
curl

(
a(ξ),ϕ

(
ρ
ϕ

(ξ)ζ
I ,ϕ
ξ

)
◦	(i,k)∇	T

(i,k)U
I
(ξ),ϕ ◦	(i,k)

)
︸ ︷︷ ︸

=:w I
(ξ),ϕ

. (6.7)

6.1.2 Definition of the Euler-Reynolds Corrector

For any fixed values of i , k, we recall (5.36a) and define

Rq,i,k = −∇	(i,k)

(
R�−π�Id

+
∑
ξ ′,i ′, j ′
k′,l ′

δq+n̄�
2 j ′−2
q C�−2

q∣∣∣∇	−1
(i ′,k′)ξ

′
∣∣∣4/3 ψ4

i ′,qω
4
j ′,qχ

4
i ′,k′,qX4

q,ξ ′,l ′

◦	i ′,k′,q γ̃
2
ξ ′∇	−1

(i ′,k′)ξ
′ ⊗ ξ ′

(
∇	−T

(i ′,k′)

))
∇	T

(i,k) , (6.8)

where the constant C = c0c1c2 is geometric and bounded independently of q; see
(8.5b). For all ξ ∈ �R , we define the coefficient function aξ,i, j,k,"l,R by

a
ξ,i, j,k,"l,R = a(ξ),R = δ

1/2
q+n̄�

j−1
q ψ R

i,qω
R
j,qχ

R
i,k,qζq,R,i,k,ξ,"l γξ,�9

q

(
Rq,i,k

δq+n̄�
2 j−2
q

)

(6.9)

where γξ,�9
q
is defined in Proposition 4.1 with the parameter choice K = �9

q , and

ψ R
i,q := ψ3

i,q , ωR
j,q := ω3

j,q , χ R
i,k,q := χ3

i,k,q . (6.10)

In order to show that (6.9) is well-defined, we first recall (5.22b) from Lemma 5.7,
which gives that π�|suppω j,q ≥ 1/4�

2 j
q δq+n̄ . Using this in combination with Corol-

lary 5.8, we find that for all j ,

�q ≤
π�|suppω j,q

δq+n̄�
2 j−2
q

≤ �9
q . (6.11)
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Furthermore, from (6.8), (5.21), andCorollary 5.4,wehave that the second term in (6.8)
is pointwise bounded by 2Cδq+n̄�

2 j−2
q , or upon division by δq+n̄�

2 j−2
q is bounded

above by 2C . Finally, from (5.22d), we have that ∇	(i,k)R�∇	T
(i,k) is pointwise

bounded by δq+n̄�
2 j−3
q , or upon division by δq+n̄�

2 j−2
q is pointwise bounded by

�−1
q . Combining the above arguments, we find that

∣∣∣∣∣ Rq,i,k

δq+n̄�
2 j−2
q

− π�

δq+n̄�
2 j−2
q

Id

∣∣∣∣∣ ≤ �q ,

and so Proposition 4.1 may be applied with K = �9
q since

Rq,i,k

δq+n̄�
2 j−2
q

belongs to the

ball of radius �q around π�Id

δq+n̄�
2 j−2
q

, which itself is a multiply of the identity bounded

between 1 and �9
q from (6.11).

The coefficient function a(ξ),R is then multiplied by an intermittent pipe bundle
∇	−1

(i,k)B(ξ),R ◦ 	(i,k), where we have used Proposition 4.5 (with λ = λq+n̄ and
r = rq ), Definition 4.12, and the shorthand notation

B(ξ),R = ρR
(ξ)

∑
I

ζ
I ,R
ξ W

I
(ξ),R (6.12)

to refer to the pipe bundle associated with the region �0 = supp ζq,R,i,k,ξ,"l ∩ {t =
kτq�−i

q } and the index j . We will use U
I
(ξ),R to denote the potential satisfying

curlUI
(ξ),R = W

I
(ξ),R . Applying (4.14) from Proposition 4.5, we define the princi-

pal part of the Reynolds corrector by

w
(p)
q+1,R =

∑
i, j,k,ξ,"l,I

a(ξ),R
(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k)curl

(
∇	T

(i,k)U
I
(ξ),R ◦	(i,k)

)
︸ ︷︷ ︸

=:w(p),I
(ξ),R

.

(6.13)
The notation w

(p),I
(ξ),R refers to fixed values of i, j, k, ξ, "l, I . We add the divergence

corrector

w
(c)
q+1,R =

∑
i, j,k,ξ,"l,I

∇
(
a(ξ),R

(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k)

)
×
(
∇	T

(i,k)U
I
(ξ),R ◦	(i,k)

)
︸ ︷︷ ︸

=:w(c),I
(ξ),R

,

(6.14)
so that the mean-zero, divergence-free total Reynolds corrector is given by

wq+1,R =
∑

i, j,k,ξ,"l,I
curl

(
a(ξ),R

(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k)∇	T

(i,k)U
I
(ξ),R ◦	(i,k)

)
︸ ︷︷ ︸

=:w I
(ξ),R

.

(6.15)
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6.1.3 Definition of the Complete Corrector

We shall sometimes want to aggregate pieces of the Reynolds and current velocity
correctors as

wq+1 = wq+1,R + wq+1,ϕ , w
(p)
q+1 := w

(p)
q+1,R + w

(p)
q+1,ϕ ,

w
(c)
q+1 := w

(c)
q+1,R + w

(c)
q+1,ϕ . (6.16)

6.2 Dodging for NewVelocity Increment

In this section, we define a mollified velocity increment ŵq+n̄ . We then introduce
Lemma 6.2, which is in fact a stronger statement than Hypothesis 2.6.

Definition 6.1 (Definition of ŵq+n̄ and uq+1). Let P̃q+n̄,x,t denote a space-time mol-

lifier which is a product of compactly supported kernels at spatial scale λ−1
q+n̄�

−1/2
q+n̄−1

and temporal scale T−1
q+1. We again assume that both kernels have vanishing moments

up to 10Nfin and are C10Nfin differentiable and define

ŵq+n̄ := P̃q+n̄,x,twq+1 , uq+1 = uq + ŵq+n̄ . (6.17)

We also recall from (2.6) the notations B(�, λ−1) and B(�, λ−1, τ ) for space and
space-time balls, respectively, around a space-time set �. Using these notations, we
may write that

supp ŵq+n̄ ⊆ B
(
suppwq+1, 1/2λ

−1
q+n̄,

1/2Tq

)
. (6.18)

Now recalling the formula in (4.9) for an intermittent Mikado flow, (6.4), and (6.12),
we set

� I
(ξ), := ξ · WI

(ξ), . (6.19)

Next, in slight conflict with (2.6), we shall also use the notation

B
(
supp� I

(ξ), , λ
−1
)
:=
{
x ∈ T

3 : ∃y ∈ supp� I
(ξ), , |x − y| ≤ λ−1

}
(6.20)

throughout this section, despite the fact that supp� I
(ξ), is not a set in space-time, but

merely a set in space. We shall also use the same notation but with � I
(ξ), replaced by

ρ ξ . Finally, for any smooth set� ⊆ T
3 and any flow map	 defined in Definition 5.3,

we use the notation

� ◦	 := {(y, t) : t ∈ R,	(y, t) ∈ �} = supp (1� ◦	) . (6.21)

In other words, for any smooth set � ⊆ T
3, � ◦	 is a space-time set whose charac-

teristic function is annihilated by Dt,q .
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We can now introduce the workhouse which will help us verify Hypotheses 2.6 and
2.7. The full proof is contained in [22, section 4], although we outline the main idea
following the statement.

Lemma 6.2 (Dodging and preventing self-intersections for wq+1 and ŵq+n̄). We
construct wq+1 so that the following hold.

(i) Let q + 1 ≤ q ′ ≤ q + n̄/2 and fix indices  , i, j, k, ξ, "l, which we abbreviate by
((ξ), ), for a coefficient function a(ξ), (cf. (6.2), (6.9)). Then

B

(
supp ŵq ′,

1

2
λ−1
q+1�

2
q , 2Tq

)
∩ supp

(
χ̃i,k,qζq, ,i,k,ξ,"l ρ

 
(ξ) ◦	(i,k)

)
= ∅ .
(6.22)

(ii) Let q ′ satisfy q + 1 ≤ q ′ ≤ q + n̄ − 1, fix indices ((ξ), , I ), and assume that
	(i,k) is the identity at time t(ξ), cf. Definition 5.3. Then we have that

B

(
supp ŵq ′,

1

4
λ−1
q ′ �

2
q ′, 2Tq

)
∩ supp

(
χ̃i,k,qζq, ,i,k,ξ,"l

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)

∩ B

(
supp� I

(ξ), ,
1

2
λ−1
q ′ �

2
q ′

)
◦	(i,k) = ∅ .

(6.23)

As a consequence we have

B

(
supp ŵq ′ ,

1

4
λ−1
q ′ �

2
q ′, 2Tq

)
∩ suppwq+1 = ∅ . (6.24)

(iii) Consider the set of indices {((ξ), , I )}, whose elements we use to index the
correctors constructed in (6.7) and (6.15), and let l,l ∈ {p, c} denote either
principal or divergence corrector parts. Then if ( , (ξ), I ) �= ( , (ξ), I ), we
have that for any l,l,

suppw(l),I
(ξ), ∩ suppw(l),I

(ξ), = ∅ . (6.25)

(iv) ŵq+n̄ satisfies Hypothesis 2.7 with q replaced by q + 1.

Remark 6.3 (Verifying Hypothesis 2.6). We claim that (6.24) and (6.18) imply that
Hypothesis 2.6 holds with q + 1 replacing all instances of q. To check this, we
must show that (2.24) holds for q ′, q ′′ ≤ q + n̄ and 0 < |q ′ − q ′′| ≤ n̄ − 1. By
induction on q and the symmetry of q ′′ and q ′, the only case we must check is the
case that q + n̄ = q ′′ and 0 < q + n̄ − q ′ ≤ n̄ − 1. But it is a simple exercise
in set theory to check that for q + 1 ≤ q ′ ≤ q + n̄ − 1, (6.24) is equivalent to
supp ŵq ′ ∩ B(suppwq+1, 1/4λ

−1
q ′ �

2
q ′, 2Tq) = ∅. Then using (6.18) and the inequalities

λ−1
q ′ �

2
q ′ ≥ λ−1

q+n̄ , b < 2 �⇒ �q ′+1 � �2
q ′ implies that (2.24) holds.
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Idea behind the proof of Lemma 6.2 We shall give the idea behind the proof of Hypoth-
esis 2.6, as the precise statements written above are technical variants on this idea and
can be found in [22, section 4]. Consider the support of a single mildly anisotropic
cutoff ζq, ,i,k,ξ,"l from Definition 5.13 of dimensions (λq+1�

−5
q )−1× (λq+1�

−5
q )−1×

(λq�
8
q)

−1. The prism contains pipes from ŵq+1, . . . ŵq+n̄/2, and we want to place a

new set of bundling pipes ρ (ξ) from Proposition 4.9 of thickness λ−1
q+1�q and spac-

ing λ−1
q+1�

4
q disjoint from these pipes. To this end, we divide the face [0, λ−1

q+1�
5
q ]2

of the prism perpendicular to "e3 into the grid of squares of sidelength λ−1
q+1�q (the

thickness of the support ofρ (ξ)). Since the support ofρ
 
(ξ)will be placedT

2/(λ−1
q+1�

4
q)-

periodically,

the possible number of placements of the support =
(
λ−1
q+1�

4
q

λ−1
q+1�q

)2

= �6
q .

The pipes that we want to dodge have spacing/thickness between λ−1
q−n̄/2/λ

−1
q (corre-

ponding to ŵq ) and λ−1
q /λ−1

q+n̄/2 (corresponding to ŵq+n̄/2); note that each of these has

spacing greater than (λq�
8
q)

−1, which is the longest side length of the prism. Then
from Hypothesis 2.7, at most a constant number of such pipes can intersect the prism.
Upon projecting these pipes onto the face [0, λ−1

q+1�
5
q ]2 perpendicular to "e3, each

pipe projection will be contained in a λ−1
q+1-neighborhood of a line of length λ

−1
q+1�

5
q .

Counting the number of grid squares of size λ−1
q+1�q taken by these projections, we

obtain

∼ λ−1
q+1�

5
q

λ−1
q+1

� �5
q ,

which is less than the possible number of placements. Therefore we can place the
support of the bundling pipe ρ (ξ) so that it is disjoint from ŵq+1, . . . ŵq+n̄/2 on the
support of ζq, ,i,k,ξ,"l .

To enact the dodging with pipes from ŵq+n̄/2+1, . . . , ŵq+n̄ of thickness/spacing
λ−1
q+n̄/2+1/λ

−1
q+1, …,

λ−1
q+n̄ /λ

−1
q+n̄/2, we follow the exact same method, only replacing the mildly anistropic

cutoff ζq, ,i,k,ξ,"l with the highly anistropic cutoff ζ
 
ξ from Lemma 5.15, and the mildly

intermittent bundling pipe ρ (ξ) with the highly intermittent pipes W
I
(ξ), from Propo-

sitions 4.5 and 4.6. We leave further details to the reader. ��
Remark 6.4 (Comparison with the placement technique in [32]). As described
above, at the (q+1) step,weplacewq+1 = ŵq+n̄ to dodge ŵq ′ forq ∈ [q+1, q+n̄−1],
where the support of ŵq ′ is comprised of pipes with spacing λq ′−n̄/2 and thickness λ

−1
q ′ .

In contrast, translating the dodging in [32] to our setting, [32] placed ŵq+1,n̄ to dodge
ŵq+1,m for any m ∈ [0, n̄ − 1], where ŵq+1,m has the same thickness (i.e. λ−1

q+n̄) as

wq+1, but its spacing varies from λ−1
q+n̄/2 to λ

−1
q+n̄ as m approaches to n̄. While in [32]
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ŵq+1,n̄ has spacing larger than the thickness of ŵq+1,m , in our setting this is not
the case; there are relatively old previously-placed corrections ŵq ′ whose thickness
is larger than the spacing of wq+1. To resolve this issue, our placement technique
is divided into two steps: first, placing mildly intermittent bundling pipe to dodge
relatively old corrections; and second, placing highly intermittent pipes to dodge the
remaining ones. The latter part is comparable to the procedure in [32].

6.3 Estimates forwq+1 and ŵq+n̄

Lemma 6.5 (Coefficient function estimates). For N , N ′, N ′′,M with N ′′, N ′ ∈
{0, 1} and N ,M ≤ Nfin/3, we have the following estimates.

∥∥∥DN−N ′′
DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,ϕ

∥∥∥
r

�
∣∣∣suppηi, j,k,ξ,"l,ϕ∣∣∣1/r δ1/2q+n̄r

−1/3
q �

j−1
q

(
�−5
q λq+1

)N (
�5
q�q

)N ′

M
(
M,Nind,t, τ

−1
q �i+4

q ,T−1
q

)
, (6.26a)∥∥∥DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′ (

a
ξ,i, j,k,"l,ϕ

(
ρ
ϕ

(ξ)ζ
I ,ϕ
ξ

)
◦	(i,k)

)∥∥∥
r

�
∣∣∣supp (ηi, j,k,ξ,"l,ϕζ I ,ϕ

ξ

)∣∣∣1/r δ1/2q+n̄r
−1/3
q �

j+1
q

(
λq+(n̄/2)

)N (
�5
q�q

)N ′

M
(
M,Nind,t, τ

−1
q �i+4

q ,T−1
q

)
, (6.26b)∥∥∥DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,R

∥∥∥
r

�
∣∣∣suppηi, j,k,ξ,"l,R∣∣∣1/r δ1/2q+n̄�

j+4
q

(
�−5
q λq+1

)N (
�13
q �q

)N ′

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
, (6.26c)∥∥∥DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′ (

a
ξ,i, j,k,"l,R

(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k)

)∥∥∥
r

�
∣∣∣supp (ηi, j,k,ξ,"l,Rζ

I ,R
ξ

)∣∣∣1/r δ1/2q+n̄�
j+7
q

(
λq+(n̄/2)

)N (
�13
q �q

)N ′

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
. (6.26d)

In the case that r = ∞, the above estimates give that

∥∥∥DN−N ′′
DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,R

∥∥∥∞ � �
C∞
2 +7

q

(
�−5
q λq+1

)N
×
(
�13
q �q

)N ′
M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
. (6.27a)∥∥∥DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,ϕ

∥∥∥∞ � �
C∞
2 +2

q r−1/3
q

(
�−5
q λq+1

)N
×
(
�8
q�q

)N ′
M
(
M,Nind,t, τ

−1
q �i+4

q ,T−1
q

)
, (6.27b)
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with analogous estimates (incorporating a loss of �3
q for  = R and �2

q for  = ϕ)

holding for the product a(ξ), ζ I , 
ξ ρ (ξ). Finally, we have the pointwise estimates∣∣∣DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,R

∣∣∣
� �12

q π
1/2
�

(
�−5
q λq+1

)N (
�13
q �q

)N ′
M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
(6.28a)∣∣∣DN−N ′′

DM
t,q(ξ

�Ah
�∂h)

N ′
DN ′′

a
ξ,i, j,k,"l,ϕ

∣∣∣
� �12

q π
1/2
� r−1/3

q

(
�−5
q λq+1

)N (
�5
q�q

)N ′
M
(
M,Nind,t, τ

−1
q �i+4

q ,T−1
q

)
.

(6.28b)

Proof of Lemma 6.5 Wefirst prove (6.26a) and (6.26b), since a portion of a(ξ),ϕ appears
in the definition of the Reynolds corrector in (6.8). We further simplify by computing
(6.26a) for the case r = ∞ first. Recalling estimate (5.26), we have that for all
N ,M ≤ Nfin/2,∥∥DN DM

t,qϕ�
∥∥
L∞(suppψi,qω j,q )

� δ
3/2
q+n̄r

−1
q �

3 j−7
q

(
�q�q

)N M
(
M,Nind,t, τ

−1
q �i

q ,T
−1
q

)
.

Thus from definition (6.1), the Leibniz rule, and Corollary 5.4, and the fact that
suppηi, j,k,ξ,"l,ϕ is contained in suppψi,qω j,qχi,k,q we have that for N ,M ≤ Nfin/2,

∥∥∥DN DM
t,qϕq,i,k

∥∥∥
L∞(suppηi, j,k,ξ,"l,ϕ)

� δ
3/2
q+n̄r

−1
q �

3 j−7
q

(
�q�q

)N M
(
M,Nind,t, τ

−1
q �i

q ,T
−1
q

)
. (6.29)

The above estimates allowus to apply [3,LemmaA.5]with N ′ = M ′ = Nfin/2,ψ = γ̃ξ,,

�ψ = 1, v = ûq , Dt = Dt,q , h(x, t) = ϕq,i,k(x, t), Ch = δ
3/2
q+n̄r

−1
q �

3 j−6
q = �2,

λ = λ̃ = �q�q , μ = τ−1
q �i

q , μ̃ = T−1
q , and Nt = Nind,t. We obtain that for all

N ,M ≤ 3Nfin/4,∥∥∥∥∥∥DN DM
t,q γ̃ξ

⎛
⎝ ϕq,i,k

δ
3/2
q+n̄r

−1
q �

3 j−3
q

⎞
⎠
∥∥∥∥∥∥
L∞(suppηi, j,k,ξ,"l,ϕ )

�
(
�q�q

)N M
(
M,Nind,t, τ

−1
q �i

q ,T
−1
q

)
.

(6.30)

Finally, from Corollary 5.4 and an application of the mixed derivative Fa’a di Bruno
formula from [3, Lemma A.5] with ψ(·) : B1/2(ξ) → R defined by ψ(·) = | · |−4/3,
�ψ = 1, v = ûq , � = 1, λ = λ̃ = �q , μ = τ−1

q �i
q , μ̃ = �−1

q T−1
q , Nx = 0,

Nt = Nind,t, h = ∇	−1
(i,k)ξ , and Ch = 1, we have that for all N + M ≤ 3Nfin/2,∥∥∥∥DN DM

t,q

(∣∣∣∇	−1
(i,k)ξ

∣∣∣−4/3
)∥∥∥∥

L∞(supp (ψϕ
i,qχ

ϕ
i,k,q ))

� �N
q M

(
M,Nind,t, �

i
qτ

−1
q ,T−1

q �−1
q

)
.
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From the above three bounds, definition (6.2), the Leibniz rule, estimate (2.33) at level
q, (5.4), (5.30), and (5.39), we obtain that for N ′ = 0, 1 and N ,M ≤ Nfin/2,

∥∥DN DM
t,q(ξ

�A j
�∂ j )

N ′
a
ξ,i, j,k,"l,ϕ

∥∥∞
� δ

1/2
q+n̄�

j−1
q r−1/3

q (�−5
q λq+1)

N (�5
q�q)

N ′M
(
M,Nind,t, τ

−1
q �i+4

q ,T−1
q

)
. (6.31)

Using (5.29), we obtain (6.27b). When r �= ∞, we use ‖ f ‖Lr ≤ ‖ f ‖L∞ |{supp f }|1/r
and the demonstrated bound for r = ∞ to obtain (6.26a) for the full range of r and for
N ′′ = 0. The estimate in (6.26b) for N ′′ = 0 follows in the same way using (4.23) for
p = ∞ and (5.42). Similar estimates for N ′′ = 1 in both cases are nearly identical,
and we omit the details

We now compute (6.26c) for the case r = ∞, from which the remaining bounds
in (6.26d) and (6.27a) will follow as before. Recalling estimates (5.24a) and (5.24b),
we have that for all N ,M ≤ Nfin/2,∥∥DN DM

t,q R�
∥∥
L∞(suppηi, j,k,ξ,"l,R)

+ ∥∥DN DM
t,qπ�

∥∥
L∞(suppηi, j,k,ξ,"l,R)

� δq+n̄�
2 j+6
q

(
�q�q

)N M
(
M,Nind,t, τ

−1
q �i

q ,T
−1
q

)
.

From (2.33) and (2.11) at level q, (5.21), (5.30), (5.4), (5.36a), (5.4), and (6.30), we
find that ∥∥∥∥∥∥DN DM

t,q

∑
i ′, j ′,k′,ξ ′,"l ′

δq+n̄�
2 j ′−4
q C∣∣∇	i ′,k′ξ ′
∣∣4/3 ψ4

i ′,qω
4
j ′,qχ

4
i ′,k′,qX4

q,ξ ′,l ′

◦	i ′,k′,q γ̃
2
ξ ∇	−1

(i ′,k′)ξ
′ ⊗ ξ ′∇	−T

(i ′,k′)

∥∥∥∥∥∥
L∞(suppηi, j,k,ξ,"l,R)

� δq+n̄�
2 j−4
q

(
�5
q�q

)N M
(
M,Nind,t, τ

−1
q �i+5

q ,T−1
q

)
.

Thus from the Leibniz rule and definition (6.8), we find that for N ,M ≤ Nfin/2,
∥∥∥DN DM

t,q Rq,i,k
∥∥∥
L∞(suppηi, j,k,ξ,"l,R )

� δq+n̄�
2 j+6
q

(
�5
q�q

)N M
(
M,Nind,t, τ

−1
q �i+5

q ,T−1
q

)
;

(6.32)

the loss of �q in the sharp material derivative cost comes from the fact that the sum
includesψi ′,q and is estimated on the supported ofψi,q . The above estimates allowus to
apply [3, Lemma A.5] with N ′ = M ′ = Nfin/2, ψ = �−5

q γξ,�9
q
as in (4.5),13 �ψ = 1,

v = ûq , Dt = Dt,q , h(x, t) = Rq,i,k(x, t), Ch = δq+n̄�
2 j+6
q , �2 = δq+n̄�

2 j−2
q ,

13 Since γ
ξ,�9q

and all its derivatives are bounded by �5
q from (4.3), we first rescale by �−5

q on the outside

and then apply the Faa di Bruno lemma, which requires ψ to be bounded in between 0 and 1. Rescaling
back then produces the desired bound.
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λ = λ̃ = �q�
5
q , μ = τ−1

q �i+5
q , μ̃ = T−1

q , and Nt = Nind,t. We obtain that for all
N ,M ≤ Nfin/2,

∥∥∥∥∥DN DM
t,qγξ,�9

q

(
Rq,i,k

δq+n̄�
2 j−2
q

)∥∥∥∥∥
L∞(suppηi, j,k,ξ,"l,R)

� �5
q

(
�13
q �q

)N M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
.

From the above bound, definition (6.9), the Leibniz rule, estimate (2.33) at level q,
(5.13b), (5.4), (5.30), and (5.39), we obtain that for N ′ = 0, 1 and N ,M ≤ Nfin/2,

∥∥DN DM
t,q(ξ

�A j
�∂ j )

N ′
a
ξ,i, j,k,"l,R

∥∥
L∞

� δ
1/2
q+n̄�

j+4
q (�−5

q λq+1)
N (�13

q �q)
N ′M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
.

Using (5.29), we obtain (6.27a) for N ′′ = 0. When r �= ∞, we use ‖ f ‖Lr ≤
‖ f ‖L∞ |{supp f }|1/r and the demonstrated bound for r = ∞ to obtain (6.26c) for
the full range of r and N ′′ = 0. The estimate in (6.26d) follows in the same way using
(4.23) for p = ∞ and (5.42) and the fact that ζ

I ,R
ξ ≤ 1. Estimates for N ′′ = 1 are

again nearly identical, and we omit further details.
Finally, we prove the pointwise estimates. Recalling that the left-hand side of (6.31)

is supported inside the support of ω j,q and using (5.21) and (5.22c) proves the claim
for  = ϕ. Arguing analogously for  = R concludes the proof. ��

Corollary 6.6 (Full velocity increment estimates). For N ,M ≤ Nfin/4, we have the
estimates

∥∥∥DN DM
t,qw

(p),I
(ξ), 

∥∥∥
Lr

�
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣1/r δ1/2q+n̄�
j+7
q r

2
r −1
q λNq+n̄

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
(6.33a)∥∥∥DN DM

t,qw
(p),I
(ξ), 

∥∥∥
L∞

� �
C∞
2 +10

q r−1
q λNq+n̄M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
.

(6.33b)

Also, for N ,M ≤ Nfin/4, we have that

∥∥∥DN DM
t,qw

(c),I
(ξ), 

∥∥∥
Lr

� rq
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣1/r δ1/2q+n̄�
j+7
q r

2
r −1
q λNq+n̄

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
(6.34a)∥∥∥DN DM

t,qw
(c),I
(ξ), 

∥∥∥
L∞

� �
C∞
2 +10

q λNq+n̄M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
. (6.34b)

123



19 Page 74 of 271 V. Giri et al.

Proof of Corollary 6.6 Recalling the definition ofw(p),I
(ξ), from (6.5) and (6.13), we shall

prove (6.33a) by applying Lemma A.3 with

N∗ = M∗ = Nfin/4 , f = a(ξ), 
(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)∇	−1

(i,k) , 	 = 	(i,k) ,

λ = λq+(n̄/2) , τ−1 = τ−1
q �i+13

q , T = Tq�
−8
q , C f ,R =

∣∣∣suppη(ξ),Rζ
I ,R
ξ

∣∣∣1/r δ1/2q+n̄�
j+7
q

C f ,ϕ =
∣∣∣suppη(ξ),ϕζ

I ,ϕ
ξ

∣∣∣1/r δ1/2q+1r
−1/3
q �

j+7
q , v = ûq , ϕ = W

I
(ξ), , μ = λq+(n̄/2)�q ,

ϒ = � = λq+n̄ , C�,R = r
2
r −1
q , C�,ϕ = r

2
r − 2

3
q , Nt = Nind,t .

From (6.26), Corollary 5.4, and (5.42), we have that for N ,M ≤ Nfin/4,∥∥∥DN DM
t,q

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)∥∥∥
r

�
∣∣∣suppη(ξ), ζ I , 

ξ

∣∣∣1/r δ1/2q+1�
j+7
q λNq+(n̄/2)M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
(6.35)∥∥∥DN DM

t,q(D	(i,k))
−1
∥∥∥
L∞(supp (ψi,q χ̃i,k,q ))

≤ �N
q M

(
M,Nind,t, �

i
qτ

−1
q ,T−1

q �−1
q

)
,

(6.36)∥∥∥DN	(i,k)

∥∥∥
L∞(supp (ψi,q χ̃i,k,q ))

+
∥∥∥DN	−1

(i,k)

∥∥∥
L∞(supp (ψi,q χ̃i,k,q ))

� �−1
q �N−1

q ,

(6.37)

showing that (A.12), (A.13), and (A.14) are satisfied. From Proposition 4.5 and 4.6,
we have that from W

I
(ξ), is periodic to scale λq+(n̄/2)�q , in addition to the estimates

(4.12) and (4.17), and so (A.15) is satisfied for  = R, ϕ. Next, from (11.18) and
(11.21a), the assumptions (A.16) and (A.17) are satisfied. We may thus apply Lemma
A.3 to obtain that for N ,M ≤ Nfin/4, (6.33a) is satisfied. Applying (5.29) then gives
(6.33b).

The argument for the corrector is similar, save for the fact that Dt,q will land on
∇a(ξ), and so we require an extra commutator estimate from Lemma A.7, specifically
Remark A.8. We omit the details of this commutator estimates and refer the reader
to [3, Corollary 8.2]. However, we note that the gain in amplitude comes from the
quotient of a spatial derivative cost of λq+(n̄/2) on the low-frequency function, and a
gain of λq+n̄ from (4.12) or (4.17). Using the definition of rq gives a net gain of rq�−1

q ,
concluding the proof. ��

Now we estimate the mollified velocity increment given in Definition 6.1.

Lemma 6.7 (Estimates on ŵq+n̄). We have that ŵq+n̄ satisfies the following proper-
ties.

(i) For all N + M ≤ 2Nfin, we have that∥∥∥DN DM
t,q+n̄−1ŵq+n̄

∥∥∥
L3(suppψi,q+n̄−1)

� �20
q δ

1/2
q+n̄r

−1/3
q

(
λq+n̄�q+n̄−1

)N M
(
M,Nind,t, �

i−1
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
(6.38a)
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∥∥∥DN DM
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄−1)

� �
C∞/2+16
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q
(
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q+n̄−1�q+n̄−1

)
.

(6.38b)

(ii) For all N + M ≤ Nfin/4, we have that∥∥∥DN DM
t,q+n̄−1

(
wq+1 − ŵq+n̄

)∥∥∥∞ � δ3q+3n̄T
25Nind,t
q+n̄

(
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)N
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(
M,Nind,t, τ
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−1
q+n̄−1�q+n̄−1

)
.

(6.39)

Proof of Lemma 6.7 We prove items (i)–(ii) in steps. First, we apply Corollary (5.18)
with θ = 1, θ1 = 0, θ2 = 1, Hi, j,k,ξ,"l,I , = w

(•),I
(ξ), with • = p, c, p = 3, CH =

δ
1/2
q+n̄�

12
q r−1/3

q , N∗ = M∗ = Nfin/4, Mt = Nind,t, Nx = ∞, λ = � = λq+n̄ , τ−1 =
τ−1
q �4

q , T = Tq . From the definition of w(•),I
(ξ), and Corollary 6.6, we have that(5.48)–

(5.49b) are satisfied, and so from (5.50b), we conclude that for N ,M ≤ Nfin/4∥∥∥ψi,q D
N DM

t,qwq+1

∥∥∥
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� �20
q δ
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q λNq+n̄M
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q �i+14
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q �8

q

)
.

(6.40)

In the case p = ∞, we may aggregate estimates from Corollary 6.6 using the fact that
only a finite, q-independent number of terms w(•),I

(ξ), are non-zero at any fixed point in
space-time to give the bound

∥∥∥ψi,q D
N DM

t,qwq+1

∥∥∥∞ � �
C∞
2 +16

q r−1
q λNq+n̄M

(
N ,Nind,t, τ
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q �i+14

q ,T−1
q

)
. (6.41)

Next, from (6.24), which asserts that suppwq+1 ∩ supp ŵq ′ = ∅ for q + 1 ≤ q ′ ≤
q + n̄− 1, and from (2.17) applied with q ′ = q + n̄− 1 and q ′′ = q, we may upgrade
(6.40)–(6.41) to∥∥∥DN DM

t,q+n̄−1wq+1

∥∥∥
L3(suppψi,q+n̄−1)

� �20
q δ

1/2
q+n̄r
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q λNq+n̄M
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N ,Nind,t, τ
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)
(6.42a)∥∥∥DN DM

t,q+n̄−1wq+1
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L∞(suppψi,q+n̄−1)

� �
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2 +16
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q λNq+n̄M

(
N ,Nind,t, τ
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)
. (6.42b)

We now apply Proposition A.24 with the choices

p = 3,∞ , Ng, Nc as in (xii) , Mt = Nind,t , N∗ = Nfin/4 ,

Nγ = 2Nfin , � = suppψi,q+n̄−1 , v = ûq+n̄−1 , i = i ,

λ = λq+n̄ , � = λq+n̄�q+n̄−1 , � = �q+n̄−1,
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τ = τq+n̄−1�
−2
q+n̄−1 , T = Tq+n̄−1 ,

f = wq+1 , C f ,3 = �20
q δ

1/2
q+n̄r

−1/3
q , C f ,∞ = C̃ f = �

C∞/2+16
q r−1

q , Cv = �
1/2
q+n̄−1 .

From (xii) and (11.12), we have that (A.115) is satisfied. From (2.31b), we have that
(A.116) is satisfied. From (6.42), we have that (A.117a) is satisfied. In order to verify
(A.117b), we apply Remark A.10 with the following choices. We set p = ∞, Nx =
Nt = ∞, N∗ = Nfin/4, � = T

3 × R, v = w = ûq+n̄−1, Cw = �
imax+2
q+n̄−1δ

1/2
q+n̄−1λ

2
q+n̄−1,

λw = λ̃w = �q+n̄−1, μw = μ̃w = �−1
q+n̄−1T

−1
q+n̄−1 in (A.34), while in (A.27)

and (A.28) we set v = ûq+n̄−1, Cv = Cw, λv = λ̃v = �q+n̄−1, μv = μ̃v =
�−1
q+n̄−1T

−1
q+n̄−1, f = wq+1, C f = �

C∞/2+16
q r−1

q , λ f = λ̃ f = λq+n̄ ,μ f = μ̃ f = T−1
q .

Then (A.27) and (A.28) are satisfied from (2.30) at level q+ n̄−1, (6.42), (2.13), and
(11.12). Next, (A.34) is satisfied from (2.31a) at level q + n̄ − 1. Thus from (A.35)
and (11.12), we obtain that∥∥∥DN ∂Mt wq+1

∥∥∥∞ � �
C∞/2+16
q r−1

q λNq+n̄T
−M
q+n̄−1 (6.43)

for N + M ≤ Nfin/4, thus verifying the final assumption (A.117b) from Lemma A.24.
We first apply (A.118) to conclude that (6.38) holds. Finally, we have from (A.119)

and (11.16a) that the difference wq+1 − ŵq+n̄ satisfies (6.39). ��

7 * Abstract construction of intermittent pressure

As in all convex integration schemes for the Euler equations, part of the goal of
the pressure π� in our setting is to ensure that R� − π�Id is negative definite. Then
the low-frequency portion of wq+1 ⊗ wq+1, which is positive-definite, cancels R� −
π�Id via Proposition 4.1; see (8.8). The simplest way to define π� for this purpose
is to set π� ≈ |R�|. However, in order to ensure additionally that π� dominates the
Reynolds stress and the gradient of velocity via estimates such as (1.4) (see also (2.18)–
(2.21)), one must include in the definition of π� derivative estimates on stresses and
velocities, similar to the procedure described in Remark 2.14. This is part of the goal of
Lemmas 7.1 and 7.2 and Step 1 from Proposition 7.3. The first of these two lemmas
carries out this task for stress errors, while the latter does the same for current errors.
For example, Lemma 7.1 defines a positive scalar function σ+S which dominates a
stress error S (for example part of Rq

q ) via an estimate such as (7.7). We also have that
σ+S dominates itself via an estimate such as (7.8).

One should view σ+S as essentially identical to δq+n̄�
2 j
q from (2.49). However, due

to the fact that σ+S is positive, and no effort has beenmade yet to keep track of its active
frequencies, one will never be able to effectively invert the divergence on any term
containing σ+S . For the method of proof described in Remark 2.14, or the iterations
in [3, 32], this was not an issue. However, the relaxed local energy inequality 2.34
throws a rather large wrench into this method. Namely, the addition of wq+1 into this
equation will produce an error term of the form (∂t + ûq · ∇)|wq+1|2, which can only
be handled by inverting the divergence to create a new current error term. This is the
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role of κqq in (2.34), which is essentially equal to −P≤λq (|wq+1|2). Indeed then

(∂t + ûq · ∇)
(
κ
q
q + |wq+1|2

)
≈ (∂t + ûq · ∇)

(
P>λq

(
|wq+1|2

))
,

and so we can effectively invert the divergence on this term. But the appearance of the
term (∂t+ ûq ·∇)κqq in (2.34) means that onemust have created current errors at earlier
stages of the iteration by adding in div−1

P�=0
(
(∂t + ûq · ∇)κqq

)
. Commuting for the

moment the projection operator past thematerial derivative, thismeans that onemust be
able to estimate div−1

(
(∂t + ûq · ∇)P�=0κ

q
q
)
, which we refer to as a “pressure current

error.” This will only be possible if we have accurate information on the frequency
support of κqq , i.e. accurate frequency support information on the scalar function σ+S
which is approximately equal to −R� + π�Id. Therefore, rather than simply adding
σ+S to dominate −R� + π�Id, we must add σS = σ+S − σ−S , where σS is essentially
mean-zero and σ−S is low-frequency; see (7.5). We then record an estimate of the
form (7.11), which asserts that σ−S can be dominated by old intermittent pressure.
This is the second main goal of Lemmas 7.1 and 7.2; to show that the low-frequency
portion of the pressure increment can be absorbed by old intermittent pressure.

Now that the pressure increment σS = σ+S −σ−S defined in Lemma 7.1 is effectively
mean-zero, we can apply a material derivative and invert the divergence. This is the
content of Proposition 7.4, which contains several steps. The first step is to use the
inverse divergence from Proposition A.13 to produce an error term S. The second step
is to apply Lemma 7.1 to produce a mean-zero pressure increment σS . The final step
is to apply a material derivative to σS and invert the divergence. Since this procedure
has to be carried out for essentially every stress error term, one is forced to write
a rather abstract, intricate result like Proposition 7.4 which can be applied over and
over again. Proposition 7.5 carries out a similar procedure, except for the current
error. Proposition 7.3 creates the pressure increment for the velocity field, and since
one need only apply this result one time at each step q �→ q + 1, Proposition 7.3 is
analogous to the combination of Lemma 7.1 and Proposition 7.4 for the stress. It would
be reasonable for the reader to read only the proofs of Lemma 7.1 and Proposition 7.4,
as the remainder of the section is identical in character to these results.

* Lemma 7.1 (Pressure increment for stress error). Let v be an incompressible vec-
tor field on R × T

3. Denote its material derivative by Dt = ∂t + v · ∇. We use large
positive integers N† ≥ M† * Mt for counting derivatives and specify additional
constraints that they must satisfy in assumptions (i)–(iv).

Suppose a stress error S = H ρ ◦	 and a non-negative, continuous function π are
given such that the following hold.

(i) There exist constants CG,p and Cρ,p14 for p = 3/2 and p = ∞ and frequency
paramaters λ,�, ν, ν′ such that∥∥∥DN DM

t H
∥∥∥
p

� CG,pλNM
(
M,Mt , ν, ν

′) (7.1a)

14 In practice, Cρ,p = C∗,pζ−2ξ�α from (A.49a). We shall also assume that these constants are ordered
in the obvious way, i.e. C•,3/2 ≤ C•,∞.
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∣∣∣DN DM
t H

∣∣∣ � πλNM (
M,Mt , ν, ν

′) (7.1b)∥∥∥DNρ

∥∥∥
p

� Cρ,p�N (7.1c)

‖S‖p � CG,pCρ,p =: δS,p . (7.1d)

for all N ≤ N†, M ≤ M†.
(ii) There exist a frequency parameter μ, a parameter � for measuring small losses

in derivative costs,15 and a positive integer Ndec such that ρ is (T/μ)3-periodic
and λ � μ ≤ �, whereby we mean that

(��)4 ≤
(

μ

4π
√
3(λ�)

)Ndec

. (7.2)

(iii) Let 	 be a volume preserving diffeomorphism of T
3 such that Dt	 = 0 and 	

is the identity at a time slice which intersects the support of H, and

∥∥∥DN+1	

∥∥∥
L∞(supp H)

+
∥∥∥DN+1	−1

∥∥∥
L∞(supp H)

� λN (7.3a)∥∥∥DN DM
t Dv

∥∥∥
L∞(supp H)

� νλNM (
M,Mt , ν, ν

′) (7.3b)

for all N ≤ N†, M ≤ M†.
(iv) There exist positive integers Ncut,x,Ncut,t and a small parameter δtiny ≤ 1 such

that16

Ncut,t ≤ Ncut,x , (7.4a)(CG,∞ + 1
) (Cρ,∞ + 1

)
�−Ncut,t ≤ δtiny , CG,3/2 , Cρ,3/2 , (7.4b)

2Ndec + 4 ≤ N† − Ncut,x, Ncut,t ≤Mt . (7.4c)

Then one can construct a pressure increment σS = σ+S − σ−S associated to the stress
error S, where

σS := &(H) (&(ρ) ◦	− 〈&(ρ)〉) , (7.5a)

σ+S := &(H)&(ρ) ◦	, (7.5b)

and

&(H) :=
⎛
⎝(CG,∞�−Ncut,t )2 +

Ncut,x∑
N=0

Ncut,t∑
M=0

(λ�)−2N (ν�)−2M |DN DM
t H |2

⎞
⎠

1
2

15 In practice, � = �q ′ for some q ′, which then makes � a small power of λ or �.
16 The choice of Ncut,t is such that �−Ncut,t can absorb a Sobolev loss from H or ρ, or help absorb small
remainder terms into the miniscule constant δtiny.
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− CG,∞�−Ncut,t , (7.6a)

&(ρ) :=
⎛
⎝(Cρ,∞�−Ncut,t )2 +

Ncut,x∑
N=0

(��)−2N |DNρ|2
⎞
⎠

1
2

− Cρ,∞�−Ncut,t , (7.6b)

and which has the properties listed below.

(i) σ+S dominates derivatives of S with suitable weights, so that for all N ≤ N† and
M ≤ M†, ∣∣∣DN DM

t S
∣∣∣ � (σ+S + δtiny)(��)

NM (
M,Mt , ν�, ν

′�
)
. (7.7)

(ii) σ+S dominates derivatives of itself with suitable weights, so that for all N ≤
N† − Ncut,x, M ≤ M† − Ncut,t,∣∣∣DN DM

t σ+S
∣∣∣ � (σ+S + δtiny)(��)

NM (
M,Mt − Ncut,t, ν�, ν

′�
)
. (7.8)

(iii) σ+S and σ−S have the same size as S, so that

∥∥σ+S ∥∥p � δS,p,
∥∥σ−S ∥∥p � δS,p . (7.9)

Furthermore &(H) and &(ρ) have the same size as H and ρ, so that for N ≤
N† − Ncut,x, M ≤ M† − Ncut,t, and p = 3/2,∞∥∥∥DN DM

t &(H)

∥∥∥
p

� CG,p(λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)
,∥∥∥DN&(ρ)

∥∥∥
p

� Cρ,p(��)N . (7.10)

We note also that &(ρ) is (T/μ)3-periodic.
(iv) π dominates σ−S and &(H) and their derivatives with suitable weights, so that

for all N ≤ N† − Ncut,x and M ≤ M† − Ncut,t,∣∣∣DN DM
t σ−S

∣∣∣ � π ‖&(ρ)‖1 (λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)
, (7.11a)∣∣∣DN DM

t &(H)

∣∣∣ � π(λ�)NM (
M,Mt − Ncut,t, ν�, ν

′�
)
. (7.11b)

(v) σ+S and σ−S are supported on supp (S) and supp (H), respectively.

Proof of Lemma 7.1 We break the proof into steps in which we prove each of the items
(i)–(v).
Proof of (i): We first use (7.3a) and Dt	 = 0 from (iii) and Lemma A.2 to deduce
that for N ≤ N† and M ≤ M†,

|DN DM
t S| = |DN ((DM

t H)(ρ) ◦	)| ≤
∑

N1+N2=N

|DN1(DM
t H)||DN2(ρ ◦	))|
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�
∑

N1+N2=N

|DN1(DM
t H)|

N2∑
n2=1

(λ�)N2−n2
∣∣(Dn2ρ) ◦	∣∣ . (7.12)

Estimate (7.7) will then follow from (7.12) and the following claims;

&(H) � CG,∞ (7.13a)

&(ρ) � Cρ,∞ (7.13b)

|DN1DM
t H | � (&(H)+ CG,∞�−Ncut,t )(λ�)N1M (

M,Mt , ν�, ν
′�
)

(7.13c)

λN2−n2 |Dn2ρ| � (&(ρ)+ Cρ,∞�−Ncut,t )(��)N2 (7.13d)

for any integers 0 ≤ N1, n2 ≤ N†, M ≤ M†. Indeed, the above claims, (7.4a)–(7.4b),
and (7.12) give that for N ≤ N† and M ≤ M†,

|DN DM
t S| � (&(H)+ CG,∞�−Ncut,t )(&(ρ) ◦	+ Cρ,∞�−Ncut,t )(��)NM (

M,Mt , ν�, ν
′�
)

�
(
&(H)&(ρ) ◦	+ �−Ncut,t

(
CG,∞&(ρ) ◦	+ Cρ,∞&(H)+ CG,∞Cρ,∞�−Ncut,t

))
× (��)NM (

M,Mt , ν�, ν
′�
)

� (σ+s + δtiny)(��)
NM (

M,Mt , ν�, ν
′�
)
.

The proofs of the claims are then given as follows. The first is immediate from the
definition of &(H) and the computation

&(H) � CG,∞
⇐�

(
&(H)+ CG,∞�−Ncut,t

)2
� C2G,∞

⇐� (λ�)−2N (ν�)−2M |DN DM
t H |2 � C2G,∞ ,

which holds for N ≤ Ncut,x and M ≤ Ncut,t from (7.1a). A similar computation holds
for &(ρ). For the next two claims, if M ≤ Ncut,t and N1, N2 ≤ Ncut,x, an argument
quite similar to the above computation shows that

|DN1(DM
t H)| � (&(H)+ CG,∞�−Ncut,t )(λ�)N1(ν�)M , (7.14a)

λN2−n2
∣∣(Dn2ρ) ◦	∣∣ � (��)N2

(
&(ρ) ◦	+ Cρ,∞�−Ncut,t

)
. (7.14b)

If however M > Ncut,t , N1 > Ncut,x, or N2 > Ncut,x, we use (7.4a)–(7.4b) and (7.1a)
in the first two cases and (7.1c) in the third case to obtain, respectively, that

∥∥∥DN1(DM
t H)

∥∥∥
L∞

� CG,∞λN1M (
M,Mt , ν, ν

′) (7.15a)

� �−Ncut,tCG,∞λN1M (
M,Mt , ν�, ν

′�
)

(7.15b)∥∥∥DN1(DM
t H)

∥∥∥
L∞

� �−Ncut,tCG,∞(λ�)N1M (
M,Mt , ν, ν

′) (7.15c)

λN2−n2
∥∥Dn2ρ

∥∥
L∞ � �−Ncut,tCρ,∞(��)N2 , (7.15d)
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concluding the proof of the claims and thus (7.7).
Proof of (ii): We first show by induction that for integers K ≥ 0 and N ,M such that
N + M = K , N ≤ N† − Ncut,x, and M ≤ M† − Ncut,t ,

|DN DM
t &(H)| �

(
&(H)+ CG,∞�−Ncut,t

)
(λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
.

(7.16)

When K = 0 the claim is immediate. Now, suppose by induction that (7.16) holds true
for any K ≤ K0, K0 ∈ N∪{0}. To obtain (7.16) for K0+1,wefirst note that for N ′′,M ′′
such that 0 < N ′′ + M ′′, |DN ′′

DM ′′
t &(H)| = |DN ′′

DM ′′
t (&(H) + CG,∞�−Ncut,t )|.

We then obtain the inequality

∣∣∣DN DM
t &(H)

∣∣∣ = ∣∣∣DN DM
t

(
&(H)+ CG,∞�−Ncut,t

)∣∣∣
� 1∣∣∣&(H)+ CG,∞�−Ncut,t

∣∣∣
[ ∣∣∣DN DM

t

(
(&(H)+ CG,∞�−Ncut,t )2

)∣∣∣
+

∑
0≤N ′≤N
0≤M ′≤M

0<N ′+M ′≤K0

∣∣∣DN ′
DM ′
t &(H)

∣∣∣ ∣∣∣DN−N ′
DM−M ′
t &(H)

∣∣∣ ] ,

(7.17)

which follows from Lemma A.5 with p = 2 and the positivity of∣∣&(H)+ CG,∞�−Ncut,t
∣∣. Using the inductive assumption (7.16), which is valid since

0 < N ′ + M ′ ≤ K0, and (7.4b), the second term can be controlled by

1∣∣&(H)+ CG,∞�−Ncut,t
∣∣
(
&(H)+ CG,∞�−Ncut,t

)2
(λ�)NM (

M,Mt − Ncut,t, �ν, �ν
′)

�
(
&(H)+ CG,∞�−Ncut,t

)
(λ�)NM (

M,Mt − Ncut,t, �ν, �ν
′) . (7.18)

As for the first term, we have that

∣∣DN DM
t

(
(&(H)+ CG,∞�−Ncut,t )2

)∣∣∣∣&(H)+ CG,∞�−Ncut,t
∣∣

≤ 1∣∣&(H)+ CG,∞�−Ncut,t
∣∣
Ncut,x∑
n=0

Ncut,t∑
m=0

(λ�)−2n(ν�)−2m
∣∣∣DN DM

t

∣∣DnDm
t H
∣∣2∣∣∣

= 1∣∣&(H)+ CG,∞�−Ncut,t
∣∣
Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λ�)−2n(ν�)−2m

∣∣∣DN ′
DM ′
t DnDm

t H
∣∣∣ ∣∣∣DN−N ′

DM−M ′
t DnDm

t H
∣∣∣ . (7.19)
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To bound the quantity above, we first claim that for multi-indices α, β ∈ N
k with

k ≥ 2, |α| ≤ N†, and |β| ≤ M†,

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t H

∣∣∣∣∣ (x) �
(
&(H)(x)+ CG,∞�−Ncut,t

)
(λ�)|α|M (|β|,Mt , ν�, ν

′�
)
.

(7.20)
To prove this claim, let �(x)⊆ supp (H) be a closed set containing x . Then applying
Lemma A.7 with p = ∞, Nt = Mt , N∗ = N†, M∗ = M†, � = �(x), Cv = νλ−1,
λv = λ̃v = λ, μv = ν, μ̃v = ν′, f = H , C f = sup�(x)(&(H) + CG,∞�−Ncut,t ),
λ f = λ̃ f = λ�, μ f = ν�, and μ̃ f = ν′�, we have that (A.27) is satisfied from
(7.3b), and (A.28) is satisfied by (7.13c) and the assumption on |α|, |β|. Then (A.31)
gives that

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t H

∣∣∣∣∣ (x) �
(
sup
�(x)

&(H)+ CG,∞�−Ncut,t

)
(λ�)|α|M (|β|,Mt , ν�, ν

′�
)
.

(7.21)
Since�(x) is arbitrary and&(H) is continuous, we have proven (7.20). Plugging the
bound in (7.20) into (7.19), we find that

∣∣DN DM
t

(
(&(H)+ CG,∞�−Ncut,t )2

)∣∣∣∣&(H)+ CG,∞�−Ncut,t
∣∣

� 1∣∣&(H)+ CG,∞�−Ncut,t
∣∣
(
&(H)(x)+ CG,∞�−Ncut,t

)2
× (λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
,

which matches the desired bound in (7.16). This concludes the proof of (7.16).
Arguing in a similar way (in fact the proof is simpler since only spatial derivatives

are required), we also have that for each integer 0 ≤ N ≤ N† − Ncut,x,

∣∣∣DN&(ρ)

∣∣∣ � (&(ρ)+ Cρ,∞�−Ncut,t
)
(��)N , (7.22a)∣∣∣DN (&(ρ) ◦	)

∣∣∣ � (&(ρ) ◦	+ Cρ,∞�−Ncut,t
)
(��)N . (7.22b)

Combining (7.16), (7.22b), and the choice of δtiny from (7.4b), we obtain the desired
estimate (7.8).
Proof of (iii): Observe that by the construction of &(H), (7.1a), and a computation
similar to that used to produce (7.13a), we have

∥∥&(H)+ CG,∞�−Ncut,t
∥∥
p � CG,p

for p = 3/2,∞, and so ‖&(H)‖p � CG,p. It follows from (7.16) and (7.4b) that

∥∥∥DN DM
t &(H)

∥∥∥
p

� CG,p(λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)

(7.23)
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for N ≤ N† − Ncut,x and M ≤ M† − Ncut,t . Similarly, by the construction of &(ρ),
(7.1c) and (7.22a), we have that ‖&(ρ)‖p � Cρ,p, and so

∥∥∥DN&(ρ)

∥∥∥
p

� Cρ,p(��)N (7.24)

for N ≤ N† − Ncut,x. Thus (7.10) is verified. Also, by the construction of &(ρ),
its periodicity easily follows from (ii). Next, we can immediately deduce from the
definition of σ−S the easier bound

∥∥σ−S ∥∥p � ‖&(H)‖p ‖&(ρ)‖1 � CG,pCρ,p = δS,p .

In the case of σ+S and p = 3/2, we additionally apply Lemma A.3 by setting

N∗ = N† − Ncut,x, M∗ = M† − Ncut,t, f = &(H), 	 = 	,

λ = λ�, τ−1 = ν�, T−1 = ν′�,
C f = CG,3/2, v = v, � = &(ρ), μ = μ,

ϒ = � = ��, C� = Cρ,3/2, Nt = Mt − Ncut,t .

Then (A.12) is verified from (7.23), (A.13)–(A.14) follow from (7.3a), (A.15) follows
from (7.24) and the periodicity of&(ρ), (A.16) follows from (7.2), and (A.17) follows
from (7.4c). We then obtain from (A.18) that

∥∥σ+S ∥∥3/2 � CG,3/2Cρ,3/2 = δS,3/2 .

Finally, the estimate for
∥∥σ+S ∥∥∞ is trivial, so that (7.9) holds and (iii) is totally verified.

Proof of (iv): We first prove (7.11b) by induction; namely, for each integer K =
N + M ≥ 0, N ≤ N† − Ncut,x, M ≤ M† − Ncut,t ,

|DN DM
t &(H)| � π(λ�)NM (

M,Mt − Ncut,t, ν�, ν�
′) . (7.25)

The proof uses an argument quite similar to the proof of (7.16). The base case follows
from writing that

&(H) � π

⇐⇒ &(H)+ CG,∞�−Ncut,t ≤ Cπ + CG,∞�−Ncut,t

⇐�
(
&(H)+ CG,∞�−Ncut,t

)2 ≤ C2π2 + C2G,∞�−2Ncut,t ,

for some absolute constant C = C(Ncut,t,Ncut,x) which can be seen to hold from the
definition of &(H) and (7.1b). For the inductive step, we argue starting from (7.17),
although with slightly different steps to follow. Using the inductive assumption from
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(7.25) to control one term and the bound (7.16) to control the other term, and (7.4b),
we have that the second term from (7.17) may be bounded by

1∣∣&(H)+ CG,∞�−Ncut,t
∣∣π
(
&(H)+ CG,∞�−Ncut,t

)
(λ�)NM (

M,Mt − Ncut,t, �ν, �ν
′)

� π(λ�)NM (
M,Mt − Ncut,t, �ν, �ν

′) . (7.26)

Thus it remains to control the first term from (7.17). Towards this end, we claim that
for multi-indices α, β ∈ N

k with k ≥ 2, |α| ≤ N†, and |β| ≤ M†,

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t H

∣∣∣∣∣ (x) � π(x)(λ�)|α|M (|β|,Mt , ν�, ν
′�
)
. (7.27)

We apply Lemma A.7 with precisely the same choices as in the proof of (7.20), save
for the choice of C f = sup�(x) π . Then (A.27) is satisfied from (7.3b), and (A.28)
is satisfied by (7.1b). Then applying (A.31), shrinking �(x) to a point, and using the
continuity of π provides (7.27). Plugging this bound into (7.19) and using (7.20) and
(7.4b), we find that for N ≤ N† − Ncut,x and M ≤ M† − Ncut,t ,∣∣DN DM

t

(
(&(H)+ CG,∞�−Ncut,t )2

)∣∣∣∣&(H)+ CG,∞�−Ncut,t
∣∣

� 1∣∣&(H)+ CG,∞�−Ncut,t
∣∣π
(
&(H)+ CG,∞�−Ncut,t

)
(λ�)N

M (
M,Mt − Ncut,t, ν�, ν

′�
)

� π(λ�)NM (
M,Mt − Ncut,t, ν�, ν

′�
)
,

which combined with (7.26) concludes the proof of (7.11b). To prove (7.11a), we use
(7.11b) and the definition of σ−S .
Proof of (v):By the definition of&(H) and&(ρ), it is easy to see that supp (&(H)) ⊆
supp (H) and supp (&(ρ)) ⊆ supp (ρ), and so (v) is verified. ��
* Lemma 7.2 (Pressure increment for current error). Let v be an incompressible
vector field on R×T

3. Denote its material derivative by Dt = ∂t +v ·∇. We use large
positive integers N∗ ≥ M∗ * Mt for counting derivatives and specify additional
constraints that they must satisfy in assumptions (i)–(iv).

Suppose a current error φ = H ρ ◦	 and a non-negative, continuous function π
are given such that the following hold.

(i) There exist constants CG,p and Cρ,p for p = 1,∞, frequency parameters
λ,�, ν, ν′, and intermittency parameters 0 < rG, rφ ≤ 1 such that

∥∥∥DN DM
t H

∥∥∥
p

� CG,pλNM
(
M,Mt , ν, ν

′) (7.28a)∣∣∣DN DM
t H

∣∣∣ � π
3/2r−1

G λNM (
M,Mt , ν, ν

′) (7.28b)
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∥∥∥DNρ

∥∥∥
p

� Cρ,p�N (7.28c)

‖φ‖p � CG,pCρ,p =: δ3/2φ,pr−1
φ (7.28d)

for all N ≤ N∗, M ≤ M∗.
(ii) There exist a frequency parameter μ, a parameter � for measuring small losses

in derivative costs, and a positive integer Ndec such that ρ is (T/μ)3-periodic and
λ � μ ≤ �, whereby we mean that

(��)4 ≤
(

μ

4π
√
3(λ�)

)Ndec

. (7.29)

(iii) Let 	 be a volume preserving diffeomorphism of T
3 such that Dt	 = 0 and 	

is the identity at a time slice which intersects the support of H, and

∥∥∥DN+1	

∥∥∥
L∞(supp H)

+
∥∥∥DN+1	−1

∥∥∥
L∞(supp H)

� λN (7.30a)∥∥∥DN DM
t Dv

∥∥∥
L∞(supp H)

� νλNM (
M,Mt , ν, ν

′) (7.30b)

for all N ≤ N∗, M ≤ M∗.
(iv) There exist positive integers Ncut,x,Ncut,t and a small parameter δtiny ≤ 1 such

that

Ncut,x ≥ Ncut,t (7.31a)(CG,∞ + 1
) (Cρ,∞ + 1

)
�−Ncut,t ≤ δ

3/2
tiny , CG,1 , Cρ,1 , (7.31b)

2Ndec + 4 ≤ N∗ − Ncut,x − 4, Ncut,t ≤ Mt . (7.31c)

Then one can construct a pressure increment σφ associated to the current error φ,
where

σφ = r
2/3
φ &(H) (&(ρ) ◦	− 〈&(ρ)〉) , (7.32a)

σ+φ := r
2/3
φ &(H)&(ρ) ◦	, (7.32b)

and

&(H) :=
⎛
⎝(CG,∞�−Ncut,t

)2 + Ncut,x∑
N=0

Ncut,t∑
M=0

(λ�)−2N (ν�)−2M |DN DM
t H |2

⎞
⎠

1
3

−
(
CG,∞�−Ncut,t

)2/3
, (7.33a)
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&(ρ) :=
⎛
⎝(Cρ,∞�−Ncut,t

)2 + Ncut,x∑
N=0

(��)−2N |DNρ|2
⎞
⎠

1
3

−
(
Cρ,∞�−Ncut,t

)2/3
,

(7.33b)

and which has the properties listed below.

(i) σ+φ dominates derivatives of φ with suitable weights, so that for all N ≤ N∗ and
M ≤ M∗,∣∣∣DN DM

t φ

∣∣∣ � ((σ+φ )3/2r−1
φ + δtiny

)
(��)NM (

M,Mt , ν�, ν
′�
)
. (7.34)

(ii) σ+φ dominates derivatives of itself with suitable weights, so that for all N ≤
N∗ − Ncut,x, M ≤ M∗ − Ncut,t,∣∣∣DN DM

t σ+φ
∣∣∣ � (σ+φ + δtiny

)
(��)NM (

M,Mt , ν, ν
′) . (7.35)

(iii) σ+φ and σ−φ have size comparable to φ, so that

∥∥∥σ+φ ∥∥∥3/2 � δφ,1 ,

∥∥∥σ−φ ∥∥∥3/2 � δφ,1 , (7.36a)∥∥∥σ+φ ∥∥∥∞ � δφ,∞ ,

∥∥∥σ−φ ∥∥∥∞ � δφ,∞ . (7.36b)

Furthermore, &(H) and &(ρ) have size comparable to H and ρ, respectively,
so that for all N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t,∥∥∥DN DM

t &(H)

∥∥∥
3/2

� C2/3
G,1(λ�)

NM (
M,Mt − Ncut,t, ν�, ν

′�
)
,∥∥∥DN&(ρ)

∥∥∥
3/2

� C2/3
ρ,1(��)

N , (7.37a)∥∥∥DN DM
t &(H)

∥∥∥∞ � C2/3
G,∞(λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
,∥∥∥DN&(ρ)

∥∥∥∞ � C2/3
ρ,∞(��)N , (7.37b)

We note also that &(ρ) is (T/μ)3-periodic.
(iv) π dominates σ−φ and &(H) and their derivatives with suitable weights, so that

for all N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t,

∣∣∣DN DM
t σ−φ

∣∣∣ � ( rφ
rG

)2/3

π ‖&(ρ)‖1 (λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)
,

(7.38a)∣∣∣DN DM
t &(H)

∣∣∣ � r−2/3
G π(λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
. (7.38b)
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(v) σ+φ and σ−φ are supported on supp (φ) and supp (H), respectivly.

Proof of Lemma 7.2 We break the proof into steps in which we prove each of the items
(i)–(v). The proof follows quite closely the proof of Lemma 7.1, save for various
rescalings related to the different scalings for current errors versus stress errors.
Proof of (i): We first use (7.30a) and Dt	 = 0 from (iii) and Lemma A.2 to deduce
that for N ≤ N∗ and M ≤ M∗,

|DN DM
t φ| = |DN ((DM

t H)(ρ) ◦	)| ≤
∑

N1+N2=N

|DN1(DM
t H)||DN2(ρ ◦	))|

�
∑

N1+N2=N

|DN1(DM
t H)|

N2∑
n2=1

(λ�)N2−n2
∣∣(Dn2ρ) ◦	∣∣ . (7.39)

Estimate (7.34) will then follow from (7.39) and the following claims;

&(H) � C2/3
G,∞ (7.40a)

&(ρ) � C2/3
ρ,∞ (7.40b)

|DN1DM
t H | �

(
&

3/2(H)+ CG,∞�−Ncut,t
)
(λ�)N1M (

M,Mt , ν�, ν
′�
)

(7.40c)

λN2−n2 |Dn2ρ| �
(
&

3/2(ρ)+ Cρ,∞�−Ncut,t
)
(��)N2 (7.40d)

for any integers 0 ≤ N1, n2 ≤ N∗, M ≤ M∗. Indeed, the above claims, (7.31a)–
(7.31b), and (7.39) give that for N ≤ N∗ and M ≤ M∗,∣∣∣DN DM

t φ

∣∣∣
�
(
&

3/2(H)+ CG,∞�−Ncut,t
) (

&
3/2(ρ) ◦	+ Cρ,∞�−Ncut,t

)
(��)NM (

M,Mt , ν�, ν
′�
)

�
(
(&(H)&(ρ) ◦	)3/2 + �−Ncut,t

(
CG,∞&

3/2(ρ) ◦	+ Cρ,∞&
3/2(H)+ CG,∞Cρ,∞�−Ncut,t

))
× (��)NM (

M,Mt , ν�, ν
′�
)

�
(
(σ+s )

3/2r−1
φ + δtiny

)
(��)NM (

M,Mt , ν�, ν
′�
)
.

The proofs of the claims are then given as follows. The first is immediate from the
definition of &(H) and the computation

&(H) � C2/3
G,∞

⇐�
(
&(H)+

(
CG,∞�−Ncut,t

)2/3)3

� C2G,∞
⇐� (λ�)−2N (ν�)−2M |DN DM

t H |2 � C2G,∞ ,

which holds for N ≤ Ncut,x and M ≤ Ncut,t from (7.28a). A similar computation
holds for &(ρ). Next, if M ≤ Ncut,t and N1, N2 ≤ Ncut,x, a computation similar to
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the one above shows that

|DN1(DM
t H)| �

(
&(H)+

(
CG,∞�−Ncut,t

)2/3)3/2

(λ�)N1(ν�)M , (7.41a)

λN2−n2
∣∣(Dn2ρ) ◦	∣∣ � (��)N2

(
&(ρ) ◦	+

(
Cρ,∞�−Ncut,t

)2/3)3/2

. (7.41b)

If however M > Ncut,t , N1 > Ncut,x, or N2 > Ncut,x, we use (7.31a)–(7.31b) and
(7.28a) in the first two cases and (7.28c) in the third case to obtain, respectively, that

∥∥∥DN1(DM
t H)

∥∥∥
L∞

� CG,∞λN1M (
M,Mt , ν, ν

′)
� �−Ncut,tCG,∞λN1M (

M,Mt , ν�, ν
′�
)

(7.42a)∥∥∥DN1(DM
t H)

∥∥∥
L∞

� �−Ncut,tCG,∞(λ�)N1M (
M,Mt , ν, ν

′) (7.42b)

λN2−n2
∥∥Dn2ρ

∥∥
L∞ � �−Ncut,tCρ,∞(��)N2 , (7.42c)

concluding the proof of the claims and thus of (7.34).
Proof of (ii): We first show by induction that for integers K ≥ 0 and N ,M such that
N + M = K , N ≤ N∗ − Ncut,x, and M ≤ M∗ − Ncut,t ,

|DN DM
t &(H)| �

(
&(H)+ (CG,∞�−Ncut,t )

2/3
)
(λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
.

(7.43)

When K = 0 the claim is immediate. Now, suppose by induction that (7.43) holds
true for any K ≤ K0, K0 ∈ N ∪ {0}. To obtain (7.43) for K0 + 1, we first note
that for N ′′,M ′′ such that 0 < N ′′ + M ′′, |DN ′′

DM ′′
t &(H)| = |DN ′′

DM ′′
t (&(H) +

+(CG,∞�−Ncut,t )
2/3)|. We then obtain the inequality∣∣∣DN DM

t &(H)

∣∣∣ = ∣∣∣DN DM
t

(
&(H)+ (CG,∞�−Ncut,t )2/3

)∣∣∣
� 1∣∣∣&(H)+ (CG,∞�−Ncut,t )2/3

∣∣∣2
[ ∣∣∣DN DM

t

(
(&(H)+ (CG,∞�−Ncut,t )

2/3)3
)∣∣∣

+
∑

⎧⎨
⎩
α,β :∑3

i=1 αi=N ,∑3
i=1 βi=M ,

αi+βi<N+M ∀ i

⎫⎬
⎭

3∏
i=1

∣∣∣Dαi D
βi
t

(
&(H)+ (CG,∞�−Ncut,t )2/3

)∣∣∣ ] ,

(7.44)

which follows from Lemma A.5 with p = 3 and the positivity of∣∣&(H)+ (CG,∞�−Ncut,t )
2/3
∣∣. Using the inductive assumption (7.43), which is valid

since 0 < N ′ + M ′ ≤ K0, and (7.31b), the second term can be controlled by

1∣∣&(H)+ (CG,∞�−Ncut,t )2/3
∣∣2
(
&(H)+ (CG,∞�−Ncut,t )

2/3
)3

(λ�)N
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M (
M,Mt − Ncut,t, �ν, �ν

′)
�
(
&(H)+ (CG,∞�−Ncut,t )

2/3
)
(λ�)NM (

M,Mt − Ncut,t, �ν, �ν
′) . (7.45)

As for the first term, we have that
∣∣∣DN DM

t

(
(&(H)+ (CG,∞�−Ncut,t )2/3)3

)∣∣∣∣∣∣&(H)+ (CG,∞�−Ncut,t )2/3
∣∣∣2

≤ 1∣∣∣&(H)+ (CG,∞�−Ncut,t )2/3
∣∣∣2

Ncut,x∑
n=0

Ncut,t∑
m=0

(λ�)−2n(ν�)−2m
∣∣∣DN DM

t
∣∣DnDm

t H
∣∣2∣∣∣

= 1∣∣∣&(H)+ (CG,∞�−Ncut,t )2/3
∣∣∣2

Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λ�)−2n(ν�)−2m
∣∣∣DN ′

DM ′
t Dn Dm

t H
∣∣∣

×
∣∣∣DN−N ′

DM−M ′
t Dn Dm

t H
∣∣∣ . (7.46)

To bound the quantity above, we first claim that for multi-indices α, β ∈ N
k with

k ≥ 2, |α| ≤ N∗, and |β| ≤ M∗,
∣∣∣∣∣

k∏
i=1

Dαi Dβi
t H

∣∣∣∣∣ (x) �
(
&(H)

3/2(x)+ CG,∞�−Ncut,t
)
(λ�)|α|M (|β|,Mt , ν�, ν

′�
)
.

(7.47)
To prove this claim, let �(x) ⊆ suppH be a closed set containing x . Then
applying Lemma A.7 with p = ∞, Nt = Mt , N∗ = Ncut,x, M∗ = Ncut,t ,
� = �(x), Cv = νλ−1, λv = λ̃v = λ, μv = ν, μ̃v = ν′, f = H ,
C f = sup�(x)

(
&

3/2(H)+ CG,∞�−Ncut,t
)
, λ f = λ̃ f = λ�, μ f = ν�, and μ̃ f = ν′�,

we have that (A.27) is satisfied from (7.30b), and (A.28) is satisfied by (7.40c). Then
(A.31) gives that

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t H

∣∣∣∣∣ (x)�
(
sup
�(x)

&(H)
3/2 + CG,∞�−Ncut,t

)
(λ�)|α|M (|β|,Mt , ν�, ν

′�
)
.

(7.48)
Since�(x) is arbitrary and&(H) is continuous, we have proven (7.47). Plugging this
bound into (7.46), we find that

∣∣DN DM
t

(
(&(H)+ (CG,∞�−Ncut,t )

2/3)3
)∣∣∣∣&(H)+ (CG,∞�−Ncut,t )2/3

∣∣2 � 1∣∣&(H)+ (CG,∞�−Ncut,t )2/3
∣∣2(

&
3/2(H)+ CG,∞�−Ncut,t

)2
× (λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
,

which implies the desired bound in (7.43) concluding its proof.
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Arguing in a similar way (in fact the proof is simpler since only spatial derivatives
are required), we also have that for each integer 0 ≤ N ≤ N∗ − Ncut,x,∣∣∣DN (&(ρ) ◦	)

∣∣∣ � (&(ρ) ◦	+ (Cρ,∞�−Ncut,t )
2/3
)
(��)N , (7.49a)∣∣∣DN&(ρ)

∣∣∣ � (&(ρ)+ (Cρ,∞�−Ncut,t )
2/3
)
(��)N . (7.49b)

Combining (7.43), (7.49a), and the choice of δtiny from (7.31b), we obtain the desired
estimate (7.35).
Proof of (iii): Observe that by the construction of&(H), (7.28a), and a computation
similar to that used to produce (7.40a), we have

∥∥&(H)+ (CG,∞�−Ncut,t )
2/3
∥∥
3/2

�
C2/3
G,1, and so ‖&(H)‖3/2 � C2/3

G,1, with analogous bounds holding for ρ. It follows
from (7.43) and (7.31b) that

∥∥∥DN DM
t &(H)

∥∥∥
3/2

� C2/3
G,1(λ�)

NM (
M,Mt − Ncut,t, ν�, ν

′�
)

(7.50)

for N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t . If the left-hand side is measured instead
in L∞, we may appeal to (7.40a) to deduce that (7.50) holds with CG,∞ in place of
CG,1. Arguing similarly for &(ρ) but appealing to (7.49a) and (7.40b), we have that
(7.37a)–(7.37b) are verified. Also, by the construction of &(ρ), its periodicity easily
follows from (ii). Next, we can immediately deduce from the definition of σ−S and for
p = 3/2,∞ the easier bound

∥∥σ−S ∥∥p � r
2/3
φ ‖&(H)‖p ‖&(ρ)‖1 ,

which matches the desired bounds in (7.36a)–(7.36b) for σ−φ after using the afore-
mentioned bounds for &(H),&(ρ) and recalling the definition of δφ,· from (7.28d).
In the case of σ+φ and p = 3/2, we additionally apply Lemma A.3 by setting

N∗ = N∗ − Ncut,x, M∗ = M∗ − Ncut,t, f = &(H), 	 = 	,

λ = λ�, τ−1 = ν�, T−1 = ν′�,

C f = C2/3
G,1, v = v, � = &(ρ), μ = μ,

ϒ = � = ��, C� = C2/3
ρ,1, Nt = Mt − Ncut,t .

Then (A.12) is verified from (7.50), (A.13)–(A.14) follow from (7.30a), (A.15) follows
from (7.49b) and the periodicity of &(ρ), (A.16) follows from (7.29), and (A.17)
follows from (7.31c). We then obtain from (A.18) that

∥∥σ+S ∥∥3/2 � r
2/3
φ C2/3

G,1C
2/3
ρ,1 = δφ,1 .

Finally, the estimate for
∥∥σ+S ∥∥∞ is trivial, so that (7.36a)–(7.36b) holds for σ+φ , and

(iii) is totally verified.
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Proof of (iv): We first prove (7.38b) by induction; namely, for each integer K =
N + M ≥ 0, N ≤ N∗ − Ncut,x, M ≤ M∗ − Ncut,t ,

|DN DM
t &(H)| � r−2/3

G π(λ�)NM (
M,Mt − Ncut,t, ν�, ν�

′) . (7.51)

The proof uses an argument quite similar to the proof of (7.43). The base case follows
from writing that

&(H) � π r−2/3
G

⇐⇒ &(H)+
(
CG,∞�−Ncut,t

)2/3
� π r−2/3

G +
(
CG,∞�−Ncut,t

)2/3
⇐�

(
&(H)+

(
CG,∞�−Ncut,t

)2/3)3

� π3r−2
G +

(
CG,∞�−Ncut,t

)2
,

which can be seen to hold from the definition of&(H) and (7.28b). For the inductive
step, we argue starting from (7.44), although with slightly different steps to follow.
Using the inductive assumption from (7.51) to control the term from the trilinear
product in the second term with the highest number of derivatives,17 the bound (7.43)
to control the other two terms from the trilinear product, and (7.31b), we have that the
second term from (7.44) may be bounded by

1∣∣∣&(H)+ (CG,∞�−Ncut,t
)2/3∣∣∣2 r

−2/3
G π

(
&(H)+

(
CG,∞�−Ncut,t

)2/3)2

(λ�)N

M (
M,Mt − Ncut,t, �ν, �ν

′)
� r−2/3

G π(λ�)NM (
M,Mt − Ncut,t, �ν, �ν

′) . (7.52)

Thus it remains to control the first term from (7.44). Towards this end, we claim that
for multi-indices α, β ∈ N

k with k ≥ 2, |α| ≤ N∗, and |β| ≤ M∗,

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t H

∣∣∣∣∣ (x) � π
3/2(x)r−1

G (λ�)|α|M (|β|,Mt , ν�, ν
′�
)
. (7.53)

As in the proof of (7.47), we apply Lemma A.7 with precisely the same choices
as led to the bound in (7.48), save for the choice of C f = sup�(x) π

3/2r−1
G . Then

(A.27) is satisfied from (7.30b), and (A.28) is satisfied by (7.28b). Then applying
(A.31), shrinking �(x) to a point, and using the continuity of π provides (7.53).
Then plugging this bound into (7.46) and using (7.47) and (7.31b), we find that for
N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t ,

17 In fact any term which has been differentiated at all will suffice, so that we may replace &(H)+ C2/3G,1
with simply &(H).
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∣∣∣DN DM
t

(
&(H)+ (CG,∞�−Ncut,t )

2/3
)3∣∣∣∣∣∣&(H)+ (CG,∞�−Ncut,t

)2/3∣∣∣2
� 1∣∣∣&(H)+ (CG,∞�−Ncut,t

)2/3∣∣∣2πr
−2/3
G

(
&

3/2(H)+ CG,∞�−Ncut,t
)4/3

(λ�)N

M (
M,Mt − Ncut,t, ν�, ν

′�
)

� πr−2/3
G

&2(H)+ (CG,∞�−Ncut,t
)4/3∣∣∣&(H)+ (CG,∞�−Ncut,t
)2/3∣∣∣2 (λ�)

NM (
M,Mt − Ncut,t, ν�, ν

′�
)

� πr−2/3
G (λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
,

which combined with (7.52) concludes the proof of (7.38b). To prove (7.38a), we use
(7.38b) and the definition of σ−φ .
Proof of (v):By the definition of&(H) and&(ρ), it is easy to see that supp (&(H)) ⊆
supp (H) and supp (&(ρ)) ⊆ supp (ρ), and so (v) is verified. ��

* Proposition 7.3 (Pressure increment and upgrade error from velocity increment
potential).We begin with assumptions which allow for the construction of a pressure
increment and an upgrade current error. Then we delineate a number of properties
satisfied by the pressure increment, before applying thematerial derivative and inverse
divergence to produce a current error satisfying additional properties.
Part 1: Assumptions
Let v be an incompressible vector field on R × T

3. Denote its material derivative by
Dt = ∂t + v · ∇. We use large positive integers N∗∗, d, K◦, N∗ ≥ M∗ * Mt , and
1 ≤ M◦ ≤ N◦ ≤ 1/2(M∗ − Ncut,t − 1− N∗∗) and specify additional constraints that
they must satisfy below. Suppose a velocity increment potential υ̂ = G(ρ ◦	) and a
non-negative continuous function π are given such that the following hold.

(i) There exist constants CG,p and Cρ,p for p = 3,∞, frequency parameters
λ,�, ν, ν′, and intermittency parameters rG, rυ̂ ≤ 1 such that

∥∥∥DN DM
t G

∥∥∥
p

� CG,pλNM
(
M,Mt , ν, ν

′) (7.54a)∣∣∣DN DM
t G

∣∣∣ � π
1
2 r

− 1
3

G λNM (
M,Mt , ν, ν

′) (7.54b)∥∥∥DNρ

∥∥∥
p

� Cρ,p�N (7.54c)

‖υ̂‖p � CG,pCρ,p =: δ
1
2
υ̂,pr

− 1
3

υ̂ (7.54d)

for all N ≤ N∗, M ≤ M∗.
(ii) There exist frequency parameters μ and λ′, a parameter � = �α for 0 < α � 1

for measuring small losses in derivative costs, and a positive integer Ndec such
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that ρ is (T/μ)3-periodic and λ, λ′ � μ ≤ �, whereby we mean that

max(λ, λ′)�μ−1 ≤ 1 , (��)4 ≤
(

μ

4π
√
3max(λ′, λ)�

)Ndec

. (7.55a)

(iii) Let 	 be a volume preserving diffeomorphism of T
3 such that Dt	 = 0 and 	

is the identity at a time slice which intersects the support of G, and

∥∥∥DN+1	

∥∥∥
L∞(suppG)

+
∥∥∥DN+1	−1

∥∥∥
L∞(suppG)

� λ′N (7.56a)∥∥∥DN DM
t Dv

∥∥∥
L∞(suppG)

� νλ′NM (
M,Mt , ν, ν

′)
(7.56b)

for all N ≤ N∗, M ≤ M∗. Furthermore, assume that we have the lossy estimate∥∥∥DN ∂Mt v

∥∥∥
L∞

� Cvλ′N (ν′)M , Cvλ′ � ν′ (7.56c)

for all M ≤ M◦ and N + M ≤ N◦ + M◦.
(iv) There exist positive integers Ncut,x, Ncut,t and a small parameter δtiny ≤ 1 such

that

Ncut,t ≤ Ncut,x , (7.57a)

(C2G,∞ + 1)(C2ρ,∞ + 1)�−2Ncut,t ≤ δtiny , C2G,3 , C2ρ,3 , (7.57b)

2Ndec + 4 ≤ N∗ − Ncut,x − N∗∗ , Ncut,t ≤ Mt − 1 . (7.57c)

(v) Let an increasing sequence of frequencies {μ0, · · · , μm̄}, μ < μ0 < · · · <
μm̄−1 < �� < μm̄ be given satisfying

max(λ, λ′)�μ−2
m−1μm ≤ 1 (7.58)

for all 1 ≤ m < m̄.
(vi) Assume that d and N∗∗ are sufficiently large so that

ν�C2G,pC2ρ,p(max(λ, λ′)�)(d/2)μ−(d/2)(��)5+K◦
(
1+ max{ν′�, Cv��}

ν�

)M◦
≤ 1 ,

(7.59a)

ν�C2G,pC2ρ,p(max(λ, λ′)�)(d/2)(μmμ
−2
m−1)

(d/2)(��)5+K◦
(
1+ max{ν′�, Cv��}

ν�

)M◦
≤ 1 ,

(7.59b)

ν�C2G,∞C2ρ,3((��)μ−1
m̄ )N∗∗ (��)5+K◦

(
1+ max{ν′�, Cv��}

ν�

)M◦
≤ 1 ,

(7.59c)

for 1 ≤ m ≤ m̄.
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Part 2: Pressure increment
There exists a pressure increment συ̂ = σ+υ̂ −σ−υ̂ associated to the velocity increment
potential υ̂ which is defined by

συ̂ := r2υ̂&(G) (&(ρ) ◦	− 〈&(ρ)〉) =: σ+υ̂ − σ−υ̂ , (7.60a)

&(G) :=
Ncut,x∑
N=0

Ncut,t∑
M=0

(λ�)−2N (ν�)−2M |DN DM
t G|2 , (7.60b)

&(ρ) :=
Ncut,x∑
N=0

(��)−2N |DNρ|2 , (7.60c)

may be decomposed as

συ̂ = σ ∗̂υ +
m̄∑

m=0

σm
υ̂ , (7.60d)

and satisfies the properties listed below.

(i) (σ+υ̂ )
1/2 dominates derivatives of υ̂ with suitable weights, so that

∣∣∣DN DM
t υ̂

∣∣∣ � (σ+υ̂ + δtiny)
1/2r−1

υ̂ (��)NM (
M,Mt , ν�, ν

′�
)
. (7.61)

for all N ≤ N∗, M ≤ M∗.
(ii) σ+υ̂ dominates derivatives of itself with suitable weights, so that

|DN DM
t σ+υ̂ | � (σ+υ̂ + δtiny)(��)

NM (
M,Mt − Ncut,t, ν�, ν

′�
)

(7.62)

for all N ≤ N∗ − Ncut,x, M ≤ M∗ − Ncut,t.
(iii) Let (p, p′) = (3, 3/2) or (∞,∞). Then σ+υ̂ and σ−υ̂ satisfy

∥∥σ+υ̂ ∥∥p′ � δυ̂,pr
4/3
υ̂ ,

∥∥σ−υ̂ ∥∥p′ � δυ̂,pr
4/3
υ̂ .

We note also that &(ρ) is (T/μ)3-periodic. Furthermore, &(G) and &(ρ) have
the same size as G and ρ, so that for N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t,∥∥∥DN DM

t &(G)
∥∥∥
p′

� C2G,p(λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)
,∥∥∥DN&(ρ)

∥∥∥
p′

� C2ρ,p(��)N . (7.63)

(iv) π dominates σ−υ̂ and &(G) and its derivatives with suitable weights, so that

∣∣∣DN DM
t &(G)

∣∣∣ � πr−2/3
G (λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)
, (7.64a)
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|DN DM
t σ−υ̂ | � πr−2/3

G ‖&(ρ)‖1 r2υ̂ (λ�)NM
(
M,Mt − Ncut,t, ν�, ν

′�
)

(7.64b)

for all N ≤ N∗ − Ncut,x, M ≤ M∗ − Ncut,t.
(v) We have the support properties

supp (σ+υ̂ ) ⊂ supp (υ̂) , supp (σ−υ̂ ) ⊆ supp (G) . (7.65)

Part 3: Current error
There exists an upgrade current error φυ̂ which satisfies the following properties.

(i) We have the decomposition and equalities

φυ̂ = φ∗̂υ︸︷︷︸
nonlocal

+
m̄∑

m=0

φm
υ̂︸ ︷︷ ︸

local

(7.66a)

div
(
φm
υ̂ (t, x)+R∗(Dtσ

m
υ̂ )(t, x)

) = Dtσ
m
υ̂ (t, x)−

ˆ
T3

Dtσ
m
υ̂ (t, x

′) dx ′ ,

(7.66b)

div

(
φ∗̂υ(t, x)−

m̄∑
m=0

R∗(Dtσ
m
υ̂ )(t, x)

)
= Dtσ

∗̂
υ (t, x)−

ˆ
T3

Dtσ
∗̂
υ (t, x

′) dx ′ .

(7.66c)

(ii) Let (p, p′) = (3, 3/2) or (∞,∞). The current error φm
υ̂ satisfies∥∥∥DN DM

t φ0υ̂

∥∥∥
p′ � ν�2C2G,pC2ρ,3

(
μ0

μ

) 4
3− 2

p′
r2υ̂μ

−1μN
0 M (

M,Mt − Ncut,t − 1, ν�, ν′�
)
,

(7.67a)∣∣∣DN DM
t φ0υ̂

∣∣∣ � ν�2πr−2/3
G C2ρ,3

(
μ0

μ

)4/3

r2υ̂μ
−1μN

0 M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
,

(7.67b)
∥∥∥DN DM

t φmυ̂

∥∥∥
p′ � ν�2C2G,pC2ρ,3

(
min(μm ,��)

μ

) 4
3− 2

p′
r2υ̂ (μ

−2
m−1μm )

×min(μm ,��)
NM (

M,Mt − Ncut,t − 1, ν�, ν′�
)
, (7.67c)∣∣∣DN DM

t φmυ̂

∣∣∣ � ν�2πr−2/3
G C2ρ,3

(
min(μm ,��)

μ

)4/3

r2υ̂μ
−2
m−1μm

× (min(μm ,��))
NM (

M,Mt − Ncut,t − 1, ν�, ν′�
)
, (7.67d)

for any 1 ≤ m ≤ m̄, N ≤ N∗−d/2−Ncut,x−N∗∗, and M ≤ M∗−Ncut,t−1−N∗∗.
Furthermore, we have that φ∗̂υ satisfies

∥∥∥DN DM
t φ∗̂υ

∥∥∥∞ � μ
−K◦
0 (��)N (ν�)M (7.68)

for all N ≤ N◦ and M ≤ M◦.
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(iii) We have the support properties18

supp (φ0υ̂ ) ⊆ supp (G) , supp (φmυ̂ ) ⊆ suppG ∩ B
(
suppρ, 2μ−1

m−1

)
◦	 (7.69)

for all 0 < m ≤ m̄.
(iv) For all M ≤ M∗ − Ncut,t − 1, we have that the mean 〈Dtσυ̂〉 satisfies∣∣∣∣ dM

dtM
〈Dtσυ̂〉

∣∣∣∣ � (��)−K◦M (
M,Mt − Ncut,t,−1, ν�, ν′�

)
. (7.70)

Proof Step 1: Constructing συ̂ and verifying the properties in Part 2.
For the moment we ignore the decomposition in (7.60d) and handle the rest of the
conclusions in Part 2. Towards a proof of (i), we first have that &(G) � C2G,∞ and

&(ρ) � C2ρ,∞. The proof of these is similar to (7.13a) and (7.13b), and we omit the
details. Also, using amethod of proof similar to that used to obtain (7.13c) and (7.13d),
we can show that

|DN1DM
t G| � (&(G)+ C2G,∞�−2Ncut,t )

1/2(λ�)N1M (
M,Mt , ν�, ν

′�
)

(7.71a)

λN2−n2 |Dn2ρ| � (&(ρ)+ C2ρ,∞�−2Ncut,t )
1/2(��)N2 (7.71b)

for any integers 0 ≤ N1, N2 ≤ N∗, 0 ≤ n2 ≤ N2 and M ≤ M∗. Then, (i) follows as
in the proof of (7.7).

Next, to prove (ii), we again claim that for N ≤ N∗ −Ncut,x and M ≤ M∗ −Ncut,t ,

|DN DM
t &(G)| �

(
&(G)+ C2G,∞�−2Ncut,t

)
(λ�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)

(7.72a)∣∣∣DN&(ρ)

∣∣∣ � (&(ρ)+ C2ρ,∞�−2Ncut,t
)
(��)N (7.72b)∣∣∣DN (&(ρ) ◦	)

∣∣∣ � (&(ρ) ◦	+ C2ρ,∞�−2Ncut,t
)
(��)N . (7.72c)

The proof of the claims is similar to, and in fact easier, than the proofs of the analogous
estimates in (7.16) and (7.22b). Indeed, instead of (7.17), we simply have from the
Leibniz rule that

∣∣∣DN DM
t &(G)

∣∣∣ ≤ Ncut,x∑
n=0

Ncut,t∑
m=0

(λ�)−2n(ν�)−2m
∣∣∣DN DM

t

∣∣DnDm
t G
∣∣2∣∣∣

=
Ncut,x∑
n=0

Ncut,t∑
m=0

∑
0≤N ′≤N
0≤M ′≤M

(λ�)−2n(ν�)−2m

∣∣∣DN ′
DM ′
t DnDm

t G
∣∣∣ ∣∣∣DN−N ′

DM−M ′
t DnDm

t G
∣∣∣ ,

18 For any � ∈ T
3, we use � ◦ 	(i,k) to refer to the space-time set 	−1

(i,k)(t, ·)� whose characteristic
function is annihilated by Dt .
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at which point we apply (7.71a). A similar argument produces the other two bounds
listed above. Then (7.72a)–(7.72c) imply (ii) as in the proof of Proposition 7.1.

Regarding (iii), as before, the estimate forG in (7.63) follows from (7.54a), (7.72a),
and (7.57b). The estimate for &(ρ) follows similarly from (7.54c), (7.72b), and
(7.57b). Therefore, (7.63) is verified, and as a consequence

∥∥σ−υ̂ ∥∥p′ � δυ̂,pr
4/3
υ̂ follows

after using (7.54d). The periodicity of&(ρ) is immediate from the definition and the
periodicity assumption on ρ. To obtain

∥∥σ+υ̂ ∥∥3 � δυ̂,3/2r
4/3
υ̂ , we use Lemma A.3 as in

the proof of (7.36a), for example. The assumptions in the lemma can be verified using
(7.63), (7.56a), (7.55a), and (7.57c) and the recently observed periodicity. Therefore,
the desired estimate for σ+υ̂ in L3/2 follows from (A.18). The L∞ estimate follows
trivially from (7.63).

Next, we consider (iv). Similar to the proof of (7.72a), one can obtain

|DN DM
t &(G)| � πr−2/3

G (λ�)NM (
M,Mt − Ncut,t, ν�, ν�

′) (7.73)

for any integer N ≤ N∗ − Ncut,x and M ≤ M∗ − Ncut,t . Then we have (7.64a),
and hence (7.64b) holds. Finally, (7.65) is immediate from the definitions in (7.60),
concluding the proof of all claims in Part 2 except (7.60d).

Step 2: Constructing the current errors φm
υ̂ and verifying the properties in Part 3.

We first define σm
υ̂ in order to verify (7.60d). Using the synthetic Littlewood-Paley

decomposition from (4.31) and Definition 4.15, we write

P�=0&(ρ) = P̃μ0P�=0(&(ρ))+
(

m̄∑
m=1

P̃(μm−1,μm ](&(ρ))

)
+ (Id− P̃μm̄

)
︸ ︷︷ ︸

=:P∗
(&(ρ)) .

(7.74)
For convenience, we use the abbreviations P0 for P̃μ0P�=0 and Pm for P̃(μm−1,μm ] for
1 ≤ m ≤ m̄. Define σm

υ̂ , σ ∗̂υ , φm
υ̂ , and φ

∗̂
υ by

συ̂ = σ ∗̂υ +
m̄∑

m=0

σm
υ̂ := r2υ̂&(G)(P∗&(ρ)) ◦	)+ r2υ̂

m̄∑
m=0

&(G)(̃Pm(&(ρ)) ◦	) ,

φm
υ̂ := H(Dtσ

m
υ̂ ), φ∗̂υ := (H+R∗)σ ∗̂υ +

m̄∑
m=0

R∗(Dtσ
m
υ̂ ) .

Assuming that everything above is well-defined, we have verified (i). We aim to apply
Proposition A.13 with Remarks A.18 and A.19 in separate cases according to which
projector is being applied above. In order to apply the inverse divergence, we may
however first treat the low-frequency assumptions from Part 1, which are the same in
all cases (irrespective of which projector is being applied). We therefore set

N∗=N∗ − Ncut,x − N∗∗ , M∗=M∗ − Ncut,t − 1− N∗∗ , Mt = Mt − Ncut,t − 1

G = Dt&(G), CG,3/2 = ν�C2G,3, CG,∞ = ν�C2G,∞, μ = μ , λ
′ = λ′ ,

	 = 	, λ = max(λ, λ′)�, ν = ν�, ν′ = ν′� , π = ν�πr−2/3
G , v = v ,
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where we have used the convention set out in Remark A.20 to rewrite the symbols
from Lemma 7.1 with bars above on the left-hand side of the equalities below, while
the right-hand side are parameters given in the assumptions of this Lemma. Then
we have that (A.39) is verified from the assumption N∗ ≥ M∗ and (7.57a), (A.40)
follows from conclusion (7.63), and (A.59) follows from conclusion (7.64a). Next,
we see that (A.41), (A.42a), (A.42b), and (A.53) hold from (7.56a)–(7.56c). At this
point we split into cases based on which projector is applied and address parts 2-4 of
Proposition A.13 in order to conclude the proof of this Lemma.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17
with q = 3/2, λ = ��, ρ = P�=0&(ρ), and α such that λα in (4.34a) is equal to
�. Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p′ = 3/2,∞

� = P0&(ρ) , ϑ as defined in (4.34a) , C∗,p′ = C2ρ,3
(
μ0

μ

) 4
3− 2

p′
,

μ = μ , ϒ = ϒ
′ = μ , � = μ0 , d = d .

Then (4.32) is satisfied with Cp,3/2 = C2ρ,3 and λ = �� from standard Littlewood-
Paley theory, (7.63), and the choices from Step 1 which led to that conclusion, and so
from (4.34a) we have that (A.43) is satisfied. From (7.55a), (7.57c), and the choice
of N∗ above, we have that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal
assumptions from Proposition A.13, we have that (A.52)–(A.54) are satisfied from
(7.56c) and the assumptions from Part 1 onM◦ and N◦.We have that (A.55) is satisfied
from (7.59a). We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to
conclude as follows. From (A.50), we obtain (7.67a). The pointwise bound in (7.67b)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.68) for the portion of
φ∗̂υ coming from this case m = 0 from (A.57). Finally, we obtain (7.69) from (A.48),
concluding the proof of the desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to
Lemma 4.18 with q = 3/2 and ρ = P�=0&(ρ). Specifically, to verify the assumptions
in Part 2 of Proposition A.13, we set for p′ = 3/2,∞

� = Pm&(ρ), C∗,3/2 = C2ρ,3, C∗,∞ = min((μm/μ)4/3C2ρ,3, C2ρ,∞) , ϒ = μm−1 ,

ϒ
′ = � = min(μm ,��) , ϑ as defined in Lemma 4.18 , α as in the previous substep .

Then (4.36) is satisfiedwith Cp,3/2 = C2ρ,3 as in the last substep, and so from (4.37b) we

have that (A.43) is satisfied. From (7.55a), (7.57c), (7.58), and the choice of N∗ above,
we have that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal assumptions
from Proposition A.13, we have that (A.52)–(A.54) are satisfied as in the last substep.
We have that (A.55) is satisfied from (7.59b). We then appeal to the conclusions
(A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. From (A.50), we obtain
(7.67c). The pointwise bound in (7.67d) holds due to (A.60), (A.49a), and (A.47).
Next, we obtain (7.68) for the portion of φ∗̂υ coming from this case 1 ≤ m ≤ m̄ from
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(A.57). Finally, we obtain (7.69) from (A.48) and (4.37c), concluding the proof of the
desired conclusions for 1 ≤ m ≤ m̄.

Step 2c: Highest shell. For the case m = m̄, we appeal to Lemma 4.17
with q = 3/2, λ = ��, ρ = P�=0&(ρ), and α such that λα in (4.34a) is equal to
�. Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p′ = ∞

� = P
∗
P0&(ρ) , ϑ as defined in (4.34b) , C∗,p′ = C2ρ,3(��)3

(
��

μm̄

)N∗∗
,

μ = ϒ = ϒ
′ = μ , � = �� , d = 0 .

Then (4.32) is satisfied as in the previous substeps, and so from (4.34b) we have that
(A.43) is satisfied. We have that (A.44)–(A.45) are satisfied as in the first substep. The
nonlocal assumptions are satisfied as in the previous substeps, except that we now
have (A.55) from (7.59c). The only conclusion we require at this point is to produce
a bound matching (7.68), which follows from (A.57).
Step 3: Verification of (7.70). Since the vector field v is incompress-

ible, dM

dtM
〈Dtσυ̂〉 = 〈DM+1

t συ̂〉. Since &(ρ) is periodic in (T/μ)2, we have that for
M + 1 ≤ M∗ − Ncut,t − 1,

∣∣∣∣
ˆ
T3
DM+1
t &(G)

(
P�=0&(ρ)

) ◦	 dx

∣∣∣∣
=
∣∣∣∣
ˆ
T3

DM+1
t &(G) ◦	−1�( d4 )�−( d4 ) (P�=0&(ρ)

)
dx

∣∣∣∣
=
∣∣∣∣
ˆ
T3
�( d4 )

(
DM+1
t &(G) ◦	−1

)
�−( d4 ) (P�=0&(ρ)

)
dx

∣∣∣∣
�
∥∥∥�( d4 )

(
DM+1
t &(G) ◦	−1

)∥∥∥
3/2

∥∥∥�−( d4 ) (P�=0&(ρ)
)∥∥∥

1

� CG,3/2(max(λ, λ′)�)d/2μ−d/2C∗,3/2ϒ−2ϒ ′M (
M + 1,Mt − Ncut,t, ν�, ν

′�
)

≤ (��)−K◦M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
.

Here, we have used Lemma A.1, (7.63), (7.56a), (7.59b), and standard Littlewood-
Paley theory. ��

* Proposition 7.4 (Pressure increment and upgrade error for stress error). We
begin with preliminary assumptions, which include all of the assumptions and con-
clusions from the inverse divergence in Proposition A.13 and the pointwise bounds in
Remark A.19. We then include additional assumptions, which allow for the application
of Lemma 7.1 to the stress error and Proposition A.13 to the material derivative of the
output. We thus obtain a pressure increment which satisfies a number of properties.
Finally, the material derivative of this pressure increment produces a current error
which itself satisfies a number of properties.
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Part 1: Preliminary assumptions

(i) There exists a vector field G, constants CG,p for p = 3/2,∞, and parameters
Mt , λ, ν, ν

′, N∗,M∗ such that (A.39) and (A.40) are satisfied. There exists a
smooth, non-negative scalar function π such that (A.59) holds.

(ii) There exists an incompressible vector field v, associated material derivative
Dt = ∂t + v · ∇, a volume preserving diffeomorphism	, inverse flow	−1, and
parameter λ′ such that (A.41)–(A.42b) are satisfied.

(iii) There exists a zero mean scalar function �, a mean-zero tensor potential ϑ ,
constants C∗,p for p = 3/2,∞, and parameters μ,ϒ,ϒ ′,�,Ndec,d such that
(i)–(iii) and (A.43)–(A.45) are satisfied.

(iv) The symmetric stress S = H(G� ◦	) and nonlocal error E satisfy the conclu-
sions in (A.46), (ii)–(vi), as well as the conclusion (A.60) from Remark A.19.

(v) There exist integers N◦,M◦, K◦ such that (A.52)–(A.55) are satisfied, and as a
consequence conclusions (A.56)–(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer N∗∗ and integers positive Ncut,x,Ncut,t such
that we have the additional inequalities

N∗ − 2d− Ncut,x − N∗∗ − 3 ≥ M∗ , (7.75a)

M∗ − Ncut,t − 1 ≥ 2N◦ , (7.75b)

N∗∗ ≥ 2d+ 3 (7.75c)

(ii) There exist parameters � = �α for 0 < α � 1 and δtiny satisfying

Ncut,t ≤ Ncut,x , (7.76a)(CG,∞ + 1
) (C∗,∞ϒ ′ϒ−2 + 1

)
�−Ncut,t ≤ δtiny , CG,3/2 , C∗,3/2ϒ ′ϒ−2 ,

(7.76b)

2Ndec + 4 ≤ N∗ − N∗∗ − Ncut,x − 3d− 3 , Ncut,t ≤ Mt − 1 , (7.76c)

(��)4 ≤
(

μ

2π
√
3�max(λ, λ′)

)Ndec

.

(7.76d)

(iii) There exists a parameter m̄ and an increasing sequence of frequencies
{μ0, · · · , μm̄} satisfying

μ < μ0 < · · · < μm̄−1 ≤ � < �� < μm̄ , (7.77a)

max(λ,λ′)�
(
μ−2
m−1μm + μ−1

)
≤ 1 , (7.77b)

CG,3/2C∗,3/2ν�(max(λ, λ′)�)(d/4)
(
max

(
μ−1, μmμ

−2
m−1

))(d/4)
× (μm̄)

5+K◦
(
1+ max{ν′, Cvμm̄}

ν

)M◦
≤ 1 , (7.77c)
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CG,3/2ν�C∗,3/2
(
��

μm̄

)N∗∗
(μm̄)

8+K◦
(
1+ max{ν′, Cvμm̄}

ν

)M◦
≤ 1 , (7.77d)

for all 1 ≤ m ≤ m̄.

Part 3: Pressure increment

(i) There exists a pressure increment σS, where we have a decomposition

σS = σ+S − σ−S = σ ∗S +
m̄∑

m=0

σm
S . (7.78)

(ii) σ+S dominates derivatives of S with suitable weights, so that

∣∣∣DN DM
t S
∣∣∣ � (σ+S + δtiny) (��)

N M (
M,Mt , ν�, ν

′�
)
. (7.79)

for all N ≤ N∗ − (d/2), M ≤ M∗.
(iii) σ+S dominates derivatives of itself with suitable weights, so that

∣∣∣DN DM
t σ+S

∣∣∣ � (σ+S + δtiny) (��)
N M (

M,Mt − Ncut,t, ν�, ν
′�
)

(7.80)

for all N ≤ N∗ − (d/2) − Ncut,x, M ≤ M∗ − Ncut,t.
(iv) σ+S and σ−S have the same size as S, so that for p = 3/2,∞,

∥∥σ+S ∥∥p , ∥∥σ−S ∥∥p � CG,pC∗,pϒ ′ϒ−2 . (7.81)

(v) π dominates σ−S and its derivatives with suitable weights, so that

∣∣∣DN DM
t σ−S

∣∣∣ � C∗,3/2ϒ−2ϒ ′π(max(λ, λ′)�)NM (
M,Mt − Ncut,t, ν�, ν

′�
)

(7.82)

for all N ≤ N∗ − (d/2) − Ncut,x, M ≤ M∗ − Ncut,t.
(vi) We have the support properties

supp (σ+S ) ⊆ supp (S) , supp (σ−S ) ⊆ supp (G) . (7.83)

Part 4: Current error

(i) There exists a current error φ, where we have the decomposition and equalities

φ = φ∗S +
m̄∑

m=0

φm
S (7.84a)

divφm
S (t, x) = Dtσ

m
S (t, x)−

ˆ
T3

Dtσ
m
S (t, x

′) dx ′ , (7.84b)
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divφ∗S(t, x) = Dtσ
∗
S (t, x)−

ˆ
T3

Dtσ
∗
S (t, x

′) dx ′ . (7.84c)

(ii) φm
S can be written as φm

S = φ
m,l
S + φ

m,∗
S , and for 1 ≤ m ≤ m̄, these satisfy

∥∥∥DN DM
t φmS

∥∥∥
3/2

� ν�2CG,3/2C∗,3/2ϒ ′ϒ−2μ−2
m−1μm (min(μm ,��))

N

M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
, (7.85a)∥∥∥DN DM

t φmS

∥∥∥∞ � ν�2CG,∞C∗,3/2ϒ ′ϒ−2
(
min(μm ,��)

μ

)4/3

μ−2
m−1μm

× (min(μm ,��))
N M (

M,Mt − Ncut,t − 1, ν�, ν′�
)
, (7.85b)∣∣∣DN DM

t φ
m,l
S

∣∣∣ � ν�2πC∗,3/2ϒ ′ϒ−2
(
min(μm ,��)

μ

)4/3

μ−2
m−1μm

× (min(μm ,��))
N M (

M,Mt − Ncut,t − 1, ν�, ν′�
)
, (7.85c)

for all N ≤ N∗ − 2d − Ncut,x, M ≤ M∗ − Ncut,t − 1. For m = 0 and the
same range of N and M, φm

S and φm,l
S satisfy identical bounds but withμ2

m−1μm

replaced with �μ−1 and min(μm,��) replaced with μ0 in all three bounds.
Furthermore, the nonlocal portions satisfy the improved estimate∥∥∥DN DM

t φ
m,∗
S

∥∥∥∞
� (min(μm ,��))

N−K◦ (max(λ, λ′)�)(d/4)
(
max

(
μ−1, μmμ

−2
m−1

))(d/4)
(ν�)M

(7.86)

for all N ≤ N◦,M ≤ M◦, and the remainder term φ∗S satisfies the improved
estimate∥∥∥DN DM

t φ∗S
∥∥∥∞

� (��)−K◦(max(λ, λ′)�)(d/4)
(
max

(
μ−1, μmμ

−2
m−1

))(d/4)
(��)N (ν�)M

(7.87)

in the same range of N and M.
(iii) We have the support properties19

supp (φm,l
S ) ⊆ suppG ∩ B

(
suppϑ, 2μ−1

m−1

)
◦	 for 1 ≤ m ≤ m̄ ,

supp
(
φ
0,l
S

)
⊆ suppG . (7.88)

19 For any � ∈ T
3, we use � ◦ 	(i,k) to refer to the space-time set 	−1

(i,k)(t, ·)� whose characteristic
function is annihilated by Dt .
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(iv) For all M ≤ M∗ − Ncut,t − 1, we have that the mean 〈DtσS〉 satisfies
∣∣∣∣∣ d

M

dtM
〈DtσS〉

∣∣∣∣∣ � (��)−K◦ (max(λ, λ′)�)(d/4)μ−(d/4)M (
M,Mt − Ncut,t,−1, ν�, ν′�

)
.

(7.89)

Proof Step 1: Defining and estimating σS to verify (7.79)–(7.83). From (A.47) of
Proposition A.13, we have that S can be written as

S =
CH∑
j=0

Hα( j)ρβ( j) ◦	,

where Hα( j) and ρβ( j) satisfy the bounds in (A.49a), (A.49b). In addition, we have the
pointwise bounds on Hα( j) in terms of π given by (A.60) in Remark A.19. For each
0 ≤ j ≤ CH, we shall apply Lemma 7.1 with the following choices, where we have
used the convention set out in Remark A.20 to rewrite the symbols from Lemma 7.1
with bars above on the left-hand side of the equalities below, while the right-hand side
are parameters given in the assumptions of this Proposition:

v = v , N † = N∗ − (d/2) , M† = M∗ , Mt = Mt ,

H = Hα( j), CG,3/2 = CG,3/2 , CG,∞ = CG,∞ ,

ρ = ρβ( j), Cρ,3/2 = C∗,3/2ϒ ′ϒ−2 , Cρ,∞ = C∗∞ϒ ′ϒ−2,

λ = max(λ, λ′) , � = �, � = � , 	 = 	,

π = π , ν = ν , ν′ = ν′ , μ = μ , Ndec = Ndec ,

and Ncut,x, Ncut,t , and δtiny as in preliminary assumption (ii). From (A.49), (A.60),
and (A.50), we have that (7.1a)-(7.1d) are satisfied. Assumption (7.2) is satisfied from
(7.76d). All the assumptions in (iii) are satisfied from preliminary assumption (ii)
from this proposition. Finally, all assumptions in (iv) are satisfied from the additional
assumption (ii) from this Proposition.

We may then apply (7.5a)–(7.6b) from Lemma 7.1 to obtain for 0 ≤ j ≤ CH the
pressure increments σ j

S = σ
+, j
S − σ

−, j
S , and we then collect terms to define

σ+S :=
CH∑
j=0

σ
+, j
S , σ−S :=

CH∑
j=0

σ
−, j
S , σS := σ+S − σ−S .

From conclusions (i)–(v) of Lemma 7.1, we have that (7.79)–(7.83) are satisfied.

Step 2: Decomposing σS to verify (7.78), and defining and estimating φm
S to verify

(7.84)–(7.88). From (7.5a)–(7.5b), we have that

σS =
CH∑
j=0

&
(
Hα( j)

) (
P�=0&(ρβ( j))

)
◦	 . (7.90)
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Note further that&(ρβ( j)) is (T/μ)3-periodic and has derivative cost�� from (7.10),
conclusion (iii) from Lemma 7.1. So we use the sequence of frequencies μ0, . . . , μm̄

to apply the synthetic Littlewood-Paley decomposition (à la (4.31)) to &(ρβ( j)) and
write

&(ρβ( j)) = P̃μ0(&(ρβ( j)))+
(

m̄∑
m=1

P̃(μm−1,μm ](&(ρβ( j)))

)
+ (Id− P̃μm̄

)
&(ρβ( j)) .

(7.91)

From now on, we shall abbreviate notation by writing P0 for P̃μ0 , Pm for P̃(μm−1,μm ]
for 1 ≤ m ≤ m̄, and P

∗ for Id− P̃μm̄ , so that we may use (7.91) to write

σS = σ ∗S +
m̄∑

m=0

σm
S :=

CH∑
j=0

&
(
Hα( j)

)
P
∗ (& (ρβ( j))) ◦	

+
m̄∑

m=0

CH∑
j=0

&
(
Hα( j)

)
Pm

(
&
(
ρβ( j)

))
◦	 . (7.92)

We aim to apply Proposition A.13 with Remarks A.18, A.19 to the material derivative
of each of the terms in (7.92), which would produce

φ := φ∗S +
m̄∑

m=0

φmS =:
CH∑
j=0

(H+R∗)
(
Dt&(Hα( j))

(
P
∗
P �=0&(ρβ( j))

)
◦	
)

︸ ︷︷ ︸
=:φ∗, j

+
m̄∑

m=0

CH∑
j=0

(H+R∗)
(
Dt&(Hα( j))

(
PmP �=0&(ρβ( j))

)
◦	
)

︸ ︷︷ ︸
=:φm, j

= (H+R∗)(Dtσ
∗
S )+

m̄∑
m=0

(H+R∗)(Dtσ
m
S ) .

Assuming that we succeed in doing so, we have at least verified (7.78) and (7.84). Now
in order to apply the inverse divergence with the pointwise bounds fromRemark A.19,
wefirst treat the low-frequency assumptions fromPart 1,which are the same in all cases
(irrespective of the projector on &(ρβ( j))). Specifically, we shall use the convention
from Remark A.20 and in all cases set

p = 3/2,∞ , v = v , N∗ = N∗ − d− (d/2) − Ncut,x , M∗ = M∗ − Ncut,t − 1 ,

Mt = Mt − Ncut,t − 1 ,

G = Dt&(Hα( j)), CG,p = ν�CG,p , μ = μ , λ = max(λ, λ′)� , 	 = 	, λ
′ = λ′ ,

ν = ν� , ν′ = ν′� , 	 = 	, π = ν�π , Ndec = Ndec , d = d .

Then (A.39) is satisfied from the additional assumption (7.75a), and (A.40) is satisfied
from the conclusion (7.10) and the parameter choices from Step 1 which led to that
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conclusion. The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii)
from this Proposition. The pointwise bound in (A.59) holds with Mt = Mt−Ncut,t−1
and π = ν�π due to (7.11b), which was verified in Step 1. At this point we split into
cases based on which projector is applied to P�=0&(ρβ( j)) in (7.92) and address parts
2-4 of Proposition A.13.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17 with q = 3/2,
λ = ��, ρ = P�=0&(ρβ( j)), and α such that λα in (4.34a) is equal to �. Specifically,
to verify the assumptions in Part 2 of Proposition A.13, we set for p = 3/2,∞

�=P0P�=0&(ρβ( j)), ϑ as defined in (4.34a), C∗,p = �C∗,3/2ϒ−2ϒ ′
(
μ0

μ

) 4
3− 2

p

,

μ = μ , ϒ = ϒ
′ = μ , � = μ0 , d = d .

Then (4.32) is satisfied with Cp,3/2 = C∗,3/2ϒ−2ϒ ′ and λ = �� from standard
Littlewood-Paley theory, (7.10), and the choices from Step 1 which led to that con-
clusion, and so from (4.34a) we have that (A.43) is satisfied. From (7.76d), (7.77a),
(7.77b), the choice of N∗ above, (7.10), and (7.76c), we have that (A.44)–(A.45) are
satisfied. Continuing onto the nonlocal assumptions from Proposition A.13, we have
that (A.52)–(A.54) are satisfied from preliminary assumption (v) and (7.75b).We have
that (A.55) is satisfied from (7.77c). We then appeal to the conclusions (A.46)–(A.51)
and (A.56)–(A.57) to conclude as follows. First, we set

φ
0,l
S = H(Dtσ

0
S ) , φ

0,∗
S = R∗(Dtσ

0
S ) .

From (A.50), we obtain both (7.85a) and (7.85b), but with the appropriate modifica-
tions for m = 0 as indicated. The pointwise bound in (7.85c) holds due to (A.60),
(A.49a), and (A.47). Next, we obtain (7.86) form = 0 from (A.57). Finally, we obtain
(7.88) from (A.48), concluding the proof of the desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to Lemma 4.18
with q = 3/2 and ρ = P�=0&(ρβ( j)). Specifically, to verify the assumptions in Part 2
of Proposition A.13, we set for p = 3/2,∞

� = PmP �=0&(ρβ( j)) , ϑ = μ−d
m−1�

μm−1,μm
ρ as defined in Lemma 4.18 ,

C∗,p = C∗,3/2ϒ−2ϒ ′
(
min(μm ,��)

μ

) 4
3− 2

p
, ϒ = μm−1 , ϒ

′ = � = min(μm , ��) ,

d = d , μ = μ , α as in the previous substep.

Then (4.36) is satisfied exactly as in the previous substep, and so from (4.37a)–(4.37b)
we have that (A.43) is satisfied. As before, we use (7.76d), (7.77a), (7.77b), the choice
of N∗ above, (7.10), and (7.76c) to see that (A.44)–(A.45) are satisfied. Continuing
onto the nonlocal assumptions from Proposition A.13, we have that (A.52)–(A.54)
are satisfied as in the previous substep, and (A.55) is satisfied from (7.77c). We then
appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows.
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First, we set
φ
m,l
S = H(Dtσ

m
S ) , φ

m,∗
S = R∗(Dtσ

m
S ) .

From (A.50), we obtain both (7.85a) and (7.85b). The pointwise bound in (7.85c)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.86) from (A.57). Finally,
we obtain (7.88) from (A.48) and (4.37c), concluding the proof for 1 ≤ m ≤ m̄.

Step 2c: Highest shell. For the case with the highest shell, corresponding to the
projector P

∗ from (7.92), we appeal to Lemma 4.17 with q = 3/2, λ = ��, ρ =
P�=0&(ρβ( j)). Specifically, to verify the assumptions in Part 2 of Proposition A.13,
we set for p = 3/2,∞

� = P
∗
P�=0&(ρβ( j)) , ϑ = ϑ as defined in (4.34b) ,

C∗,p =
(
��

μm̄

)N∗∗
C∗,3/2ϒ−2ϒ ′(��)3 , ϒ = ϒ

′ = μ , � = �� ,

d = 0 , N∗ = N∗ − Ncut,x − N∗∗ − 3 .

Wenote thatwe have altered the definition of N∗ compared to the previous two substeps
for convenience. But from (7.75c), we have in fact made it smaller, so that the low-
frequency assumptions from the inverse divergence are still satisfied. Then (4.32) is
satisfied exactly as in the first substep, and so from (4.34b) we have that (A.43) is
satisfied. We use (7.76d), (7.77a), (7.77b), the altered choice of N∗ above, (7.10),
and (7.76c) to see that (A.44)–(A.45) are satisfied. Continuing onto the nonlocal
assumptions from Proposition A.13, we have that (A.52)–(A.54) are satisfied as in
the previous substep, and (A.55) is satisfied from (7.77d). We then appeal to the
conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. First, we set

φ∗S = (H+R∗)(Dtσ
∗
S ) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (7.87),
which follows from (A.57).

Step 3:Verification of (7.89).Since the vector field v is incompressible, dM

dtM
〈DtσS〉 =

〈DM+1
t σS〉. From (7.90), we have

DM+1
t σS =

CH∑
j=0

DM+1
t &

(
Hα( j)

) (
P�=0&(ρβ( j))

)
◦	 .

Since &(ρβ( j)) is periodic in (T/μ)2, we have that for M + 1 ≤ M∗ − Ncut,t − 1

∣∣∣∣
ˆ
T3
DM+1
t &

(
Hα( j)

) (
P�=0&(ρβ( j))

)
◦	dx

∣∣∣∣
=
∣∣∣∣
ˆ
T3

DM+1
t &

(
Hα( j)

)
◦	−1�( d4 )�−( d4 )

(
P�=0&(ρβ( j))

)
dx

∣∣∣∣
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=
∣∣∣∣
ˆ
T3
�( d4 )

(
DM+1
t &

(
Hα( j)

)
◦	−1

)
�−( d4 )

(
P�=0&(ρβ( j))

)
dx

∣∣∣∣
�
∥∥∥�( d4 )

(
DM+1
t &

(
Hα( j)

)
◦	−1

)∥∥∥
3/2

∥∥∥�−( d4 )
(
P�=0&(ρβ( j))

)∥∥∥
1

� CG,3/2(max(λ, λ′)�)d/2μ−d/2C∗,3/2ϒ−2ϒ ′M (
M + 1,Mt − Ncut,t, ν�, ν

′�
)

≤ (��)−K◦(max(λ, λ′)�)(d/4)μ−(d/4)M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
.

Here, we have used LemmaA.1, (7.10), (7.3a), (7.77c), and standard Littlewood-Paley
theory. ��
* Proposition 7.5 (Pressure increment and upgrade error from current error).We
begin with preliminary assumptions, which include all of the assumptions and con-
clusions from the inverse divergence in Proposition A.13 and the pointwise bounds in
Remark A.19. We then include additional assumptions, which allow for the application
of Lemma 7.2 to the current error and Proposition A.13 to the material derivative of
the output. We thus obtain a pressure increment which satisfies a number of prop-
erties. Finally, the material derivative of this pressure increment produces a current
error which itself satisfies a number of properties.

Part 1: Preliminary assumptions

(i) There exists a scalar field G, constants CG,p for p = 1,∞, and parameters
Mt , λ, ν, ν

′, N∗,M∗ such that (A.39) and (A.40) are satisfied. There exists a
smooth, non-negative scalar function π and a parameter rG such that (7.28b)
holds with H replaced by G.

(ii) There exists an incompressible vector field v, associated material derivative
Dt = ∂t + v · ∇, a volume preserving diffeomorphism	, inverse flow	−1, and
parameter λ′ such that (A.41)–(A.42b) are satisfied.

(iii) There exists a zero mean scalar function �, a mean-zero tensor potential ϑ ,
constants C∗,p for p = 1,∞, and parameters μ,ϒ,ϒ ′,�,Ndec,d such that
(i)–(iii) and (A.43)–(A.45) are satisfied.

(iv) The current error ϕ = H(G� ◦	) and nonlocal error E satisfy the conclusions
in (A.46), (ii)–(vi), as well as the conclusion (A.60) from Remark A.19 with π
replaced by π 3/2r−1

G .
(v) There exist integers N◦,M◦, K◦ such that (A.52)–(A.55) are satisfied, and as a

consequence conclusions (A.56)–(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer N∗∗ and positive integers Ncut,x,Ncut,t such
that we have the additional inequalities

N∗ − 2d− Ncut,x − N∗∗ − 3 ≥ M∗ , (7.93a)

M∗ − Ncut,t − 1 ≥ 2N◦ , (7.93b)

N∗∗ ≥ 2d+ 3 (7.93c)
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(ii) There exist parameters � = �α for 0 < α � 1, δtiny, rφ , and δφ,p for p = 1,∞
satisfying

0 < rφ ≤ 1 , δ
3/2
φ,p = CG,pC∗,pϒ ′ϒ−2rφ ,

(7.94a)

Ncut,t ≤ Ncut,x , (7.94b)(CG,∞ + 1
) (C∗,∞ϒ ′ϒ−2 + 1

)
�−Ncut,t ≤ δtiny

3/2 , CG,1 , C∗,1ϒ ′ϒ−2 ,

(7.94c)

2Ndec + 4 ≤ N∗ − N∗∗ − Ncut,x − 3d− 3 , Ncut,t ≤ Mt − 1 (7.94d)

(��)4 ≤
(

μ

2π
√
3�max(λ, λ′)

)Ndec

.

(7.94e)

(iii) There exists a parameter m̄ and an increasing sequence of frequencies
{μ0, · · · , μm̄} satisfying

μ < μ0 < · · · < μm̄−1 ≤ � < �� < μm̄ , (7.95a)

max(λ,λ′)�
(
μ−2
m−1μm + μ−1

)
≤ 1 , (7.95b)

(CG,1C∗,1rφ)2/3ν�(max(λ, λ′)�)(d/4)
(
max

(
μ−1, μmμ

−2
m−1

))(d/4)
× (μm̄)

5+K◦
(
1+ max{ν′, Cvμm̄}

ν

)M◦
≤ 1 , (7.95c)

(CG,1C∗,1rφ)2/3 ν�
(
��

μm̄

)N∗∗
(μm̄)

8+K◦
(
1+ max{ν′, Cvμm̄}

ν

)M◦
≤ 1 ,

(7.95d)

for all 1 ≤ m ≤ m̄.

Part 3: Pressure increment

(i) There exists a pressure increment σϕ , where we have a decomposition

σϕ = σ+ϕ − σ−ϕ = σ ∗ϕ +
m̄∑

m=0

σm
ϕ . (7.96)

(ii) σ+ϕ dominates derivatives of ϕ with suitable weights, so that

∣∣∣DN DM
t ϕ

∣∣∣ � ((σ+ϕ )3/2r−1
φ + δtiny

)
(��)N M (

M,Mt , ν�, ν
′�
)
. (7.97)

for all N ≤ N∗ − (d/2), M ≤ M∗.
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(iii) σ+ϕ dominates derivatives of itself with suitable weights, so that

∣∣∣DN DM
t σ+ϕ

∣∣∣ � (σ+ϕ + δtiny) (��)
N M (

M,Mt − Ncut,t, ν�, ν
′�
)

(7.98)

for all N ≤ N∗ − (d/2) − Ncut,x, M ≤ M∗ − Ncut,t.
(iv) σ+ϕ and σ−ϕ have size comparable to ϕ, so that

∥∥σ+ϕ ∥∥3/2 , ∥∥σ−ϕ ∥∥3/2 � δφ,1 ,
∥∥σ+ϕ ∥∥∞ ,

∥∥σ−ϕ ∥∥∞ � δφ,∞ . (7.99)

(v) π dominates σ−ϕ and its derivatives with suitable weights, so that

∣∣∣DN DM
t σ−ϕ

∣∣∣
�
(
rφ
rG

)2/3 (
C∗,1ϒ−2ϒ ′)2/3 π(max(λ, λ′)�)NM (

M,Mt − Ncut,t, ν�, ν
′�
)

(7.100)

for all N ≤ N∗ − (d/2) − Ncut,x, M ≤ M∗ − Ncut,t.
(vi) We have the support properties

supp (σ+ϕ ) ⊆ supp (ϕ) , supp (σ−ϕ ) ⊆ supp (G) . (7.101)

Part 4: Current error

(i) There exists a current error φϕ , where we have the decomposition and equalities

φϕ = φ∗ϕ +
m̄∑

m=0

φmϕ (7.102a)

divφmϕ (t, x) = Dtσ
m
ϕ (t, x)−

ˆ
T3

Dtσ
m
ϕ (t, x ′) dx ′ , (7.102b)

divφ∗ϕ(t, x) = Dtσ
∗
ϕ (t, x)−

ˆ
T3

Dtσ
∗
ϕ (t, x

′) dx ′ , (7.102c)

(ii) φm
ϕ can be written as φm

ϕ = φm,l
ϕ + φm,∗

ϕ and for 1 ≤ m ≤ m̄ these satisfy

∥∥∥DN DM
t φmϕ

∥∥∥
3/2

� ν�2
(
CG,1C∗,1ϒ ′ϒ−2rφ

)2/3
μ−2
m−1μm (min(μm ,��))

N

M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
, (7.103a)∥∥∥DN DM

t φmϕ

∥∥∥∞ � ν�2
(
CG,∞C∗,1ϒ ′ϒ−2rφ

)2/3 (min(μm ,��)

μ

)4/3

μ−2
m−1μm

× (min(μm ,��))
N M (

M,Mt − Ncut,t − 1, ν�, ν′�
)
,

(7.103b)
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∣∣∣DN DM
t φm,lϕ

∣∣∣ � ν�2π

(
rφ
rG

)2/3 (
C∗,1ϒ ′ϒ−2

)2/3 (min(μm ,��)

μ

)4/3

μ−2
m−1μm

× (min(μm ,��))
N M (

M,Mt − Ncut,t − 1, ν�, ν′�
)
,

(7.103c)

for all N ≤ N∗ − 2d − Ncut,x, M ≤ M∗ − Ncut,t − 1. For m = 0 and the
same range of N and M, φm

ϕ and φm,l
ϕ satisfy identical bounds but withμ2

m−1μm

replaced with �μ−1 and min(μm,��) replaced with μ0 in all three bounds.
Furthermore, the nonlocal portions satisfy the improved estimate

∥∥∥DN DM
t φm,∗

ϕ

∥∥∥∞ � (min(μm,��))
N−K◦ (max(λ, λ′)�)(d/4)(

max
(
μ−1, μmμ

−2
m−1

))(d/4)
(ν�)M , (7.104)

for all N ≤ N◦,M ≤ M◦, and the remainder term φ∗ϕ satisfies the improved
estimate∥∥∥DN DM

t φ∗ϕ
∥∥∥∞

� (��)−K◦(max(λ, λ′)�)(d/4)
(
max

(
μ−1, μmμ

−2
m−1

))(d/4)
(��)N (ν�)M

(7.105)

in the same range of N and M.
(iii) We have the support properties

supp (φm,l
ϕ ) ⊆ suppG ∩ B

(
suppϑ, 2μ−1

m−1

)
◦	 for 1 ≤ m ≤ m̄ ,

supp
(
φ0,l
ϕ

)
⊆ suppG . (7.106)

(iv) For all M ≤ M∗ − Ncut,t − 1, we have that the mean 〈DtσS〉 satisfies
∣∣∣∣ dM

dtM
〈Dtσϕ〉

∣∣∣∣
� (��)−K◦(max(λ, λ′)�)(d/4)μ−(d/4)M (

M,Mt − Ncut,t − 1, ν�, ν′�
)

(7.107)

Proof Step 1: Defining and estimating σϕ to verify
(7.97)–(7.101). From (A.47) of Proposition A.13, we have that ϕ can be
written as

ϕ =
CH∑
j=0

Hα( j)ρβ( j) ◦	,
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where Hα( j) and ρβ( j) satisfy the bounds in (A.49a), (A.49b). In addition, we have the
pointwise bounds on Hα( j) in terms of π 3/2r−1

G given by (A.60) in Remark A.19, but
with the modifications listed in preliminary assumption (i). For each 0 ≤ j ≤ CH, we
shall apply Lemma 7.2 with the following choices, where we have used the convention
set out in Remark A.20 to rewrite the symbols from Lemma 7.2 with bars above on the
left-hand side of the equalities below, while the right-hand side are parameters given
in the assumptions of this Proposition:

v = v , N∗ = N∗ − (d/2) , M∗ = M∗ , Mt = Mt ,

H = Hα( j), CG,1 = CG,1 , CG,∞ = CG,∞ ,

ρ = ρβ( j), Cρ,1 = C∗,1ϒ−2ϒ ′ , Cρ,∞ = C∗,∞ϒ−2ϒ ′ , rG = rG , rφ = rφ

λ = max(λ, λ′) , � = �, � = � , 	 = 	,

π = π , ν = ν , ν′ = ν′ , μ = μ , Ndec = Ndec ,

andNcut,x,Ncut,t , and δtiny as in preliminary assumption (ii). From (A.49), themodified
version of (A.60), which is listed in preliminary assumption (i), (A.50), and (7.94a),
we have that (7.28a)–(7.28d) are satisfied. Assumption (7.29) is satisfied from (7.94e).
All the assumptions in (iii) are satisfied from preliminary assumption (ii) from this
proposition. Finally, all assumptions in (iv) are satisfied from the additional assump-
tion (ii) from this Proposition.

We may then apply (7.32a)–(7.33b) from Lemma 7.2 to obtain for 0 ≤ j ≤ CH the
pressure increments σ j

ϕ = σ
+, j
ϕ − σ

−, j
ϕ , and we then collect terms to define

σ+ϕ :=
CH∑
j=0

σ+, jϕ , σ−ϕ :=
CH∑
j=0

σ−, jϕ , σϕ := σ+ϕ − σ−ϕ .

From conclusions (i)–(v) of Lemma 7.2, we have that (7.97)–(7.101) are satisfied.

Step 2: Decomposing σϕ to verify (7.96), and defining and
estimating φm

ϕ to verify (7.102)–(7.106) From (7.32a)–(7.33b),
we have that

σϕ = r
2/3
φ

CH∑
j=0

&
(
Hα( j)

) (
P�=0&(ρβ( j))

)
◦	 . (7.108)

Note further that&(ρβ( j)) is (T/μ)3-periodic and has derivative cost�� from (7.37a),
conclusion (iii) from Lemma 7.2. So we decompose as in (7.91) to write

&(ρβ( j)) = P̃μ0(&(ρβ( j)))+
(

m̄∑
m=1

P̃(μm−1,μm ](&(ρβ( j)))

)
+ (Id− P̃μm̄

)
&(ρβ( j)) .

(7.109)
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Using the same abbreviations used in (7.92), from (7.109) we may write

σϕ = σ ∗ϕ +
m̄∑

m=0

σm
ϕ := r

2/3
φ

CH∑
j=0

&
(
Hα( j)

)
P
∗ (& (ρβ( j))) ◦	

+ r
2/3
φ

m̄∑
m=0

CH∑
j=0

&
(
Hα( j)

)
Pm

(
&
(
ρβ( j)

))
◦	 . (7.110)

We aim to apply Proposition A.13 with Remarks A.18, A.19 to the material derivative
of each of the terms in (7.110), which would produce

φϕ := φ∗ϕ +
m̄∑

m=0

φmϕ =: r2/3φ

CH∑
j=0

(H+R∗)
(
Dt&(Hα( j))

(
P
∗
P�=0&(ρβ( j))

)
◦	
)

︸ ︷︷ ︸
=:φ∗, j

+ r
2/3
φ

m̄∑
m=0

CH∑
j=0

(H+R∗)
(
Dt&(Hα( j))

(
PmP�=0&(ρβ( j))

)
◦	
)

︸ ︷︷ ︸
=:φm, j

= (H+R∗)(Dtσ
∗
ϕ )+

m̄∑
m=0

(H+R∗)(Dtσ
m
ϕ ) .

Assuming thatwe succeed in doing so,wehave at least verified (7.96) and (7.102).Now
in order to apply the inverse divergence with the pointwise bounds fromRemark A.19,
we again first treat the low-frequency assumptions from Part 1, which are the same
in all cases (irrespective of the projector on &(ρβ( j))). Specifically, we shall use the
convention from Remark A.20 and in all cases set

p = 3/2,∞ , v = v , N∗ = N∗ − d− (d/2) − Ncut,x , M∗ = M∗ − Ncut,t − 1 ,

Mt = Mt − Ncut,t − 1 ,

G = r
2/3
φ Dt&(Hα( j)), CG,3/2=r

2/3
φ ν�C2/3

G,1, μ=μ, λ = max(λ, λ′)�, 	 = 	,

λ
′ = λ′ ,

ν = ν� , ν′ = ν′� , 	 = 	, π = ν�πr−2/3
G , Ndec = Ndec , d = d ,

CG,∞ = r
2/3
φ ν�C2/3

G,∞ .

Then (A.39) is satisfied from the additional assumption (7.93a), and (A.40) is satisfied
from the conclusion (7.37a) and the parameter choices from Step 1 which led to that
conclusion. The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii)
from this Proposition. The pointwise bound in (A.59) holds with Mt = Mt−Ncut,t−1
and π = ν�πr−2/3

G due to (7.38b), which was verified in Step 1. At this point we split
into cases based on which projector is applied to P�=0&(ρβ( j)) in (7.110) and address
parts 2-4 of Proposition A.13.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17
with q = 3/2, λ = ��, ρ = P�=0&(ρβ( j)), and α such that λα in (4.34a) is equal
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to �. Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p = 3/2,∞

� = P0P �=0&(ρβ( j)) , ϑ as defined in (4.34a) , C∗,p = �
(
C∗,1ϒ−2ϒ ′)2/3 (μ0

μ

) 4
3− 2

p
,

μ = μ , ϒ = ϒ
′ = μ , � = μ0 , d = d .

Then (4.32) is satisfied with Cp,3/2 = (C∗,1ϒ−2ϒ ′)2/3 and λ = �� from standard
Littlewood-Paley theory, (7.37a), and the choices from Step 1 which led to that con-
clusion, and so from (4.34a) we have that (A.43) is satisfied. From (7.94e), (7.95a),
(7.95b), the choice of N ∗ above, (7.37a) and (7.37b), and (7.94d), we have that (A.44)–
(A.45) are satisfied. Continuing onto the nonlocal assumptions from Proposition A.13,
we have that (A.52)–(A.54) are satisfied from preliminary assumption (v) and (7.93b).
We have that (A.55) is satisfied from (7.95c). We then appeal to the conclusions
(A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. First, we set

φ0,l
ϕ = H(Dtσ

0
ϕ ) , φ0,∗

ϕ = R∗(Dtσ
0
ϕ ) .

From (A.50), we obtain both (7.103a) and (7.103b), but with the appropriate modifi-
cations for m = 0 as indicated. The pointwise bound in (7.103c) holds due to (A.60),
(A.49a), and (A.47). Next, we obtain (7.104) form = 0 from (A.57). Finally, we obtain
(7.106) from (A.48), concluding the proof of the desired conclusions for m = 0 .

Step 2b: Intermediate shells. For the cases 1 ≤ m ≤ m̄, we appeal to
Lemma 4.18 with q = 3/2 and ρ = P�=0&(ρβ( j)). Specifically, to verify the assump-
tions in Part 2 of Proposition A.13, we set for p = 3/2,∞
� = PmP �=0&(ρβ( j)) , ϑ = μ−d

m−1�
μm−1,μm
ρ as defined in Lemma 4.18 ,

C∗,p =
(
C∗,1ϒ−2ϒ ′)2/3 (min(μm ,��)

μ

) 4
3− 2

p
, ϒ = μm−1 , ϒ

′ = � = min(μm , ��) ,

d = d , μ = μ , α as in the previous substep .

Then (4.36) is satisfied exactly as in the previous substep, and so from (4.37a)–(4.37b)
we have that (A.43) is satisfied. As before, we use (7.94e), (7.95a), (7.95b), the choice
of N∗ above, (7.37a) and (7.37b), and (7.94d) to see that (A.44)–(A.45) are satis-
fied. Continuing onto the nonlocal assumptions from Proposition A.13, we have that
(A.52)–(A.54) are satisfied as in the previous substep, and (A.55) is satisfied from
(7.95c). We then appeal to the conclusions (A.46)–(A.51) and (A.56)–(A.57) to con-
clude as follows. First, we set

φm,l
ϕ = H(Dtσ

m
ϕ ) , φm,∗

ϕ = R∗(Dtσ
m
ϕ ) .

From (A.50), we obtain both (7.103a) and (7.103b). The pointwise bound in (7.103c)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.104) from (A.57). Finally,
we obtain (7.106) from (A.48) and (4.37c), concluding the proof for 1 ≤ m ≤ m̄.
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Step 2c: Highest shell. For the case with the highest shell, corresponding
to the projectorP

∗ from (7.110), we appeal to Lemma 4.17with q = 3/2, λ = ��, ρ =
P�=0&(ρβ( j)). Specifically, to verify the assumptions in Part 2 of Proposition A.13,
we set for p = 3/2,∞

� = P
∗
P�=0&(ρβ( j)) , ϑ = ϑ as defined in (4.34b) ,

C∗,p =
(
��

μm̄

)N∗∗ (
C∗,1ϒ−2ϒ ′)2/3 (λ�)3 , ϒ = ϒ

′ = μ , � = �� ,

d = 0 , N∗ = N∗ − Ncut,x − N∗∗ − 3 .

Wenote thatwe have altered the definition of N∗ compared to the previous two substeps
for convenience. But from (7.93c), we have in fact made it smaller, so that the low-
frequency assumptions from the inverse divergence are still satisfied. Then (4.32) is
satisfied exactly as in the first substep, and so from (4.34b) we have that (A.43) is
satisfied. We use (7.94e), (7.95a), (7.95b), the altered choice of N∗ above, (7.37a)
and (7.37b), and (7.94d) to see that (A.44)–(A.45) are satisfied. Continuing onto the
nonlocal assumptions from Proposition A.13, we have that (A.52)–(A.54) are satisfied
as in the previous substep, and (A.55) is satisfied from (7.95d). We then appeal to the
conclusions (A.46)–(A.51) and (A.56)–(A.57) to conclude as follows. First, we set

φ∗ϕ = (H+R∗)(Dtσ
∗
ϕ ) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (7.105),
which follows from (A.57).

Step 3: Verification of (7.107). The proof is similar to (7.89). Indeed,
we have

r
2/3
φ

∣∣∣∣
ˆ
T3

DM+1
t &

(
Hα( j)

) (
P�=0&(ρβ( j))

)
◦	dx

∣∣∣∣
� r

2/3
φ

∥∥∥∥�( d4 )
(
DM+1
t &

(
Hα( j)

)
◦	−1

)∥∥∥∥
3/2

∥∥∥∥�−( d4 )
(
P�=0&(ρβ( j))

)∥∥∥∥
3/2

� r
2/3
φ C2/3G,1(max(λ, λ′)�)d/2μ−d/2(C∗,1ϒ−2ϒ ′)2/3M (

M + 1,Mt − Ncut,t, ν�, ν
′�
)

� (��)−K◦ (ϒ−2ϒ ′)2/3(max(λ, λ′)�)(d/4)μ−(d/4)M (
M,Mt − Ncut,t − 1, ν�, ν′�

)
.

using Lemma A.1, (7.37a), (7.3a), (7.95c) with standard Littlewood-Paley theory.

Then, recalling dM

dtM
〈Dtσϕ〉 = 〈DM+1

t σϕ〉 and using the representation (7.108) of
Dtσϕ , we obtain (7.107). ��

8 Error Estimates

In this section, we will define and estimate a number of error terms, as well as the
pressure increments and pressure current errors. Such estimates will require repeated
application of the inverse divergence operator from Proposition A.13, and the pressure
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creation and pressure current error estimates from section 7. First, in subsection 8.1,
we add ŵq+n̄ to the Euler-Reynolds system and identify the remaining error terms.
These include the oscillation stress error, the transport and Nash stress errors, the
divergence corrector errors, and the mollification error. We estimate these error terms
and define and estimate the related pressure increments and current errors in sub-
sections 8.2, 8.3, 8.4, and 8.5, respectively. The reader who is only interested in the
proof of Theorem 1.2 following the strategy outlined in Remark 2.14 can ignore all
the results from these sections labeled with an asterisk. The reader who is interested
in the proof of Theorem 1.2 following the strategy of Proposition 2.13, i.e. a strategy
which includes the construction of πq

q , should read the asterisked lemmas with the
subtitle “pressure increment” but can skip the lemmas with the subtitle “pressure cur-
rent,” as these estimate the current errors generated by new pressure increments. Then
in subsection 8.6, we upgrade material derivatives and check Hypothesis 2.10, while
in subsection 8.7, we collect all the pressure increments and pressure current errors
created so far in this section. Then in subsection 8.8, we estimate a number of error
terms, known as the transport-Nash current errors, which are related to the Reynolds
stress errors and which will appear in the relaxed local energy inequality; we refer
to [22, subsection 5.1] for a full derivation. Since many of these error terms require
precise knowledge of the structure of the Reynolds stress, we include the estimates in
this section. Finally, subsection 8.9 contains estimates for mollification errors which
appear in the relaxed local energy inequality.

8.1 Defining New Euler-Reynolds Error Terms

We define Sq+1 by adding ŵq+n̄ to the Euler-Reynolds system for (uq , pq , Rq ,−πq)
in (3.2) (recall also (2.7)) and collecting various error terms, which we shall show are
well-defined in the remainder of this section.

div(Sq+1) = ∂t ŵq+n̄ + (uq · ∇)ŵq+n̄ + (ŵq+n̄ · ∇)uq + div(ŵq+n̄ ⊗ ŵq+n̄ + R� − π�Id)

+ div
(
Rqq − R� +

(
π� − π

q
q

)
Id
)

= (∂t + ûq · ∇)wq+1 + wq+1 · ∇ûq︸ ︷︷ ︸
=: divST N

+ div
(
w
(p)
q+1 ⊗ w

(p)
q+1 + R� − π�Id

)
︸ ︷︷ ︸

=: divSO
+ div

(
w
(p)
q+1 ⊗s w

(c)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
︸ ︷︷ ︸

=: divSC

+ div
(
Rqq − R� +

(
π� − π

q
q

)
Id
)

︸ ︷︷ ︸
=:divSM1

(8.1)

+ (∂t + ûq · ∇)(ŵq+n̄ − wq+1)+ ((ŵq+n̄ − wq+1) · ∇ )̂uq + div(ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1)︸ ︷︷ ︸
=:divSM2

.

In the second equality, we used (6.24) to exchange uq and ûq . (Recall also (2.8).)
We note that the symmetric stresses SO and SC are not simply the quantities inside
parentheses and take some care to construct; see subsections 8.2, 8.4. Also, we note
that ∂twq+1 + (̂uq · ∇)wq+1 +wq+1 · ∇ûq has mean-zero, so that it can be written in
divergence formdivST N ; see subsection 8.3. This is because the second and third terms
can be written in divergence form, and wq+1 is given by the curl of a vector-valued
function (see (6.7) and (6.15).) The same reasoning works for the terms in divSM2.
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With the above definitions, we set

Rq+1 := Rq − Rq
q + Sq+1 . (8.2)

We have notated the error with an overline as Rq+1 in order to be consistent with
the notation from [22], where the stress error Rq+1 will be adjusted slightly in [22,
Section 7] in order to produce the final Reynolds stress Rq+1 needed to complete the
proof of Theorem 1.1. We can now see that (uq+1, pq , Rq+1,−(πq −π

q
q )) solves the

Euler-Reynolds system (recall from (6.17) that uq+1 = uq + ŵq+n̄)

∂t uq+1 + div
(
uq+1 ⊗ uq+1

)+∇ pq = div(−(πq − π
q
q )Id+ Rq+1), div uq+1 = 0 .

(8.3)

We will show in the remainder of this section that the new stress error Sq+1 can be
decomposed into components Skq+1 as

Sq+1 =
q+n̄∑

k=q+1

Skq+1 .

8.2 Oscillation Stress Error SO

In order to define and analyze SO , cf. (8.1), we first consider

div
(
w
(p)
q+1 ⊗ w

(p)
q+1

)•
=

∑
ξ,i, j,k,"l, 

∂α

(
a(ξ), (∇	−1

(i,k))
α
θ B

θ
(ξ), (	(i,k)) a(ξ), (∇	−1

(i,k))
•
γB

γ

(ξ), (	(i,k))
)
,

(8.4)

where • denotes the unspecified components of a vector field and we have used (6.25)
from Lemma 6.2 to eliminate all cross terms. Recalling from (6.4) and (6.12) that
B(ξ), = ρ (ξ)

∑
I ζ

I , 
ξ W

I
(ξ), , that the W

I
(ξ), ’s are identical up to a shift, and the

notational convention for ρ (ξ) from Remark 4.14, we decompose

(B ⊗ B)(ξ), =
(
ρ (ξ)

)2∑
I

(ζ
I , 
ξ )2P �=0(W

I
(ξ), ⊗ W

I
(ξ), )+

(
ρ (ξ)

)2
P �=0

(∑
I

(ζ
I , 
ξ )2

)
〈
W

I
(ξ), ⊗ W

I
(ξ), 

〉

+ P �=0

(
ρ (ξ)

)2 〈∑
I

(ζ
I , 
ξ )2

〉 〈
W

I
(ξ), ⊗ W

I
(ξ), 

〉
+
〈(

ρ (ξ)
)2〉 〈∑

I

(ζ
I , 
ξ )2

〉
〈
W

I
(ξ), ⊗ W

I
(ξ), 

〉
.
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In particular, using (iii) and the definitions of ρ (ξ) and ρ(ξ) := ρξ,k from Propo-
sition 4.9, (4) from Proposition 4.5, (6) from Proposition 4.6, Definition 4.12, and
(4.24), we obtain that

(B ⊗ B)(ξ),R = (ρ(ξ))6∑
I

(ζ I
ξ )

6
P�=0(W

I
(ξ),R ⊗ W

I
(ξ),R)+

((
ρ(ξ)

)6 − 1
)
ξ ⊗ ξ + ξ ⊗ ξ , (8.5a)

(B ⊗ B)(ξ),ϕ = (ρ(ξ))4∑
I

(ζ I
ξ )

4
P�=0(W

I
(ξ),ϕ ⊗ W

I
(ξ),ϕ)+ c0

(
ρ(ξ)

)4 r 2
3
q ξ ⊗ ξ P�=0

(∑
I

(ζ I
ξ )

4

)

+ c0c1P�=0

((
ρ(ξ)

)4) r 2
3
q ξ ⊗ ξ + c0c1c2r

2
3
q �−2

q ξ ⊗ ξ , (8.5b)

for dimensional constants c0, c1, and c2 which are bounded independently of q
and depend only on the dimensional constants in (4.23) and (4.16) and the mean
of
∑

I (ζ
I
ξ )

4. Since each vector field used to define the simple symmetric tensors
in (8.5a) and (8.5b) does not vary in the ξ -direction (see, (4.10), (i), and Defini-
tion 4.10), each simple symmetric tensor satisfies ξ · ∇(B ⊗ B)(ξ), = 0. Then using
that each vector field in (8.5a) and (8.5b) has been composed with 	(i,k) and the

identity ∂α
(
(∇	−1

(i,k))
α
θ (B ⊗ B)(ξ), ◦	(i,k)ξ

θ
)
= ξθ (∂θ (B ⊗ B)(ξ), ) ◦ 	(i,k) = 0,

we have that (8.4) can be expanded as

div
(
w
(p)
q+1 ⊗ w

(p)
q+1

)• = ∑
ξ,i, j ,k,"l

∂α

(
a2(ξ),R(∇	−1

(i,k))
α
θ (∇	−1

(i,k))
•
γ (ξ

θ ξγ )
)

(8.6a)

+
∑

ξ,i, j ,k,"l
∂α

(
a2(ξ),ϕ(∇	−1

(i,k))
α
θ (∇	−1

(i,k))
•
γ c0c1c2�

−2
q r

2
3
q (ξθ ξγ )

)
(8.6b)

+
∑

ξ,i, j ,k,"l
B•(ξ),R

(
P�=0ρ

6
(ξ)

)
◦	(i,k) (8.6c)

+
∑

ξ,i, j ,k,"l
B•(ξ),ϕ

(
P�=0ρ

4
ξ

)
◦ (	(i,k))c0c1r

2
3
q (8.6d)

+ c0
∑

ξ,i, j ,k,"l
B•(ξ),ϕr

2
3
q

(
ρ4(ξ)P�=0

∑
I

(ζ I
ξ )

4

)
◦	(i,k) (8.6e)

+
∑

ξ,i, j ,k,"l, 
B•(ξ), 

((
ρ (ξ)

)2∑
I

(ζ
I , 
ξ )2P�=0(�

I
(ξ), )2

)
◦	(i,k) (8.6f)

where for convenience we set

B•
(ξ), := ξθ ξγ ∂α

(
a2(ξ), (∇	−1

(i,k))
α
θ (∇	−1

(i,k))
•
γ

)
, � I

(ξ), := ξ · WI
(ξ), . (8.7)

The first and second terms above in (8.6a) and (8.6b) cancel out −R�+π�Id from
(8.1) as follows:

∑
ξ,i, j,k,"l

a2(ξ),R∇	−1
(i,k) (ξ ⊗ ξ)∇	−,

(i,k)
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=
(6.9)

∑
ξ,i, j,k,"l

δq+n̄�
2 j−2
q ψ6

i,qω
6
j,qχ

6
i,k,qζ

2
q,R,i,k,ξ,"lγ

2
ξ,�9

q

(
Rq,i,k

δq+n̄�
2 j−2
q

)
∇	−1

(i,k) (ξ ⊗ ξ)∇	−,
(i,k)

=
(4.2),(6.8),(5.38a)

−
∑
i, j,k

ψ6
i,qω

6
j,qχ

6
i,k,q

(
R� − π�Id

+
∑

ξ ′,i ′, j ′
k′,l ′

δq+n̄�
2 j ′−2
q C�−2

q∣∣∣∇	−1
(i ′,k′)ξ

′
∣∣∣4/3 ψ4

i ′,qω
4
j ′,qχ

4
i ′,k′,qX4

q,ξ ′,l ′

◦	i ′,k′,q γ̃
2
ξ ′∇	−1

(i ′,k′)ξ
′ ⊗ ξ ′

(
∇	−T

(i ′,k′)
))

=
(2.11),(5.21),(5.1)

π�Id− R�

−
∑

ξ ′,i ′, j ′
k′,l ′

δq+n̄�
2 j ′−2
q C�−2

q∣∣∣∇	−1
(i ′,k′)ξ

′
∣∣∣4/3 ψ4

i ′,qω
4
j ′,qχ

4
i ′,k′,qX4

q,ξ ′,l ′

◦	i ′,k′,q γ̃
2
ξ ′∇	−1

(i ′,k′)ξ
′ ⊗ ξ ′

(
∇	−T

(i ′,k′)
)

=
(5.38b)

π�Id− R� −
∑

ξ ′,i ′, j ′
k′,"l ′

δq+n̄�
2 j ′−2
q C�−2

q∣∣∣∇	−1
(i ′,k′)ξ

′
∣∣∣4/3 ψ4

i ′,qω
4
j ′,qχ

4
i ′,k′,qζ

2
q,ϕ,i ′,k′,ξ ′,"l ′ γ̃

2
ξ ′∇	−1

(i ′,k′)ξ
′

⊗ ξ ′
(
∇	−T

(i ′,k′)
)

=
(6.2)

π�Id− R� −
∑

ξ ′,i ′, j ′
k′,"l ′

a2(ξ),ϕc0c1c2�
−2
q r

2/3
q ∇	−1

(i ′,k′)ξ
′ ⊗ ξ ′

(
∇	−T

(i ′,k′)
)

︸ ︷︷ ︸
=(8.6b)

. (8.8)

The inverse divergence of the remaining terms (8.6c)-(8.6f) will therefore form the
oscillation stress errors.

Lemma 8.1 (Applying inverse divergence). There exist symmetric stresses SmO for
m = 1, . . . , q + n̄ such that the following hold.

(i) div
(
w
(p)
q+1 ⊗ w

(p)
q+1 + R� − π�Id

)
=

q+n̄∑
m=q+1

divSmO, where SmO can be split into

local and non-local errors as SmO = Sm,lO + Sm,∗O .

(ii) For m = q + 1, . . . , q + n̄ and N ,M ≤ Nfin/10, the local parts Sm,lO satisfy

∥∥∥ψi,q D
N DM

t,q S
m,l
O

∥∥∥
3/2

� �−9
m δm+n̄λ

N
mM

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
(8.9a)
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∥∥∥ψi,q D
N DM

t,q S
m,l
O

∥∥∥∞ � �C∞−9
m λNmM

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
.

(8.9b)

When m = q + 2, . . . , q + n̄ and q + 1 ≤ q ′ ≤ m − 1, the local parts satisfy

B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
∩ supp Sm,lO = ∅ . (8.10)

(iii) For m = q + 1, . . . , q + n̄ and N ,M ≤ 2Nind, the non-local parts S
m,∗
O satisfy

∥∥∥DN DM
t,q S

m,∗
O

∥∥∥
L∞

≤ T
4Nind,t
q+n̄ δq+3n̄λ

N
m τ

−M
q . (8.11)

* Remark 8.2 (Abstract formulation of the oscillation stress error).For the purposes
of analyzing the transport and Nash current errors subsection 8.8 and streamlining the
creation of pressure increments, it will be useful to abstract the properties of these
error terms. First, there exists a q-independent constant CH such that

Sm,lO =
∑

i, j,k,ξ,"l, 

CH∑
j ′=0

Hα( j ′)
i, j,k,ξ,"l, ρ

β( j ′)
i, j,k,ξ,"l, ◦	(i,k) if m = q + 1, q + n̄/2 ,

(8.12a)

Sm,lO =
∑

i, j,k,ξ,"l,I , 

CH∑
j ′=0

Hα( j ′)
i, j,k,ξ,"l,I , ρ

β( j ′)
i, j,k,ξ,"l,I , ◦	(i,k) if q+n̄/2+1 ≤ m ≤ q + n̄ .

(8.12b)

For the remaining values of m, Sm,lO is zero. These equalities will be proven in the
course of proving Lemma 8.1, 8.3, and 8.4. The pointwise estimate (8.13) will be
proved in Lemma 8.3 and 8.4, and the rest of the claims in this remark will be proved
in Lemma 8.1. Note that the proof of (8.15) will also require Remark A.16.

Next, the functions H and ρ (with subscripts and superscripts suppressed for con-
venience) defined above satisfy the following.

(i) For all N ,M ≤ Nfin/10,

∣∣∣DN DM
t,q H

∣∣∣ � π��
100
q �q λ̄

NM
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
, (8.13)

where λ̄ = λq+1�
−5
q form = q+1, q+ n̄/2 while λ̄ = λq+n̄/2 form ≥ q+ n̄/2+1.

(ii) We have that

suppH ⊆ suppηi, j,k,ξ,"l, if m = q + 1, q + n̄/2 (8.14a)

suppH ⊆ suppηi, j,k,ξ,"l, ζ
I , 
ξ if q + n̄/2+ 1 ≤ m ≤ q + n̄ (8.14b)

123



19 Page 120 of 271 V. Giri et al.

(iii) For d as in (xvi), there exist a tensor potential ϑ (we suppress the indices at
the moment for convenience) such that ρ = ∂i1...idϑ

(i1,...,id). Furthermore, ϑ is
(T/λq+1�

−4
q )3-periodic in the casem = q+1, (T/λq+n̄/2)

3-periodic in the case
m = q + n̄/2, and (T/λq+n̄/2�q)

3-periodic in the remaining cases. Finally, ϑ
satisfies the estimates
∥∥∥DN ∂i1 . . . ∂ikϑ

(i1,...,id)
∥∥∥
L p

� �12
q (λq+1�

−4
q )k−d−1

M
(
N ,d− k, λq+1�

−4
q , λq+1�

−1
q

)
if m = q + 1

(8.15a)∥∥∥DN ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥∥
L p

� �5
qλ

k−d−1
q+n̄/2 λNq+n̄/2 if m = q + n̄/2 (8.15b)

∥∥∥DN ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥∥
L p

�
(
λq+n̄/2+1

λq+n̄rq

)2−2/p

�2
qλ

−1
q+n̄/2(λq+n̄/2�q )

k−d

×M (
N ,d− k, λq+n̄/2�q , λq+n̄/2+1

)
if m = q + n̄/2+ 1

(8.15c)∥∥∥DN ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥∥
L p

�
(
min(λm , λq+n̄)

λq+n̄rq

)2−2/p

�2
qλ

−2
m−1λmλ

k−d
m−1λ

N
m

if q + n̄/2+ 2 ≤ m ≤ q + n̄ (8.15d)

for p = 3/2,∞, all N ≤ Nfin/5, and 0 ≤ k ≤ d.
(iv) In the casesm = q+1, q+n̄/2, q+n̄/2+1, we claim no special support properties

for the potential ϑ . In the cases q + n̄/2+ 2 ≤ m ≤ q + n̄, we have that

supp (Hρ ◦	) ∩ B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
= ∅ (8.16)

for all q + 1 ≤ q ′ ≤ m − 1 (where m refers to the index in Sm,lO from (8.12a)).

Proof of Lemma 8.1 To define SO , we recall the synthetic Littlewood-Paley decom-
position (cf. Section 4.3). Indeed, since � I

(ξ), depends only on the variables in the

plane ξ⊥ from (4.10) and is periodized to scale
(
λq+n̄rq

)−1= (λq+n̄/2�q)
−1, we can

decompose P�=0 in front of (� I
(ξ), )2 in (8.6f) into

P�=0 = P̃
ξ
λq+n̄/2+1

P�=0 +
q+n̄+1∑

m=q+n̄/2+2̃

P
ξ

(λm−1,λm ] + (Id− P̃
ξ
λq+n̄+1

)

=: P̃
ξ
q+n̄/2+1 +

q+n̄+1∑
m=q+n̄/2+2̃

P
ξ

(m−1,m] + (Id− P̃
ξ
q+n̄+1) . (8.17)

Assuming we can apply the inverse divergence from Proposition A.13, we define

Sq+1
O := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l

B(ξ),R
(
P�=0ρ

6
ξ

)
◦	(i,k)
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+
∑

ξ,i, j ,k,"l
B(ξ),ϕc0c1r

2
3
q

(
P�=0ρ

4
ξ

)
◦	(i,k)

⎤
⎥⎦ (8.18a)

Sq+n̄/2
O := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l

B(ξ),ϕc0r
2
3
q

(
ρ4ξP�=0

(∑
I

(ζ I
ξ )

4

))
◦	(i,k)

⎤
⎥⎦ (8.18b)

Sq+n̄/2+1
O := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l,I , 

B(ξ), 
((

ρ (ξ)
)2 (

ζ
I , 
ξ

)2
P̃
ξ
q+n̄/2+1P�=0(�

I
(ξ), )2

)
◦	(i,k)

⎤
⎥⎦

(8.18c)

SmO := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l,I

B(ξ), 
((

ρ (ξ)
)2 (

ζ
I , 
ξ

)2
P̃
ξ
(m−1,m](�

I
(ξ), )2

)
◦	(i,k)

⎤
⎥⎦ (8.18d)

Sq+n̄
O :=

q+n̄+1∑
m=q+n̄

(H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l,I , 

B(ξ), 
((

ρ (ξ)
)2 (

ζ
I , 
ξ

)2
P̃
ξ
(m−1,m](�

I
(ξ), )2

)
◦	(i,k)

⎤
⎥⎦

(8.18e)

+ (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j ,k,"l,I , 

B(ξ), 
((

ρ (ξ)
)2 (

ζ
I , 
ξ

)2
(Id− P̃

ξ
q+n̄+1)(�

I
(ξ), )2

)
◦	(i,k)

⎤
⎥⎦

(8.18f)

form = q+ n̄/2+2, · · · , q+ n̄−1. For q+1 ≤ m < q+ n̄, we decompose SmO into the

local part Sm,lO which involves the operator H and the nonlocal part Sm,∗O containing
the remaining terms. In the case of m = q + n̄, we set

Sq+n̄,l
O :=

q+n̄+1∑
m=q+n̄

H

⎡
⎢⎣ ∑
ξ,i, j,k,"l,I , 

B(ξ), 
((

ρ (ξ)
)2 (

ζ
I , 
ξ

)2
P̃
ξ
(m−1,m](�

I
(ξ), )2

)
◦	(i,k)

⎤
⎥⎦

(8.19)

and absorb the R∗ terms in (8.18e) and all the terms in (8.18f) into Sq+n̄,∗
O . For the

undefined SmO corresponding tom = q+2, · · · , q+ n̄/2−1, we set them as identically
zero.

The desired estimates will follow from applying Proposition A.13. While many of
the parameter choices will vary depending on the case, we fix the following choices
throughout the proof:

p = 3/2,∞ , v = ûq , Dt = Dt,q , N∗ = Nfin/4 , M∗ = Nfin/5 , (8.20a)

λ′ = �q , Mt = Nind,t , ν′ = T−1
q �8

q , Ndec as in (xiv) , (8.20b)

M◦ = N◦ = 2Nind , K◦ as in (xv) , Cv = �
1/2
q . (8.20c)
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Case 1:Estimates for (8.18a). Fix values of i, j, k, ξ, "l and consider the termwhich
includes B(ξ),R , where we have abbreviated B•

(ξ),R = B•
(ξ,i, j,k,"l),R . We apply Propo-

sition A.13 with the low-frequency choices

G• = B•
(ξ),R , CG,3/2 =

∣∣∣supp (η2
i, j,k,ξ,"l,R)

∣∣∣2/3 δq+n̄�
2 j+21
q �q , CG,∞ = �C∞+30

q �q ,

λ = λq+1�
−5
q , ν = τ−1

q �i+13
q , 	 = 	(i,k) ,

and the choices from (8.20). We have that (A.39) is satisfied by definition. Next,
to check (A.40), we observe that in B•

(ξ),R , the differential operator on a2ξ is

ξθ (∇	−1
(i,k))

α
θ ∂θ . ThereforeG satisfies (A.40) for p = 3/2 from (6.26c) and for p = ∞

from the same inequality and (5.29). By Corollary 5.4, 	(i,k) satisfies (A.41) and
(A.42a) for λ′ = �q , and by (2.30) at level q, we have that (A.42b) is satisfied.

To check the high-frequency assumptions, we set

� =
(
P�=0ρ

6
ξ

)
, d as in (xvi) , ϑ = δi1i2δi3i4 . . . δid−1id�

−d/2� , (8.21a)

μ = ϒ = ϒ ′ = λq+1�
−4
q , �=λq+1�

−1
q , C∗,p=�6

qλ
α
q+1, (8.21b)

where α is chosen as in (11.11). Then from Proposition 4.9 and standard Littlewood-
Paley theory, we have that (A.43) is satisfied. Next, we have that (A.44) is satisfied by
definition and from (11.21a). In addition, we have that (A.45) is satisfied from (11.18).
In order to check the nonlocal assumptions in Part 4, we first appeal to (11.21a), which
gives (A.52).We have that (A.53) is satisfied from (2.31b), and (A.54) is satisfied from
(11.12) and (2.13). Finally, we have that (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)–(vi) and the nonlocal outputs
from (A.56)–(A.57), from which we have the following. First, we note that from (iii),
we have that (8.12a) is satisfied. Next, abbreviating G� ◦ 	 as Ti, j,k,ξ,"l,R , we have

from (A.46) and (A.50) that for N ≤ Nfin
4 − d and M ≤ Nfin

5 ,

∥∥∥DN DM
t,qHTi, j,k,ξ,"l,R

∥∥∥
3/2

�
∣∣∣supp (η2

i, j,k,ξ,"l,R)
∣∣∣2/3 δq+n̄�

2 j−2
q �q�

42
q

× λ−1
q+1λ

α+N
q+1 M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
∥∥∥DN DM

t,qHTi, j,k,ξ,"l,R
∥∥∥∞ � �C∞+48

q �qλ
−1
q+1λ

α+N
q+1

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

� �
C∞−9
q+1 λNq+1M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

where we have used (11.7k) to achieve the last inequality. Notice that from (ii), the
support of divHTi, j,k,ξ,"l,R is contained in the support of Ti, j,k,ξ,"l,R , which itself is
contained in the support of ηi, j,k,ξ,"l,R . From this observation, we have that (8.14a) is
satisfied. Finally, we have that (8.15a) holds after defining a potential ϑ as in (8.21a)
and appealing to standard Littlewood-Paley estimates and (A.49a).
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Now we may apply the aggregation Corollaries 5.18 and 5.20 with H =
HTi, j,k,ξ,"l,R and θ = θ2 = 2, p = 3/2 in the first case, or # = �

C∞−9
q+1 in the

second case, to estimate

Sq+1,l
O,R :=

∑
i, j,k,ξ,"l

HTi, j,k,ξ,"l,R .

From (5.50a) and (5.50b) in the case p = 3/2, and (5.55a) in the case p = ∞, we thus
have that for N ,M in the same range as above,

∥∥∥ψi,q D
N DM

t,q S
q+1,l
O,R

∥∥∥
3/2

� δq+n̄�q�
50
q λ−1

q+1λ
α+N
q+1 M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
∥∥∥ψi,q D

N DM
t,q S

q+1,l
O,R

∥∥∥∞ � �
C∞−9
q+1 λNq+1M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
,

and so (8.9a) and (8.9b) follow for this term from (11.7f) and (11.21a).
For the nonlocal term, we first note that the left-hand side of the equality in (i)

has zero mean, and so we may ignore the means of individual terms that get plugged
into the inverse divergence since their sum will vanish. Then from (A.56), (A.57),
Remark A.14, and Lemma 5.16, we have that for N ,M ≤ 2Nind,∥∥∥∥∥∥DN DM

t,q

∑
i, j,k,ξ,"l

R∗Ti, j,k,ξ,"l,R

∥∥∥∥∥∥
∞
≤ λ−5

q+n̄δ
3/2
q+3n̄T

4Nind,t
q+n̄ λNq+1τ

−M
q ,

matching the desired estimate in (8.11).
Finally, we must estimate the terms which include B(ξ),ϕ from (8.18a). However,

we note that fromLemma 6.5 a2(ξ),ϕ , differs in size relative to a
2
(ξ),R by a factor of r−2/3

q ,

which is exactly balanced out by the factor of r
2/3
q in (8.18a); the other differences in

size actually make the estimates for a2(ξ),ϕ stronger than for a2(ξ),R . We therefore may

argue exactly as above (in fact the estimates are slightly better since ρ4
ξ < ρ6

ξ and the
power on �q is smaller), and we omit further details.

Case 2: Estimates for (8.18b). As before, we fix i, j, k, ξ, "l. We apply Proposition
A.13 with the low-frequency choices

G• = B•
(ξ),ϕc0r

2
3
q ρ4

ξ (	(i,k)) , CG,3/2 =
∣∣∣suppη2

i, j,k,ξ,"l,ϕ
∣∣∣2/3 δq+n̄�

2 j+25
q �q ,

CG,∞ = �C∞+35
q �q , (8.22a)

λ = λq+1�
−1
q , ν = τ−1

q �i+13
q , 	 = 	(i,k) , (8.22b)

as well as the choices from (8.20). The estimates in (A.40) and the assumption in
(A.39) hold due to Proposition 4.9 and the estimates for B(ξ),ϕr

2/3
q from Case 1.

(A.41), (A.42a), and (A.42b) are satisfied as in the previous substep.
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To check the high-frequency assumptions, we set

� = P�=0

(∑
I

(ζ I
ξ )

4

)
, d as in (xvii) , ϑ = δi1i2δi3i4 . . . δid−1id�

−d/2� , (8.23a)

μ = ϒ = ϒ ′ = � = λq+n̄/2 , C∗,3/2 = C∗,∞ = λαq+n̄/2 , (8.23b)

where α is chosen as in (11.11). Then fromDefinition 4.10, standard Littlewood-Paley
theory, and the same inequalities involving Ndec as in Case 1, we have that (A.43)
is satisfied, as well as the other high-frequency assumptions in (i)–(iv). The nonlocal
assumptions are identical to those of Case 1, and are satisfied trivially.

We therefore may appeal to the local conclusions (i)–(vi) and (A.56)–(A.57), from
which we have the following. First, we note that from (iii), we have that (8.12a) is
satisfied. Next, abbreviating G� ◦ 	 as Ti, j,k,ξ,"l,ϕ , we have from (A.46) and (A.50)

that for N ≤ Nfin
4 − d and M ≤ Nfin

5 ,

∥∥∥DN DM
t,qHTi, j,k,ξ,"l,ϕ

∥∥∥
3/2

�
∣∣∣supp (η2

i, j,k,ξ,"l,ϕ)
∣∣∣2/3 δq+n̄�

2 j−2
q �q�

50
q

× λ−1
q+n̄/2λ

N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
∥∥∥DN DM

t,qHTi, j,k,ξ,"l,ϕ
∥∥∥∞ � �C∞+60

q �qλ
−1
q+n̄/2λ

N+α
q+n̄/2

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

� �
C∞−9
q+n̄/2 λ

N
q+n̄/2M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

where we have used (11.7k) to achieve the last inequality. Notice that from (ii), the
support of divHTi, j,k,ξ,"l,ϕ is contained in the support of Ti, j,k,ξ,"l,ϕ , which itself is
contained in the support of ηi, j,k,ξ,"l,ϕ . From this observation, we have that (8.14a)
is satisfied. Finally, we have that (8.15b) is satisfied from (A.49a) after arguing in a
manner similar to that in Case 1.

Now we may apply the aggregation Corollaries 5.18 and 5.20 as in Case 1 to
estimate

Sq+n̄/2,l
O :=

∑
i, j,k,ξ,"l

HTi, j,k,ξ,"l,ϕ .

We find that for N ,M in the same range as above,∥∥∥ψi,q D
N DM

t,q S
q+n̄/2,l
O

∥∥∥
3/2

� δq+n̄�q�
60
q λ−1

q+n̄/2λ
N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
∥∥∥ψi,q D

N DM
t,q S

q+n̄/2,l
O

∥∥∥∞
� �

C∞−9
q+1 λNq+n̄/2M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
,

123



A Wavelet-Inspired L3-Based Convex Integration… Page 125 of 271 19

and so (8.9a) and (8.9b) follow for this term from (11.7f) and (11.21a). Finally, we
must verify (8.10) for Sq+n̄/2,l

O . This however follows from (iii), which asserts that the

support of Sq+n̄/2,l
O is contained in the support of ∪(ξ)a(ξ),ϕρ

ϕ

(ξ) ◦ 	(i,k), and (i) of

Lemma 6.2. Finally, the nonlocal conclusions for Sq+n̄/2,l
O follow in much the same

way as in Case 1, and we omit further details.

Case 3: Estimates for (8.18c), (8.18d), and (8.18e) and  = R. Fix i, j, k, ξ, "l, I
and set

G• = B•
ξ,i, j,k,"l,R

(
(ρR

(ξ))
2(ζ

I ,R
ξ )2

)
◦	(i,k) , 	 = 	(i,k) , ν = τ−1

q �i+13
q ,

CG,3/2 =
∣∣∣supp (η2

i, j,k,ξ,"l,R(ζ
I ,R
ξ )2)

∣∣∣2/3 δq+n̄�
2 j+38
q �q + λ−10

q+n̄ , CG,∞ = �
C∞+40
q �q ,

λ = λq+n̄/2 , (8.24)

as well as the choices from (8.20). We then have that (A.39) is satisfied as in the last
step. Next, we have that (A.40) is satisfied by combining the corresponding bounds
for G• from the last step with the bounds for ζ

I ,R
ξ from Definition 4.10.20 The bounds

in (A.41)–(A.42b) hold as before without any modifications. Finally, we have that
the nonlocal assumptions in (A.52)–(A.55) are satisfied for the same reasons as the
previous cases. At this point, we split the argument into subcases based on the differing
synthetic Littlewood-Paley projectors in (8.18d)–(8.18f).

Case 3a: Estimates for (8.18c) and  = R. In order to set up the high-frequency
assumptions for this case, we set

μ = λq+n̄/2�q = λq+n̄rq , � = P̃
ξ
q+n̄/2+1P �=0(�

I
(ξ),R)

2 ,

ϑ as in Lemma 4.17 , d as in item (xvi)

C∗,3/2 = λαq+n̄/2+1 , C∗,∞ =
(
λq+n̄/2+1

λq+n̄rq

)2
λαq+n̄/2+1 , ϒ = ϒ ′ = μ, � = λq+n̄/2+1 ,

where α is chosen as in (11.11). We then have that (A.43) is satisfied by appealing to
estimate (4.34a) from Lemma 4.17 with q = 1 and p = 3/2, where we note that the
assumption in (4.32) is satisfiedwith Cρ,q = 1 and λ = λq+n̄ fromProposition 4.5.We
have in addition that (A.44) and (A.45) are satisfied by definition and by appealing
to the same parameter inequalities as the previous steps. Finally, we have that the
nonlocal assumption in (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.13 and
(A.56)–(A.57), from which we have the following. First, we note that from item (iv),
(8.12b) is satisfied. Next, abbreviating G� ◦	 as Ti, j,k,ξ,"l,I ,R , we have from (A.46)

and (A.50) that for N ≤ Nfin
4 − d and M ≤ Nfin

5 ,

∥∥∥DN DM
t,qHTi, j,k,ξ,"l,I ,R

∥∥∥
3/2

20 We have added the extra λ−10
q+n̄ in the CG,3/2 bound in order to facilitate the creation of a pressure

increment later.
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�
(∣∣∣supp (η2

i, j,k,ξ,"l,R(ζ
I ,R
ξ )2

)∣∣∣2/3 δq+n̄�
2 j+39
q �q + λ−10

q+n̄

)

×
(
λq+n̄/2+1

λq+n̄/2

)2/3

λ−1
q+n̄/2λ

N+α
q+n̄/2+1M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
∥∥∥DN DM

t,qHTi, j,k,ξ,"l,I ,R
∥∥∥∞

� �C∞+40
q

(
λq+n̄/2+1

λq+n̄/2

)2

�qλ
−1
q+n̄/2λ

N+α
q+n̄/2+1M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

≤ �
C∞−9
q+n̄/2 λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
.

We have used (11.10a) to simplify the second inequality. Notice that from (ii), the
support of divHTi, j,k,ξ,"l,I ,R is contained in the support of Ti, j,k,ξ,"l,I ,R , which itself is
contained in the support of ηi, j,k,ξ,"l,Rζ

I ,R
ξ . From this observation, we have that (8.14b)

is satisfied. Finally, we have that (8.15c) is satisfied from (A.49a) and Lemma 4.17
applied with q = p = 3/2,∞.

Now we may again apply the aggregation Corollaries 5.18 and 5.20 to estimate

Sq+n̄/2+1,l
O,R :=

∑
i, j,k,ξ,"l,I

HTi, j,k,ξ,"l,I ,R .

From (5.50b) and (5.55b), we then have that for N ,M in the same range as above,

∥∥∥ψi,q D
N DM

t,q S
q+n̄/2+1,l
O,R

∥∥∥
3/2

� δq+n̄�q�
50
q

(
λq+n̄/2+1

λq+n̄/2

)2/3

(λq+n̄rq )
−1

× λNq+n̄/2+1M
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
,

≤ �−10
q + n̄/2+1δq+n̄/2+1+ n̄λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
,∥∥∥ψi,q D

N DM
t,q S

q+n̄/2+1,l
O,R

∥∥∥∞ � �
C∞−9
q+n̄/2+1λ

N
q+n̄/2+1M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
,

where we have used (11.24d) to simplify the first inequality. Finally, the nonlocal
conclusions follow in much the same way as in the previous cases, and so we omit
further details.

Case 3b: Estimates for (8.18d) and (8.18e) and  = R. In order to set up the
high-frequency assumptions for this case, we consider for the moment the cases when
m > q + n̄/2+ 2 and set

μ = λq+n̄/2�q = λq+n̄rq , � = P̃
ξ
(m−1,m](�

I
(ξ),R)

2 , ϑ as in Lemma 4.18 , d as in item (xvi)

C∗,3/2 =
(
min(λm , λq+n̄)

λq+n̄rq

)2/3

, C∗,∞ =
(
min(λm , λq+n̄)

λq+n̄rq

)2
λαq+n̄/2+1 ,

ϒ = λm−1 , ϒ ′ = λm , � = min(λm , λq+n̄) . (8.25)

We then have that (A.43) is satisfied by appealing to (4.37b) with q = 1 and p =
3/2,∞; we note that (4.36) is satisfied for q = 1 and Cρ,q = 1 and λ = λq+n̄ as in the

123



A Wavelet-Inspired L3-Based Convex Integration… Page 127 of 271 19

last step. Next, we have that (A.44)–(A.45) are satisfied by definition and immediate
computation and the same inequalities as in the previous steps. Finally, we have that
the nonlocal assumption in (A.55) is satisfied from (11.20b).

In the case of m = q + n̄/2+ 2, we have to take an extra step to minimize the gap
between ϒ and ϒ ′ in order to ensure that the second inequality in (A.44) is satisfied.
Towards this end, we decompose the synthetic Littlewood-Paley operator further as

P̃
ξ

(q+n̄/2+1,q+n̄/2+2] := P̃
ξ

(q+n̄/2+1,q+n̄/2+3/2] + P̃
ξ

(q+n̄/2+3/2,q+n̄/2+2] , (8.26)

where the q + n̄/2+ 3/2 portion of the projector correponds to the frequency which is
the geometric means of λq+n̄/2+1 and λq+n̄/2+2. This extra division helps us minimize
the gap between ϒ and ϒ ′. Then we can set

μ = λq+n̄/2�q = λq+n̄rq , � = P̃
ξ•(�I(ξ),R)2 , ϑ as in Lemma 4.18 , d as in item (xvi)

C∗,3/2 =
(
λq+n̄/2+2

λq+n̄rq

)2/3

, C∗,∞ =
(
λq+n̄/2+2

λq+n̄rq

)2
λαq+n̄/2+1 ,

ϒ = λq+n̄/2+1 , ϒ ′ = λq+n̄/2+3/2 if • corresponds to the first projector ,
ϒ = λq+n̄/2+3/2 , ϒ ′ = λq+n̄/2+2 if • corresponds to the second projector .

We then have that (A.43) is satisfied by appealing to (4.37b)withq = 1 and p = 3/2,∞
as before. Next, we have that (A.44)–(A.45) are satisfied by definition and immediate
computation (here we crucially use the extra subdivision to ensure that the second
inequality in (A.44) holds) and the same inequalities as in the previous steps. Finally,
we again have that the nonlocal assumption in (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)–(vi) of Proposition A.13 and
(A.56)–(A.57), from which we have the following. First, we note that from item (iv),
(8.12b) is satisfied. Next, abbreviating G� ◦	 as Ti, j,k,ξ,"l,I ,R , we have from (A.46)

and (A.50) that for N ≤ Nfin
4 − d and M ≤ Nfin

5 ,

∥∥∥DN DM
t,qHTi, j,k,ξ,"l,I ,R

∥∥∥
3/2

�
(∣∣∣supp (η2

i, j,k,ξ,"l,R)
∣∣∣2/3 δq+n̄�

2 j+39
q �q + λ−10

q+n̄

)
(
min(λm, λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1

× (min(λm, λq+n̄))
N+1

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

∥∥∥DN DM
t,qHTi, j,k,ξ,"l,I ,R

∥∥∥∞ � �C∞+40
q

(
min(λm, λq+n̄)

λq+n̄rq

)2

�qλ
−2
m−1

× (min(λm, λq+n̄))
N+1

M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

� �
C∞−9
q+n̄/2 (min(λm, λq+n̄))

N
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M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

where we have used (11.10a) to achieve the last inequality. Notice that from (ii), the
support of divHTi, j,k,ξ,"l,I ,R is contained in the support of Ti, j,k,ξ,"l,I ,R , which itself

is contained in the support of ηi, j,k,ξ,"l,Rζ
I ,R
ξ . From this observation, we have that

(8.14b) is satisfied. Furthermore, we have that (8.15d) is satisfied from (A.49a) and
Lemma 4.17 applied with q = p = 3/2,∞. Finally, we have that (8.16) is satisfied
due to item (ii) and (4.37c). We note also that (8.10) follows from (8.16) and (6.24).

Now we may again apply the aggregation Corollaries 5.18 and 5.20 to estimate

Sm,lO,R :=
∑

i, j,k,ξ,"l,I
HTi, j,k,ξ,"l,I ,R .

From (5.50b) and (5.55b), we then have that for N ,M in the same range as above,

∥∥∥ψi,q D
N DM

t,q S
m,l
O,R

∥∥∥
3/2

� δq+n̄�q�
50
q

(
min(λm , λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1

×min(λm , λq+n̄)
N+1M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
� �−10

m δm+n̄(min(λm , λq+n̄))
NM

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
,∥∥∥ψi,q D

N DM
t,q S

m,l
O,R

∥∥∥∞ � �
C∞−9
m (min(λm , λq+n̄))

NM
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)

where we have used (11.24d) to simplify the first inequality. Finally, the nonlocal
conclusions follow in much the same way as in the previous cases, and so we omit
further details.

Case 4: Estimates for (8.18c), (8.18d), and (8.18e) and  = ϕ. Estimates for these
follow from similar arguments as in the cases when  = R. Indeed, the only significant
differences are that the estimates for a2(ξ),ϕ than those of a2(ξ),R are worse by a factor

of r−2/3
q from Lemma 6.5, while the estimates for � encoded in the constants C∗,3/2

and C∗,∞ are better by a factor of r
2/3
q from Proposition 4.6. Therefore, to compensate

such loss or gain, we define G• = B•
ξ,i, j,k,"l,ϕ

(
(ρ

ϕ

(ξ))
2(ζ

I ,ϕ
ξ )2

)
◦ 	(i,k)r

2/3
q with the

extra factor r
2/3
q and define � analogous to the case  = R but with the extra factor

r−2/3
q . Then, the same choice of parameters and functions as in the case of  = R will
lead to the desired estimates. We omit further details.

Case 5: Estimates for (8.18f). Here we apply Proposition A.13 with p = ∞ and the
following choices. The low-frequency assumptions in Part 1 are exactly the same as
the L∞ low-frequency assumptions in Case 3 and Case 4. For the high-frequency
assumptions, we recall the choice of N∗∗ from (xvi) and set

�R = (Id− P̃
ξ
q+n̄+1)P�=0

(
� I
(ξ),R

)2
, �ϕ = (Id− P̃

ξ
q+n̄+1)P�=0

(
� I
(ξ),ϕ

)2
r−2/3
q ,

ϑ
i1i2...id−1id = δi1i2...id−1id�−d/2� ,
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� = λq+n̄ , μ = ϒ = ϒ ′ = λq+n̄/2�q , , C∗,∞ =
(

λq+n̄

λq+n̄+1

)N∗∗
λ3q+n̄ ,

Ndec as in (xiv) , d = 0 .

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the
previous steps, (A.43) is satisfied using Propositions 4.5 and 4.6 and (4.34b) from
Lemma 4.17, (A.44) is satisfied by definition and as in the previous steps, and (A.45)
is satisfied by (11.18). For the nonlocal assumptions, we choose M◦, N◦ = 2Nind so
that (A.52)–(A.54) are satisfied as in Case 1, and (A.55) is satisfied from (11.20c).
We have thus satisfied all the requisite assumptions, and we therefore obtain nonlocal
bounds very similar to those from the previous steps, which are consistent with (8.11)
at level q + n̄. We omit further details. ��
* Lemma 8.3 (Low shells have no pressure increment). The errors Sq+1

O and Sq+n̄/2
O

require no pressure increment as they are already dominated by intermittent pressure
from the previous step. More precisely, we have that for N ,M ≤ Nfin/10,∣∣∣ψi,q D

N DM
t,q S

q+1,l
O

∣∣∣ ≤ �−100
q+1 π

q+1
q λNq+1M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
,

(8.27a)∣∣∣ψi,q D
N DM

t,q S
q+n̄/2,l
O

∣∣∣ ≤ �−100
q+n̄/2π

q+n̄/2
q λNq+n̄/2M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
.

(8.27b)

Proof We first note that the application of Proposition A.13 in Case 1 of the proof
of Lemma 8.1 can be supplemented with Remark A.19. Specifically, we may set

π = π��
40
q �q , (8.28)

so that (A.59) follows from the definition of B(ξ),R in (8.7) and (6.28a). Then from
(A.47), (A.49a), and (A.60), we have that∣∣∣DN DM

t,qHTi, j,k,ξ,"l,R
∣∣∣ � π��

50
q �qλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
.

We pause also to note that (8.13) in this case follows from (A.47) and (A.60). Now
applying the aggregation Corollary 5.20 with H = HTi, j,k,ξ,"l,R ,# = π��

50
q �q , and

p = 1 along with (2.40), (3.6), and (11.7f) gives (8.27a).
The proof of (8.27b) follows similarly from supplementing Case 2 of the proof

of Lemma 8.1 with pointwise assumptions. We omit further details. ��
* Lemma 8.4 (Pressure increment). For every q + n̄/2+ 1 ≤ m ≤ q + n̄, there exists
a function σSmO = σ+SmO − σ−SmO such that the following hold.

(i) We have that∣∣∣ψi,q D
N DM

t,q S
m,l
O

∣∣∣ < (σ+SmO + δq+3n̄

) (
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.29a)
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∣∣∣ψi,q D
N DM

t,qσ
+
SmO

∣∣∣ < (σ+SmO + δq+3n̄

) (
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.29b)∥∥∥ψi,q D

N DM
t,qσ

+
SmO

∥∥∥
3/2

≤ �−9
m δm+n̄

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.29c)∥∥∥DN DM

t σ+SmO
∥∥∥∞ ≤ �

C∞−9
q+1 (λm�q )

NM
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.29d)∣∣∣ψi,q D

N DM
t,qσ

−
SmO

∣∣∣ � �−100
q+n̄/2

π
q+n̄/2
q

(
λq+n̄/2�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.29e)

for all N ,M < Nfin/100.
(ii) For m ≥ q + n̄/2+ 2, we have that

B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
∩ supp (σ+SmO ) = ∅ ∀q + 1 ≤ q ′ ≤ m − 1

B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
∩ supp (σ−SmO ) = ∅ ∀q + 1 ≤ q ′ ≤ q + n̄/2 .

(8.30)

(iii) Define

mσSmO
(t) =

ˆ t

0

〈
Dt,qσSmO

〉
(s) ds . (8.31)

Then we have that∣∣∣∣ dM+1

dtM+1mσSmO

∣∣∣∣ ≤ (max(1, T ))−1δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
(8.32)

for 0 ≤ M ≤ 2Nind.

Proof of Lemma 8.4 We follow the case numbering from Lemma 8.1. Since we have
shown in Lemma 8.3 that the low shells have no pressure increment, we only need to
analyze Cases 3 and 4. Since the only difference between Case 3 and Case 4

is the rebalancing of r
2/3
q , we shall only hint at the proofs in Case 4 and focus on the

case  = R. We divide into subcases 3a and 3b and apply Proposition 7.4.

Case 3a: pressure increment for (8.18c) and  = R. Recall that Part 1 of Proposi-
tion 7.4 requires preliminary assumptions which are the same as those from the inverse
divergence, along with pointwise bounds corresponding to Remark A.19. Since we
have already chosen parameters corresponding to the inverse divergence, we simply
set π = π��

50
q �q , which verifies (8.13) in this case. Then the assumption in (A.59)

follows from the pointwise estimates for B(ξ),R used in Lemma 8.3 along with Propo-

sition 4.9, Lemma 5.15, and Corollary 5.4 to estimate
(
(ρR

(ξ))
2(ζ

I ,R
ξ )2

)
◦	(i,k).

In order to check the additional assumptions from Part 2, we set

N∗∗ as in (xvi) , Ncut,x,Ncut,t as in (x) , � = �
1/2
q , δtiny = δ2q+3n̄ , (8.33)

m̄ = 1 , μ0 = λq+n̄/2+1�
−1
q , μm̄ = μ1 = λq+n̄/2+1�

2
q .
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Then (7.75a)–(7.75b) hold from (11.21a), (7.75c) holds from (11.20a), (7.76a) holds
from (11.14a), (7.76b) holds from (11.14b), (7.76c) holds from (11.21a), (7.76d) holds
from (11.18), (7.77a) holds by definition, (7.77b) holds by definition and immediate
computation, (7.77c) holds due to (11.20b), and (7.77d) holds due to (11.20c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure
increment and delineate its properties. First, from (7.78)–(7.79) and (11.21a), we have
that there exists a pressure increment σHT q+n̄/2+1

i, j,k,ξ,"l,I ,R
= σ+

HT q+n̄/2+1
i, j,k,ξ,"l,I ,R

−σ−
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
such

that for N ,M ≤ Nfin/7,

∣∣∣DN DM
t,qHT q+n̄/2+1

i, j,k,ξ,"l,I ,R
∣∣∣ �

(
σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

)
(λq+n̄/2+1�q)

N

M
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
. (8.34)

From (A.48) and (7.83), we have that

supp

(
σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R

)
⊆ supp

(
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
)
⊆ supp

(
a(ξ),R

(
ρR
(ξ)ζ

I
ξ

)
◦	(i,k)

)
.

(8.35)

Now define

σ±
Sq+n̄/2+1
O,R

=
∑

i, j,k,ξ,"l,I
σ±
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
. (8.36)

Then (6.22) gives that (8.30) is satisfied for m = q + n̄/2 + 1. From (8.34), (5.47),
(2.11), and Corollary 5.20 with

H = HT q+n̄/2+1
i, j,k,ξ,"l,I ,R , # =

[
σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

]
1suppa(ξ),RρR

(ξ)
ζ I
ξ
, p = 1 ,

we have that for N ,M ≤ Nfin/7,∣∣∣∣∣∣ψi,q D
N DM

t,q

∑
i ′, j,k,ξ,"l,I

HT q+n̄/2+1
i ′, j,k,ξ,"l,I ,R

∣∣∣∣∣∣ �
(
σ+
Sq+n̄/2+1
O,R

+ δ2q+3n̄

)

× (λq+n̄/2+1�q)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
. (8.37)

We therefore have that (8.29a) is satisfied for m = q+ n̄/2+ 1. From (7.80), (11.21a),
and (11.15), we have that for N ,M ≤ Nfin/7,∣∣∣∣∣DN DM

t,qσ
+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R

∣∣∣∣∣ �
(
σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

)
(λq+n̄/2+1�q)

N
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M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
. (8.38)

From (8.38), (5.47), (2.11), and Corollary 5.20 with

H = σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
, # =

[
H + δ2q+3n̄

]
1suppa(ξ),RρR

(ξ)
ζ I
ξ
, p = 1 ,

we have that (8.29b) is satisfied for m = q + n̄/2+ 1.
Next, from (7.81), we have that

∥∥∥∥∥∥σ±HTq+n̄/2+1
i, j,k,ξ,"l,I ,R

∥∥∥∥∥∥
3/2

�
(∣∣∣supp (η2

i, j,k,ξ,"l,R(ζ
I ,R
ξ )2)

∣∣∣2/3 δq+n̄�
2 j+38
q �q + λ−10

q+n̄

)(
λq+n̄/2+1

λq+n̄rq

)2/3

λαq+n̄/2+1λ
−1
q+n̄/2 .

Now from (8.36), (11.24d), and Corollary 5.18 with θ = 2, θ1 = 0, θ2 = 2, H =
σ±
HT q+n̄/2+1

i, j,k,ξ,"l,I , 
, and p = 3/2, we have that

∥∥∥∥ψi,qσ
±
Sq+n̄/2+1
O,R

∥∥∥∥
3/2

� δq+n̄+n̄/2+1�
−10
q+n̄/2+1 .

Combined with (8.29b), this verifies (8.29c) at level q + n̄/2 + 1. Arguing now for
p = ∞ from (7.81), we have that

∥∥∥∥∥σ±HT q+n̄/2+1
i, j,k,ξ,"l,I ,R

∥∥∥∥∥∞ � �C∞+40
q �q

(
λq+n̄/2+1

λq+n̄rq

)2

λαq+n̄/2+1λ
−1
q+n̄/2 .

Now from (8.36), (11.10a), and Corollary 5.20 with H = σ±
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
, # =

1suppa(ξ),RρR
(ξ)

ζ I
ξ
and p = 1, we have that

∥∥∥∥ψi,qσ
±
Sq+n̄/2+1
O,R

∥∥∥∥
∞

� �C∞+40
q �q

(
λq+n̄/2+1

λq+n̄rq

)2

λαq+n̄/2+1λ
−1
q+n̄/2 ≤ �

C∞−100
q+n̄/2+1 .

Combined again with (8.29b), this verifies (8.29d) at level q + n̄/2+ 1.
Finally, from (7.82), (11.15), (11.21a), (11.24e), (3.6), and (2.40), we have that for

N ,M ≤ Nfin/7,

∣∣∣∣∣DN DM
t,qσ

−
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R

∣∣∣∣∣ �
(
λq+n̄/2+1

λq+n̄rq

)2/3

λαq+n̄/2+1λ
−1
q+n̄/2π��

50
q �q

× (λq+n̄/2�q)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
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≤ �−100
q π

q+n̄/2
q (λq+n̄/2�q)

NM ()M,Nind,t, τ
−1
q �i+15

q ,T−1
q �9

q .

Applying (8.36), Corollary 5.20 with H = σ−
HT q+n̄/2+1

i, j,k,ξ,"l,I ,R
, # = �−100

q π
q+n̄/2
q

1suppa(ξ),RρR
(ξ)

ζ I
ξ
and p = 1, and (3.6), we have that (8.29e) is verified at level

m = q + n̄/2 + 1. The estimate for mσSmO
in item (iii) in these cases follows from

(7.89), (xv), and a large choice of a∗ in item (xviii) to ensure that we can gain the
advantageous prefactor of max(1, T )−1.

Case 3b: pressure increment for (8.18d) and (8.18e) and  = R. We set π =
π��

50
q �q as in the previous case since the low-frequency portion of the error term is

identical. Since all the preliminary assumptions in Part 1 are now satisfied, we need
to check the additional assumptions from Part 2. In order to do so, we set

N∗∗ as in (xvi) , Ncut,x,Ncut,t as in (x) , � = �
1/2
q , δtiny = δ2q+3n̄, μ = λq+n̄/2�q ,

μ0 = λq+n̄/2+1 , μ1 = λq+n̄/2+3/2�
2
q ,

μm′ = λq+n̄/2+m′�2
q if 2 ≤ m′ ≤ n̄/2 ,

m̄ = 1 for the first projector in (8.26) if m = q + n̄/2+ 2 ,

m̄ = 2 for the second projector in (8.26) if m = q + n̄/2+ 2 ,

m̄ = m − q − n̄/2 if m > q + n̄/2+ 2 . (8.39)

Then (7.75a)–(7.76a) hold as in the previous case, (7.76b) holds from (11.14b),
(7.76c)–(7.76d) hold as in the previous case, (7.77a) holds by definition, (7.77b) holds
by definition and immediate computation, (7.77c) holds due to (11.20b), and (7.77d)
holds due to (11.20c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure
increment and delineate its properties. First, from (7.78)–(7.79) and (11.21a), we
have that for q + n̄/2 + 2 ≤ m ≤ q + n̄ + 1, there exists a pressure increment
σHTm

i, j,k,ξ,"l,I ,R
= σ+HTm

i, j,k,ξ,"l,I ,R
− σ−HTm

i, j,k,ξ,"l,I ,R
such that for N ,M ≤ Nfin/7,

∣∣∣DN DM
t,qHTm

i, j,k,ξ,"l,I ,R
∣∣∣ � (σ+Htm

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

)
(min(λm, λq+n̄)�q)

N

M
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
. (8.40)

From (A.48), (7.83), and (4.37c), we have that

supp

(
σ+HTm

i, j,k,ξ,"l,I ,R

)
⊆ supp

(
HTm

i, j,k,ξ,"l,I ,R
)
⊆ supp

(
a(ξ),R

(
ρR
(ξ)ζ

I
ξ

)
◦	(i,k)

)
∩ B

(
supp� I

(ξ),R, λ
−1
m−1

)
. (8.41)
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Now define

σ±SmO,R =
∑

i, j,k,ξ,"l,I
σ±HTm

i, j,k,ξ,"l,I ,R
if m �= q + n̄ , (8.42a)

σ±SmO,R =
q+n̄+1∑
m̃=q+n̄

∑
i, j,k,ξ,"l,I

σ±HTm′
i, j,k,ξ,"l,I ,R

if m = q + n̄ . (8.42b)

Then (6.22) and (6.24) give that (8.30) is satisfied for q+ n̄/2+2 ≤ m ≤ q + n̄. From
(8.40), (5.47), (2.11), and Corollary 5.20 with

H = HTm
i, j,k,ξ,"l,I ,R , # =

[
σ+HTm

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

]
1suppa(ξ),RρR

(ξ)
ζ I
ξ
, p = 1 ,

we have that for N ,M ≤ Nfin/7,

∣∣∣∣∣∣ψi,q D
N DM

t,q

∑
i ′, j,k,ξ,"l,I

HTm
i ′, j,k,ξ,"l,I ,R

∣∣∣∣∣∣ �
(
σ+SmO,R + δ2q+3n̄

)

× (min(λm, λq+n̄)�q)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
. (8.43)

We therefore have that (8.29a) is satisfied for q + n̄/2+ 2 ≤ m ≤ q + n̄. From (7.80),
(11.21a), and (11.15), we have that for N ,M ≤ Nfin/7,

∣∣∣∣DN DM
t,qσ

+
HTm

i, j,k,ξ,"l,I ,R

∣∣∣∣ �
(
σ+HTm

i, j,k,ξ,"l,I ,R
+ δ2q+3n̄

)
(min(λm, λq+n̄)�q)

N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
. (8.44)

From (8.44), (5.47), (2.11), and Corollary 5.20 with

H = σ+HTm
i, j,k,ξ,"l,I ,R

, # =
[
H + δ2q+3n̄

]
1suppa(ξ),RρR

(ξ)
ζ I
ξ
, p = 1 ,

we have that (8.29b) is satisfied for q + n̄/2+ 2 ≤ m ≤ q + n̄.
Next, from (7.81), we have that
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∥∥∥∥∥σ±HTm
i, j,k,ξ,"l,I ,R

∥∥∥∥∥
3/2

�
(∣∣∣supp (η2

i, j,k,ξ,"l,R(ζ
I ,R
ξ )2)

∣∣∣2/3 δq+n̄�
2 j+38
q �q + λ−10

q+n̄

)(
min(λm , λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1λm .

Now from (8.42), (11.24d), and Corollary 5.18 with θ = 2, θ1 = 0, θ2 = 2, H =
σ±HTm

i, j,k,ξ,"l,I , 
, and p = 3/2, we have that

∥∥∥ψi,qσ
±
SmO,R

∥∥∥
3/2

� δm+n̄�
−10
m .

Combined with (8.29b), this verifies (8.29c) at levelm. Arguing now for p = ∞ from
(7.81), we have that

∥∥∥∥σ±HTm
i, j,k,ξ,"l,I ,R

∥∥∥∥∞ � �C∞+40
q �q

(
min(λm, λq+n̄)

λq+n̄rq

)2

λαmλ
−2
m−1λm .

Now from (8.42), (11.10a), and Corollary 5.20 with H = σ±HTm
i, j,k,ξ,"l,I ,R

, # =
1suppa(ξ),RρR

(ξ)
ζ I
ξ
and p = 1, we have that

∥∥∥ψi,qσ
±
SmO,R

∥∥∥
∞

� �C∞+40
q �q

(
min(λm, λq+n̄)

λq+n̄rq

)2

λαmλ
−1
q+n̄/2 ≤ �C∞−100

m .

Combined again with (8.29b), this verifies (8.29d) at level m.
Finally, from (7.82), (11.15), (11.21a), (11.24e), (3.6), and (2.40), we have that for

N ,M ≤ Nfin/7,

∣∣∣∣∣DN DM
t,qσ

−
HTm

i, j,k,ξ,"l,I ,R

∣∣∣∣∣ �
(
min(λm , λq+n̄)

λq+n̄rq

)2/3

λ−2
m−1λmπ��

50
q �q

×min(λm , λq+n̄)�q )
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
≤ �−100

q π
q+n̄/2
q (λq+n̄/2�q )

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
.

Applying (8.42), Corollary 5.20 with H = σ−HTm
i, j,k,ξ,"l,I ,R

, # = �−100
q π

q+n̄/2
q

1suppa(ξ),RρR
(ξ)

ζ I
ξ
and p = 1, and (3.6), we have that (8.29e) is verified at levels

q + n̄/2 + 2 ≤ m ≤ q + n̄. The bounds in item (iii) follow much as in the previ-
ous case, and we omit further details.

Case 4: pressure increment for  = ϕ. As we noted in the beginning of the proof,
the only differences between  = ϕ and  = R arise from the redistribution of r

2/3
q .

We may therefore define σSmO,ϕ for q + n̄/2+ 1 ≤ m ≤ q + n̄ and set

σ±SmO = σ±SmO,R + σ±SmO,ϕ ,
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from which (8.29a)–(8.32) follow. ��
* Lemma 8.5 (Pressure current). For every m ∈ {q+ n̄/2+1, . . . , q+ n̄}, there exists
a current error φSmO

associated to the pressure increment σSmO defined by Lemma 8.4
which satisfies the following properties.

(i) We have the decompositions and equalities

φSmO
= φ∗SmO +

m∑
m′=q+n̄/2+1

φm′
SmO

, φm′
SmO

= φ
m′,l
SmO

+ φ
m′,∗
SmO

(8.45a)

divφSmO
= Dt,qσSmO

− 〈Dt,qσSmO
〉 . (8.45b)

(ii) For q + n̄/2+ 1 ≤ m′ ≤ m and N ,M ≤ 2Nind,

∣∣∣ψi,q D
N DM

t,qφ
m′,l
SmO

∣∣∣ < �−100
m′

(
πm′
q

)3/2
r−1
m′ (λm′�2

m′)M

M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.46a)∥∥∥DN DM

t,qφ
m′,∗
SmO

∥∥∥∞ +
∥∥∥DN DM

t,qφ
∗
SmO

∥∥∥∞ < T
2Nind,t
q+n̄ δ

3/2
q+3n̄(λm�

2
m)

N τ−M
q .

(8.46b)

(iii) For all q + n̄/2+ 1 ≤ m′ ≤ m and all q + 1 ≤ q ′ ≤ m′ − 1,

B
(
supp ŵq ′, 1/2λ

−1
q ′ �q ′+1

)
∩ supp

(
φ
m′,l
SmO

)
= ∅ . (8.47)

Proof We utilize the case numbering from Lemma 8.4. Note that the only cases which
require a pressure increments were Cases 3a and 3b, which correspond to the
analysis of (8.18c)–(8.18e) and  = R, and Case 4, which corresponds to the same
terms but with  = ϕ. We combine the analysis for  = R and  = ϕ into a single
argument, since as explained in the previous lemmas, the estimates are essentially the
same.

Case 3a/4a: pressure current error from (8.18c) and  = R, ϕ. In this case, we
recall from (8.33) that we have chosen m̄ = 1 in item (iii), μ0 = λq+n̄/2+1�

−1
q , and

μm̄ = μ1 = λq+n̄/2+1�
2
q . We therefore have from (7.78) that

σHT q+n̄/2+1
i, j,k,ξ,"l,I , 

= σ+
HT q+n̄/2+1

i, j,k,ξ,"l,I , 
− σ−

HT q+n̄/2+1
i, j,k,ξ,"l,I , 

= σ ∗
HT q+n̄/2+1

i, j,k,ξ,"l,I , 
+ σ 0

HT q+n̄/2+1
i, j,k,ξ,"l,I , 

+ σ 1

HT q+n̄/2+1
i, j,k,ξ,"l,I , 

.

We then define

σ ∗
Sq+n̄/2+1
O

:=
∑

i, j,k,ξ,"l,I , 
σ ∗
HT q+n̄/2+1

i, j,k,ξ,"l,I , 
, σ

q+n̄/2+1

Sq+n̄/2+1
O

:=
∑

i, j,k,ξ,"l,I , 
•=0,1

σ •
HT q+n̄/2+1

i, j,k,ξ,"l,I , 
,
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so that then using (7.84), we may define the current errors

φ∗
Sq+n̄/2+1
O

:=
∑

i, j,k,ξ,"l,I , 
φ∗
Sq+n̄/2+1
i, j,k,ξ,"l,I , 

:=
∑

i, j,k,ξ,"l,I , 
(H+R∗)

(
Dt,qσ

∗
HT q+n̄/2+1

i, j,k,ξ,"l,I , 

)
,

φ
q+n̄/2+1

Sq+n̄/2+1
O

:=
∑

i, j,k,ξ,"l,I , 
•=0,1

φ•
Sq+n̄/2+1
i, j,k,ξ,"l,I , 

:=
∑

i, j,k,ξ,"l,I , 
•=0,1

(H+R∗)
(
Dt,qσ

•
HT q+n̄/2+1

i, j,k,ξ,"l,I , 

)

= φ
q+n̄/2+1,l
SmO︸ ︷︷ ︸

all theH terms

+ φ
q+n̄/2+1,∗
SmO︸ ︷︷ ︸

all theR∗ terms

,

which satisfy

divφ∗
Sq+n̄/2+1
O

= Dt,qσ
∗
Sq+n̄/2+1
O

−
ˆ
T3

Dt,qσ
∗
Sq+n̄/2+1
O

(t, x ′) dx ′ ,

divφq+n̄/2+1

Sq+n̄/2+1
O

= Dt,qσ
q+n̄/2+1

Sq+n̄/2+1
O

−
ˆ
T3

Dt,qσ
q+n̄/2+1

Sq+n̄/2+1
O

(t, x ′) dx ′ .

We decompose the current error further into φq+n̄/2+1

Sq+n̄/2+1
O

= φ
q+n̄/2+1,l

Sq+n̄/2+1
O

+φ
q+n̄/2+1,∗
Sq+n̄/2+1
O

using

item ii.
In order to check (8.46a), we recall the parameter choices from Case 3a of

Lemma 8.1 and the choice of π = π��
50
q �q from Lemma 8.4 apply Part 4 of

Proposition 7.4, specifically (7.85c). We then have from (11.21a) that for each
i, j, k, ξ, "l, I , , • and M, N ≤ 2Nind (after appending a superscript l to refer to
the local portion),

∣∣∣∣∣∣DN DM
t,qφ

•,l
Sq+n̄/2+1
i, j,k,ξ,"l,I , 

∣∣∣∣∣∣ ≤ τ−1
q �i+70

q π��q

(
λq+n̄/2+1

λq+n̄rq

)2
λ−1
q+n̄/2

× (λq+n̄/2+1�q )
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q �i+14
q ,T−1

q �9
q

)
.

(8.49)

Next, from (7.88), we have that

supp

(
φ
•,l
Sq+n̄/2+1
i, j,k,ξ,"l,I , 

)
⊆ B

(
HT q+n̄/2+1

i, j,k,ξ,"l,I , , 2λq+n̄/2+1�
−1
q

)

⊆ B
(
supp

(
a(ξ), (� (ξ)ζ

I
ξ ) ◦	(i,k)

)
, 2λq+n̄/2+1�

−1
q

)
.
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Then applying (6.22), we have that (8.47) is verified for m = m′ = q + n̄/2 + 1.
Returning to the proof of (8.46a), we can now apply Corollary 5.21 with

H = φ
•,l
Sq+n̄/2+1
i, j,k,ξ,"l,I , 

, # = �70
q π��q

(
λq+n̄/2+1

λq+n̄rq

)2

λ−1
q+n̄/2 .

From (5.58b), (11.15), (3.6), (2.40), (11.7h), and (11.24b), we have that

∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l,I ,R,•

H
(
Dt,qσ

•
Htq+n̄/2+1

i, j,k,ξ,"l,I ,R

)∣∣∣∣∣∣
�

(5.58b)
r−1
q λq

(
π
q
q
)1/2︸ ︷︷ ︸

cost of Dt,q

π�︸︷︷︸
dominates

low-freq. coeff’s

�qλ
−1
q+n̄/2︸ ︷︷ ︸

freq. gain

�76
q︸︷︷︸

lower order

(
λq+n̄/2+1�q

λq+n̄/2

)2

︸ ︷︷ ︸
intermittency losses

λ−1
q+n̄/2︸ ︷︷ ︸

inv. div. gain

× (λq+n̄/2+1�q)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q �i+15
q ,T−1

q �9
q

)

�
(3.6),(2.40)

r−1
q �100

q

(
π
q+n̄/2+1
q

δq+n̄

δq+n̄/2+1+n̄

)3/2

�2
q

(
λq+n̄/2+1�q

λq+n̄/2

)2

λ−2
q+n̄/2

× (λq+n̄/2+1�q)
NM

(
M,Nind,t − Ncut,t − 1, τ−1

q �i+15
q ,T−1

q �9
q

)
≤

(11.15),(11.24b),(11.7h)
�−150
q r−1

q+n̄/2+1

(
π
q+n̄/2+1
q

)3/2
(λq+n̄/2+1�q)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.50)

for N ,M ≤ 2Nind from (11.21a), which verifies (8.46a) at level q + n̄/2+ 1. In order
to achieve (8.46b), we appeal to (7.86)–(7.87), the choice of K◦ in item (xv), (11.21a),
and an aggregation quite similar to previous nonlocal aggregations.

Case 3b/4b: pressure current error from (8.18d) and (8.18e) and  = R, ϕ.
In this case we consider the higher shells from the oscillation error. The general
principle is that the estimate will only be sharp in the m = m′ = q + n̄ double
endpoint case, for which the intermittency loss is most severe. We now explain why
this is the case by parsing estimates (8.49) and (8.50). We incur a material derivative
cost of τ−1

q �i+70
q , which is converted into r−1

q λq(π
q
q )

1/2 using (2.21) and the rough

definition of τ−1
q = δ

1/2
q λqr

−1/3
q , or equivalently Corollary 5.21. The L3/2 size of the

high-frequency coefficients from the oscillation error is (λmλ
−1
q+n̄/2)

2/3; this encodes

the intermittency loss from L1 to L3/2 of a squared, ≤ λm frequency projected, L2

normalized pipe flow with minimum frequency λq+n̄/2 – see also the choices of C∗,3/2
fromLemma8.1. This accounts for 2/3 of the squared power in the intermittency losses.
The low-frequency coefficient function from a quadratic oscillation error incurs a
derivative cost of�q (whichwe have groupedwith “frequency gain”) and is dominated
byπ�. The negative power in the frequency gain will be λm and is determined bywhich
shell (indexed bym) of the oscillation error is being considered. The lower order terms
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may be ignored. Next, we have an L3/2 → L∞ intermittency loss of (λm′λ−1
q+n̄/2)

4/3,
which accounts for 4/3 of the power in the intermittency losses and is used to pointwise
dominate the high-frequency portion (at frequency λm′ due to the frequency projector)
of the pressure increment using the L3/2 norm. By simply pointwise dominating the
high-frequency portion of the pressure increment, using this to compute the L1 norm
of the resulting current error, and showing that the result is dominated by existing
pressure, we prevent a loop of new current error and new pressure creation. Finally,
we have an inverse divergence gain depending on which synthetic Littlewood-Paley
shell of the pressure increment we are considering. The net effect is that the �q from

“frequency gain” and the λ−1
m′ from “inv. div. gain” upgrade the π

3/2
� to (πm′

q )
3/2, and

the remaining λqλ−1
m from the Dt,q cost and the frequency gain is strong enough to

absorb the intermittency loss since m′ ≤ m, with a perfect balance in the case

m = m′ = q + n̄ �⇒
(
λq+n̄

λq+n̄/2

)2

λqλ
−1
q+n̄ ≈ 1 .

In order to fill in the details, we now recall the choices of m̄ and μm′ from (8.39).
For the sake of brevity we ignore the slight variation in the case of the first projector
for m = q + n̄/2 + 2 and focus on the second projector for m = q + n̄/2 + 2 and the
other cases q + n̄/2+ 2 < m ≤ q + n̄ + 1. We have from (7.78) that

σHTm
i, j,k,ξ,"l,I , 

= σ+HTm
i, j,k,ξ,"l,I , 

− σ−HTm
i, j,k,ξ,"l,I , 

= σ ∗HTm
i, j,k,ξ,"l,I , 

+
m−q−n̄/2∑

ι=0

σ ι
HTm

i, j,k,ξ,"l,I , 
.

We then define the frequency-projected pressure increments by

σ ∗SmO =
∑

i, j,k,ξ,"l,I , 
σ ∗HTm

i, j,k,ξ,"l,I , 
, σ

q+n̄/2+1
SmO

=
∑

i, j,k,ξ,"l,I , 
σ 0
HTm

i, j,k,ξ,"l,I , 
,

σ
q+n̄/2+2
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=1,2

σ ι
HTm

i, j,k,ξ,"l,I , 
,

σ
q+n̄/2+m′
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=m′

σ ι
HTm

i, j,k,ξ,"l,I , 
if q + n̄/2+ m′ =q+n̄/2+ι ≤ m ≤ q + n̄ − 1 ,

(8.51)

σ
q+n̄
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=

if ι m = q + n̄, q + n̄ + 1 .

Using (7.84), we may define the current errors

φ∗SmO =
∑

i, j,k,ξ,"l,I ,R
(H+R∗)

(
Dt,qσ

∗
HTm

i, j,k,ξ,"l,I , 

)
,
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φ
q+n̄/2+1
SmO

=
∑

i, j,k,ξ,"l,I , 
(H+R∗)

(
Dt,qσ

0
HTm

i, j,k,ξ,"l,I , 

)
,

φ
q+n̄/2+2
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=1,2

(H+R∗)
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)
,

φ
q+n̄/2+m′
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=m′

(H+R∗)
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)

if q + n̄/2+ m′ = q + n̄/2+ ι < m ,

φ
q+n̄
SmO

=
∑

i, j,k,ξ,"l,I , 
ι=m−q−n̄/2,m−q−n̄/2+1

(H+R∗)
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)
.

As in the previous case,wemayappend superscripts of l and∗ forq+n̄/2+1 ≤ m ≤ q+
n̄ corresponding to theH andR∗ portions, respectively. We have thus verified item (i)
immediately from these definitions and from (7.84) and item (ii). In order to check
(8.46a), we define the temporary notation m′(ι) to make a correspondence between
the value of ι above and the superscript on the left-hand side, which determines which
bin the current errors go into. Specifically, we set m′(0) = 1, m′(1) = m′(2) = 2,
m′(ι) = ι if q+ n̄/2+ ι < m, andm′(m−q− n̄/2) = m′(m−q− n̄/2+1) = m−q− n̄/2.
Then from Part 4 of Proposition 7.4, specifically (7.85c), and (11.21a), we have that
for each i, j, k, ξ, "l, I , , ι and M, N ≤ 2Nind,

∣∣∣∣DN DM
t,q(H+R∗)

(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)∣∣∣∣
≤ τ−1

q �i+70
q π��q

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm

(
min(λq+n̄/2+m′(ι), λq+n̄)�q

λq+n̄/2

)4/3

× λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

(
min(λq+n̄/2+m′(ι), λm)�q

)N
M
(
M,Nind,t − Ncut,t − 1, τ−1

q �i+14
q ,T−1

q �9
q

)
.

Next, from (7.88) and the fact that q + n̄/2+ m′(ι) ≤ m, we have that

supp

(
H
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

))

⊆ B
(
HTm

i, j,k,ξ,"l,I , , 2λq+n̄/2+m′(ι)−1�
−2
q

)
⊆ B

(
supp

(
a(ξ), (� (ξ)ζ

I
ξ ) ◦	(i,k)ρ

I
(ξ), 

)
, λ−1

m−1 + 2λq+n̄/2+m′(ι)−1�
−2
q

)
⊆ B

(
supp

(
a(ξ), (� (ξ)ζ

I
ξ ) ◦	(i,k)ρ

I
(ξ), 

)
, 2λq+n̄/2+m′(ι)−1

)
.

123



A Wavelet-Inspired L3-Based Convex Integration… Page 141 of 271 19

Then applying (6.22), we have that (8.47) is verified form′ = q+n̄/2+m′(ι). Returning
to the proof of (8.46a), we can now apply Corollary 5.21 with

H = H
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)
,

# = �70
q π��q

(
min(λm, λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm(

min(λq+n̄/2+m′(ι), λq+n̄)�q

λq+n̄/2

)4/3

λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι) .

From (11.7h), (5.58b), (3.6), (2.40), and (11.23), we have that

∣∣∣∣∣∣∣ψi,q
∑

i ′, j,k,ξ,"l,I , 
H
(
Dt,qσ

ι
HTm

i, j,k,ξ,"l,I , 

)∣∣∣∣∣∣∣
�

(5.58b)
�76
q r−1

q λq

(
π
q
q

)1/2
π��q

(
min(λm , λq+n̄)

λq+n̄/2

)2/3

λ−2
m−1λm

(min(λq+n̄/2+m′(ι), λq+n̄)�q

λq+n̄/2

)4/3

× λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

(
min(λq+n̄/2+m′(ι), λm )�q

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)

�
(3.6),(2.40)

�76
q r−1

q λq

(
π
q+n̄/2+m′(ι)
q

δq+n̄

δq+n̄/2+m′(ι)+n̄

)3/2

�q

(
min(λm , λq+n̄)

λq+n̄/2

)2/3

× λ−2
m−1λm

(min(λq+n̄/2+m′(ι), λq+n̄)�q

λq+n̄/2

)4/3

λ−2
q+n̄/2+m′(ι)−1λq+n̄/2+m′(ι)

×
(
min(λq+n̄/2+m′(ι), λm′ )�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
≤

(11.23),(11.7h)
�−150
m′ r−1

m′
(
π
q+n̄/2+m′(ι)
q

)3/2 (
min(λq+n̄/2+m′(ι), λm )�q

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
,

for N ,M ≤ 2Nind from (11.21a), which verifies (8.46a) at levelm′. In order to achieve
(8.46b), we appeal to (7.86)–(7.87), the choice of K◦ in item xv, and (11.21a). ��

8.3 Transport and Nash Stress Errors STN

Lemma 8.6 (Applying inverse divergence). There exist symmetric stresses ST N =
SlT N + S∗T N which satisfy the following.

(i) For all N ,M ≤ Nfin/10, the local part SlT N satisfies

∥∥∥ψi,q D
N DM

t,q S
l
T N

∥∥∥
3/2

� �−100
q+n̄ δq+2n̄λ

N
q+n̄M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
(8.52a)
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∥∥∥ψi,q D
N DM

t,q S
l
T N

∥∥∥∞ � �
C∞−100
q+n̄ λNq+n̄M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
.

(8.52b)

Furthermore, we have that

B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
∩ supp SlT N = ∅ (8.53a)

for all q + 1 ≤ q ′ ≤ q + n̄ − 1.
(ii) For N ,M ≤ 2Nind the nonlocal part satisfies

∥∥∥DN DM
t,q S

∗
T N

∥∥∥∞ ≤ T
4Nind,t
q+n̄ δ2q+3n̄λ

N
q+n̄τ

−M
q . (8.54)

* Remark 8.7 (Abstract formulation of the transport and Nash stress errors). For
the purposes of analyzing the transport and Nash current errors in subsection 8.8 and
streamlining the creation of pressure increments, it will again be useful to abstract the
properties of these error terms. We will prove every one of the following claims in the
course of of proving Lemma 8.6. First, there exists a q-independent constant CH such
that

SlT N =
∑

i, j,k,ξ,"l,I , 

CH∑
j ′=0

Hα( j ′)
i, j,k,ξ,"l,I , ρ

β( j ′)
i, j,k,ξ,"l,I , ◦	(i,k) . (8.55)

Next, the functions H and ρ (with subscripts and superscripts suppressed for conve-
nience) defined above satisfy the following.

(i) H satisfies

∣∣∣DN DM
t,q H

∣∣∣ � π��qλ
N
q+n̄/2M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
(8.56)

for all N ,M ≤ Nfin/10.
(ii) We have that

suppH ⊆ supp
(
ηi, j,k,ξ,"l, ζ

I , 
ξ

)
. (8.57)

(iii) For d as in (xvi), there exist a tensor potential ϑ (we suppress the indices at
the moment for convenience) such that ρ = ∂i1...idϑ

(i1,...,id). Furthermore, ϑ is
(T/λq+n̄/2�q)

3-periodic and satisfies the estimates

∥∥∥DN ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥∥
L p

� r
2/p−2
q λ−1+N+k−d

q+n̄ . (8.58)

for p = 3/2,∞, all N ≤ Nfin/5, and 0 ≤ k ≤ d.
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(iv) We have that

supp (Hρ ◦	) ∩ B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
= ∅ (8.59)

for all q + 1 ≤ q ′ ≤ q + n̄ − 1.

Proof of Lemma 8.6 We start by considering either a Reynolds or current corrector
defined in subsection 6.1 and expanding

Dt,qwq+1, = Dt,q

( ∑
i, j ,k,ξ,"l,I

curl
(
a(ξ), (ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)∇	T

(i,k)U
I
(ξ), ◦	(i,k)

))

=
∑

i, j,k,ξ,"l,I
Dt,q

(
a(ξ), ∇	−1

(i,k)

)
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)W

I
(ξ), ◦	(i,k)

+
∑

i, j,k,ξ,"l,I
Dt,q∇

(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)a(ξ), 

)
×
(
∇	(i,k)U

I
(ξ), ◦	(i,k)

)

+
∑

i, j,k,ξ,"l,I
∇
(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)a(ξ), 

)
×
(
Dt,q∇	(i,k)U

I
(ξ), ◦	(i,k)

)
(8.60)

and

wq+1, · ∇ûq =
∑

i, j,k,ξ,"l,I
curl

(
a(ξ), (ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)∇	T

(i,k)U
I
(ξ), ◦	(i,k)

)
· ∇ûq

=
∑

i, j,k,ξ,"l,I

(
a(ξ), ∇	−1

(i,k)(ρ
 
(ξ)ζ

I , 
ξ ) ◦	(i,k)W

I
(ξ), ◦	(i,k)

)
· ∇ûq

+
∑

i, j,k,ξ,"l,I

(
∇
(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)a(ξ), 

)

×
(
∇	(i,k)U

I
(ξ), ◦	(i,k)

))
· ∇ûq . (8.61)

We shall only consider the worst terms, which are the ones containing W
I
(ξ), . Since

Dt,qwq+1, and wq+1, · ∇ûq are mean-zero (see the argument below the display in
(8.1)), we can apply H and R∗ from Proposition A.13 to each term in (8.60) while
ignoring the last term in (A.56).

We now fix values of i , j , k, ξ , "l, I , and  so that we are simply considering

Ti, j,k,ξ,"l,I , := Dt,q

(
a(ξ), ∇	−1

(i,k)

)
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)W

I
(ξ), ◦	(i,k) (8.62)

+ ∇ûq ·
(
a(ξ), ∇	−1

(i,k)

)
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)W

I
(ξ), ◦	(i,k) .

We apply Proposition A.13 along with Remark A.19 with the following choices. Let
p ∈ {3/2,∞}. We set v = ûq , and Dt = Dt,q = ∂t + ûq · ∇. In order to verify the
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low-frequency assumptions from Part 1 of Proposition A.13 and Remark A.19, we set

Gi, j,k,ξ,"l,I ,R = rq
[
Dt,q

(
a(ξ),R∇	−1

(i,k)

)
(ρR

(ξ)ζ
I ,R
ξ ) ◦	(i,k)ξ

+∇ûq ·
(
a(ξ),R∇	−1

(i,k)

)
(ρR

(ξ)ζ
I ,R
ξ ) ◦	(i,k)ξ

]
,

Gi, j,k,ξ,"l,I ,ϕ = r
4/3
q

[
Dt,q

(
a(ξ),ϕ∇	−1

(i,k)

)
(ρ

ϕ

(ξ)ζ
I ,ϕ
ξ ) ◦	(i,k)ξ

+∇ûq ·
(
a(ξ),ϕ∇	−1

(i,k)

)
(ρ

ϕ

(ξ)ζ
I ,ϕ
ξ ) ◦	(i,k)ξ

]
,

N∗ = Nfin/4 , M∗ = Nfin/5

CG,3/2 = rq
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ )

∣∣∣2/3 δ1/2q+n̄�
i+ j+20
q τ−1

q + rqλ
−10
q+n̄ ,

CG,∞ = �q�
2+C∞
q , λ = λq+(n̄/2) , ν = τ−1

q �i+13
q ,

Mt = Nind,t , ν′ = T−1
q �8

q ,

v = ûq , 	 = 	(i,k) , Dt = Dt,q , λ′ = �q , π = π��q . (8.63)

Then we have that (A.39) is satisfied by definition, and (A.41)–(A.42b) are satisfied as
in the proof of Lemma 8.1. In order to check (A.40), we appeal to Lemma 6.5, estimate
(5.13b) for (∇	(i,k))

−1, estimate (5.42) from Lemma 5.15 to estimate ζ
I , 
ξ ◦ 	(i,k),

Proposition 4.9, and (2.30). Specifically, we have that for all N ,M ≤ 9Nind,

∥∥∥∥DN DM
t,qGi, j,k,ξ,"l,I , 

∥∥∥∥
3/2

� CG,3/2λNq+(n̄/2)M
(
M,Nind,t − 1, τ−1

q �i+13
q ,T−1

q �8
q

)

� CG,3/2λNq+(n̄/2)M
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
, (8.64)∣∣∣∣DN DM

t,qGi, j,k,ξ,"l,I , 
∣∣∣∣ � rq�

50
q π

1/2
�

τ−1
q �i

qλ
N
q+(n̄/2)M

(
M,Nind,t − 1, τ−1

q �i+13
q ,T−1

q �8
q

)

� rqr
−1
q−n̄�

100
q π��qλ

N
q+(n̄/2)M

(
M,Nind,t − 1, τ−1

q �i+13
q ,T−1

q �8
q

)
� π��qλ

N
q+(n̄/2)M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
, (8.65)

where we have used (11.15) to upgrade the sharp derivatives to Nind,t in both inequal-
ities, (2.21), (11.7b), and (3.6) to convert τ−1

q �i
q into π

1/2
� �50

q �qr
−1
q−n̄ in the pointwise

bounds, and (11.7h) to absorb the�100
q . In order to obtain an L∞ bound, we can appeal

to (8.65) and (3.17b). Thus we have that (A.40) and (A.59) are satisfied in all cases.
In order to verify the high-frequency assumptions from Part 2 of Proposition A.13,

we set

rq�R = � I
(ξ),R , rqϑR as defined in item (1) from Proposition 4.5

r
4/3
q �ϕ = � I

(ξ),ϕ , r
4/3
q ϑϕ defined similarly but adjusted to fit Proposition 4.6

Ndec as in (xiv) , d as in (xvi) , C∗,3/2 = r−2/3
q , C∗,∞ = r−2

q ,

μ = λq+n̄rq = λq+n̄/2�q , ϒ = ϒ ′ = � = λq+n̄ . (8.66)
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Thenwe have that (i) is satisfied from (4.9), (ii) is satisfied by the construction ofwq+1
in subsection 6.1, and (A.43) is satisfied from Proposition 4.5 or the corresponding
estimates in Proposition 4.6. Finally, we have that (A.44) follows by definition and
from (11.21a), while (A.45) is satisfied from (11.18).

We therefore may appeal to the local conclusions (i)–(vi) and (A.56)–(A.57), from
which we have the following. First, we note that from (iii), we have that (8.55) is
satisfied. Next, we have from (A.46), (A.50), and (A.60) that for N ≤ Nfin

4 − d and

M ≤ Nfin
5 ,

∥∥∥DN DM
t,q

(
H
(
Ti, j,k,ξ,"l,I , 

))∥∥∥
3/2

�
(∣∣∣supp (ηi, j ,k,ξ,"l,I , ζ

I , 
ξ )

∣∣∣2/3 δ1/2q+n̄r
1/3
q �

i+ j+25
q τ−1

q + λ−10
q+n̄

)

× λ−1+N
q+n̄ M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
, (8.67)∣∣∣DN DM

t,q

(
H
(
Ti, j ,k,ξ,"l,I , 

))∣∣∣ � π��qr
−2
q λ−1+N

q+n̄ M
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
. (8.68)

Notice that from (ii), the support of divHTi, j,k,ξ,"l,I ,R is contained in the support of

Ti, j,k,ξ,"l,I ,R , which itself is contained in the support of ηi, j,k,ξ,"l,Rζ
I ,R
ξ . From this

observation, we have that (8.57) is satisfied. Furthermore, we have that (8.58) is satis-
fied from (A.49a) and the estimates from Proposition 4.5 and 4.6. Next, we have that
(8.56) is satisfied from (A.60). Finally, we have that (8.59) holds due to item (ii) and
item (7) from Proposition 4.5. We note also that (8.53a) follows from (8.57), (8.59),
and (6.24).

In order to aggregate L3/2 estimates, we appeal to Corollary 5.18 with θ1 = θ2 = 1,

H = H
(
Ti, j,k,ξ,"l,I , 

)
, (2.11) at level q, and (11.7i) to write that

∥∥∥∥∥∥ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q

(
H
(
Ti ′, j,k,ξ,"l,I , 

))∥∥∥∥∥∥
3/2

� �50+Cb
q δ

1/2
q+n̄r

1/3
q λ−1+N

q+n̄ τ−1
q M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
� �−25

q+n̄δq+2n̄λ
N
q+n̄M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
. (8.69)

In order to aggregate pointwise estimates, we appeal to Corollary 5.20 with the same
choice of H and ϕ = π��qr−2

q 1supp (ηi, j,k,ξ,"l,Rζ
I ,R
ξ )

. Then from (5.55b), (5.47), (3.3b),

and (11.10a), we have that

∣∣∣∣∣∣ψi,q

∑
i ′, j,k,ξ,"l,I , 

DN DM
t,q

(
H
(
Ti ′, j,k,ξ,"l,I , 

))∣∣∣∣∣∣
� π��qr

−2
q λ−1+N

q+n̄ M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
≤ �

C∞−200
q+n̄ λNq+n̄M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
.
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To conclude the proof for the leading order term from Dt,qwq+1, we must still
estimate the nonlocal R∗ portion of the inverse divergence. In order to check the
nonlocal assummptions, we again set

M◦ = N◦ = 2Nind , K◦ as in (xv) .

Then from (11.20b) and Remark A.14, we have that (A.52)–(A.55) are satisfied. We
note that Dt,qwq+1 + wq+1 · ∇ûq has zero mean, and so we may ignore the means
of individual terms that get plugged into the inverse divergence since their sum will
vanish. Then from (A.56), (A.57), and Remark A.14, we have that for N ,M ≤ 2Nind,∥∥∥∥∥∥DN DM

t,q

∑
i, j,k,ξ,"l

R∗Ti, j,k,ξ,"l, 

∥∥∥∥∥∥
∞
≤ δ2q+3n̄T

2Nind,t
q+n̄ λNq+n̄τ

−M
q ,

matching the desired estimate in (8.54). ��
At this point, we can construct the pressure increment and associated current error

coming from the Nash and transport errors. Since the proofs of both lemmas are com-
pletely analogous to the proofs of the corresponding lemmas for the highest frequency
shell from (8.18e) of the oscillation error, we omit the majority of the details and
merely note the minor differences required in a combined proof.

* Lemma 8.8 (Pressure increment). There exists a function σST N = σ+ST N
− σ−ST N

such that the following hold.

(i) We have that

∣∣∣ψi,q D
N DM

t,q ST N

∣∣∣ < (σ+ST N
+ δq+3n̄

) (
λq+n̄�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.70a)∣∣∣ψi,q D

N DM
t,qσ

+
ST N

∣∣∣ < (σ+ST N
+ δq+3n̄

) (
λq+n̄�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.70b)∥∥∥ψi,q D

N DM
t,qσ

+
ST N

∥∥∥
3/2

≤ �−9
q+n̄δq+2n̄

(
λq+n̄�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.70c)∥∥∥ψi,q D

N DM
t,qσ

+
ST N

∥∥∥∞ ≤ �
C∞−9
q+n̄

(
λq+n̄�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.70d)∣∣∣ψi,q D

N DM
t,qσ

−
ST N

∣∣∣ ≤ �−100
q+n̄/2π

q+n̄/2
q

(
λq+n̄/2�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.70e)

for all N ,M < Nfin/100.
(ii) For all q + 1 ≤ q ′ ≤ q + n̄/2 and q + 1 ≤ q ′′ ≤ q + n̄ − 1, we have that

B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
∩ suppσ−ST N

= B
(
supp ŵq ′′ , λ

−1
q ′′ �q ′′+1

)
∩ suppσ+ST N

= ∅ .
(8.71)
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(iii) Define

mσST N
(t) =

ˆ t

0

〈
Dt,qσST N

〉
(s) ds . (8.72)

Then we have that for 0 ≤ M ≤ 2Nind,∣∣∣∣ dM+1

dtM+1mσST N

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (8.73)

* Lemma 8.9 (Pressure current). There exists a current error φST N associated to the
pressure incrementσST N defined byLemma8.8which satisfies the following properties.

(i) We have the decomposition and equalities

φST N = φ∗ST N
+

q+n̄∑
m′=q+n̄/2+1

φm′
ST N

, φm′
ST N

= φ
m′,l
ST N

+ φ
m′,∗
ST N

(8.74a)

divφST N = Dt,qσST N − 〈Dt,qσST N 〉 . (8.74b)

(ii) For all N ,M ≤ 2Nind,∣∣∣ψi,q D
N DM

t,qφ
k′,l
ST N

∣∣∣ < �−100
k′ r−1

k′
(
πk′
q

)3/2 (
λk′�

2
m′
)N

M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
, (8.75)∥∥∥DN DM

t,qφ
k′,∗
ST N

∥∥∥
L∞

< T
2Nind,t
q+n̄ δ

3/2
q+3n̄(λq+n̄�

2
q)

N τ−M
q . (8.76)

(iii) For all m′, q ′ with q + 1 ≤ q ′ ≤ m′ − 1 and q + n̄/2+ 1 ≤ m′ ≤ q + n̄, we have
that

B
(
supp ŵq ′, 1/2λ

−1
q ′ �q ′+1

)
∩ suppφk′,l

ST N
= ∅ . (8.77)

Proofs of Lemmas 8.8 and 8.9 As in Lemmas 8.4 and 8.5 in the case m = q + n̄, the
proofs of Lemmas 8.8 and 8.9 use Proposition 7.4 to estimate a single error term
indexed by i, j, k, ξ, "l, I , , and then aggregate estimates according to Corollar-
ies 5.18–5.21. We now identify the minor differences between the applications of
these various tools to the transport/Nash error and the oscillation error.

We first check the preliminary assumptions from Part 1 of Proposition 7.4. Let us
first compare the low-frequency parameter choices for the transport error in (8.63)
to the low-frequency parameter choices for the error terms in (8.18e), which was
analyzed in Case 3b from Lemma 8.1. First, we have that the vector field G in
(8.63) is different than the vector field in (8.24), but it retains the exact same support
properties due to the presence of ρ ξ ζ  ξ in both. Next, we claim that CG,p is effectively
smaller in (8.63) than in (8.24). In the case p = ∞, this is immediate, so we focus on
the case 3/2. We use (11.7b), (11.7h), and (11.7g) to write that

τ−1
q rq ≤ �50

q λqδ
1/2
q r−1/3

q−n̄ rq ≤ δ
1/2
q+n̄�q�

−50
q .
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The difference between�i+ j
q in (8.63) and�2 j

q in (8.24) onlymatters in the application
of Corollaries 5.18–5.21. Indeed, trading a j for an i simply necessitates a difference
choice of θ1 and θ2, and the only difference in the output is the factor of �θ1Cb

q which
must be absorbed in the latter case. The reader is invited to check inequalities (11.23),
(11.24b), (11.10a), (11.24d), and (11.24e), each of which has a �5Cb

q on the left-hand
side that can therefore absorb this extra insignificant factor. Next, we have that the
choices of Mt ,M∗, N∗, λ, ν, ν′ are the same, and the choice of # = π��

50
q �q from

the beginning of Lemma 8.4 is larger than the choice of# from (8.63) for the transport
error. Finally, the vector field v and associated material derivative Dt from item (ii)
are identical in both cases.

Next, we compare the high-frequency parameter choices from item (iii) in the case
of the oscillation error in (8.25) to the choices for the transport error in (8.66). The
potential ϑ in (8.66) is supported in a λ−1

q+n̄ neighborhood of � I
(ξ), , while for the

oscillation error, the support is larger due to the presence of the synthetic Littlewood-
Paley projector P̃(λq+n̄−1,q+n̄] applied to (� I

(ξ), )2. Thus the potential for transport error
has more advantageous support properties than that of the oscillation error. Next, the
choices ofμ and� are identical, while the choices ofϒ andϒ ′ aremore advantageous
for the transport error than they are for the oscillation error in the case m = q + n̄.
Indeed, this is because the inverse divergence gain in the transport error is a full λq+n̄

from (4.9), while the highest shell of the oscillation error only gains λq+n̄−1 due to
the presence of the synthetic Littlewood-Paley projector. Next, the choices of C∗,p are
identical due to our choice of rescaling in the transport error, and the choices of Ndec
and d are identical as well. Therefore, all assumptions from item (iii) are stronger
for the transport error than the oscillation error. Finally, we note that the nonlocal
assumptions in item (v) are not changed in any significant way, and so we may treat
the nonlocal transport error terms in the same way as the nonlocal oscillation error
terms.

Moving to the additional assumptions from Part 2 of Proposition 7.4, we have
that all inequalities in (7.75), (7.76a), (7.76c), (7.76d) are identical. The inequality in
(7.76b) follows in the same was as in the oscillation error; indeed, all nonlocal error
bounds can be treated in the same way via a large choice of d or N∗∗. The inequalities
in item (iii) are the same for the transport error as for the highest shell of the oscillation
error, since these inequalities relate to the synthetic Littlewood-Paley projection of a
function which oscillates at frequency ≈ � = λq+n̄ .

Now that we have highlighted the unimportant differences in the set-up, we merely
note that the sharp material derivative cost in Lemmas 8.6–8.9 is worse by a factor of
�q than the corresponding estimates in Lemmas 8.1–8.5. This is due to the fact that the
transport error loses a material derivative. This concludes the proofs of Lemmas 8.8
and 8.9. ��
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8.4 Divergence Corrector Error SC

We will write the divergence corrector error as

SC = SC1 + SC2 , for divSC1 = div
(
w
(p)
q+1 ⊗s w

(c)
q+1

)
, SC2 = w

(c)
q+1 ⊗ w

(c)
q+1 ,

(8.78)
and estimate them in the following lemma.

Lemma 8.10 (Basic estimates and applying inverse divergence). There exist sym-
metric stresses SmC for m ∈ {q + (n̄/2) + 1, . . . , q + n̄} such that the following hold.

(i) div
(
w
(p)
q+1 ⊗s w

(c)
q+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
= ∑q+n̄

m=q+(n̄/2)+1 divS
m
C , where SmC can

be split into local and non-local errors as SmC = Sm,lC + Sm,∗C .

(ii) For the same range of m and for all N ,M ≤ Nfin/10, the local parts Sm,lC satisfy

∥∥∥ψi,q D
N DM

t,q S
m,l
C

∥∥∥
3/2

� �−9
m δm+n̄λ

N
mM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
(8.79a)∥∥∥ψi,q D

N DM
t,q S

m,l
C

∥∥∥∞ � �−9
m λNmM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
. (8.79b)

(iii) For q + n̄/2+ 1 ≤ m ≤ q + n̄ and q + 1 ≤ q ′ ≤ m − 1, the local parts satisfy

supp Sm,lC ∩ B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
= ∅ . (8.80)

(iv) For the same range of m and N ,M ≤ 2Nind, the nonlocal parts S
m,∗
C satisfy

∥∥∥DN DM
t,q S

m,∗
C

∥∥∥∞ ≤ T
4Nind,t
q+n̄ δq+3n̄λ

N
m τ

−M
q . (8.81)

* Remark 8.11 (Abstract formulation of the divergence corrector errors). For the
purposes of analyzing the transport and Nash current errors in subsection 8.8 and
streamlining the creation of pressure increments, it is useful again to abstract the
properties of these error terms.Aswe shall see in the course of the proof inLemma8.10,
however, these error terms may be decomposed and analyzed in exactly the same way
as the oscillation errors. This is not surprising, since both error terms are quadratic in
wq+1, and morally speaking, one expects the estimates for terms involving divergence
correctors to be slightly better. Therefore we refer the reader to Remark 8.2 rather than
reproduce it in entirety here.

Proof of Lemma 8.10 The analysis in the proof generally follows that of the diver-
gence corrector errors in [32], and we shall occasionally refer to algebraic identities
from those arguments. The main difference is that we have to incorporate the
synthetic Littlewood-Paley projector in certain terms before applying the inverse diver-
gence operator in order to upgrade the material derivatives later. However, synthetic
Littlewood-Paley projectors have already been applied to terms which are quadratic
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in high frequency objects in Lemma 8.1, and so we may pirate a significant portion of
the analysis from there as well.

Step 1. We first consider div
(
w
(p)
q+1 ⊗s w

(c)
q+1

)
. We write that

div
(
w
(p)
q+1 ⊗s w

(c)
q+1

)• = ∑
 ,i, j ,k,ξ,"l,I

∂m

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ �I(ξ), 

)
◦	(i,k)ξ

�
(
Am� ε•pr + A•�εmpr

)

× ∂p

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)
∂r	

s
(i,k)(U

I
(ξ), )s ◦	(i,k)

)
,

(8.82)

where we have used Lemma 6.2, the definition of W
I
(ξ), in (4.9) (and the correspond-

ing version for L3 normalized pipes), εi1i2i3 is the Levi-Civita alternating tensor, we
implicitly contract the repeated indices �,m, p, r , s, and the • refers to the indices of
the vectors on either side of the above display. Using that {ξ, ξ ′, ξ ′′} is an orthonormal
basis associated with the direction vector ξ with ξ × ξ ′ = ξ ′′ and decomposing as
in [32, (7.50)], we have that

∂p

(
a(ξ), 

(
ρ 
(ξ)

ζ
I , 
ξ

)
◦	(i,k)

)
= ∂p	

n
(i,k)ξ

nξ�A j
�
∂ j

(
a(ξ), 

(
ρ 
(ξ)

ζ
I , 
ξ

)
◦	(i,k)

)
︸ ︷︷ ︸

=:a p,good
(ξ), 

(8.83)

+ ∂p	
n
(i,k)(ξ

′)n (ξ ′)�A j
�
∂ j

(
a(ξ), 

(
ρ 
(ξ)

ζ
I , 
ξ

)
◦	(i,k)

)
+ ∂p	

n
(i,k)(ξ

′′)n (ξ ′′)�A j
�
∂ j

(
a(ξ), 

(
ρ 
(ξ)

ζ
I , 
ξ

)
◦	(i,k)

)
︸ ︷︷ ︸

=:a p,bad
(ξ), 

,

where we have also set A = A(i,k) = (∇	(i,k))
−1. Indeed, the good differential

operator appearing in a p,good
(ξ), only costs�q�

13
q (see Lemma 6.5), so that we will leave

a p,good
(ξ), inside the divergence and dump the symmetric stress inside of the divergence

into Sq+n̄
C . On the other hand, a p,bad

(ξ), contains an expensive derivative at λq+(n̄/2), but
ξ�Am

� ∂m only costs �q�
13
q , which will be crucially used below.

Splitting the terms involved with a p,bad
(ξ), from (8.82) as in [32, (7.52)], we further

analyze

∑
 ,i, j,k,ξ,"l,I

∂m

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ �

I , 
(ξ)

)
◦	(i,k)ξ

�
(
Am� ε•pr + A•�εmpr

)
a p,bad
(ξ), ∂r	

s
(i,k)(U

I
(ξ), )s

◦	(i,k)
) = V•

1 + V•
2 (8.84)

where V1 contains Am
� ε•pr , and V2 contains A•�εmpr . To analyze V1, we use that ∂m

and ξ�Am
� commute, so that

ξ�Am
� ∂m

(
(� I

(ξ), (U
I
(ξ), )

s) ◦	(i,k)

)
= 0 .
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Furthermore, the differential operator ξ�Am
� ∂m landing anywhere else costs only

�q�
13
q from (6.26). Then we have in total that

V•
1 =

∑
 ,i, j,k,ξ,"l,I

∂m

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)ξ

�Am� ε•pr a
p,bad
(ξ), ∂r	

s
(i,k)

) (
�I(ξ), (UI

(ξ), )s
)

◦	(i,k) (8.85)

=:
∑

 ,i, j,k,ξ,"l,I
(C1,I

(ξ), )
•s (�I(ξ), (UI

(ξ), )s
)
◦	(i,k)

is a product of a high-frequency, mean-zero potential which has gained one factor of
λq+n̄ , and a low-frequency object which has lost one costly derivative at frequency
λq+(n̄/2), and one cheap derivative at frequency�q�

13
q . To analyzeV2, we follow [32,

7.56] to get

V•
2 =

∑
 ,i, j,k,ξ,"l,I

∂m

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ �

I , 
(ξ)

)
◦	(i,k)ξ

�A•�εmpr a
p,bad
(ξ), ∂r	

s
(i,k)(U

I , 
(ξ)

)s ◦	(i,k)

)

=
∑

 ,i, j,k,ξ,"l,I

(
∂m
(
ξ�A•�εmpr ∂r	

s
(i,k)

)
a(ξ), (ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)a

p,bad
(ξ), 

+ a
m,good
(ξ), ξ�A•�εmpr a

p,bad
(ξ), ∂r	

s
(i,k)

− a(ξ), (ρ (ξ)ζ
I , 
ξ ) ◦	(i,k)ξ

�A•�εmpr ∂m (a
p,good
(ξ), )∂r	

s
(i,k)

) (
�
I , 
(ξ)

(U
I , 
(ξ)

)s
)
◦	(i,k)

+
∑

 ,i, j,k,ξ,"l,I
a(ξ), ξ�A•�εmpr a

p,bad
(ξ), ∂r	

s
(i,k)∂m

(
�
I , 
(ξ)

(U
I , 
(ξ)

)s
)
◦	(i,k) . (8.86)

=:
∑

 ,i, j,k,ξ,"l,I
(C2,I

(ξ), )
•s (�I(ξ), (UI

(ξ), )s
)
◦	(i,k)

In the second equality above we have used the identities εmpr∂m(a
p,bad
(ξ), ) =

−εmpr∂m(a
p,good
(ξ), ), which follows from (8.83), and εmpra

m,bad
(ξ), a p,bad

(ξ), = 0. Further-
more, we recall from [32, pgs. 42-43] that the last term on the right-hand side of the
second equality vanishes. As before, the slow function C2,I

(ξ), contains two spatial
derivatives, one cheap and one expensive.

Step 2.We now define the stress error SmC from the divergence corrector. From (5) of
Proposition 4.5 and (5) of Proposition 4.6, we know that � I

(ξ), (U
I
(ξ), )s has zeromean.

As in the oscillation stress error, we decompose � I
(ξ), (U

I
(ξ), )s , applying the synthetic

Littlewood-Paley decomposition suggested in (4.31), and set for q + n̄/2+ 1 < m <

q + n̄,

Sq+n̄/2+1
C := (H+R∗)⎡

⎣ ∑
 ,i, j,k,ξ,"l,I

(C1,I
(ξ), + C2,I

(ξ), )
•s

P̃q+n̄/2+1

(
� I
(ξ), (U

I
(ξ), )

s
)
◦	(i,k)

⎤
⎦

(8.87a)
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SmC := (H+R∗)

⎡
⎣ ∑
 ,i, j,k,ξ,"l,I

(C1,I
(ξ), + C2,I

(ξ), )
•s

P̃(m−1,m]
(
� I
(ξ), (U

I
(ξ), )

s
)
◦	(i,k)

⎤
⎦

(8.87b)

Sq+n̄
C := w

(c)
q+1 ⊗ w

(c)
q+1 (8.87c)

+
∑

 ,i, j,k,ξ,"l,I
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ � I

(ξ), 
)
◦	(i,k)ξ

�
(
Am
� ε•pr + A•�εmpr

)
a p,good
(ξ), 

∂r	
s
(i,k)(U

I
(ξ), )

s ◦	(i,k) (8.87d)

+
q+n̄+1∑
m=q+n̄

(H+R∗)

⎡
⎣ ∑
 ,i, j,k,ξ,"l,I

(C1,I
(ξ), + C2,I

(ξ), )
•s (̃P(m−1,m] + Id− P̃q+n̄+1)

(
� I
(ξ), (U

I
(ξ), )

s
)
◦	(i,k)

⎤
⎦ . (8.87e)

Here, the terms involvedwith the operatorsR∗ or Id−P̃q+n̄+1 will go into the nonlocal
part and all the remaining terms will be included in the local parts.

The conclusions of Lemma 8.10 for the terms (8.87a), (8.87b), and the terms involv-
ing P̃(m−1,m] in (8.87e) follow similarly to Case 3 from the proof of Lemma 8.1.
Indeed, we fix indices i, j, k, ξ, "l, I , s,  = R, and apply Proposition A.13 to

G•
R = λ−1

q+n̄(C
1,I
(ξ),R + C2,I

(ξ),R)
•s,

�R =
⎧⎨
⎩
λq+n̄P̃q+n̄/2+1

(
� I
(ξ),R(U

I
(ξ),R)

s
)

for (8.87a)

λq+n̄P̃(m−1,m]
(
� I
(ξ),R(U

I
(ξ),R)

s
)

for (8.87b), (8.87e),

with the same choice of the rest of parameters as in Case 3. In the case of  = ϕ, as in
Case 3,Gϕ and�ϕ will have extra r

2/3
q and r−2/3

q , respectively,with the replacement of

R with ϕ inC1,I
(ξ),R ,C

1,I
(ξ),R , and �

I
(ξ),R(U

I
(ξ),R)

s . The assumptions in (A.40) and (A.43)
of Proposition A.13 can be verified using Lemma 6.5, Lemma 4.17, Lemma 4.18,
item (6) from Proposition 4.5 and item (6) from Proposition 4.6.21 The rest of the
assumptions follow exactly as in Case 3 from the proof of Lemma 8.1. We note
now that the support of the low-frequency function G is the same as in the oscillation
error due to the presence of ρ (ξ)ζ

 
ξ and their derivatives. In addition, the support of

the high-frequency potentials is the same as in the oscillation error since U
I
(ξ), and

21 Note that we have traded λq+n̄ between G•
R and ρR so that the parameter choices are the same as the

oscillation error. We also note that thanks to the extra gain λq+n̄/2/λq+n̄ in the estimate of GR and Gϕ

compared with Case 3, all the error terms are actually small enough in amplitude to absorbed into the
highest shell. The only reason to use the synthetic Littlewood-Paley decomposition here is to ensure that
we can upgrade material derivatives via dodging later.
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� I
(ξ), are both supported in a 2λ−1

q+n̄ neighborhood of the pipe potential from (4.9)
and item (7). Finally, to deal with the remaining term in (8.87e), we may use the same
type of arguments as in Case 4 in the proof of Lemma 8.1. For the sake of both the
readers and authors, we omit these details.

Lastly, we consider (8.87c) and (8.87d), which are absorbed into Sq+n̄,l
C . From

Lemma 6.2, we have that

w
(c)
q+1 ⊗ w

(c)
q+1 =

∑
 ,i, j ,k,ξ,"l,I

(
∇
(
a(ξ), (ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)

)
×
(
∇	T

(i,k)U
I
(ξ), ◦	(i,k)

))

⊗
(
∇
(
a(ξ), (ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)

)
×
(
∇	T

(i,k)U
I
(ξ), ◦	(i,k)

))
.

(8.88)

It follows immediately from estimate (6.34) with r = 3,∞, (2.11) at level q, and
Lemma 5.17 with r1 = ∞, r2 = 1 that for N ,M ≤ Nfin/10,

∥∥∥ψi,q D
N DM

t,q

(
w
(c)
q+1 ⊗ w

(c)
q+1

)∥∥∥∞ � �
C∞+9
q λNq+n̄M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
∥∥∥ψi,q D

N DM
t,q

(
w
(c)
q+1 ⊗ w

(c)
q+1

)∥∥∥3/2
3/2

� r2q
∑

 ,i, j ,k,ξ,"l,I

∣∣∣supp (ηi, j,k,ξ,"l, ζ
I , 
ξ

)∣∣∣ δ3/2q+n̄�
3 j+21
q λ

3N/2
q+n̄

× (M
(
M,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
)
3/2

� r2q δ
3/2
q+n̄�

30
q λ

3N/2
q+n̄ (M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
)
3/2 .

The estimate for the L∞ norm matches (8.79b) for m = q + n̄ after using (11.10a).
For the L3/2 estimate, taking cube roots and using the parameter inequality (11.7g)
matches (8.79a) for m = q + n̄. Finally, we have that the support of this error term
is contained in wq+1; then (8.80) is immediate from Lemma 6.2. On the other hand,

one can observe that (8.87d) enjoys the exact same properties as w(c)
q+1 ⊗ w

(c)
q+1, and

hence we get the desired conclusion in a similar way. ��

* Lemma 8.12 (Pressure increment). For every q+ n̄/2+1 ≤ m ≤ q + n̄, there exists
a function σSmC = σ+SmC − σ−SmC such that the following hold.

(i) We have that for all N ,M < Nfin/100 and q + n̄/2+ 1 ≤ m ≤ q + n̄ − 1,

∣∣∣ψi,q D
N DM

t,q S
m,l
C

∣∣∣ < (σ+SmC + δq+3n̄

) (
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
,

(8.89a)∣∣∣ψi,q D
N DM

t,q S
q+n̄,l
C

∣∣∣ <
(
σ+
Sq+n̄
C

+ σ+υ + δq+3n̄

) (
λq+n̄�q+n̄

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (8.89b)
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where σ+υ is defined as in (10.18). Furthermore, for any integer q + n̄/2 < m ≤
q + n̄ and for all N ,M < Nfin/100,

∣∣∣∣ψi,q D
N DM

t,qσ
+
SmC

∣∣∣∣ <
(
σ+
SmC

+ δq+3n̄

) (
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.90a)∥∥∥∥ψi,q D

N DM
t,qσ

+
SmC

∥∥∥∥
3/2

≤ �−9
m δm+n̄

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.90b)

∥∥∥∥DN DM
t,qσ

+
SmC

∥∥∥∥∞ ≤ �
C∞−9
m

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.90c)∣∣∣∣ψi,q D

N DM
t,qσ

−
SmC

∣∣∣∣ < �−100
q+n̄/2π

q+n̄/2
q

(
λq+n̄/2�q

)N M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
.

(8.90d)

(ii) For q + n̄/2+ 1 ≤ m ≤ q + n̄, we have that

B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
∩ supp (σ+SmC ) = ∅ ∀q + 1 ≤ q ′ ≤ m − 1

B
(
supp ŵq ′, λ

−1
q ′ �q ′

)
∩ supp (σ−SmC ) = ∅ ∀q + 1 ≤ q ′ ≤ q + n̄/2 .

(8.91)

(iii) Define

mσSmC
(t) =

ˆ t

0

〈
Dt,qσSmC

〉
(s) ds . (8.92)

Then we have that for 0 ≤ M ≤ 2Nind,∣∣∣∣ dM+1

dtM+1mσSmC

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (8.93)

* Lemma 8.13 (Pressure current). For every q + n̄/2 < m ≤ q + n̄, there exists a
current error φSmC

associated to the pressure increment σSmC defined by Lemma 8.12
which satisfies the following properties.

(i) We have the decompositions and equalities

φSmC
= φ∗SmC +

m∑
k=q+n̄/2+1

φk
SmC

, φk
SmC

= φ
k,l
SmC

+ φ
k,∗
SmC

(8.94a)

divφSmC
= Dt,qσSmC

− 〈Dt,qσSmC
〉 . (8.94b)

(ii) For q + n̄/2+ 1 ≤ k ≤ m and N ,M ≤ 2Nind,∣∣∣ψi,q D
N DM

t,qφ
k,l
SmC

∣∣∣ < �−100
k r−1

k

(
πk
q

)3/2 (
λk�q

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.95a)∥∥∥DN DM

t,qφ
k,∗
SmC

∥∥∥
L∞

≤ δ
3/2
q+3n̄T

2Nind,t
q+n̄ λNm τ

−M
q . (8.95b)
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(iii) For all q + n̄/2+ 1 ≤ k ≤ m and all q + 1 ≤ q ′ ≤ k − 1,

B
(
supp ŵq ′, 1/2λ

−1
q ′ �q ′+1

)
∩ supp

(
φ
k,l
SmC

)
= ∅ . (8.96)

Proofs of Lemmas 8.12-8.13 Case 0: pressure for (8.87a), (8.87b), and (8.87e). The
pressure increment and the current error associated to each piece in the local part of
(8.87a), (8.87b), and (8.87e) can be constructed in the same way as in Lemma 8.4-
8.5. Indeed, the proof relies on Proposition 7.4, and (GR, �R), (Gϕ, �ϕ) given in the
proof of Lemma 8.10 have the exact same properties required in the proposition as
the one given in Case 3 of the proof of Lemma 8.1. In particular, the preliminary
assumptions (iv) holds with π̄ given as in (8.28) due to (6.28). Therefore, we get
the same conclusions by repeating the same arguments. In particular, all conclusions
from Lemma 8.12–8.13 are obtained in the cases m < q + n̄. Furthermore, when
m = q + n̄, we denote the pressure increment and the current error associated to
(8.87e) by σ(8.87e) = σ+(8.87e) − σ−(8.87e) and φk

(8.87e) = φ
k,l
(8.87e) + φ

k,∗
(8.87e), respectively.

Since these error terms are defined using the same parameter choices as the oscillation
error, we obtain estimates consistent with (8.90a)–(8.96) for these error terms. We
note also that we obtain a version of (8.89b) which does not require the introduction
of σ+υ on the right-hand side; later error terms will require σ+υ .

Case 1: (8.87c) needs no new pressure increment. From (10.23b), we have that

∣∣∣ψi,q D
N DM

t,q (8.87c)
∣∣∣ � �−2

q (σ+υ + δq+3n̄)
(
λq+n̄�q+n̄

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)

for N ,M ≤ Nfin/100. This estimate is consistent with (8.89b), and since no pressure
increment is created here, we need not check any of the conclusion in (8.90a)–(8.91).
Case 2: pressure for (8.87d). The general idea for this error term is that since it is
given as a product of two slightly altered velocity increments, we can apply Propo-
sition 7.3 (which was used to construct pressure increments for velocity increments
already in subsection 10.1) to construct pressure increments σ±(8.87d) and current errors
φk
(8.87d). So we fix the indices i, j, k, ξ, "l, I , and apply Proposition 7.3 to the func-

tions υ̂b, = υ̂b,i, j,k,ξ,"l,I , defined by υ̂b, = Gb ρb ◦	(i,k), b = 1, 2, where

υ̂1, := r
1/3
q λ

1/3
q λ

−1/3
q+n̄ a(ξ), 

(
ρ (ξ)ζ

I , 
ξ �I(ξ), 

)
◦	(i,k)

υ̂2, := r−1/3
q λ

−1/3
q λ

1/3
q+n̄ξ

�
(
Am� ε•pr + A•�εmpr

)
a
p,good
(ξ), ∂r	

s
(i,k)(U

I
(ξ), )s ◦	(i,k)

G1R := λ
1/3
q λ

−1/3
q+n̄ a(ξ),R

(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k), ρ1R := r

1/3
q �I(ξ),R

G1ϕ := r
1/3
q λ

1/3
q λ

−1/3
q+n̄ a(ξ),ϕ

(
ρ
ϕ
(ξ)

ζ
I ,ϕ
ξ

)
◦	(i,k), ρ1ϕ := �I(ξ),ϕ

G2R := r−2/3
q λ

−1/3
q λ

1/3
q+n̄λ

−1
q+n̄ξ

�
(
Am� ε•pr + A•�εmpr

)
a
p,good
(ξ),R ∂r	

s
(i,k), ρ2R := r

1/3
q λq+n̄(U

I
(ξ),R)

s

G2ϕ := r−1/3
q λ

−1/3
q λ

1/3
q+n̄λ

−1
q+n̄ξ

�
(
Am� ε•pr + A•�εmpr

)
a
p,good
(ξ),ϕ

∂r	
s
(i,k), ρ2ϕ := λq+n̄(U

I
(ξ),ϕ)

s .
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We then set the following choices for the application of Proposition 7.3:

N∗ = M∗ = Nfin/10, Mt = Nind,t, M◦ = N◦ = 2Nind, K◦ as in (xv) ,

	 = 	(i,k), v = ûq , Dt = Dt,q , λ′ = �q , ν′ = T−1
q �8, Cv = �

1/2
q , � = �

1/10
q ,

CG,3 =
∣∣∣supp (ηi, j ,k,ξ,"l, ζ

I , 
ξ

)∣∣∣1/3 (δq+2n̄�
−20
q+n̄)

1/2�
j
q + λ−10

q+2n̄ , CG,∞ = �
C∞
2 −20

q+n̄ r
2/3
q ,

π = π��
30
q r−2/3

q �
2/3
q λ

−2/3
q+n̄ ,

Cρ,3 := 1, Cρ,∞ = r−2/3
q , λ = λq+n̄/2, � = λq+n̄ , ν = τ−1

q �i+13
q , rG = rυ̂ = 1,

μ = λq+n̄rq

δtiny = δq+3n̄ , m̄ = m + 1− (q + n̄/2), μ0 = λq+n̄/2+1, μ1 = λq+n̄/2+3/2,

μk = λq+n̄/2+k ,

Ncut,x,Ncut,t as in (x) , Ndec as in (xiv) , d, N∗∗ as in (xvi) .

First, the verification of the assumptions from part 1 of Proposition 7.3 can be done in
a similar manner as in the proofs of Lemmas 10.4 and 10.6. We omit further details,
but note that in this case, the intermittency parameters are chosen as 1 and G has
extra factor λ

1/3
q λ

−1/3
q+n̄ instead. From the definitions, the support properties of the low

frequency functionsGb and the high frequency functions ρb are essentially the same
as those of the corresponding functions in Lemmas 10.4 and 10.6.

As a consequence of (7.61), we have pressure increments associated to υ̂b, , b =
1, 2, which satisfies

∣∣∣DN DM
t,q υ̂b, 

∣∣∣ � (σ+υ̂b, + δq+3n̄)
1/2(λq+n̄�q)

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)

for any N ,M ≤ Nfin/10. This implies that

∣∣∣DN DM
t,q(υ̂1, υ̂2, )

∣∣∣ � (σ+υ̂1, + σ+υ̂2, + δq+3n̄)(λq+n̄�q)
N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)

for any N ,M ≤ Nfin/10. Then appealing to the same conclusions used in (10.30a)–
(10.30f), we have that

∣∣∣DN DM
t,qσ

+
υ̂b

∣∣∣ � (σ+υ̂b + δq+3n̄)(λq+n̄�q)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
∥∥∥DN DM

t,qσ
+
υ̂b

∥∥∥
3/2

�
[∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣2/3 δq+2n̄�
−20
q+n̄�

2 j
q + δq+3n̄

]

× (λq+n̄�q)
NM

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
∥∥∥DN DM

t,qσ
+
υ̂b

∥∥∥∞ � �
C∞−40
q+n̄ (λq+n̄�q)

NM
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
∣∣∣DN DM

t,qσ
−
υ̂b

∣∣∣ � π��
41
q λ

1/3
q λ

−1/3
q+n̄(λq+n̄/2�q)

NM
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �9

q

)
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for all N ,M ≤ Nfin/100. We reintroduce the indices i, j, k, ξ, "l, I and define the pres-
sure increment associated to (8.87d) by

σ±(8.87d) :=
∑

i, j,k,ξ,"l,I ,b, 
σ±υ̂b,i, j,k,ξ,"l,I , .

The estimates (8.89a) and (8.90a) associated to (8.87d) follow using an aggregation
procedure identical to that used in the proofs of Lemmas 10.4 and 10.6, and so we
omit further details.

Lastly, we define φk,l
(8.87d) and φ

k,∗
(8.87d) as in the proofs of Lemmas 10.4 and 10.6 and

obtain (8.95a), (8.95b), and (8.96) as in the cited Lemmas. Setting

σ±
Sq+n̄
C

:= σ±(8.87e) + σ±(8.87d), φk
Sq+n̄,l
C

:= φk
(8.87e) + φk

(8.87d)

and collecting the properties of these objects obtained above, we conclude (8.90a)–
(8.96) and (8.89b). ��

8.5 Mollification Error SM

Recalling from subsection 8.1 that divSM2 has mean-zero, we use Proposition A.13,
Remark A.15 to first define the mollification error SM = SM1 + SM2 by

SM1 := Rq
q − R� +

(
π� − π

q
q
)
Id =: Sq+1,∗

M (8.97)

SM2 := R∗ [(∂t + ûq · ∇)(ŵq+n̄ − wq+1)+ (ŵq+n̄ − wq+1)⊗ ûq
]

+ ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1 =: Sq+n̄,∗
M .

For the undefined mollification stress errors Sk,lM , Sk,∗M , we set them as zero.

Lemma 8.14 (Basic estimates and applying inverse divergence). The mollification
error Sq+1,∗

M and Sq+n̄,∗
M satisfy

∥∥∥DN DM
t,q S

q+1,∗
M

∥∥∥∞ ≤ �9
q+1δq+3n̄T

2Nind,t
q+1

(
λq+1�q+1

)N
M
(
M,Nind,t, τ

−1
q ,T−1

q

)
. (8.98a)∥∥∥DN DM

t,q+n̄−1S
q+n̄,∗
M

∥∥∥∞ ≤ �9
q+n̄δq+3n̄T

2Nind,t
q+n̄

(
λq+n̄�q+n̄

)N
M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
. (8.98b)

for all N + M ≤ 2Nind.

Proof of Lemma 8.14 From (3.9), we have∥∥∥DN DM
t,q SM

∥∥∥∞ � �q+1T
2Nind,t
q+1 δ2q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q , �−1

q T−1
q

)
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for all N + M ≤ 2Nind, which immediately leads to (8.98a).
To deal with SM2, we recall from (6.39) that

∥∥∥DN DM
t,q+n̄−1

(
wq+1 − ŵq+n̄

)∥∥∥∞ � δ3q+3n̄T
25Nind,t
q+n̄

(
λq+n̄�q+n̄−1

)N
M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
.

for all N + M ≤ Nfin/4. Using Lemma 6.2, we note that Dt,q−n̄−1wq+1 = Dt,qwq+1
and Dt,q−n̄−1ŵq+n̄ = Dt,qŵq+n̄ . Then, writing ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1 =
(ŵq+n̄ − wq+1)⊗ ŵq+n̄ + wq+1 ⊗ (ŵq+n̄ − wq+1) and using (6.38) and (6.42), we
have ∥∥∥ψi,q+n̄−1D

N DM
t,q+n̄−1[ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1]

∥∥∥∞
≤ δq+3n̄T

2Nind,t
q+n̄

(
λq+n̄�q+n̄

)N M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
, (8.99)

for all N + M ≤ 2Nind.
As for the remaining term, we first upgrade the material derivative in the estimate

for ûq . Applying Lemma A.23 to Fl = 0, F∗ = ûq , k = q + n̄, N* = 3Nfin/4 with
(2.31a), we get

∥∥∥DN DM
t,q+n̄−1ûq

∥∥∥∞ � T−1
q λNq+n̄T

−M
q+n̄−1

Here, we used (11.12). Then, we use Remark A.15 with (11.12), setting

G = Dt,q+n̄−1(ŵq+n̄ − wq+1) (or G = (ŵq+n̄ − wq+1)⊗ ûq), v = ûq+n̄−1

CG,∞ = δ3q+n̄T
20Nind,t
q+n̄ , λ = λ′ = λq+n̄�q+n̄−1, Mt = Nind,t, ν = ν′ = T−1

q+n̄,

Cv = �
1/2
q+n̄−1

N∗ = Nfin/9, M∗ = Nfin/10, N◦ = M◦ = 2Nind .

As a result, with a suitable choice of positive integer K◦ to have

δ3q+n̄T
20Nind,t
q+n̄ λ5q+n̄2

2Nind ≤ λ
−K◦
q+n̄ ≤ δq+3n̄T

10Nind,t
q+n̄ ,

we get

∥∥∥DN DM
t,q+n̄−1R∗(Dt,q(ŵq+n̄ − wq+1))

∥∥∥∞
=
∥∥∥DN DM

t,q+n̄−1R∗(Dt,q+n̄−1(ŵq+n̄ − wq+1))

∥∥∥∞ (8.100)

� δq+3n̄T
10Nind,t
q+n̄ (λq+n̄�q+n̄)

NT−M
q+n̄ (8.101)

≤ δq+3n̄T
2Nind,t
q+n̄ (λq+n̄�q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄,T

−1
q+n̄

)
, (8.102)
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for all N + M ≤ 2Nind. This completes the proof of (8.98b). ��

8.6 UpgradingMaterial Derivatives and Hypothesis 2.10

Definition 8.15 (Definition of Rq+1 and Smq+1). Recalling Lemma 8.1, Lemma 8.6,

Lemma 8.10, and Lemma 8.14, we define Smq+1 := Sm,lq+1 + Sm,∗q+1 for all q + 1 ≤ m ≤
q + n̄ by

Sm,lq+1 := Sm,lO + Sm,lT N + Sm,lC + Sm,lM , (8.103a)

Sm,∗q+1 := Sm,∗O + Sm,∗T N + Sm,∗C + Sm,∗M . (8.103b)

Here, any undefined terms are taken to be 0. We then define the primitive stress error
Rq+1 at q + 1 step by

Rq+1 :=
q+n̄∑

m=q+1

R
m
q+1 , R

m
q+1 = Rm

q + Smq+1 . (8.104)

The local part Rm,l
q+1 and the non-local part R

m,∗
q+1 are defined by

Rm,l
q+1 := Rm,l

q + Sm,lq+1 , R
m,∗
q+1 := Rm,∗

q + Sm,∗q+1 . (8.105)

We note that by the above definition, we have that

R
m
q+1 = Rm,l

q+1 + R
m,∗
q+1 . (8.106)

We sometimes also use the notation R
m,l
q+1 to denote R

m,l
q+1, since it will be shown later

that the local portion of R
m,l
q+1 remains unchanged throughout the rest of the analysis.

Lemma 8.16 (Upgradingmaterial derivatives and verifyingHypothesis 2.10). The
new stress errors Smq+1 = Sm,lq+1 + Sm,∗q+1 satisfy the following.

(i) Rm,l
q+1 satisfies Hypothesis 2.10 with q replaced by q + 1.

(ii) For q + 2 ≤ m ≤ q + n̄/2, the symmetric stresses Sm,lq+1 obey the estimates∣∣∣ψi,m−1D
N DM

t,m−1S
m,l
q+1

∣∣∣ � �−50
m πm

q �
N
mM

(
M,Nind,t, �

i−5
m−1τ

−1
m−1,T

−1
q �9

q

)
(8.107)

for N ,M ≤ Nfin/10. For the same range of N ,M, the symmetric stress Sq+1,l
q+1

obeys the estimates∣∣∣ψi,q D
N DM

t,q S
q+1,l
q+1

∣∣∣ � �−50
q+1π

q+1
q �N

q+1M
(
M,Nind,t, �

i+19
q τ−1

q ,T−1
q �9

q

)
.

(8.108)
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(iii) For q + n̄/2+ 1 ≤ m ≤ q + n̄ and N ,M ≤ Nfin/100, the symmetric stresses Sm,lq+1
obey the estimates

∣∣∣ψi,m−1D
N DM

t,m−1S
m,l
q+1

∣∣∣ � (σ+SmO + σ+
Sm,lC

+ 1{m=q+n̄}
(
σ+ST N

+ σ+υ
)
+ δq+3n̄

)

× (λm�m)
NM

(
M,Nind,t, �

i−5
m−1τ

−1
m−1,T

−1
q �9

q

)
.

(8.109a)

(iv) For all q + 1 ≤ m ≤ q + n̄ and N + M ≤ 2Nind, the symmetric stresses S
m,∗
q+1∥∥∥DN DM

t,m−1S
m,∗
q+1

∥∥∥
L∞

≤ �2
q+1T

2Nind,t
q+1 δ2q+3n̄λ

N
mM

(
M,Nind,t, τ

−1
m−1,T

−1
m−1

)
.

(8.110)

Proof of Lemma 8.16 In order to prove the claim in item (i), note that for the portion of
Rm,l
q+1 coming from Rm,l

q (c.f. (8.104)), the claim follows by the inductive hypothesis

itself. For the portion coming from Sm,lq+1, wemay appeal to (8.103) and (8.10), (8.53a),
and (8.80).

Next, we may prove (8.108) directly from (8.27a), since from Lemma 8.6 and
Lemma 8.10, the transport, Nash, and divergence corrector errors do not contribute
to Sq+1,l

q+1 . In order to prove (8.107), we note that from Lemma 8.6 and Lemma 8.10,

the transport, Nash, and divergence corrector errors do not contribute to Sm,lq+1 for
q+2 ≤ m ≤ q+ n̄/2. Then from Lemmas 8.1 and 8.3, we need only consider the case
m = q + n̄/2, for which we have that for N ,M ≤ Nfin/10,

∣∣∣ψi,m−1D
N DM

t,m−1S
m,l
q+1

∣∣∣ =
(2.11)

∣∣∣∣∣∣ψi,m−1
∑
i ′

ψ6
i ′,q D

N DM
t,m−1S

m,l
q+1

∣∣∣∣∣∣
�

(8.10)

∑
i ′:ψi ′,qψi,m−1 �=0

∣∣∣ψi ′,q D
N DM

t,q S
m,l
q+1

∣∣∣
�

(8.27b),(2.17)
�−100
m πm

q λNmM
(
M,Nind,t, τ

−1
m−1�

i−5
m−1,T

−1
q �9

q

)
.

(8.111)

In order to prove (8.109a), we utilize a very similar argument to the one used to
produce (8.111). The only difference is that instead of appealing to (8.27b), we appeal
to (8.29a), (8.70a), (8.89a), and (8.89b). We omit further details.

Lastly, the proof of (8.110) is very similar to (3.9), and so we omit further details.
��

8.7 * Total Pressure Increment and Current from Stress Errors

We collect the pressure increments generated by new stress errors and new velocity
increment potentials. Recall that Lemmas 8.4, 8.8, and 8.12 defined pressure incre-
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ments (σSmO , σST N , and σSmC , respectively) associated to various stress errors. Fixing m
such that q + n̄/2+ 1 ≤ m ≤ q + n̄, we define

σSm := σSmO
+ σSmC

+ 1{m=q+n̄}σST N . (8.112)

Recalling that every pressure increment referenced above has a decomposition σ• =
σ+• − σ−• , we define σ+m,q+1 and σ

−
m,q+1 in the obvious way.

Next, associated to each pressure increment σ• listed above is a function of time
mσ• which satisfies m′

σ• = 〈Dt,qσ•〉 (see Lemmas 8.4, 8.8, 8.12), and so we define

mσSm := mσSmO
+mσSmC

+ 1{m=q+n̄}mσST N
. (8.113)

Furthermore, recall that Lemmas 8.5, 8.9, and 8.13 defined current errors associated
to various stress error pressure increments. Then fixing m,m′ such that q + n̄/2+ 1 ≤
m′ ≤ m ≤ q + n̄, we define

φ
m′,l
Sm := φ

m′,l
SmO

+ φ
m′,l
SmC

+ 1{m=q+n̄}φm′,l
ST N

(8.114a)

φ
m′,∗
Sm := φ

m′,∗
SmO

+ φ
m′,∗
SmC

+ 1{m=q+n̄}φm′,∗
ST N

+ 1{m′=m}
(
φ∗SmO + φ∗SmC + 1{m=q+n̄}φ∗ST N

)
. (8.114b)

Now we set

φSm :=
m∑

m′=q+n̄/2+1

φ
m′,l
Sm + φ

m′,∗
Sm , (8.115)

so that the aforementioned lemmas give the equality

divφSm = Dt,qσSm −m′
Sm = Dt,qσSm − 〈Dt,qσSm 〉 . (8.116)

By appealing to the lemmas mentioned above, we have that the σSm ’s satisfy the
properties listed in the following lemma.

Lemma 8.17 (Collected properties of stress error terms andpressure increments).
For each q + n̄/2+ 1 ≤ m ≤ q + n̄, σSm satisfies the following properties.

(i) For any 0 ≤ k ≤ d, we have that

∣∣∣ψi,q D
N DM

t,q S
m,l
q+1

∣∣∣ � (σ+Sm + δq+3n̄

)
(λm�m)

NM
(
M,Nind,t, �

i+18
q τ−1

q ,T−1
q �9

q

)
(8.117a)

where the bound holds for N + M ≤ 2Nind.
(ii) For N ,M ≤ Nfin/200, we have that

∥∥∥ψi,q D
N DM

t,qσ
+
Sm

∥∥∥
3/2

� �−9
m δm+n̄(λm�m )

NM
(
M,Nind,t, �

i+18
q τ−1

q ,T−1
q �9

q

)
(8.118a)
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∥∥∥ψi,q D
N DM

t,qσ
+
Sm

∥∥∥∞ � �
C∞−9
m (λm�m)

NM
(
M,Nind,t, �

i+18
q τ−1

q ,T−1
q �9

q

)
(8.118b)∣∣∣ψi,q D

N DM
t,qσ

+
Sm

∣∣∣ � (σ+Sm + δq+3n̄

)
(λm�m)

NM
(
M,Nind,t, �

i+18
q τ−1

q ,T−1
q �9

q

)
(8.118c)∣∣∣ψi,q D

N DM
t,qσ

−
Sm

∣∣∣ � �−100
q+n̄/2π

q+n̄/2
q (λq+n̄/2�q+n̄/2)

NM
(
M,Nind,t, �

i+18
q τ−1

q ,T−1
q �9

q

)
.

(8.118d)

(iii) σSm and σ+Sm have the support properties

B(supp ŵq ′ , λ
−1
q ′ �q ′+1) ∩ σSm = ∅ ∀q + 1 ≤ q ′ ≤ q + n̄/2 , (8.119a)

B(supp ŵq ′ , λ
−1
q ′ �q ′+1) ∩ σ+Sm = ∅ ∀q + 1 ≤ q ′ ≤ m − 1 . (8.119b)

(iv) The function of time mσSm defined in (8.113) satisfies

∣∣∣∣ dM+1

dtM+1mσSm

∣∣∣∣ � (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
, (8.120)

for 0 ≤ M ≤ 2Nind.

* Lemma 8.18 (Total pressure current from stress errors). For every m ∈ {q +
n̄/2 + 1, . . . , q + n̄}, the current error φSm defined in (8.115) satisfies the following
properties.

(i) We have the decompositions and equalities

φSm = φ∗Sm +
m∑

m′=q+n̄/2+1

φm′
Sm , φm′

Sm = φ
m′,l
Sm + φ

m′,∗
Sm (8.121a)

divφSm = Dt,qσSm − 〈Dt,qσSm 〉 . (8.121b)

(ii) For q + n̄/2+ 1 ≤ m′ ≤ m and N ,M ≤ 2Nind,

∣∣∣ψi,q D
N DM

t,qφ
m′,l
Sm

∣∣∣ < �−100
m′

(
πm′
q

)3/2
r−1
m′ (λm′�2

m′ )MM
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.122a)∥∥∥DN DM

t,qφ
m′,∗
Sm

∥∥∥∞ +
∥∥∥DN DM

t,qφ
∗
Sm

∥∥∥∞ < T
2Nind,t
q+n̄ δ

3/2
q+3n̄(λm�

2
m )

N τ−M
q . (8.122b)

(iii) For all q + n̄/2+ 1 ≤ m′ ≤ m and all q + 1 ≤ q ′ ≤ m′ − 1,

B
(
supp ŵq ′, 1/2λ

−1
q ′ �q ′+1

)
∩ supp

(
φ
m′,l
Sm

)
= ∅ . (8.123)
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8.8 * Transport/Nash Current Error

Recall the definitions of the stress error terms Rq+1 and Sq+1 from (8.1) and (8.2).
Since div

(
(Rq − πq Id)̂uq

)
appears in the relaxation (2.34) of the local energy inequal-

ity, the new Reynolds stresses Rq+1 and Sq+1 will create current error terms. For this
reason, we must estimate the Nash current error, which is given by

divφN +m′
N := ∇ûq : (wq+1 ⊗ wq+1 + Rq−πq

q Id− Rq+1) . (8.124)

The function of time m′
N is defined by

mN (t) :=
ˆ t

0

〈∇ûq : (wq+1 ⊗ wq+1 + Rq − Rq+1)
〉
(s) ds (8.125)

and ensures that the error can be put in divergence form. In addition, we must estimate
a similar error term called the transport current error, which is given by

divφT +m′
T := (∂t + ûq · ∇)

(
1

2
|wq+1|2 + κ

q
q − 1

2
tr (Sq+1)

)
. (8.126)

As before, we set

mT (t) :=
ˆ t

0

〈
(∂t + ûq · ∇)

(
1

2
|wq+1|2 + κ� − 1

2
tr (Sq+1)

)〉
(s) ds (8.127)

to ensure that the error can be put in divergence form. For a detailed derivation of how
these error terms arise by adding ŵq+n̄ to the relaxed local energy inequality, we refer
to [22, subsection 5.1].

We now carefully decompose these error terms. Recall that from (8.6) and (8.8),
we have

(
w
(p)
q+1 ⊗ w

(p)
q+1

)α,• − π�Id+ R� =
∑

ξ,i, j ,k,"l
Aα,•
(ξ),R(P�=0ρ

6
ξ )(	(i,k)) (8.128a)

+
∑

ξ,i, j ,k,"l
Aα,•
(ξ),ϕ

P�=0ρ
4
ξ (	(i,k))c0c1r

2
3
q (8.128b)

+ c0
∑

ξ,i, j ,k,"l
Aα,•
(ξ),ϕ

r
2
3
q

(
ρ4ξP�=0

∑
I

(ζ I
ξ )

4

)
◦	(i,k) (8.128c)

+
∑

ξ,i, j ,k,"l, 
Aα,•
(ξ), 

(
ρ2 ξ

∑
I

(ζ I
ξ )

2 
P�=0(�

I
ξ, )2

)
(	(i,k))

(8.128d)
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where Aα,•(ξ), := ξθ ξγ
(
a2(ξ), (∇	−1

(i,k))
α
θ (∇	−1

(i,k))
•
γ

)
. To shorten notation, we define

the operator

LT N := (∂t + ûq · ∇)1
2
tr + (∇ûq) : . (8.129)

Using (8.2), we then write

(∂t+ûq · ∇)
(
1

2
|wq+1|2 + κ

q
q − tr (Sq+1)

2

)
+ (∇ûq) :

(
wq+1 ⊗ wq+1 + Rq − π

q
q Id− Rq+1

)
= LT N

(
w
(p)
q+1 ⊗ w

(p)
q+1 + R� − π�Id

)
(8.130)

+ LT N

(
w
(p)
q+1 ⊗s w

(c)
q+1

)
(8.131)

+ LT N

(
Rq
q − π

q
q Id− R� + π�Id− Sq+1 + w

(c)
q+1 ⊗ w

(c)
q+1

)
. (8.132)

From (8.128), we have that (8.130) is actually equal to

(8.130) = LT N
(
(8.128a)+ (8.128b)+ (8.128c)+ (8.128d)

)
. (8.133)

Since Dt,q can never land on the high-frequency object in these terms, wewill estimate
them directly using the inverse divergence. We will estimate (8.131) directly using the
inverse divergence, and the fact that the high-frequency part of a product of principal
and corrector parts has zero mean from Proposition 4.5, item 5 and Proposition 4.6,
item 5. The last term, on the other hand, can be written as

(8.132) = −LT N (SO + ST N + SC1 + SM2) (8.134)

using (8.97) and (8.78). We now split the analysis of these error terms into several
lemmas.

8.8.1 * Transport/Nash Current Error from Principal Part of the Velocity Increment

* Lemma 8.19 (Current error and pressure increment from (8.130)). There exists
a vector field φT NW and a function mT NW of time such that

LT N

(
w
(p)
q+1 ⊗ w

(p)
q+1 + R� − π�Id

)
= LT N

(
(8.128a)+ (8.128b)+ (8.128c)+ (8.128d)

)
= divφT NW +m′

T NW ,

φT NW =
q+n̄∑

m=q+1

φ
m
T NW ,

where φ
m
T NW = φ

m,l
T NW + φ

m,∗
T NW for m ∈ {q + 1, . . . , q + n̄} satisfy the following.
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(i) The errors φ
q+1
T NW and φ

q+(n̄/2)
T NW require no pressure increment. More precisely,

we have that for N ,M ≤ Nfin/100,

∣∣∣ψi,q D
N DM

t,qφ
q+1,l
T NW

∣∣∣ < �−100
q+1

(
π
q+1
q

)3/2
r−1
q+1λ

N
q+1

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
, (8.135a)∣∣∣ψi,q D

N DM
t,qφ

q+(n̄/2),l
T NW

∣∣∣ < �−100
q+n̄/2

(
π
q+n̄/2
q

)3/2
r−1
q+n̄/2λ

N
q+(n̄/2)

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
. (8.135b)

(ii) For q + n̄/2+ 1 ≤ m ≤ n̄, there exists functions σ
φ
m
T NW

= σ+
φ
m
T NW

− σ−
φ
m
T NW

such

that

∣∣∣ψi,q D
N DM

t,qφ
m,l
T NW

∣∣∣ � ((σ+
φ
m
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)
3/2r−1

m + δ2q+3n̄

) (
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)N
M
(
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q �9

q

)
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q ,T−1
q �9

q

)
(8.136c)∥∥∥∥ψi,q D

N DM
t,qσ

+
φ
m
T NW

∥∥∥∥∞ � �
C∞−9
q+1

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.136d)

∣∣∣∣ψi,q D
N DM

t,qσ
−
φ
m
T NW

∣∣∣∣ �
(

λq

λq+(n̄/2)

)2/3

π
q
q
(
λq+(n̄/2)�q

)N
M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.136e)

for all N ,M ≤ Nfin/100. Furthermore, we have that for q + 1 ≤ m′ ≤ m − 1 and
q + 1 ≤ q ′′ ≤ q + n̄/2,

suppσ−
φ
m
T NW

∩ B
(
supp ŵq ′′, λ

−1
q ′′ �q ′′+1

)
= suppσ+

φ
m
T NW

∩ B
(
supp ŵm′ , λ−1

m′ �m′+1

)
= ∅ . (8.137)

(iii) When m = q + 2, . . . , q + n̄ and q + 1 ≤ q ′ ≤ m − 1, the local parts satisfy

B
(
supp ŵq ′, λ

−1
q ′ �q ′+1

)
∩ suppφ

m,l
T NW = ∅ . (8.138)

(iv) For m = q + 1, . . . , q + n̄ and N ,M ≤ 2Nind, the non-local parts φ
m,∗
O satisfy

∥∥∥DN DM
t,qφ

m,∗
T NW

∥∥∥
L∞

≤ T
2Nind,t
q+n̄ δ

3/2
q+3n̄λ

N
m τ

−M
q . (8.139)
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(v) For M ≤ 2Nind, the time function mT NW satisfies

mT NW (t) =
ˆ t

0
〈(8.130)(s)〉 ds,

∣∣∣∣ dM+1

dtM+1mT NW

∣∣∣∣≤ (max(1, T ))−1 δ2q+3n̄τ
−M
q .

(8.140)

Proof The analysis of this error is similar to that of the oscillation stress error dealt with
in subsection 8.2, Lemmas 8.1–8.5. We will invert the divergence on this error term
using Proposition A.13 and apply Proposition 7.5 to construct the pressure increment.
Let us define

φ
q+1
T NW := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j,k,"l

LT N

(
Aα,•
(ξ),R

)
(P �=0ρ

6
ξ )(	(i,k))

⎤
⎥⎦

+ (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j,k,"l

LT N

(
Aα,•
(ξ),ϕ

)
P �=0ρ

4
ξ (	(i,k))c0c1r

2
3
q

⎤
⎥⎦ (8.141a)

φ
q+(n/2)
T NW := (H+R∗)

⎡
⎢⎣ ∑
ξ,i, j,k,"l

LT N

(
Aα,•
(ξ),ϕ

)
c0r

2
3
q

(
ρ4ξP �=0

∑
I

(ζ I
ξ )

4

)
◦	(i,k)

⎤
⎥⎦

(8.141b)

φ
q+(n/2)+1
T NW := (H+R∗)⎡

⎢⎣ ∑
ξ,i, j,k,"l,I , 

LT N

(
Aα,•
(ξ), 

) (
ρ2 ξ (ζ I

ξ )
2 

P̃
ξ
q+n̄+1P �=0(�

I
ξ, )2

)
(	(i,k))

⎤
⎥⎦

(8.141c)

φ
m
T NW := (H+R∗)⎡

⎢⎣ ∑
ξ,i, j,k,"l,I , 

LT N

(
Aα,•
(ξ), 

) (
ρ2 ξ (ζ I

ξ )
2 

P̃
ξ
(m−1,m](�

I
ξ, )2

)
(	(i,k))

⎤
⎥⎦
(8.141d)

φ
q+n̄
T NW :=

q+n̄+1∑
m=q+n̄

(H+R∗)

⎡
⎢⎣ ∑
ξ,i, j,k,"l,I , 

LT N

(
Aα,•
(ξ), 

) (
ρ2 ξ (ζ I

ξ )
2 

P̃
ξ
(m−1,m](�

I
ξ, )2

)
(	(i,k))

⎤
⎥⎦
(8.141e)
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+ (H+R∗)⎡
⎢⎣ ∑
ξ,i, j,k,"l,I , 

LT N

(
Aα,•
(ξ), 

) (
ρ2 ξ (ζ I

ξ )
2 (Id− P̃

ξ
q+n̄+1

)
(�Iξ, )2

)
(	(i,k))

⎤
⎥⎦

(8.141f)

form = q+ n̄/2+2, · · · , q+n̄−1.We decompose φ
m
T NW into the nonlocal partφ

m,∗
T NW

which involves the operatorR∗ or Id−P̃
ξ
q+n̄+1 and the local part φ

m,l
T NW containing the

remaining terms. For the undefinedφ
m
T NW corresponding tom = q+2, · · · , q+n̄/2−1,

we set them as identically zero.
The construction of the pressure increment and the desired estimates will follow

from applying Propositions A.13 and 7.5. While many of the parameter choices will
vary depending on the case, we fix the following choices throughout the proof:

v = ûq , Dt = Dt,q , N∗ = Nfin/4 , M∗ = Nfin/5 , (8.142a)

λ′ = �q , Mt = Nind,t , ν′ = T−1
q �8

q , Ndec as in (xiv) . (8.142b)

Case 1: Estimates for (8.141a). Fix values of i, j, k, ξ, "l and consider
the term which includes LT N A(ξ),R . We apply Proposition A.13 with the low-
frequency choices

G = LT N A(ξ),R , CG,3/2 =
∣∣∣supp (η2

i, j,k,ξ,"l,R)
∣∣∣ τ−1

q �i+13
q δq+n̄�

2 j+8
q ,

CG,∞ = �C∞+14
q τ−1

q �imax+13
q ,

π = �50
q τ−1

q �i
qψi,qπ� , λ = λq+1�

−5
q , ν = τ−1

q �i+14
q , 	 = 	(i,k) ,

and the choices from (8.142). ByCorollary 5.4,	(i,k) satisfies (A.41) and (A.42a), and
by (2.30) at level q and (11.7b), we have that (A.42b) is satisfied. To check (A.40),
we observe that LT N involves a material derivative and a multiplication by ∇ûq .
Therefore, by (2.30), G satisfies (A.40) for p = 3/2 from (6.26c) and for p = ∞ from
the same inequality and (5.29). Also, (A.59) is satisfied by (6.28). To check the high-
frequency assumptions, we set (exactly as in the analogous case for the oscillation
stress error - see Lemmas 8.1–8.5)

� =
(
P�=0ρ

6
ξ

)
, d as in (xvi) , ϑ = δi1i2δi3i4 . . . δid−1id�

−d/2� ,

μ = ϒ = ϒ ′ = λq+1�
−4
q , � = λq+1�

−1
q , C∗,1 = �6

qλ
α
q+1 .

Since the choice of parameters is exactly the same as in the oscillation stress error,
we see that the other high frequency assumptions are satisfied. In order to check the
nonlocal assumptions, we set

M◦ = N◦ = 2Nind , K◦ as in (xv) , Cv = �
1/2
q . (8.144)
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Then from (11.20b) and Remark A.14, we have that (A.52)–(A.55) are satisfied.
We can therefore apply Remark A.19. Note that (A.59) follows from the definition

of LT N A(ξ),R in (8.7) and (6.28a). Then, abbreviating G� ◦ 	 as ti, j,k,ξ,"l,R , from
(A.47), (A.49a), and (A.60), we have that for all N ≤ Nfin

4 − d and M ≤ Nfin
5∣∣∣DN DM

t,qHti, j,k,ξ,"l,R
∣∣∣

� τ−1
q �i

qψi,qπ��
60
q λ−1

q+1λ
N+α
q+1 M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
.

Notice that from (ii), we have

supp (divHti, j,k,ξ,"l,R) ⊆ supp ti, j,k,ξ,"l,R ⊆ suppηi, j,k,ξ,"l,R . (8.145)

As for the terms which include Aα,•(ξ),ϕ from (8.141a), we note that from Lemma 6.5

a2(ξ),ϕ differs in size relative to a2(ξ),R by a factor of r−2/3
q , which is exactly balanced

out by the factor of r
2/3
q in (8.141a). We therefore may argue exactly as above (in fact

the estimates are slightly better since ρ4
ξ < ρ6

ξ ), and we omit further details. In this
case, we use the abbreviation ti, j,k,ξ,"l,ϕ instead of ti, j,k,ξ,"l,R , which will satisfy an
analogous support property to (8.145).

We now set

φ
q+1,l
T NW =

∑
i, j,k,ξ,"l, 

Hti, j,k,ξ,"l, .

Using (8.145) and applying the aggregation Corollary 5.21 with H = Hti, j,k,ξ,"l, and

# = π��
60λ−1+α

q+1 , λ = � = λq+1, τ = τq�
−14
q , T = Tq�

−8
q

to get an estimate from (5.58a),

∣∣∣ψi,q D
N DM

t,qφ
q+1,l
T NW

∣∣∣
� r−1

q λq(π
q
q )

1/2π��
61
q λ−1

q+1λ
N+α
q+1 M

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �8

q

)
.

for N ,M in the same range as above. Then, (8.135a) follows from this term using
(3.6), (2.40b) and (11.21a).

For the non-local term, from (A.57), and Remark A.14, we have that for N ,M ≤
2Nind, ∥∥∥∥∥∥DN DM

t,q

∑
i, j,k,ξ,"l

R∗ti, j,k,ξ,"l,R

∥∥∥∥∥∥
∞
≤ δ

3/2
q+3n̄T

2Nind,t
q λNq+1τ

−M
q ,
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matching the desired estimate in (8.139). The estimate in (8.140) follows using
Remark A.17 and a large choice of a∗, and we omit further details. The version of
these estimates in the later cases will again be similar, and so we do not address them
again.

Case 2: Estimates for (8.141b).Asbefore,we fix i, j, k, ξ, "l .We apply
Proposition A.13 with Remark A.19 with the low-frequency choices

G = LT N A(ξ),ϕc0r
2/3
q ρ4

ξ (	(i,k)) , CG,3/2 =
∣∣∣suppη2

i, j,k,ξ,"l,ϕ
∣∣∣ τ−1

q �i
qδq+n̄�

20
q ,

CG,∞ = �C∞+20
q τ−1

q �imax
q , (8.146a)

π = �50
q τ−1

q �i
qψi,qπ� , λ = λq+1�

−1
q , ν = τ−1

q �i+13
q , 	 = 	(i,k) ,

(8.146b)

as well as the choices from (8.142). As in the previous substep, (A.41), (A.42a), and
(A.42b) are satisfied. The estimates in (A.40) hold due to Proposition 4.9 and the
estimates for LT N A(ξ),ϕ from Case 1.

To check the high-frequency assumptions, we set the parameters and functions
exactly as in Case 2 in the proof of Lemma 8.1. Since we work with p = 1
instead of p = 3

2 , the only difference is that C∗,1 := C∗,∞ = λαq+n̄/2 instead of
C∗,3/2. Then, as before, high-frequency assumptions in (i)–(iv) can be verified. The
nonlocal assumptions are identical to those of Case 1, and are satisfied trivially.
The non-local parameters are set to be the same as in the previous case.

We therefore may appeal to the local conclusions (i)–(vi) and (A.56)–(A.57), from
which we have the following. First, abbreviating G� ◦	 as ti, j,k,ξ,"l,ϕ , we have from
(A.46) and (A.50) that for N ≤ Nfin

4 − d and M ≤ Nfin
5 ,

∣∣∣DN DM
t,qHti, j,k,ξ,"l,ϕ

∣∣∣
� τ−1

q �i
qψi,qπ��

50
q λ−1

q+n̄/2λ
N+α
q+n̄/2M

(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
,

Notice that from (ii), the support of divHti, j,k,ξ,"l,ϕ is contained in supp ti, j,k,ξ,"l,ϕ ⊂
supp

(
ηi, j,k,ξ,"l,ϕ

)
. Thus as before we may apply the aggregation Corollary 5.21 with

H = Hti, j,k,ξ,"l,R and

# = π��
50λ−1

q+n̄/2, λ = � = λq+n̄/2, τ = τq�
−14
q , T = Tq�

−8
q

to estimate

φ
q+n̄/2,l
T NW =

∑
i, j,k,ξ,"l

Hti, j,k,ξ,"l,ϕ .

From (5.58a), we thus have that for N ,M in the same range as above,∣∣∣ψi,q D
N DM

t,qφ
q+n̄/2,l
T NW

∣∣∣
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� r−1
q λq(π

q
q )

1/2π��
50
q λ−1

q+n̄/2λ
N+α
q+n̄/2M

(
M,Nind,t, τq�

i+15
q ,T−1

q �8
q

)
.

and so we can conclude (8.135b) as before. we must verify (8.138) for φ
q+n̄/2,l
T NW . This

however follows from (iii), which asserts that the support of φ
q+n̄/2,l
T NW is contained in

∪(ξ)supp (a(ξ),ϕρ
ϕ

(ξ) ◦ 	(i,k)), and (i) of Lemma 6.2. The non-local conclusions also
follow in much the same way as in Case 1, and we omit further details.

Case 3: Estimates of the local portions of (8.141c),
(8.141d), and (8.141e). Fix ξ , i , j , k, "l, I , and  . In order to check the
low-frequency, preliminary assumptions in Part 1 of Proposition 7.5, we set

p = 1,∞ , GR = LT N

(
Aα,•(ξ), 

) (
ρ2 
ξ (ζ I

ξ )
2 ) (	(i,k)) ,

Gϕ = LT N

(
Aα,•(ξ), 

) (
ρ2 
ξ (ζ I

ξ )
2 ) (	(i,k))r

2/3
q ,

CG ,1 = δq+n̄τ
−1
q �

i+2 j+20
q

∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 
ξ

)∣∣∣+ λ−10
q+n̄ ,

CG ,∞ = δq+n̄τ
−1
q �

i+2 j+20
q ,

λ = λq+n̄/2 , ν = τ−1
q �i+14

q , 	 = 	(i,k) , π = �50
q π�λ

2/3
q , rG = rq .

(8.147)

Then we have that (A.39) is satisfied by definition, (A.40) is satisfied by (6.26b),
(6.26d), Corollary 5.4, (4.23), and Definition 4.10, (A.41)–(A.42b) hold from Corol-
lary 5.4 and (2.30) at level q, and (7.28b) holds from (6.28), Remark 2.4, and (3.6).

In order to check the high-frequency, preliminary assumptions in Part 1 of Proposi-
tion 7.5, we choose parameters and functions exactly same as in Case 3 and Case
4 of Lemma 8.1. The only difference is that we use C∗,1 instead of C∗,3/2. Indeed, we
choose C∗,1 = λαq+n̄/2+1 in both cases Case 3a and Case 3b. Then, it is enough to
check (A.43), which holds true due to Propositions 4.5 and 4.6 and estimate (4.34a)
from Lemma 4.17 or 4.18 with q = 1. In order to check the additional assumptions
in Part 2 of Proposition 7.5, we again choose the same parameters and functions as in
as in Case 3 and Case 4 of Lemma 8.4, and set the extra parameters as δφ,p and
rφ are

δ
3/2
φ,p = CG ,pC∗,pϒ ′ϒ−2rmin(m,q+n̄) , rφ = rmin(m,q+n̄) .

Compared to Proposition 7.4, we only need to check (7.94c), (7.95c), and (7.95d),
which can be verified by (11.14b), (11.20b), and (11.20c).

Using the abbreviation tm
i, j,k,ξ,"l,I , for G� ◦ 	 at the level of q + n̄/2 + 2 ≤ m ≤

q + n̄ + 1, as a consequence of (7.96)–(7.98), (11.21a), (11.15), (3.6), and (11.7h),
there exists a pressure increment σ+Htm

i, j,k,ξ,"l,I , 
such that for N ,M ≤ Nfin/7,

∣∣∣DN DM
t,qHtm

i, j,k,ξ,"l,I , 
∣∣∣ �

((
σ+Htm

i, j,k,ξ,"l,I , 

) 3
2

r−1
min(m,q+n̄) + δ2q+3n̄

)
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× (min(λm, λq+n̄)�q)
N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
. (8.148)∣∣∣∣DN DM

t,qσ
+
Htm

i, j,k,ξ,"l,I , 

∣∣∣∣ �
(
σ+Htm

i, j,k,ξ,"l,I , 
+ δ2q+3n̄

)
(min(λm, λq+n̄)�q)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
. (8.149)∣∣∣∣DN DM

t,qσ
−
Htm

i, j,k,ξ,"l,I , 

∣∣∣∣ �
(
rmin(m,q+n̄)

rq

)2/3

�28
q π��

2/3
q

(
λ2m−1λ

−1
m

)−2/3

× (λq+n̄/2�q)
NM

(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)

≤ �−10
q

(
λq

λq+n̄/2

)2/3

π
q
q (λq+n̄/2�q)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
.

From (A.48), (7.101), and (4.37c), we have that

supp

(
σ+Htm

i, j,k,ξ,"l,I , 

)
⊆ supp

(
Htm

i, j,k,ξ,"l,I , 
)

⊆ supp
(
a(ξ), 

(
ρ (ξ)ζ

I
ξ

)
◦	(i,k)

)
∩ B

(
supp� I

(ξ), , λ
−1
m−1

)
◦	(i,k) , (8.150)

supp

(
σ−Htm

i, j,k,ξ,"l,I , 

)
⊆ supp

(
a(ξ), 

(
ρ (ξ)ζ

I
ξ

)
◦	(i,k)

)
(8.151)

Then, we can obtain the desired estimates for

φ
m.l
T NW =

∑
i, j,k,ξ,"l,I , 

Htm
i, j,k,ξ,"l,I , , φ

q+n̄.l
T NW =

q+n̄+1∑
m=q+n̄

∑
i, j,k,ξ,"l,I , 

Htm
i, j,k,ξ,"l,I , , ,

σ±
φ
m
T NW

=
∑

i, j,k,ξ,"l,I , 
σ±Htm

i, j,k,ξ,"l,I , 
σ±
φ
q+n̄
T NW

=
q+n̄+1∑
m=q+n̄

∑
i, j,k,ξ,"l,I , 

σ±Htm
i, j,k,ξ,"l,I , 

for q + n̄/2+ 1 ≤ m < q + n̄ by applying Corollary 5.20 with p = 1 and

H = Htm
i, j,k,ξ,"l,I , , # = Htm

i, j,k,ξ,"l,I , 1suppa(ξ), (ρ (ξ)ζ I
ξ )◦	(i,k)

, for (8.136a)

H = σ+Htm
i, j,k,ξ,"l,I , 

, # =
[
H + δ2q+3n̄

]
1suppa(ξ), (ρ (ξ)ζ I

ξ )◦	(i,k)
, for (8.136b)

H = σ−Htm
i, j,k,ξ,"l,I , 

, # =
(

λq

λq+n̄/2

)2/3

π�1suppa(ξ), (ρ (ξ)ζ I
ξ )◦	(i,k)

, for (8.136e) .
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Also, (6.22)–(6.24), (8.150), and (8.151) give that (8.138) and (8.137) are satisfied for
q + n̄/2+ 1 ≤ m′ ≤ q + n̄.

Next, from (7.99), we have that

∥∥∥∥σ±Htm
i, j,k,ξ,"l,I , 

∥∥∥∥
3/2

� δ
2/3
q+n̄τ

−2/3
q �

2/3(i+2 j+24)
q

∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 
ξ

)∣∣∣2/3
(
λ2m−1λ

−1
m

)−2/3

r
2/3

min(m,q+n̄) ,∥∥∥∥σ±Htm
i, j,k,ξ,"l,I , 

∥∥∥∥∞ � δ
2/3
q+n̄τ

−2/3
q �

2/3(i+2 j+24)
q

(
min(λm, λq+n̄)

λq+n̄/2�q

)4/3

(
λ2m−1λ

−1
m

)−2/3

r
2/3

min(m,q+n̄)

� �

2
3

(
C∞
2 +18

)
q−n̄ r−2/3

q−n̄ r
2/3

min(m,q+n̄)�
2
3 (40+C∞)
q(

min(λm, λq+n̄)

λq+n̄/2�q

)4/3

�
2/3
q

(
λ2m−1λ

−1
m

)−2/3

(8.152)

≤ �
C∞−11
q+n̄/2+1 .

The last two inequalities follow from (2.13), (5.29) and (11.10a). Then, we apply
Corollary 5.18 to θ = 2, θ1 = 2/3, θ2 = 4/3, H = σ±Htm

i, j,k,ξ,"l,I , 
, and p = 3/2, which

gives

∥∥∥ψi,qσ
±
φ
m
T NW

∥∥∥
3/2

� δ
2/3
q+n̄τ

−2/3
q �

20+2/3Cb
q

(
λ2m−1λ

−1
m

)−2/3

r
2/3

min(m,q+n̄) ≤ δm+n̄�
−10
m .

from (11.24c). Combined with (8.136b), this verifies (8.136c) for q + n̄/2 + 2 ≤
m′ ≤ q + n̄. On the other hand, from Corollary 5.20 with H = σ±Htm

i, j,k,ξ,"l,I , 
, # =

�
C∞−11
q+n̄/2+11suppa(ξ), ρ (ξ)ζ I

ξ
and p = 1, we have that

∥∥∥ψi,qσ
±
φ
m
O

∥∥∥
∞
≤ �

C∞−10
q+n̄/2+1 .

Combined again with (8.136b), this verifies (8.136d) at level q+ n̄/2+1 ≤ m′ ≤ q+ n̄.
Lastly, we have that (8.139) at level m′ for q + n̄/2 + 1 ≤ m′ < q + n̄ and for the
nonlocal part of (8.141e) are satisfied by an argument essentially identical to that of
the previous case.

Case 4: Estimate of (8.141f).Herewe apply PropositionA.13with p =
∞ and the following choices. The low-frequency assumptions in Part 1 are exactly
the same as the L∞ low-frequency assumptions in the previous two steps. For the
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high-frequency assumptions, we recall the choice of N∗∗ from (xvi) and set

�R = (Id− P̃
ξ
q+n̄+1)P�=0

(
� I
(ξ),R

)2
, �ϕ = (Id− P̃

ξ
q+n̄+1)P�=0

(
� I
(ξ),ϕ

)2
r−2/3
q ,

(8.153)

ϑ
i1i2...id−1id = δi1i2...id−1id�−d/2� , � = λq+n̄ , d = 0 , (8.154)

μ = ϒ = ϒ ′ = λq+n̄/2�q , C∗,∞ =
(

λq+n̄

λq+n̄+1

)N∗∗
λ3q+n̄ , Ndec as in (xiv) .

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the
previous steps, (A.43) is satisfied using Propositions 4.5 and 4.6 and (4.34b) from
Lemma 4.17, (A.44) is satisfied by definition and as in the previous steps, and (A.45)
is satisfied by (11.18). For the non-local assumptions, we choose M◦, N◦ = 2Nind so
that (A.52)–(A.54) are satisfied as in Case 1, and (A.55) is satisfied from (11.20c).
We have thus satisfied all the requisite assumptions, and we therefore obtain non-local
bounds very similar to those from the previous steps, which are consistent with (8.139)
at level q + n̄. We omit further details. ��

8.8.2 * Transport/Nash Current Error from the Divergence Corrector Part of the
Velocity Increment

* Lemma 8.20 (Current error and pressure increment from divergence correc-
tors). There exist vector fields φT NC and a function mT NC of time such that

LT N

(
w
(p)
q+1 ⊗s w

(c)
q+1

)
= div

(
φT NC

)+m′
T NC , φT NC =

q+n̄∑
m=q+n̄/2+1

divφ
m
T NC ,

(8.155)
where φ

m
T NC = φ

m,l
T NC + φ

m,∗
T NC for q + n̄/2+ 1 ≤ m ≤ q + n̄ satisfy the following.

(i) For q + n̄/2 + 1 ≤ m ≤ q + n̄, there exist functions σ
φ
m
T NC

= σ+
φ
m
T NC

− σ−
φ
m
T NC

such that

∣∣∣ψi,q D
N DM

t,qφ
m
T NC

∣∣∣ � ((σ+
φ
m
T NC

)
3/2r−1

m + δ2q+3n̄

) (
λm�q

)N
M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(8.156a)∣∣∣∣ψi,q D

N DM
t,qσ

+
φ
m
T NC

∣∣∣∣ �
(
σ+
φ
m
T NC

+ δq+3n̄

) (
λm�q

)N
M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.156b)∥∥∥∥ψi,q D

N DM
t,qσ

+
φ
m
T NC

∥∥∥∥
3/2

� δm+n̄�
−9
m
(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.156c)
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∥∥∥∥ψi,q D
N DM

t,qσ
+
φ
m
T NC

∥∥∥∥∞ � �
C∞−9
m

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.156d)∣∣∣∣ψi,q D

N DM
t,qσ

−
φ
m
T NC

∣∣∣∣ �
(

λq

λq+(n̄/2)

) 2
3
π
q
q
(
λq+(n̄/2)�q

)N
M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.156e)

for all N ,M ≤ Nfin/100. Furthermore, we have that for q + 1 ≤ m′ ≤ m − 1 and
q + 1 ≤ q ′′ ≤ q + n̄/2,

suppσ−
φ
m
T NC

∩ B
(
supp ŵq ′′ , λ

−1
q ′′ �q ′′+1

)
= suppσ+

φ
m
T NC

∩ B
(
supp ŵm′ , λ−1

m′ �m′+1

)
= ∅ . (8.157)

(ii) For all q+ n̄/2+1 ≤ m ≤ q + n̄ and q+1 ≤ q ′ ≤ m−1, the local parts satisfy

B
(
supp ŵq ′ , λ

−1
q ′ �q ′+1

)
∩ suppφ

m,l
T NC = ∅ . (8.158)

(iii) For all q + n̄/2+ 1 ≤ m ≤ q + n̄ and N ,M ≤ 2Nind, the non-local parts φ
m,∗
T NC

satisfy ∥∥∥DN DM
t,qφ

m,∗
T NC

∥∥∥
L∞

≤ T
2Nind,t
q+n̄ δ

3/2
q+3n̄λ

N
m τ

−M
q . (8.159)

(iv) For M ≤ 2Nind, the time function mT NC satisfies

mT NC (t) =
ˆ t

0
〈(8.131)(s)〉 ds ,

∣∣∣∣ dM+1

dtM+1mT NC

∣∣∣∣
≤ (max(1, T ))−1 δ2q+3n̄M

(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (8.160)

Proof The proof is similar to Step 2 of the proof of Lemma 8.10. In fact, it is much
simpler since the Dt,q in LT N is always a “good” derivative. We provide a few details
below.

First note that

LT N

(
w
(p)
q+1 ⊗s w

(c)
q+1

)
=

∑
 ,i, j,k,ξ,"l,I

LT N

[
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ � I

(ξ), 
)
◦	(i,k)ξ

�
(
Am
� ε•pr + A•�εmpr

)

× ∂p

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)
∂r	

s
(i,k)(U

I
(ξ), )

s ◦	(i,k)

]

=
∑

 ,i, j,k,ξ,"l,I
LT N

[
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)ξ

�
(
Am
� ε•pr + A•�εmpr

)
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× ∂p

(
a(ξ), 

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)
∂r	

s
(i,k)

]
(� I

(ξ), U
I
(ξ), )

s ◦	(i,k)

=:
∑

 ,i, j,k,ξ,"l,I
G ,i, j,k,ξ,"l,I (�

I
(ξ), U

I
(ξ), )

s ◦	(i,k)

We note that (� I
(ξ), U

I
(ξ), )s has mean 0 (by property (5) of Proposition 4.5 and (5) of

Proposition 4.6) and is T
d

λq+n̄/2�q
-periodic. So just as in the divergence corrector stress

error, we apply the synthetic Littlewood-Paley decomposition suggested in (4.31) and
define the current errors as follows:

φ
q+n̄/2+1
T NC :=

∑
 ,i, j,k,ξ,"l,I

(H+R∗) (G ,i, j ,k,ξ,"l,I P̃λq+n̄/2+1
(�I(ξ), U

I
(ξ), )s ◦	(i,k)

)
,

φ
m
T NC :=

∑
 ,i, j,k,ξ,"l,I

(H+R∗) (G ,i, j ,k,ξ,"l,I P̃(λm−1,λm ](�
I
(ξ), U

I
(ξ), )s ◦	(i,k)

)
,

φ
q+n̄
T NC :=

q+n̄+1∑
m=q+n̄

∑
 ,i, j ,k,ξ,"l,I

(H+R∗) (G ,i, j ,k,ξ,"l,I P̃(λm−1,λm ](�
I
(ξ), U

I
(ξ), )s ◦	(i,k)

)
,

+
∑

 ,i, j,k,ξ,"l,I

(H+R∗) (G ,i, j ,k,ξ,"l,I
(
Id− P̃λq+n̄+1

)
(�I(ξ), U

I
(ξ), )s ◦	(i,k)

)
.

We shall apply the inverse divergence operator to each term in the sum separately
with the following choices. In all cases, we set

GR = λ−1
q+n̄GR,i, j,k,ξ,"l,I , Gϕ = λ−1

q+n̄r
2/3
q G

ϕ,i, j,k,ξ,"l,I .

We choose the high-frequency potentials as in Step 2 of the proof of Lemma 8.10,
and choose the rest of parameters and functions required in Proposition 7.5 the same
as in Case 3 of the proof of Lemma 8.19. In fact, the size of G ,1 and G ,∞ is
smaller than the one in Case 3. By the same argument as in Case 3, we then get
the same conclusion as in Lemma 8.19 for φ

m
T NC . We omit further details. ��

8.8.3 * Transport/Nash Current Error from Oscillation, Transport, Nash, Divergence
Corrector, and Mollification Stress Errors

* Lemma 8.21 (Current error and pressure increment from (8.132)). There exist
vector field φT N S and a function mT N S of time such that

(8.132) = −LT N (SO + ST N + SC1 + SM2) = divφT N S +m′
T N S ,

φT N S =
q+n̄∑

m=q+1

φ
m
T NS ,

where φ
m
T NS = φ

m,l
T N S + φ

m,∗
T N S + φ

∗
T N S satisfies the following properties.
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(i) For m = q + 1, q + n̄/2, the local part φ
m
T NS satisfies∣∣∣ψi,q D

N DM
t,qφ

m,l
T N S

∣∣∣ � �−12
q (πm

q )
3/2r−1

q λNmM
(
M,Nind,t, τ

−1
q �i+14

q ,T−1
q �8

q

)
(8.161)

for M, N ≤ Nfin/100.
(ii) For m = q + n̄/2+ 1, . . . , q + n̄, there exist functions σ

φ
m
T NS

= σ+
φ
m
T NS

− σ−
φ
m
T NS

such that∣∣∣ψi,q D
N DM

t,qφ
m,l
T N S

∣∣∣ � ((σ+
φ
m
T NS

)
3/2r−1

m + δ2q+3n̄

) (
λm�q

)N
M
(
M,Nind,t, τ

−1
q �i+17

q ,T−1
q �9

q

)
(8.162a)∣∣∣ψi,q D

N DM
t,qσ

+
φ
m
T NS

∣∣∣ < (σ+
φ
m
T NS

+ δ2q+3n̄

) (
λm�q

)N
M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
(8.162b)∥∥∥ψi,q D

N DM
t,qσ

+
φ
m
T NS

∥∥∥
3/2

< δm+n̄�
−9
m

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
(8.162c)∥∥∥ψi,q D

N DM
t,qσ

+
φ
m
T NS

∥∥∥
∞

< �
C∞−9
q+n̄/2+1

(
λm�q

)N M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
(8.162d)∣∣∣ψi,q D

N DM
t,qσ

−
φ
m
T NS

∣∣∣ < ( λq

λq+(n̄/2)

) 2
3

π
q
q
(
λq+(n̄/2)�q

)N
M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
(8.162e)

for M, N ≤ Nfin/200.
(iii) For q + n̄/2 + 1 ≤ m ≤ q + n̄, q + 1 ≤ m′ ≤ m − 1, q + 1 ≤ q ′′ ≤ q + n̄/2,

q + 1 ≤ k ≤ q + n̄, and q + 1 ≤ k′ ≤ k − 1, we have that

suppσ−
φ
m
T NS

∩ B
(
supp ŵq ′′ , λ

−1
q ′′ �q ′′+1

)
= suppσ+

φ
m
T NS

∩ B
(
supp ŵm′ , λ−1

m′ �m′+1

)
= ∅ . (8.163a)

B
(
supp ŵk′ , λ

−1
k′ �k′+1

)
∩ suppφ

k,l
T N S = ∅ . (8.163b)

(iv) For m = q + 1, . . . , q + n̄, the non-local parts satisfy

∥∥∥DN DM
t,qφ

m,∗
T N S

∥∥∥∞ ≤ T
2Nind,t
q+n̄ δ

3/2
q+3n̄λ

N
m τ

−M
q , (8.164a)∥∥∥DN DM

t,q+n̄−1φ
∗
T N S

∥∥∥∞ ≤ δ
3
2
q+3n̄(λq+n̄�q+n̄−1)

N

M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
(8.164b)
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for all N ,M ≤ Nind/4.
(v) For M ≤ 2Nind, the time function mT N S satisfies

mT N S(t) =
ˆ t

0
〈(8.132)(s)〉 ds ,

∣∣∣∣ dM+1

dtM+1mT N S

∣∣∣∣ ≤ (max(1, T ))−1 δ2q+3n̄

M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (8.165)

Proof Recall from (8.134) that (8.132) consists of−LT N (S-)where- represents O ,
T N , C1, or M2. We first consider the terms involving the local part of S-, and then
deal with the terms with the non-local parts.
Case 1.Current error from the terms−LT N (S

m,l
- )withm = q+1 orm = q+n̄/2. In

this case, we first note that Sm,l- is non-trivial only when- = O . Recall the expression

of Sm,lO from (8.12a) of Remark 8.2, which gives

LT N S
m,l
O =

∑
i, j,k,ξ,"l, 

CH∑
j ′=0

(LT N H
α( j ′)
i, j,k,ξ,"l, )ρ

β( j ′)
i, j,k,ξ,"l, ◦	(i,k) .

In order to get the associated current error, we fix indices j ′, , i, j, k, ξ, "l and apply
the inverse divergence Proposition A.13 and Remark A.19 with the following choice
of parameters and functions. Set

G = −(λq+1�
−4
q )−1LT N H

α( j ′)
i, j,k,ξ,"l, , � = λq+1�

−4
q ρ

β( j ′)
i, j,k,ξ,"l, , m = q + 1

G = −λ−1
q+n̄/2LT N H

α( j ′)
i, j,k,ξ,"l, , � = λq+n̄/2ρ

β( j ′)
i, j,k,ξ,"l, , m = q + n̄/2 .

We choose the rest of parameters and functions the same as in Case 1 and Case
2 in the proof of Lemma 8.19, except for N∗ = Nfin/50 and M∗ = Nfin/100. 22 With
this change, (A.39) and (A.44) still hold from (11.21a). The rest of assumptions are
satisfied as in Case 1,2. As a result, in the case of m = q + 1 or m = q + n̄/2, we

obtain the associated current error φ
m
T NS = φ

m,l
T N S + φ

m,∗
T N S which satisfy

divφ
m
T NS = −LT N S

m,l
O + 〈LT N S

m,l
O 〉 (8.166)

and the same properties as φ
m
T NW have, except that the range of N and M in the

estimates are restricted to N ,M ≤ Nfin/100. In particular, (8.161), (8.163b) for k =
q+ 1, q+ n̄/2, and (8.164) withm = q+ 1, q+ n̄/2 hold. Finally, (8.165) holds due to
similar arguments as in previous lemmas, and we omit further details throughout this
proof.

Case 2. Current error and pressure increment from the terms −LT N (S
m,l
- ) with

q + n̄/2 + 1 ≤ m ≤ q + n̄. Since SM2 only have the non-local parts, we consider

22 In fact, the actual size of G is smaller than the one in Case 1 and Case 2.
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only when - = O, T N ,C1. Recall from Remarks 8.2, 8.7 and 8.11 that for - =
O, T N ,C1, we have

LT N S
m,l
- =

∑
i, j,k,ξ,"l,I , 

CH∑
j ′=0

(LT N H
α( j ′)
-,i, j,k,ξ,"l,I , )ρ

β( j ′)
-,i, j,k,ξ,"l,I , ◦	(i,k) . (8.167)

With this representation (8.167), we fix indices-, j ′, , i, j, k, ξ, "l and apply Propo-
sition 7.5 to construct desired current errors and pressure increments.

Case 2-1.Consider- = O,C1.Observe that H
α( j ′)
-,i, j,k,ξ,"l,I , andρ

β( j ′)
-,i, j,k,ξ,"l,I , ,- = O,C1, have the same properties in Remark 8.2, 8.11. Set the parameters and

functions in the proposition the same as in Case 3 in the proof of Lemma 8.19,
except for N∗ = Nfin/50, M∗ = Nfin/100,

G = −(λq+n̄/2�q )
−1LT N H

α( j ′)
-,i, j,k,ξ,"l,I , , � = λq+n̄/2�qρ

β( j ′)
-,i, j,k,ξ,"l,I , ,

when m = q + n̄/2+ 1

G = −(λ2m−1λ
−1
m )−1LT N H

α( j ′)
-,i, j,k,ξ,"l,I , , � = λ2m−1λ

−1
m ρ

β( j ′)
-,i, j,k,ξ,"l,I , , otherwise .

Then, (A.39), (A.44), (7.93a), (7.93b), (7.94d) still hold from (11.21a) and (11.21a).
The rest of assumptions are all satisfied as we see in Case 3. Therefore, as before,

in each case of m, we obtain the associated current error φ
m
T N- = φ

m,l
T N-+φ

m,∗
T N- and

pressure increment σ
φ
m
T N- = σ+

φ
m
T N-

− σ−
φ
m
T N-

, which satisfy

−LT N S
m- +

〈
LT N S

m-
〉
= divφ

m
T N-, (8.168)

and share the same properties as φ
m
T NW and σ

φ
m
T NW

have in the restricted range of

N ,M . In particular, (8.162), (8.163), and (8.164) holds with the replacement of φ
m,l
T N S

and σ±
φ
m
T NS

with φ
m,l
T N- and σ±

φ
m
T N-

.

Case 2-2. Consider - = T N . Comparing the properties of H
α( j ′)
-,i, j,k,ξ,"l,I , and

ρ
β( j ′)
-,i, j,k,ξ,"l,I , in Remark 8.2 when m = q + n̄ with those in Remark 8.11, one can

see that

G = −λ−1
q+n̄ LT N H

α( j ′)
-,i, j,k,ξ,"l,I , , � = λq+n̄ρ

β( j ′)
-,i, j,k,ξ,"l,I , 

satisfies the same estimates as G and � defined in Case 2-1 when m = q + n̄,
except that G when - = T N has more expensive sharp material derivative cost by
�q . Thereefore, repeating the same argument, we can obtain the associated current

error φ
q+n̄
T N- = φ

q+n̄,l
T N- + φ

q+n̄,∗
T N- and pressure increment σ

φ
q+n̄
T N-

= σ+
φ
q+n̄
T N-

− σ−
φ
q+n̄
T N-

,
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which satisfy

−LT N S
q+n̄
- +

〈
LT N S

q+n̄
-
〉
= divφ

q+n̄
T N-, (8.169)

and share the same properties asφ
q+n̄
T NW and σ

φ
q+n̄
T NW

have in the restricted range of N ,M

expect that the sharp material derivative have extra �q cost. In particular, (8.162),

(8.163), and (8.164) holds with the replacement of φ
q+n̄,l
T N S and σ±

φ
q+n̄
T N S

with φ
q+n̄,l
T N- and

σ±
φ
q+n̄
T N-

.

Lastly, we define

φ
m
T NS := φ

m
T NO + φ

m
T NC1 + φ

m
T NT N , σ

φ
m
T NS

:= σ
φ
m
T NO

+ σ
φ
m
T NC1

+ σ
φ
m
T NT

and the local and nonlocal parts of φ
m
T NS and the superscript ± part of σ

φ
m
T NS

analogously. Here, we set undefined current errors φ
m
T N- and pressure increments

σ
φ
m
T N- = 0 as zero. Then, combining the analysis in Case 2-1, 2-2, (8.162),

(8.163), and (8.164) for φ
m,∗
T N S can be verified.

Case 3.Current error from the terms−LT N (S
m,∗
- )with q+1 ≤ m ≤ q+ n̄. Lastly,

we construct φ
∗
T N S satisfying

divφ
∗
T N S = −

q+n̄∑
m=q+1

P�=0LT N
(
Sm,∗O + Sm,∗T N + Sm,∗C1 + Sm,∗M2

)

and (8.164). The terms on the right-hand side are not be intermittent, so there is no
pressure increment generated from them. We fix - and m, and apply Remark A.15
of Proposition A.13. We first consider when - �= M2. Set N∗ = M∗ = Nind − 1,
M◦ = N◦ = Nind/4,

G = −LT N S
m,∗
- , CG,∞ = τ−1

q T
4Nind,t
q+n̄ δq+3n̄, λ = λq+n̄, ν = ν′ = T−1

q ,

v = ûq , Dt = Dt,q , λ′ = λq�q , Cv = �
1/2
q ,

and choose a natural number K◦ such that

T
2Nind,t
q+n̄ δ

3/2
q+n̄ ≤ λ

−K◦
q+n̄ ≤ T

2Nind,t+1
q+n̄ δ

3/2
q+n̄

Then, all the assumptions are satisfied by (8.11), (8.54), (8.81), (2.30), Corollary 5.4.
In particular, (A.55) can be verified by the choice of sufficiently large a. As a result
of Remark A.15, summing over m, we have φ

∗
T N- which satisfies

divφ
∗
T N-=−

q+n̄∑
m=q+1

P�=0LT N S
m,∗
- ,

∥∥∥DN DM
t,qφ

∗
T N-

∥∥∥∞ ≤ T
2Nind,t+1
q+n̄ δ

3/2
q+3n̄λ

N
q+n̄T

−M
q
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for N ,M ≤ Nind/4. Lastly, we apply Lemma A.23 to φ
∗
T N-, we have∥∥∥DN DM

t,q+n̄−1φ
∗
T N-

∥∥∥∞ ≤ T
Nind,t+1
q+n̄ δ

3/2
q+3n̄λ

N
q+n̄(Tq+n̄−1�q+n̄−1)

−M

≤ Tq+n̄δ
3/2
q+3n̄λ

N
q+n̄M

(
M, τ−1

q−n̄−1,T
−1
q+n̄−1

)

for N ,M ≤ Nind/4.
Next, we consider - = M2. As we see from (8.97), Sm,∗M2 is non-trivial only when

m = q + n̄. We first note that when q + 1 ≤ k < q + n̄,

∥∥∥DN DM
t,q+n̄−1ŵk

∥∥∥∞ =
∥∥∥DN DM

t,kŵk

∥∥∥∞ � �
C∞/2+18
q r−1

q (λk�k)
N (T−1

k−1�k−1)
M

for N+M ≤ 3Nfin/2+1, fromHypothesis 2.6, (2.32), (2.13), and (2.2b). Also, applying
Lemma A.23 to (2.30), we have

∥∥∥DN DM
t,q+n̄−1∇ûq

∥∥∥∞ � T−1
q+n̄λq�

C∞/2+18
q r−1

q (λq+n̄−1�q+n̄−1)
N (T−1

q+n̄−1�q+n̄−1)
M

Combining these with (8.98b), we have from (6.38b) that

∥∥∥DN DM
t,q+n̄−1LT N S

q+n̄,∗
M2

∥∥∥∞ ≤
∥∥∥DN DM+1

t,q+n̄−1S
q+n̄,∗
M2

∥∥∥∞
+
∥∥∥DN DM

t,q+n̄−1[((ŵq+n̄−1 − ŵq) · ∇)tr + ∇ûq :]Sq+n̄,∗
M2

∥∥∥∞
≤ T

2Nind,t−2
q+n̄ δq+3n̄(λq+n̄�q+n̄)

N (T−1
q+n̄−1�q+n̄−1)

M

for N + M ≤ 2Nind − 1. Therefore, we apply Remark A.15 of Proposition A.13 by
setting N∗ = M∗ = Nind − 1, M◦ = N◦ = Nind/4,

G = −LT N S
m,∗
- , CG,∞ = T

2Nind,t−2
q+n̄ δq+3n̄, λ = λq+n̄�q+n̄,

ν = ν′ = T−1
q+n̄−1�q+n̄−1 ,

v = ûq+n̄−1 , Dt = Dt,q+n̄−1 , λ′ = λq+n̄−1�q+n̄−1 , Cv = �
1/2
q+n̄−1 ,

and choosing a natural number K◦ so that

δ
3/2
q+3n̄T

Nind
q+n̄ ≤ (λq+n̄�q+n̄)

−K◦ ≤ δ
3/2
q+3n̄T

Nind+1
q+n̄ .

Then all required assumptions are satisfied as before. As a result of the remark, we
obtain φ

∗
T NM2 such that divφ

∗
T NM2 = −∑q+n̄

m=q+1 P�=0LT N S
m,∗
M2 , and for N ,M ≤

Nind/4,

∥∥∥DN DM
t,q+n̄−1φ

∗
T NM2

∥∥∥∞ ≤ T
Nind,t+1
q+n̄ δ

3/2
q+3n̄(λq+n̄�q+n̄)

N (T−1
q+n̄−1�q+n̄−1)

M

≤ Tq+n̄δ
3/2
q+3n̄(λq+n̄�q+n̄)

N
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M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

Lastly, we set φ
∗
T N S := φ

∗
T NO+φ

∗
T NC1+φ

∗
T NT N+φ

∗
T NM2 and collect the properties

of φ
∗
T N- to conclude (8.164). ��

* Remark 8.22 (Collecting pressure and current errors from transport-Nash).We
now collect all current errors and pressure increments generated by (8.130)–(8.132)
and set

φ
m
T N := φ

m
T NW + φ

m
T NC + φ

m
T NS , σ

φ
m
T N

:= σ
φ
m
T NW

+ σ
φ
m
T NC

+ σ
φ
m
T NS

, (8.170)

where the quantities on the right-hand side are constructed in Lemmas 8.19, 8.20, and
8.21. We use a similar notation for the various functions of time m, so that recalling
(8.125) and (8.127),we have thatmT+mN = mT NW+mT NC+mT N S . Then summing
over m, we have the transport and Nash current error φT N . We similarly collect the
local and nonlocal parts of φ

m
T N and the ± part of the pressure increments σ

φ
m
T N

.

Lastly, we define and analyze the current error associated to the pressure increments
σ
φ
m
T N

.

* Lemma 8.23 (Pressure current). For every m′ ∈ {q + n̄/2 + 1, . . . , q + n̄}, there
exists a current error φ

φ
m′
T N

associated to the pressure increments σ
φ
m′
T N

and a function

mσ
φ
m′
T N

of time that satisfy the following properties.

(i) We have the decompositions and equalities

divφ
φ
m′
T N

+m′
σ
φ
m′
T N

= Dt,qσ
φ
m′
T N

, (8.171a)

φ
φ
m′
T N

= φ∗
φ
m′
T N

+
m′∑

m=q+n̄/2+1

φm

φ
m′
T N

, φm

φ
m′
T N

= φ
m,l

φ
m′
T N

+ φ
m,∗
φ
m′
T N

. (8.171b)

(ii) For q + n̄/2+ 1 ≤ m ≤ m′ and N ,M ≤ 2Nind,∣∣∣∣ψi,q D
N DM

t,qφ
m,l

φ
m′
T N

∣∣∣∣ < �−100
m

(
πm
q

)3/2
r−1
m (λm�

2
m)

M

M
(
M,Nind,t, τ

−1
q �i+18

q ,T−1
q �9

q

)
, (8.172a)∥∥∥∥DN DM

t,qφ
m,∗
φ
m′
T N

∥∥∥∥∞ < T
2Nind,t
q+n̄ δ

3/2
q+3n̄(λm′�2

m′)N τ−M
q , (8.172b)∥∥∥∥DN DM

t,qφ
∗
φ
m′
T N

∥∥∥∥∞ < T
2Nind,t
q+n̄ δ

3/2
q+3n̄(λq+n̄�

2
q+n̄)

N τ−M
q . (8.172c)
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(iii) For all q + n̄/2+ 1 ≤ m ≤ m′ and all q + 1 ≤ q ′ ≤ m − 1,

B
(
supp ŵq ′, 1/2λ

−1
q ′ �q ′+1

)
∩ supp

(
φ
m,l

φ
m′
T N

)
= ∅ . (8.173)

(iv) For M ≤ 2Nind, the mean part mσ
φ
m′
T N

satisfies

∣∣∣∣ dM+1

dtM+1mσ
φ
m′
T N

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
. (8.174)

Proof From (8.170), the pressure increment σ
φ
m′
T N

consists of σ
φ
m′
T NW

, σ
φ
m′
T NC

, σ
φ
m′
T N S

.

Consider the pressure current for the pressure increment σ
φ
m′
T NW

defined in Case

3 of the proof of Lemma 8.19. As a result of the application of Proposition 7.5 to
tm

′
i, j,k,ξ,"l,I , , from Part 4 of the proposition, we obtain a pressure current φi, j,k,ξ,"l,I , 
which has a decomposition

φi, j,k,ξ,"l,I , = φ
∗
i, j,k,ξ,"l,I , +

m̄∑
m=0

φ
m
i, j,k,ξ,"l,I , =

(H+R∗) Dt,qσHtm
′

i, j,k,ξ,"l,I , 
.

Noticing that the estimates for the pressure increment σ
φ
m′
T NW

are similar to those of

the pressure increments for the Reynolds stress errors, for example those defined in

Lemma8.4,we can obtain pointwise estimates forφ
m,l

φ
m′
T NW

analogous to those contained

in Lemma 8.5. The properties in (8.171a)–(8.174) follow from similar arguments as
before. We refer also to [22], in which a number of error terms are estimate and
analyzed using Proposition 7.5. ��

8.9 * Mollification Current Error

Similar to the case of the stress mollification errors, we will have to consider various
mollification errors that go into the new unresolved current. These are listed below
and are estimated in an analogous way to the mollification stress errors.

We recall the operators R∗ from (A.56) and LT N from (8.129) and regroup the
terms by setting

φ
q+1
M := ϕ

q
q − ϕ�

φ
q+n̄
M3 := 1

2

(
|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1

)
φ
q+n̄
M4 := R∗ [LT N

(
ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1

)
+(ŵq+n̄ − wq+1) · (∂t uq + (uq · ∇)uq +∇ pq)

]
.
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We also define

φ
q+n̄
M := φ

q+n̄
M3 + φ

q+n̄
M4 , (8.175)

and we set

mM4(t) :=
ˆ t

0

〈
LT N

(
ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1

)
+(ŵq+n̄ − wq+1) · (∂t uq + (uq · ∇)uq +∇ pq)

〉
(s) ds . (8.176)

For details on how these error terms appear in the relaxed local energy inequality, we
refer to [22, subsection 5.1].

* Lemma 8.24 (Basic estimates and applying inverse divergence). For all N+M ≤
Nind/4, the mollification errors φ

q+1
M and φ

q+n̄
M satisfy

∥∥∥DN DM
t,qφ

q+1
M

∥∥∥∞ ≤ δ
3/2
q+3n̄λ

N
q+1M

(
M,Nind,t, τ

−1
q , �−1

q T−1
q

)
, (8.177a)∥∥∥DN DM

t,q+n̄−1φ
q+n̄
M

∥∥∥∞ ≤ �9
q+n̄δ

3/2
q+3n̄T

2Nind,t
q+n̄

(
λq+n̄�q+n̄

)N
M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
. (8.177b)

In addition, the mean portion mM4 satisfies

∣∣∣∣ dM+1

dtM+1mM4

∣∣∣∣ ≤ (max(1, T ))−1δq+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
for M ≤ Nind/4 .

(8.178)

Proof of Lemma 8.24 We have that (8.177a) follows immediately from (3.15). Next,

in order to handle φ
q+n̄
M3 , we recall from (6.39) that

∥∥∥DN DM
t,q+n̄−1

(
wq+1 − ŵq+n̄

)∥∥∥∞ � δ3q+3n̄T
25Nind,t
q+n̄

(
λq+n̄�q+n̄−1

)N
M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1

)
.

for all N + M ≤ Nfin/4. Using Lemma 6.2, we note that Dt,q+n̄−1wq+1 = Dt,qwq+1
and Dt,q+n̄−1ŵq+n̄ = Dt,qŵq+n̄ . Then writing

|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1 = (ŵq+n̄ − wq+1)|ŵq+n̄|2 + wq+1(ŵq+n̄ − wq+1)

·ŵq+n̄ + wq+1wq+1 · (ŵq+n̄ − wq+1)

and using (6.38), (6.39), and (6.42), we have that for all N + M ≤ 2Nind,∥∥∥DN DM
t,q+n̄−1[|ŵq+n̄|2ŵq+n̄ − |wq+1|2wq+1]

∥∥∥∞
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≤ δq+3n̄T
2Nind,t
q+n̄

(
λq+n̄�q+n̄

)N M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

(8.179)

As for the remaining term φ
q+n̄
M4 , we first upgrade thematerial derivative in the estimate

for ûq . Applying Lemma A.23 to Fl = 0, F∗ = ûq , k = q + n̄, N* = 3Nfin/4 with
(2.31a) and using (11.12), we have that

∥∥∥DN DM
t,q+n̄−1ûq

∥∥∥∞ � T−1
q λNq+n̄T

−M
q+n̄−1 .

We can now tackle the part of the error term that involves LT N . To estimate this, we
use Remark A.15 with (11.12), setting

G = LT N
(
ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1

)
, v = ûq+n̄−1

CG,∞ = δq+3n̄T
2Nind,t
q+n̄ , λ = λ′ = λq+n̄�q+n̄, Mt = Nind,t, ν = ν′ = T−1

q+n̄,

Cv = �
1/2
q+n̄−1

N∗ = Nfin/9, M∗ = Nfin/10, N◦ = M◦ = 2Nind .

As a result, with a suitable choice of positive integer K◦ so that

δq+3n̄T
2Nind,t
q+n̄ λ5q+n̄2

2Nind ≤ λ
−K◦
q+n̄ ≤ δq+3n̄T

Nind,t
q+n̄ ,

we find that for all N + M ≤ 2Nind,∥∥∥DN DM
t,q+n̄−1R∗ [LT N

(
ŵq+n̄ ⊗ ŵq+n̄ − wq+1 ⊗ wq+1

)]∥∥∥∞
� δq+3n̄T

Nind,t
q+n̄ (λq+n̄�q+n̄)

NT−M
q+n̄

≤ δq+3n̄(λq+n̄�q+n̄)
NM

(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄

)
. (8.180)

The estimate for the mean portion follows in the usual way from Remark A.17.
Now we deal with the other part of the error term. Recall from (2.7) that

∂t uq + (uq · ∇)uq +∇ pq = div(Rq − πq Id) .

We apply Lemma A.22 with the following choices:

G = div
(
Rq − πq Id

)•
, � = ϑ = (ŵq+n̄ − wq+1)

• , v = ûq+n̄−1 ,

λ′ = λq+n̄−1�q+n̄−1 ,

ν = ν′ = T−1
q+n̄−1�

2
q+n̄−1 , N∗ = Nind/2 ,

M∗ = Nind/2 , d = 0 , λ = �q+n̄�q+n̄ ,

π ′ = C∗,∞ = δ3q+3n̄T
25Nind,t
q+n̄ , � = T

3 × R ,
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π = �q+n̄−1πq�q+n̄−1 , Mt = Nind,t ,

ϒ = � = λq+n̄�q+n̄−1 , M◦ = N◦ = Nind/4 ,

K◦ such that T
−10Nind,t
q+n̄ ≤ �K◦ ≤ T

−10Nind,t−1
q+n̄ .

The analysis here is similar to the analysis for the nonlocal transport-Nash current
errors, and so we omit the details but note that one can easily check that (A.97a),
(A.97b), and (A.98) are satisfied. Since d = 0, we move straight to the non-local
assumptions and output, which again can be easily checked by direct computation or
using similar arguments as for other nonlocal error terms. We therefore have from
(A.104) that for N + M ≤ Nind/4,∥∥∥DN DM

t,q+n̄−1R∗ (div (Rq − πq Id
)•
(ŵq+n̄ − wq+1)

•)∥∥∥∞
� T

3Nind,t
q+n̄ δ3q+3n̄(λq+n̄�q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄

)
(8.181)

Promotion of the material derivatives again follows standard arguments and
Lemma A.23, and we omit further details. ��

9 Inductive Cutoffs

In this section, we define the new partition of unity {ψi,q+n̄} and verify the inductive
properties from subsection 2.3. At the same time, we verify the inductive velocity
bounds from subsection 2.6. The strategy for these proofs follows quite closely the
strategy from [3, subsections 6.1, 6.2]. However, the proofs now use L3 inductive
information, rather than L2 inductive information. Thus for the sake of completeness
and for the accuracy of the constants chosen in subsection 2.1 and 11.1, which do
depend on the computations in this section, we have included full details of all the
proofs.

9.1 NewMollified Velocity Increment and Definition of the Velocity Cutoff
Functions

We first recall the definition of ŵq+n̄ in (6.17). We have that for a mollifier P̃q+n̄,x,t

at spatial scale λ−1
q+n̄�

−1/2
q+n̄−1 and temporal scale T−1

q+1, we have

ŵq+n̄ = P̃q+n̄,x,twq+1 . (9.1)

Before defining the velocity cutoff functions, we need the following translations
between �q ′−1 and �q ′ .

Definition 9.1 (Translating�’s between q ′−1 and q ′).Given i, j, q ′ ≥ 0, we define

i∗ = i∗( j, q ′) = i∗( j) = min{i ≥ 0 : �i
q ′ ≥ �

j
q ′−1}
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j∗(i, q ′) = max{ j : i∗( j) ≤ i} .

A consequence of this definition is the inequality

�i−1
q ′ < �

j∗(i,q)
q ′−1 ≤ �i

q ′ . (9.3)

We also note that for j = 0, we have that i∗( j) = 0. Finally, a simple computation
shows that i∗( j) has an upper bound which depends on j but not q.

Wemaynowdefine the velocity cutoff functions using the cutoff functions presented
in Lemma 5.5, although �q will be replaced with �q+n̄ throughout.

Definition 9.2 (Intermediate cutoff functions). For stage q+1 of the iteration where
q + n̄ ≥ 1, m ≤ Ncut,t , and jm ≥ 0, we define

h2m, jm ,q+n̄(x, t) = �
−2i∗( jm )
q+n̄ δ−1

q+n̄r
2/3
q

(
τ−1
q+n̄−1�

i∗( jm)+2
q+n̄

)−2m
Ncut,x∑
N=0

(
λq+n̄�q+n̄

)−2N

∣∣∣DN Dm
t,q+n̄−1ŵq+n̄

∣∣∣2 . (9.4)

We then define ψm,im , jm ,q+n̄ by

ψm,im , jm ,q+n̄(x, t) = γm,q+n̄

(
�
−2(im−i∗( jm ))(m+1)
q+n̄ h2m, jm ,q+n̄(x, t)

)
(9.5)

for im > i∗( jm), while for im = i∗( jm),

ψm,i∗( jm ), jm ,q+n̄(x, t) = γ̃m,q+n̄

(
h2m, jm ,q+n̄(x, t)

)
. (9.6)

The intermediate cutoff functions ψm,im , jm ,q+n̄ are equal to zero for im < i∗( jm).

The idea of the intermediary cutoffsψm,im , jm ,q+n̄ and im and jm is as follows. First,
we use the subscript m to emphasize that ψm,im , jm ,q+n̄ is using non-negative integers
im and jm to quantify the size of Dm

t,q+n̄−1ŵq+n̄ , i.e. m material derivatives applied
to ŵq+n̄ . Second, all proofs will have to be written using information from the old
velocity cutoffs ψ jm ,q+n̄−1, which we index with jm (see Definition 9.3). Finally, the
new velocity cutoffs will be defined in Definition 9.4 using the integer i , which is
equal to the supremum over 0 ≤ m ≤ Ncut,t of the integer im being used to quantify
the cost of Dm

t,q+n̄−1. Later, im which will be shown to take values no larger than imax.
With these definitions and using (5.14) and (5.15), it follows that

∑
im≥0

ψ6
m,im , jm ,q+n̄ =

∑
im≥i∗( jm)

ψ6
m,im , jm ,q+n̄ =

∑
{im : �im

q+n̄≥� jm
q+n̄−1}

ψ6
m,im , jm ,q+n̄ ≡ 1

(9.7)
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for any m, and for |im − i ′m | ≥ 2,

ψm,im , jm ,q+n̄ψm,i ′m , jm ,q+n̄ = 0 . (9.8)

Definition 9.3 (mth Velocity Cutoff Function). At stage q + 1 and for im ≥ 0, we
inductively define the mth velocity cutoff function

ψ6
m,im ,q+n̄ =

∑
{ jm : im≥i∗( jm )}

ψ6
jm ,q+n̄−1ψ

6
m,im , jm ,q+n̄ . (9.9)

We shall employ the notation

"i = {im}Ncut,t
m=0 = (i0, ..., iNcut,t

) ∈ N
Ncut,t+1
0 (9.10)

to signify a tuple of non-negative integers of length Ncut,t + 1.

Definition 9.4 (Velocity cutoff function). At stage q + 1 and for 0 ≤ i ≤ imax, we
define

ψ6
i,q+n̄ =

∑
{
"i : max

0≤m≤Ncut,t
im=i

}
Ncut,t∏
m=0

ψ6
m,im ,q+n̄ . (9.11)

For "i as in the sum of (9.11), we shall denote

supp

⎛
⎝Ncut,t∏

m=0

ψm,im ,q+n̄

⎞
⎠ =

Ncut,t⋂
m=0

supp (ψm,im ,q+n̄) =: supp (ψ"i,q+n̄) . (9.12)

This implies that (x, t) ∈ supp (ψi,q+n̄) if and only if there exists "i ∈ N
Ncut,t+1
0 such

that max0≤m≤Ncut,t im = i , and (x, t) ∈ supp (ψ"i,q+n̄).

9.2 Partitions of Unity, Dodging, and Simple Bounds onVelocity Increments

Lemma 9.5 (ψm,im ,q+n̄ - Partition of unity). For all m, we have that

∑
im≥0

ψ6
m,im ,q+n̄ ≡ 1 , ψm,im ,q+n̄ψm,i ′m ,q+n̄ = 0 for |im − i ′m | ≥ 2 . (9.13)

Proof of Lemma 9.5 The proof proceeds inductively in a manner very similar to the
proof of [3, Lemma 6.7]. To show the first part of (9.13), we may use (9.7) and (9.9)
and reorder the summation to obtain∑

im≥0
ψ6
m,im ,q =

∑
im≥0

∑
{ jm : i∗( jm )≤im }

ψ6
jm ,q−1ψ

6
m,im , jm ,q(x, t)
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=
∑
jm≥0

ψ6
jm ,q−1

∑
{im : im≥i∗( jm )}

ψ6
m,im , jm ,q

︸ ︷︷ ︸
≡1 by (9.7)

=
∑
jm≥0

ψ6
jm ,q−1 ≡ 1

where the last ineqaulity follows from the inductive assumption (2.11).
The proof of the second claim is more involved and will be split into cases. Using

the definition in (9.9), we have that

ψm,im ,q+n̄ψm,i ′m ,q+n̄

=
∑

{ jm :im≥i∗( jm )}

∑
{ j ′m :i ′m≥i∗( j ′m)}

ψ6
jm ,q+n̄−1ψ

6
j ′m ,q+n̄−1ψ

6
m,im , jm ,q+n̄ψ

6
m,i ′m , j ′m ,q+n̄ .

Recalling the inductive assumption (2.11), we have that the above sum only includes
pairs of indices jm and j ′m such that | jm − j ′m | ≤ 1. So we may assume that

(x, t) ∈ suppψm,im , jm ,q ∩ suppψm,i ′m , j ′m ,q , (9.14)

where | jm − j ′m | ≤ 1. The first and simplest case is the case jm = j ′m . We then appeal
to (9.8) to deduce that it must be the case that |im − i ′m | ≤ 1 in order for (9.14) to be
true.

Before moving to the second and third cases, we recall from the proof of [3,
Lemma 6.7] that by symmetry it will suffice to prove that ψm,im ,q+n̄ψm,i ′m ,q+n̄ ≡ 0
when i ′m ≤ im −2. We then consider the second case in (9.14), in which j ′m = jm +1.
When im = i∗( jm), we use that i∗( jm) ≤ i∗( jm + 1) to obtain

i ′m ≤ im − 2 = i∗( jm)− 2 < i∗( jm + 1) = i∗( j ′m) ,

and so by Definition 9.2, we have that ψm,i ′m , j ′m ,q+n̄ = 0. Thus we need only now
consider im > i∗( jm) in order to finish the proof of the second case from (9.14). From
(9.14), items (1)–(2) from Lemma 5.5, and Definition 9.2, we have that

hm, jm ,q+n̄(x, t) ∈
[
1

2
�
(m+1)(im−i∗( jm ))
q+n̄ , �

(m+1)(im+1−i∗( jm ))
q+n̄

]
, (9.15a)

hm, jm+1,q+n̄(x, t) ≤ �
(m+1)(i ′m+1−i∗( jm+1))
q+n̄ . (9.15b)

Note that from the definition of hm, jm ,q+n̄ in (9.4), we have that

�
(m+1)(i∗( jm+1)−i∗( jm ))
q+n̄ hm, jm+1,q+n̄ = hm, jm ,q+n̄ .

Then, since i ′m ≤ im − 2, from (9.15b) we have that

�
−(m+1)(im−i∗( jm ))
q+n̄ hm, jm ,q+n̄ = �

−(m+1)(im−i∗( jm))
q+n̄ hm, jm+1,q+n̄

�
(m+1)(i∗( jm+1)−i∗( jm ))
q+n̄
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≤ �
−(m+1)(im−i∗( jm))
q+n̄ �

(m+1)(i ′m+1−i∗( jm+1))
q+n̄

�
(m+1)(i∗( jm+1)−i∗( jm ))
q+n̄

= �
(m+1)(i ′m+1−im )
q+n̄

≤ �
−(m+1)
q+n̄ .

Since m ≥ 0, the above estimate contradicts the lower bound on hm, jm ,q+n̄ in (9.15a)
because �−1

q+n̄ � 1/2 for a sufficiently large.
We move to the third and final case, j ′m = jm − 1. As before, if im = i∗( jm), then

since i∗( jm) ≤ i∗( jm − 1)+ 1, we have that

i ′m ≤ im − 2 = i∗( jm)− 2 ≤ i∗( jm − 1)− 1 < i∗( jm − 1) = i∗( j ′m) ,

which by Definition 9.2 implies that ψm,i ′m , j ′m ,q+n̄ = 0, and there is nothing to prove.
Thus, we only must consider the case im > i∗( jm). Using the definition (9.4) we have
that

hm, jm ,q+n̄ = �
(m+1)(i∗( jm−1)−i∗( jm))
q+n̄ hm, jm−1,q+n̄ .

On the other hand, for i ′m ≤ im − 2 we have from (9.15b) that

hm, jm−1,q+n̄ ≤ �
(m+1)(i ′m+1−i∗( jm−1))
q+n̄ ≤ �

(m+1)(im−1−i∗( jm−1))
q+n̄ .

Therefore, combining the above two displays and the inequality−i∗( jm) ≥ −i∗( jm−
1)− 1, we obtain the bound

�
−(m+1)(im−i∗( jm ))
q+n̄ hm, jm ,q+n̄ ≤ �

−(m+1)(im−i∗( jm ))
q+n̄ �

(m+1)(i∗( jm−1)−i∗( jm ))
q+n̄

�
(m+1)(im−1−i∗( jm−1))
q+n̄

= �
−(m+1)
q+n̄ ,

As before, since m ≥ 0 this produces a contradiction with the lower bound on
hm, jm ,q+n̄ given in (9.15a), since �−1

q+n̄ � 1/2. ��

Lemma 9.6 (ψi,q+n̄ - Partition of unity).We have that

∑
i≥0

ψ6
i,q+n̄ ≡ 1 , ψi,q+n̄ψi ′,q+n̄ ≡ 0 for |i − i ′| ≥ 2 . (9.16)

Proof of Lemma 9.6 To prove the first claim for q+ n̄ ≥ 1, let us introduce the notation

�i =
{
"i = (i0, ..., iNcut,t ) : max

0≤m≤Ncut,t
im = i .

}
(9.17)
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Then

ψ6
i,q+n̄ =

∑
"i∈�i

Ncut,t∏
m=0

ψ6
m,im ,q+n̄ ,

and thus

∑
i≥0

ψ6
i,q =

∑
i≥0

∑
"i∈�i

Ncut,t∏
m=0

ψ6
m,im ,q =

∑
"i∈NNcut,t+1

0

⎛
⎝Ncut,t∏

m=0

ψ6
m,im ,q

⎞
⎠

=
Ncut,t∏
m=0

⎛
⎝∑

im≥0
ψ6
m,im ,q

⎞
⎠ =

Ncut,t∏
m=0

1 = 1

after using (9.13).
To prove the second claim, assume towards a contradiction that there exists |i−i ′| ≥

2 such that ψi,qψi ′,q ≥ 0. Then

0 �= ψ6
i,q+n̄ψ

6
i ′,q+n̄ =

∑
"i∈�i

∑
"i ′∈�i ′

Ncut,t∏
m=0

ψ6
m,im ,q+n̄ψ

6
m,i ′m ,q+n̄ . (9.18)

In order for (9.18) to be non-vanishing, by (9.13), there must exist "i = (i0, ..., iNcut,t ) ∈
�i and "i ′ = (i ′0, ..., i ′Ncut,t

) ∈ �i ′ such that |im − i ′m | ≤ 1 for all 0 ≤ m ≤ Ncut,t . By

the definition of i and i ′, there exist m∗ and m′∗ such that

im∗ = max
m

im = i, i ′m′∗ = max
m

i ′m = i ′.

But then

i = im∗ ≤ i ′m∗ + 1 ≤ i ′m′∗ + 1 = i ′ + 1 , i ′ = i ′m′∗ ≤ im′∗ + 1 ≤ im∗ + 1 = i + 1,

implying that |i − i ′| ≤ 1, a contradiction. ��

Lemma 9.7 (Lowerorderderivativeboundson ŵq+n̄). If (x, t) ∈ supp (ψm,im , jm ,q+n̄)

then

hm, jm ,q+n̄ ≤ �
(m+1)(im+1−i∗( jm))
q+n̄ . (9.19)

Moreover, if im > i∗( jm) we have

hm, jm ,q+n̄ ≥ (1/2)�
(m+1)(im−i∗( jm ))
q+n̄ (9.20)
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on the support of ψm,im , jm ,q+n̄ . As a consequence, we have that for all 0 ≤ m,M ≤
Ncut,t and 0 ≤ N ≤ Ncut,x,∥∥∥DN Dm

t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψm,im ,q+n̄ )

≤ δ
1/2
q+n̄r

−1/3
q �

im+1
q+n̄ (λq+n̄�q+n̄)

N (τ−1
q+n̄−1�

im+3
q+n̄ )m

(9.21a)∥∥∥DN DM
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄ )

≤ δ
1/2
q+n̄r

−1/3
q �i+1

q+n̄(λq+n̄�q+n̄)
N (τ−1

q+n̄−1�
i+3
q+n̄)

M .

(9.21b)

Proof of Lemma 9.7 Estimates (9.19) and (9.20) follow directly from the definitions of
γ̃m,q+n̄ and γm,q+n̄ in Lemma 5.5 and the definition of hm, jm ,q+n̄ in (9.4). In order to
prove (9.21a), we note that for (x, t) ∈ supp (ψm,im ,q+n̄), by (9.9) theremust exist a jm
with i∗( jm) ≤ im such that (x, t) ∈ supp (ψm,im , jm ,q+n̄). Using (9.19), we conclude
that ∥∥∥DN Dm

t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψm,im , jm ,q+n̄)

≤ δ
1/2
q+n̄r

−1/3
q �

im+1
q+n̄

(
λq+n̄�q+n̄

)N
(
τ−1
q+n̄−1�

im+3
q+n̄

)m
(9.22)

which completes the proof of (9.21a). The proof of (9.21b) follows from the fact that
we have employed the maximum over m of im to define ψi,q+n̄ in (9.4). ��
Corollary 9.8 (Higher order derivative bounds on ŵq+n̄). For N + M ≤ 2Nfin and
i ≥ 0, we have the bound∥∥∥DN DM

t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄)

≤ �i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

NM
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

(9.23)

Proof of Corollary 9.8 When 0 ≤ N ≤ Ncut,x and 0 ≤ M ≤ Ncut,t ≤ Nind,t, the desired
bound was already established in (9.21b). For the remaining cases in which either
N > Ncut,x or M > Ncut,t , note that if 0 ≤ m ≤ Ncut,t and (x, t) ∈ suppψm,im ,q+n̄ ,
there exists jm ≥ 0 with i∗( jm) ≤ im such that (x, t) ∈ suppψ jm ,q+n̄−1. Thus, we
may appeal to (6.38b), which gives that for N + M ≤ 2Nfin,∣∣∣DN DM

t,q+n̄−1ŵq+n̄(x, t)
∣∣∣

� �
C∞/2+16
q r−1

q (λq+n̄�q+n̄−1)
NM

(
M,Nind,t, �

jm−1
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

Since i∗( jm) ≤ im implies � jm
q+n̄−1 ≤ �

im
q+n̄ , we deduce that for N + M ≤ 2Nfin,

∥∥∥DN DM
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψm,im ,q+n̄)

� �
C∞/2+16
q r−1

q (λq+n̄�q+n̄−1)
NM

(
M,Nind,t, �

im
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
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≤ �
im+1
q+n̄ δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

NM
(
M,Nind,t, �

im+3
q+n̄ τ−1

q+n̄−1,T
−1
q+n̄−1�q+n̄−1

)

after using that either N > Ncut,x or M > Ncut,t , the parameter inequality (11.14b),
and a large choice of a to absorb the implicit constant in the spare factor of �q+n̄ .
The desired estimate in (9.23) then follows from taking the maximum over m from
Definition 9.4. ��

9.3 Pure Spatial uerivatives

In this section we prove that the cutoff functionsψi,q+n̄ satisfy sharp spatial derivative
estimates which are consistent with (2.14) for q ′ = q + n̄.

Lemma 9.9 (Spatial derivatives for the cutoffs). Fix q+ n̄ ≥ 1, 0 ≤ m ≤ Ncut,t, and
im ≥ 0. For all jm ≥ 0 such that im ≥ i∗( jm), all i ≥ 0, and all N ≤ Nfin, we have

1supp (ψ jm ,q+n̄−1)

|DNψm,im , jm ,q+n̄|
ψ

1−N/Nfin
m,im , jm ,q+n̄

� (λq+n̄�q+n̄)
N , (9.24a)

|DNψi,q+n̄|
ψ

1−N/Nfin
i,q+n̄

� (λq+n̄�q+n̄)
N . (9.24b)

Proof of Lemma 9.9 Step 1: proof of (9.24a).We distinguish two cases. The first case
is when ψ = γ̃m,q , or ψ = γm,q and we have the lower bound

h2m, jm ,q+n̄�
−2(im−i∗( jm ))(m+1)
q+n̄ ≥ 1

4
�
2(m+1)
q+n̄ , (9.25)

so that (5.18) applies. The goal is then to apply [3, Lemma A.5] to the function
ψ = γ̃m,q or ψ = γm,q with the choices �ψ = �m+1

q+n̄ , � = �
(m+1)(im−i∗( jm ))
q+n̄ , and

h = h2m, jm ,q+n̄ . The assumption in [3, equation (A.24)] holds by (5.16) or (5.18) for all

N ≤ Nfin, and so we need to obtain bounds on the derivatives of h2m, jm ,q+n̄ which are
consistent with assumption in [3, equation (A.25)] of [3, Lemma A.5]. For B ≤ Nfin,
the Leibniz rule gives

∣∣∣DBh2m, jm ,q+n̄

∣∣∣
� (λq+n̄�q+n̄)

B
B∑

B′=0

Ncut,x∑
n=0

�
−i∗( jm )
q+n̄ (τ−1

q+n̄−1�
i∗( jm )+2
q+n̄ )−m

(λq+n̄�q+n̄)
−n−B′δ−1/2

q+n̄ r
1/3
q |Dn+B′Dm

t,q+n̄−1ŵq+n̄ |
× �

−i∗( jm )
q+n̄ (τ−1

q+n̄−1�
i∗( jm )+2
q+n̄ )−m (λq+n̄�q+n̄)

−n−B+B′δ−1/2
q+n̄ r

1/3
q |Dn+B−B′Dm

t,q+n̄−1ŵq+n̄ | .
(9.26)
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For the terms with L ∈ {n + B ′, n + B − B ′} ≤ Ncut,x, we may appeal to appeal
to estimate (9.19), which gives

�
−i∗( jm )
q+n̄ (τ−1

q+n̄−1�
i∗( jm )+2
q+n̄ )−m (λq+n̄�q+n̄)

−L δ
−1/2
q+n̄ r

1/3
q

∥∥∥DL Dm
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψm,im , jm ,q+n̄ )

≤ �
(m+1)(im+1−i∗( jm ))
q+n̄ . (9.27)

On the other hand, for Ncut,x < L ∈ {n + B ′, n + B − B ′} ≤ Ncut,x + B ≤
2Nfin − Nind,t, we may appeal to appeal to (6.38b), and since m ≤ Ncut,t < Nind,t, we
deduce that

�
−i∗( jm )
q+n̄ (τ−1

q+n̄−1�
i∗( jm )+2
q+n̄ )−m (λq+n̄�q+n̄)

−L δ
−1/2
q+n̄ r

1/3
q

∥∥∥DL Dm
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψ jm ,q+n̄−1)

� �
−i∗( jm )(m+1)−2m
q+n̄ τmq+n̄−1(λq+n̄�q+n̄)

−L δ
−1/2
q+n̄ r

1/3
q �

C∞/2+16
q r−1

q (λq+n̄�q+n̄−1)
L

(τ−1
q+n̄−1�

jm−1
q+n̄−1)

m � �
−i∗( jm )(m+1)−2m
q+n̄ δ

−1/2
q+n̄ r

1/3
q �

C∞/2+16
q r−1

q

(
�q+n̄−1

�q+n̄

)L
�
m( jm−1)
q+n̄−1

≤ �
(im+1−i∗( jm ))(m+1)
q+n̄ . (9.28)

In the last inequality we have used that im ≥ i∗( jm) in order to convert �m( jm−1)
q+n̄−1

into �
mim
q+n̄ and (11.14c), which is applicable by the assumption that L > Ncut,x.

Summarizing the bounds (9.26)–(9.28), since n ≤ Ncut,x and Nind,t ≤ Nfin, we arrive
at

1supp (ψ jm ,q+n̄−1ψm,im , jm ,q+n̄)

∣∣∣DBh2m, jm ,q+n̄

∣∣∣ � (λq+n̄�q+n̄)
B�

2(m+1)(im+1−i∗( jm ))
q+n̄

whenever B ≤ Nfin. Thus, the assumption in [3, A.25] holds with Ch =
�
2(m+1)(im+1−i∗( jm))
q+n̄ , λ = λ̃ = λq+n̄�q+n̄ , N∗ = ∞, N = Nfin, M = 0. Note that

with these choices of parameters, we have Ch�
−2
ψ �−2 = 1. We may thus apply [3,

Lemma A.5] and conclude that

1supp (ψ jm ,q+n̄−1)

∣∣DNψm,im , jm ,q+n̄
∣∣

ψ
1−N/Nfin
m,im , jm ,q+n̄

� (λq+n̄�q+n̄)
N

for all N ≤ Nfin, proving (9.24a) in the first case.
Recalling the inequality (9.25), the second case is when ψ = γm,q and

h2m, jm ,q+n̄�
−2(im−i∗( jm ))(m+1)
q+n̄ ≤ 1

4
�
2(m+1)
q+n̄ . (9.29)

However, since γm,q is uniformly equal to 1 when the left hand side of the above

display takes values in
[
1, 1

4�
2(m+1)
q

]
from item (2) in Lemma 5.5, (9.24a) is trivially
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satisfied in this range of values of the left-hand side. Thus the analysis of the second
case reduces to analyzing the subcase when

h2m, jm ,q+n̄�
−2(im−i∗( jm))(m+1)
q+n̄ ≤ 1 . (9.30)

As in the first case, we aim to apply [3, Lemma A.5] with h = h2m, jm ,q , but now with

�ψ = 1 and � = �
(m+1)(im−i∗( jm ))
q+n̄ . From (5.17), the assumption in [3, (A.24)] holds.

Towards estimating derivatives of h, for the terms with L ∈ {n + B ′, n + B − B ′} ≤
Ncut,x, (9.30) gives immediately that

�
−i∗( jm )
q+n̄ (τ−1

q+n̄−1�
i∗( jm)+2
q+n̄ )−m(λq+n̄�q+n̄)

−Lδ
−1/2
q+n̄ r

1/3
q∥∥∥DLDm

t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψm,im , jm ,q+n̄)

≤ �
(m+1)(im−i∗( jm ))
q+n̄ . (9.31)

Conversely, when Ncut,x > L , we may argue as in the estimates which gave (9.28),

except we achieve the slightly improved bound of �(m+1)(im−i∗( jm ))
q+n̄ as above. We then

arrive at

1supp (ψ jm ,q+n̄−1ψm,im , jm ,q+n̄)

∣∣∣DBh2m, jm ,q+n̄

∣∣∣ � �
2(m+1)(im−i∗( jm ))
q+n̄ (λq+n̄�q+n̄)

B

whenever B ≤ Nfin. Thus, the assumption in [3, (A.25)] now holds with the same
choices as before, except now Ch = �

2(m+1)(im−i∗( jm))
q+n̄ , λ = λ̃ = λq+n̄�q+n̄ . Note

that with these new choices of parameters, we still have Ch�−2
ψ �−2 = 1. We may thus

apply [3, Lemma A.5] and conclude that

1supp (ψ jm ,q+n̄−1)

∣∣DNψm,im , jm ,q+n̄
∣∣

ψ
1−N/Nfin
m,im , jm ,q+n̄

� (λq+n̄�q+n̄)
N

for all N ≤ Nfin, proving (9.24a) in the second case.

Step 2: differentiating ψm,im ,q . From the definition (9.9) and the bound (9.24a), we
next estimate derivatives of the mth velocity cutoff function ψm,im ,q and claim that

|DNψm,im ,q+n̄|
ψ

1−N/Nfin
m,im ,q+n̄

� (λq+n̄�q+n̄)
N (9.32)

for all im ≥ 0 and all N ≤ Nfin. We prove (9.32) by induction on N . When N = 0 the
bound trivially holds, which gives the induction base. For the induction step, assume
that (9.32) holds for all N ′ ≤ N−1. By the Leibniz rule from LemmaA.5 with p = 6,
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we obtain

DN (ψ6
m,im ,q+n̄) = 6ψ5

m,im ,q+n̄ D
Nψm,im ,q+n̄ +

∑
{
α :∑6

i=1 αi=N ,
αi<N ∀ i

}
(

N

α1, . . . , α6

)

6∏
i=1

Dαiψm,im ,q+n̄ (9.33)

and thus

DNψm,im ,q+n̄

ψ
1−N/Nfin
m,im ,q+n̄

= DN (ψ6
m,im ,q+n̄)

6ψ6−N/Nfin
m,im ,q+n̄

− 1

6

∑
{
α :∑p

i=1 αi=N ,

αi<N ∀ i
}
(

N

α1, . . . , α6

)

6∏
i=1

Dαiψm,im ,q+n̄

ψ
1−αi /Nfin
m,im ,q+n̄

.

Since αi ≤ N − 1, by the induction assumption (9.32) we obtain

∣∣DNψm,im ,q+n̄
∣∣

ψ
1−N/Nfin
m,im ,q+n̄

�
|DN (ψ6

m,im ,q+n̄)|
ψ

6−N/Nfin
m,im ,q+n̄

+ (λq+n̄�q+n̄)
N . (9.34)

Thus establishing (9.32) for the N th derivative reduces to bounding the first term on
the right side of the above. For this purpose we recall (9.9) and (A.21a) and compute

∣∣∣DN (ψ6
m,im ,q+n̄)

∣∣∣
ψ
6−N/Nfin
m,im ,q+n̄

= 1

ψ
6−N/Nfin
m,im ,q+n̄

∑
{ jm : i∗( jm )≤im }

N∑
K=0

(
N

K

)
DK (ψ6

jm ,q+n̄−1)D
N−K (ψ6

m,im , jm ,q+n̄)

=
ψ
6−K/Nfin
jm ,q+n̄−1ψ

6−(N−K )/Nfin
m,im , jm ,q+n̄

ψ
6−N/Nfin
m,im ,q+n̄

∑
{ jm : i∗( jm )≤im }

N∑
K=0

(
N

K

)

×
∑

α:∑6
i=1 αi=K

(
K

α1, . . . , α6

) 6∏
i=1

Dαiψ jm ,q+n̄−1

ψ
1−αi /Nfin
jm ,q+n̄−1

×
∑

β:∑6
i=1 βi=N−K

(
N − K

β1, . . . , β6

) 6∏
i=1

Dβiψm,im , jm ,q+n̄

ψ
1−βi /Nfin
m,im , jm ,q+n̄

.

Since K , N − K ≤ N , and ψ jm ,q+n̄−1, ψm,im , jm ,q+n̄ ≤ 1, we have by (9.9) that

ψ
6−K/Nfin
jm ,q+n̄−1ψ

6−(N−K )/Nfin
m,im , jm ,q+n̄

ψ
6−N/Nfin
m,im ,q+n̄

≤
ψ
6−N/Nfin
jm ,q+n̄−1ψ

6−N/Nfin
m,im , jm ,q+n̄

ψ
6−N/Nfin
m,im ,q+n̄

≤ 1 .

Then the estimate (9.24a) and the inductive assumption (2.14) conclude the proof of (9.32). In particular,
note that this bound is independent of the value of im .
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Step 3: proof of (9.24b) In order to conclude the proof of the Lemma, we must argue that (9.32) implies
(9.24b). Recalling (9.11), we have that ψ6

i,q+n̄ is given as a sum of products of ψ6
m,im ,q+n̄ , for which

suitable derivative bounds are available due to (9.32). Thus, the proof of (9.24b) is again done by induction
on N , mutatis mutandi to the proof of (9.32). Indeed, we note that ψ6

m,im ,q+n̄ was also given as a sum of
squares of cutoff functions for which derivative bounds were available. The proof of the induction step is
thus again based on the application of the Leibniz rule for ψ6

i,q+n̄ ; in order to avoid redundancy we omit
these details. ��

9.4 Maximal Index Appearing in the Cutoff

Lemma 9.10 (Maximal i index in the definition of ψi,q+n̄). There exists imax =
imax(q+ n̄) ≥ 0, determined by (9.38) below, such that if λ0 is sufficiently large, then

ψi,q+n̄ ≡ 0 for all i > imax , (9.35a)

�
imax
q+n̄ ≤ �

C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q , (9.35b)

imax(q) ≤ C∞ + 12

(b − 1)ε�
. (9.35c)

Proof of Lemma 9.10 Assume i ≥ 0 is such that supp (ψi,q+n̄) �= ∅. We will prove
that

�i
q+n̄ ≤ �

C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q . (9.36)

From (9.11) it follows that for any (x, t) ∈ supp (ψi,q+n̄), there must exist at least
one "i = (i0, . . . , iNcut,t ) such that max

0≤m≤Ncut,t
im = i and ψm,im ,q+n̄(x, t) �= 0 for all

0 ≤ m ≤ Ncut,t . Therefore, in light of (9.9), for each such m there exists a maximal
jm such that i∗( jm) ≤ im , with (x, t) ∈ supp (ψ jm ,q+n̄−1) ∩ supp (ψm,im , jm ,q+n̄). In
particular, this holds for any of the indices m such that im = i . For the remainder of
the proof, we fix such an index 0 ≤ m ≤ Ncut,t .

If we have i = im = i∗( jm) = i∗( jm, q), then using that (x, t) ∈ supp (ψ jm ,q+n̄−1)

and the inductive assumption (2.13), we have that jm ≤ imax(q + n̄ − 1). Now using
(2.13), (11.7j), and the inequalities �i−1

q+n̄ < �
jm
q+n̄−1 ≤ �

imax(q+n̄−1)
q+n̄−1 , we deduce that

�i
q+n̄ ≤ �q+n̄�

imax(q+n̄−1)
q+n̄−1 ≤ �q+n̄�

C∞/2+18
q−1 δ

−1/2
q+n̄−1r

−2/3
q−1 ≤ �

C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q ,

Thus, in this case (9.36) holds.
On the other hand, if i = im ≥ i∗( jm)+ 1, then from (9.20) we have that

|hm, jm ,q+n̄(x, t)| ≥ (1/2)�
(m+1)(im−i∗( jm ))
q+n̄ .

Now from the pigeonhole principle, there exists 0 ≤ n ≤ Ncut,x such that

|DnDm
t,q+n̄−1ŵq+n̄(x, t)|

≥ 1

2Ncut,x
�
(m+1)(im−i∗( jm))
q+n̄ �

i∗( jm)
q+n̄ δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

n(τ−1
q+n̄−1�

i∗( jm )+2
q+n̄ )m
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≥ 1

2Ncut,x
�
im
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

n(τ−1
q+n̄−1�

im+2
q+n̄ )m ,

and we also know that (x, t) ∈ supp (ψ jm ,q+n̄−1). By (6.38b) and the inequality
Ncut,t ≤ Nind,t from (11.15), we know that

|DnDm
t,q+n̄−1ŵq+n̄(x, t)| ≤ �

C∞/2+17
q r−1

q (λq+n̄�q+n̄−1)
n(τ−1

q+n̄−1�
jm−1
q+n̄−1)

m

≤ �
C∞/2+17
q r−1

q (λq+n̄�q+n̄)
n(τ−1

q+n̄−1�
im
q+n̄)

m ,

where in the last inequality we used the assumption that im ≥ i∗( jm) and converted the
�

jm−1
q+n̄−1 into �im

q+n̄ . The proof is now completed, since the previous two inequalities
and im = i imply that

�i
q+n̄ ≤ 2Ncut,xδ

−1/2
q+n̄ r

−2/3
q �

C∞/2+17
q ≤ δ

−1/2
q+n̄ r

−2/3
q �

C∞/2+18
q , (9.37)

where in the last inequality we used (11.9) and a large choice of a to ensure that
�0 ≥ 2Ncut,x.

In view of the above inequality, the value of imax is chosen as

imax(q) = sup{i ′ : �i ′
q+n̄ ≤ �

C∞/2+18
q r−2/3

q δ
−1/2
q+n̄} . (9.38)

With this definition, if i > imax(q+ n̄), then supp (ψi,q+n̄) = ∅. To show that imax(q+
n̄) is bounded independently of q, simple (and brutal) computations give that

log(�
C∞/2+18
q δ

−1/2
q+n̄ r

−2/3
q )

log(�q+n̄)
≤ C∞ + 12

(b − 1)ε�
,

verifying that (9.35c) holds. ��

9.5 Mixed Derivative Estimates

Wewill use the notation Dq+n̄ = ŵq+n̄ ·∇ for the directional derivative in the direction
of ŵq+n̄ . With this notation we have Dt,q+n̄ = Dt,q+n̄−1 + Dq+n̄ . Next, we recall
from [3, equations (6.54)-(6.55)] that

DK
q+n̄ =

K∑
j=1

f j,K D j , (9.39)

where

f j,K =
∑

{γ∈NK : |γ |=K− j}
c j,K ,γ

K∏
�=1

Dγ�ŵq+n̄ . (9.40)
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The c j,K ,γ ’s are explicitly computable coefficients that depend only on K , j , and γ .
With the notation in (9.40) we have the following bounds.

Lemma 9.11 (Bounds for DK
q+n̄). For q + n̄ ≥ 1 and 1 ≤ K ≤ 2Nfin, the functions

{ f j,K }Kj=1 defined in (9.40) obey the estimate

∥∥Da f j,K
∥∥
L∞(suppψi,q+n̄)

� (�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K (λq+n̄�q+n̄)

a+K− j (9.41)

for any a ≤ 2Nfin − K + j , and any 0 ≤ i ≤ imax(q + n̄).

Proof of Lemma 9.11 Note that no material derivative appears in (9.40), and thus to
establish (9.41) we appeal to Corollary 9.8 with M = 0 and (6.38b). From the product
rule we obtain that

∥∥Da f j
∥∥
L∞(suppψi,q+n̄ )

�
∑

{γ∈NK : |γ |=K− j}

∑
{α∈Nk : |α|=a}

K∏
�=1

∥∥Dα�+γ� ŵq+n̄
∥∥
L∞(suppψi,q+n̄ )

�
∑

{γ∈NK : |γ |=K− j}

∑
{α∈Nk : |α|=a}

K∏
�=1

�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

α�+γ�

� (�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K (λq+n̄�q+n̄)

a+K− j

since |γ | = K − j . ��
Lemma 9.12 (Mixed derivatives for ŵq+n̄). For q + n̄ ≥ 1 and 0 ≤ i ≤ imax, we
have that ∥∥∥DN DK

q+n̄ D
M
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄)

� (�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄�q+n̄)

N+K

M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
� (�i+1

q+n̄δ
1/2
q+n̄r

−1/3
q )(λq+n̄�q+n̄)

N (�i−5
q+n̄τ

−1
q+n̄)

K

M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)

holds for 0 ≤ K + N + M ≤ 2Nfin.

Proof of Lemma 9.12 The second estimate in the Lemma follows from the parameter
inequality (11.7b). In order to prove the first estimate, we let 0 ≤ a ≤ N and 1 ≤ j ≤
K . From estimate (9.23), we obtain that

∥∥∥DN−a+ j DM
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄)

� �i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

N−a+ j

×M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
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for N − a+ j +M ≤ Nfin, which may be combined with (9.39)–(9.41) to obtain that

∥∥∥DN DK
q+n̄ D

M
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄)

�
N∑

a=0

K∑
j=1

∥∥Da f j,K
∥∥
L∞(suppψi,q+n̄)

∥∥∥DN−a+ j DM
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψi,q+n̄)

� (�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄�q+n̄)

N+K

M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)

holds for N + M + K ≤ 2Nfin, concluding the proof of the lemma. ��

Lemma 9.13 (More mixed derivatives for ŵq+n̄ and derivatives for ûq+n̄). For
q + n̄ ≥ 1, k ≥ 1, α, β ∈ N

k with |α| = K, |β| = M, and K + M ≤ 3Nfin/2 + 1, we
have

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄−1

)
ŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

� �i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
.

(9.42)

Next, we have that

∥∥∥∥∥DN
( k∏
i=1

Dαi
q+n̄ D

βi
t,q+n̄−1

)
ŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

� (�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q )K+1(λq+n̄�q+n̄)

N+K

M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
(9.43a)

� �i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

N (�i−5
q+n̄τ

−1
q+n̄)

K

M
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
(9.43b)

holds for all 0 ≤ K + M + N ≤ 3Nfin/2+ 1. Lastly, we have the estimate

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄

)
Dûq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

� τ−1
q+n̄�

i−5
q+n̄(λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i−5
q+n̄τ

−1
q+n̄, �q+n̄−1T

−1
q+n̄−1

)
(9.44)
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for all K + M ≤ 3Nfin/2, the estimate

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄

)
ûq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

� �i+1
q+n̄δ

1/2
q+n̄r

−1/3
q λ2q+n̄(λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i−5
q+n̄τ

−1
q+n̄, �q+n̄−1T

−1
q+n̄−1

)
(9.45)

for all K + M ≤ 3Nfin/2+ 1, and the estimate∥∥∥DK ∂Mt ûq+n̄

∥∥∥∞ ≤ λ
1/2
q+n̄(λq+n̄�q+n̄)

KT−M
q+n̄ (9.46)

for all K + M ≤ 2Nfin.

Proof of Lemma 9.13 We note that (9.43b) follows directly from (9.43a) by appealing
to (11.7b). We first show that (9.42) holds, then establish (9.43a), and lastly, prove the
bounds (9.44)–(9.46).

Proof of (9.42). The statement is proven by induction on k. For k = 1 the estimate
holds for K + M ≤ 2Nfin from Corollary 9.8. For the induction step, assume that
(9.42) holds for any k′ ≤ k − 1. We denote

Pk′ =
( k′∏
i=1

Dαi Dβi
t,q+n̄−1

)
ŵq+n̄ (9.47)

and write

( k∏
i=1

Dαi Dβi
t,q+n̄−1

)
ŵq+n̄

= (Dαk Dβk
t,q+n̄−1)(D

αk−1Dβk−1
t,q+n̄−1)Pk−2

= (Dαk+αk−1Dβk+βk−1
t,q+n̄−1)Pk−2 + Dαk

[
Dβk
t,q+n̄−1, D

αk−1
]
Dβk−1
t,q+n̄−1Pk−2 . (9.48)

The first term in (9.48) already obeys the correct bound, since we know that (9.42)
holds for k′ = k − 1. In order to treat the second term on the right side of (9.48), we
use [3, Lemma A.12] to write the commutator as23

Dαk
[
Dβk
t,q+n̄−1, D

αk−1
]
Dβk−1
t,q+n̄−1Pk−2

= Dαk
∑

1≤|γ |≤βk

βk !
γ !(βk − |γ |)!

(
αk−1∏
�=1

(adDt,q+n̄−1)
γ�(D)

)
Dβk+βk−1−|γ |
t,q+n̄−1 Pk−2 .

(9.49)

23 Following [3, subsection A.7], we are using the following notation for iterated commutators. First,
(adDt )

0(D) = D denotes a spatial derivative, i.e. a zeroth order commutator of Dt and D. Then for k ≥ 1,
we inductively set (adDt )

k (D) = [Dt , (adDt )
k−1(D)].
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From [3, Lemma A.13] and the Leibniz rule we claim that one may expand

αk−1∏
�=1

(adDt,q+n̄−1)
γ�(D) =

αk−1∑
j=1

g j D
j (9.50)

for some explicit functions g j which obey the estimate

∥∥Dag j
∥∥
L∞(suppψi,q )

� (λq+n̄−1�q+n̄−1)
a+αk−1− j

M
(
|γ |,Nind,t, �

i+1
q+n̄τ

−1
q+n̄−1, �

−1
q+n̄−1T

−1
q+n̄−1

)
(9.51)

for all a such that a + αk−1 − j + |γ | ≤ 3Nfin/2. The claim (9.51) requires a proof,
which we sketch next. Using the definition (9.9) and the inductive estimate (2.30) at
level q ′ = q + n̄ − 1 and with k = 1, we have that∥∥∥DaDb

t,q+n̄−1Dûq+n̄−1

∥∥∥
L∞(suppψm,im ,q+n̄)

�
∑

{ jm : � jm
q+n̄−1≤�im

q+n̄}

∥∥∥DaDb
t,q+n̄−1Dûq+n̄−1

∥∥∥
L∞(suppψ jm ,q+n̄−1)

�
∑

{ jm : � jm
q+n̄−1≤�im

q+n̄}
τ−1
q+n̄−1�

jm+1
q+n̄−1(λq+n̄−1�q+n̄−1)

a

M
(
b,Nind,t, �

jm+1
q+n̄−1τ

−1
q+n̄−1, �

−1
q+n̄−1T

−1
q+n̄−1

)
� (λq+n̄−1�q+n̄−1)

aM
(
b + 1,Nind,t, �

im+1
q+n̄ τ−1

q+n̄−1, �
−1
q+n̄−1T

−1
q+n̄−1

)
for any 0 ≤ m ≤ Ncut,t and for all a+ b ≤ 3Nfin/2. Thus, from the definition (9.11) we
deduce that∥∥∥DaDb

t,q+n̄−1Dûq+n̄−1

∥∥∥
L∞(suppψi,q+n̄)

� (λq+n̄−1�q+n̄−1)
aM

(
b + 1,Nind,t, �

im+1
q+n̄ τ−1

q+n̄−1, �
−1
q+n̄−1T

−1
q+n̄−1

)
(9.52)

for all a+b ≤ 3Nfin/2. When combined with the formula in [3, equation (A.49)], which
allows us to write

(adDt,q+n̄−1)
γ (D) = fγ,q+n̄−1 · ∇ (9.53)

for an explicit function fγ,q+n̄−1 which is defined in terms of ûq+n̄−1, estimate (9.52)
and the Leibniz rule gives the estimate

∥∥Da fγ,q+n̄−1
∥∥
L∞(suppψi,q )

� (λq+n̄−1�q+n̄−1)
a

M
(
γ,Nind,t, �

i+1
q+n̄τ

−1
q+n̄−1, �

−1
q+n̄−1T

−1
q+n̄−1

)
(9.54)
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for all a + γ ≤ 3Nfin/2. In order to conclude the proof of (9.50)–(9.51), we use (9.53)
to write

αk−1∏
�=1

(adDt,q+n̄−1)
γ�(D) =

αk−1∏
�=1

(
fγ�,q+n̄−1 · ∇

) = αk−1∑
j=1

g j D
j ,

and now the claimed estimate for g j follows from the previously established bound
(9.54) for the fγ�,q−1’s and their derivatives and the Leibniz rule.

With (9.50)–(9.51) and (9.42) with k′ = k − 1 in hand, we return to (9.49) and
obtain

∥∥∥Dαk
[
D
βk
t,q+n̄−1, D

αk−1
]
D
βk−1
t,q+n̄−1Pk−2

∥∥∥
L∞(suppψi,q+n̄ )

�
αk−1∑
j=1

∑
1≤|γ |≤βk

∥∥∥Dαk
(
g j D j D

βk+βk−1−|γ |
t,q+n̄−1 Pk−2

)∥∥∥
L∞(suppψi,q+n̄ )

�
αk−1∑
j=1

∑
1≤|γ |≤βk

αk∑
a′=0

∥∥∥Dαk−a′g j
∥∥∥
L∞(suppψi,q+n̄ )

∥∥∥Da′+ j D
βk+βk−1−|γ |
t,q+n̄−1 Pk−2

∥∥∥
L∞(suppψi,q+n̄ )

�
αk−1∑
j=1

βk∑
|γ |=1

αk∑
a′=0

�i+1
q+n̄δ

1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

αk−a′+αk−1− j

M
(
|γ |,Nind,t, �

i+1
q+n̄τ

−1
q+n̄−1, �

−1
q+n̄−1T

−1
q+n̄−1

)
× (λq+n̄�q+n̄)

a′+ j+K−αk−1−αk

M
(
M − |γ |,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
� �i+1

q+n̄δ
1/2
q+n̄r

−1/3
q (λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
(9.55)

for K + M ≤ 3Nfin/2+ 1. The +1 in the range of derivatives is simply a consequence
of the fact that the summand in the third line of the above display starts with j ≥ 1
and with |γ | ≥ 1, so that only 3Nfin/2 derivatives may fall on g j , which is the extent of
the bounds from (9.51). This concludes the proof of the inductive step for (9.42).

Proof of (9.43a). This estimate follows from Lemma A.6. Indeed, letting v = f =
ŵq+n̄ , B = Dt,q+n̄−1, � = suppψi,q+n̄ , p = ∞, the previously established bound
(9.42) allows us to verify conditions (A.22)–(A.23) of LemmaA.6 with N∗ = 3Nfin/2+
1, Cv = C f = �i+1

q+n̄ δ̂
1/2
q+n̄r

−1/3
q , λv = λ f = λ̃v = λ̃ f = �q+n̄λq+n̄ , Nx = ∞,

μv = μ f = �i+3
q+n̄τ

−1
q+n̄−1, μ̃v = μ̃ f = �q+n̄−1T

−1
q+n̄−1, and Nt = Nind,t. The bound

(9.43a) now is a direct consequence of (A.24).

Proof of (9.44). First we consider the bound (9.44), inductively on k. For the case
k = 1 we appeal to estimate (A.26) in LemmaA.6 with the operators A = Dq+n̄, B =
Dt,q+n̄−1 and the functions v = ŵq+n̄ and f = Dûq+n̄ , so that Dn(A + B)m f =
DnDm

t,q+n̄ Dûq+n̄ . As before, the assumption (A.22) holds due to (9.42) with the same
parameter choices. Verifying condition (A.23) is this time more involved, and follows
by rewriting f = Dûq = Dŵq+Dûq−1. Byusing (9.42), and the parameter inequality
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(11.7b), we conveniently obtain

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄−1

)
Dŵq+n̄

∥∥∥∥∥
L∞(suppψi,q+n̄)

� �i−5
q+n̄τ

−1
q+n̄(λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i−5
q+n̄τ

−1
q+n̄, �q+n̄−1T

−1
q+n̄−1

)
(9.56)

for all |α| + |β| = K + M ≤ 3Nfin/2 (note that the maximal number of derivatives is
not 3Nfin/2+1 anymore, but instead it is just 3Nfin/2; the reason is that we are estimating
Dŵq and not ŵq ). On the other hand, from the inductive assumption (2.30) with
q ′ = q + n̄ − 1 we obtain that

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄−1

)
Dûq+n̄−1

∥∥∥∥∥
L∞(suppψ j,q+n̄−1)

� τ−1
q+n̄−1�

j−4
q+n̄−1(λq+n̄−1�q+n̄−1)

K

M
(
M,Nind,t, �

j
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄

)

for K + M ≤ 3Nfin/2. Recalling the definitions (9.9)–(9.11) and the notation (9.12),
we have that (x, t) ∈ supp (ψi,q+n̄) if and only if (x, t) ∈ supp (ψ"i,q+n̄), and so

for every m ∈ {0, . . . ,Ncut,t}, there exists jm with �
jm
q+n̄−1 ≤ �

im
q+n̄ ≤ �i

q+n̄ and
(x, t) ∈ supp (ψ jm ,q+n̄−1). Thus, the above stated estimate and (11.7b) imply that

∥∥∥∥∥
( k∏
i=1

Dαi Dβi
t,q+n̄−1

)
Dûq+n̄−1

∥∥∥∥∥
L∞(suppψi,q+n̄)

� τ−1
q+n̄�

i−10
q+n̄ (λq+n̄−1�q+n̄−1)

KM
(
M,Nind,t, �

i−10
q+n̄ τ

−1
q+n̄,T

−1
q+n̄−1�q+n̄

)
(9.57)

whenever K+M ≤ 3Nfin/2. Combining (9.56) and (9.57), wemay now verify condition
(A.23) for f = Dûq+n̄ , with p = ∞, � = supp (ψi,q+n̄), C f = �i−5

q+n̄τ
−1
q+n̄ , λ f =

λ̃ f = λq+n̄�q+n̄ , Nx = ∞, μ f = �i−5
q+n̄τ

−1
q+n̄, μ̃ f = �q+n̄−1T

−1
q+n̄−1, Nt = Nind,t,

and N∗ = 3Nfin/2. We may thus appeal to (A.26) and obtain that

∥∥∥DK DM
t,q+n̄ Dûq+n̄

∥∥∥
L∞(suppψi,q+n̄)

� �i−5
q+n̄τ

−1
q+n̄(λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i−5
q+n̄τ

−1
q+n̄, �q+n̄−1T

−1
q+n̄−1

)

whenever K + M ≤ 3Nfin/2, concluding the proof of (9.44) for k = 1.
In order to prove (9.44) for a general k, we proceed by induction. Assume the

estimate holds for every k′ ≤ k − 1. Proving (9.44) at level k is done in the same way
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as we have established the induction step (in k) for (9.42). We let

P̃k′ =
⎛
⎝ k′∏

i=1

Dαi Dβi
t,q+n̄

⎞
⎠ Dûq+n̄

and decompose

(
k∏

i=1

Dαi Dβi
t,q+n̄

)
Dûq+n̄ = (Dαk+αk−1Dβk+βk−1

t,q+n̄ )P̃k−2

+ Dαk
[
Dβk
t,q+n̄, D

αk−1
]
Dβk−1
t,q+n̄ P̃k−2 .

Note that the first term is directly bounded using the induction assumption at level
k − 1. To bound the commutator term, similarly to (9.49)–(9.51), we obtain that

Dαk
[
Dβk
t,q+n̄, D

αk−1
]
Dβk−1
t,q+n̄ P̃k−2

= Dαk
∑

1≤|γ |≤βk

βk !
γ !(βk − |γ |)!

⎛
⎝αk−1∑

j=1

g̃ j D
j

⎞
⎠ Dβk+βk−1−|γ |

t,q+n̄ P̃k−2 ,

where one may use the previously established bound (9.44) with k = 1 (instead of
(9.52)) to estimate

∥∥Dag̃ j
∥∥
L∞(suppψi,q+n̄)

The estimate

∥∥∥Dαk
[
Dβk
t,q+n̄, D

αk−1
]
Dβk−1
t,q+n̄ P̃k−2

∥∥∥
L∞(suppψi,q+n̄)

� τ−1
q+n̄�

i−5
q+n̄(λq+n̄�q+n̄)

KM
(
M,Nind,t, �

i−5
q+n̄τ

−1
q+n̄, �q+n̄−1T

−1
q+n̄−1

)
(9.58)

follows similarly to (9.55), from the estimate for g̃ j and the bound (9.44) with k − 1
terms in the product. This concludes the proof of estimate (9.44).

Proof of (9.45). The proof of this bound is nearly identical to that of (9.44), as is
readily seen for k = 1: we just need to replace Dŵq+n̄ estimates with ŵq+n̄ estimates,
and Dûq+n̄−1 bounds with ûq+n̄−1 bounds. For instance, instead of (9.56), we appeal
to (9.43b) and obtain a bound for DK DM

t,q+n̄ŵq+n̄ which is better than (9.56) by
a factor of λq+n̄�q+n̄ , and which holds for K + M ≤ 3Nfin/2 + 1. This estimate
is sharper than required by (9.45). The estimate for DK DM

t,q+n̄ ûq+n̄−1 is obtained
similarly to (9.57), except that instead of appealing to the induction assumption (2.30)
at level q ′ = q + n̄ − 1, we use (2.31a) with q ′ = q + n̄ − 1. The estimates hold
for K + M ≤ 3Nfin/2 + 1. These arguments establish (9.45) with k = 1. The case of
general k ≥ 2 is treated inductively exactly as before, because the commutator term
is bounded in the same way as (9.58), except that K + 1 is replaced by K . To avoid
redundancy, we omit these details.

Proof of (9.46). The proof of this bound is immediate from (6.38b), the definition of
ŵq+n̄ in Lemma 6.7, the inductive assumption (2.31b), and the triangle inequality. ��
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9.6 Material Derivatives

Remark 9.14 (Rewriting ψi,q+n̄). In order to take material derivatives of ψi,q+n̄ , we
need to take advantage of certain cancellations. For this purpose, we introduce the
summed cutoff function

+6
m,i,q+n̄ =

i∑
im=0

ψ6
m,im ,q+n̄ (9.59)

for any given 0 ≤ m ≤ Ncut,t and note via Lemma 9.5 that

D(+6
m,i,q+n̄) = D(ψ6

m,i,q+n̄)1supp (ψm,i+1,q+n̄) . (9.60)

With the notation (9.59) we return to the definition (9.11) and note that

ψ6
i,q+n̄ =

Ncut,t∑
m=0

ψ6
m,i,q+n̄

m−1∏
m′=0

+6
m′,i,q+n̄

Ncut,t∏
m′′=m+1

(+6
m′′,i,q+n̄ − ψ6

m′′,i,q+n̄)

=
Ncut,t∑
m=0

ψ6
m,i,q+n̄

m−1∏
m′=0

+6
m′,i,q+n̄

Ncut,t∏
m′′=m+1

+6
m′′,i−1,q+n̄ . (9.61)

Inspecting (9.61) and using identity (9.60) and the definitions (9.12), (9.59), we see
that

(x, t) ∈ supp (Dt,q+n̄−1ψ
6
i,q+n̄) �⇒ ∃"i ∈ N

Ncut,t+1
0 and ∃0 ≤ m ≤ Ncut,t

with im ∈ {i − 1, i} and max
0≤m′≤Ncut,t

im′ = i

such that (x, t) ∈ supp (ψ"i,q+n̄)

∩ supp (Dt,q+n̄−1ψm,im ,q+n̄)

and im′ ≤ im whenever m < m′ ≤ Ncut,t .

(9.62)

The generalization of characterization (9.62) to higher order material derivatives
DM
t,q+n̄−1 is direct: (x, t) ∈ supp (DM

t,q+n̄−1ψ
6
i,q+n̄) implies that there exists "i ∈

N
Ncut,t+1
0 with maximal index equal to i , such that for every 0 ≤ m ≤ Ncut,t for which

(x, t) ∈ supp (ψ"i,q+n̄) ∩ supp (Dt,q+n̄−1ψm,im ,q+n̄), we have im′ ≤ im ∈ {i − 1, i}
whenever m < m′. Using this characterization, we may prove the following.

Lemma 9.15 (Mixed derivatives for intermediate velocity cutoff functions). Let
q + n̄ ≥ 1, 0 ≤ i ≤ imax(q + n̄), and fix "i ∈ N

Ncut,t+1
0 such thatmax0≤m≤Ncut,t im = i ,

as in the right side of (9.62). Fix 0 ≤ m ≤ Ncut,t such that im ∈ {i − 1, i} and such
that im′ ≤ im for all m ≤ m′ ≤ Ncut,t, again as in the right hand side of (9.62). Lastly,
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fix jm such that i∗( jm) ≤ im. For N , K ,M, k ≥ 0, α, β ∈ N
k such that |α| = K and

|β| = M, we have

1supp (ψ"i,q+n̄)
1supp (ψ jm ,q+n̄−1)

ψ
1−(K+M)/Nfin
m,im , jm ,q+n̄

∣∣∣∣∣
(

k∏
l=1

Dαl Dβl
t,q+n̄−1

)
ψm,im , jm ,q+n̄

∣∣∣∣∣
� (λq+n̄�q+n̄)

KM
(
M,Nind,t − Ncut,x, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
(9.63)

for all K such that 0 ≤ K + M ≤ Nfin. Moreover,

1supp (ψ"i,q+n̄)
1supp (ψ jm ,q+n̄−1)

ψ
1−(N+K+M)/Nfin
m,im , jm ,q+n̄

∣∣∣∣∣DN

(
k∏

l=1

Dαl
q+n̄ D

βl
t,q+n̄−1

)
ψm,im , jm ,q+n̄

∣∣∣∣∣
� (λq+n̄�q+n̄)

N (τ−1
q+n̄�

i−5
q+n̄)

K

M
(
M,Nind,t − Ncut,x, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄−1T

−1
q+n̄−1

)
(9.64)

holds whenever 0 ≤ N + K + M ≤ Nfin.

Proof of Lemma 9.15 Note that for M = 0 estimate (9.63) was already established in
(9.24a). The bound (9.64) with M = 0, i.e., an estimate for the DN DK

q+n̄ψm,im , jm ,q+n̄ ,
holds by appealing to the expansion (9.39)–(9.40), the bound (9.41) (which is appli-
cable since in the context of estimate (9.64) we work on the support of ψ"i,q+n̄), to the
bound (9.63) with M = 0, and to (11.7b). The rest of the proof is dedicated to the case
M ≥ 1. The proofs are very similar to the proof of Lemma 9.9, but we additionally
need to appeal to bounds and arguments from the proof of Lemma 9.13.

Proof of (9.63). We start with the case k = 1 and estimate DK DM
t,q+n̄−1ψm,im , jm ,q+n̄

for K+M ≤ Nfin andM ≥ 1.Wenote that the operator Dt,q+n̄−1 is a scalar differential
operator, and thus the Faa di Bruno argument which was used to bound (9.24a) may be
repeated. As was done there, we recall the definitions (9.5)–(9.6) and split the analysis
in two cases, according to whether (9.25) or (9.30) holds.

Let us first consider the case (9.25). Our goal is to apply [3, Lemma A.5] to the
function ψ = γm,q+n̄ or ψ = γ̃m,q+n̄ , with �ψ = �m+1

q+n̄ , � = �
(m+1)(im−i∗( jm))
q+n̄ ,

h(x, t) = h2m, jm ,q+n̄(x, t), and Dt = Dt,q+n̄−1. The estimate in [3, (A.24)] again
holds by (5.16) and (5.18), and so it remains to obtain a bound on the derivatives
of (hm, jm ,q+n̄(x, t))2 on the set supp (ψ"i,q) ∩ supp (ψ jm ,q−1ψm,im , jm ,q) in order to
satisfy [3, (A.25)]. Similarly to (9.26), for K ′ + M ′ ≤ Nfin the Leibniz rule and
definition (9.4) gives∣∣∣DK ′

DM ′
t,q+n̄−1h

2
m, jm ,q+n̄

∣∣∣
� (λq+n̄�q+n̄)

K ′
(τ−1

q+n̄−1�
2
q+n̄)

M ′
�
−2(m+1)i∗( jm )
q+n̄

×
K ′∑

K ′′=0

M ′∑
M ′′=0

Ncut,x∑
n=0

(τ−1
q+n̄−1�

2
q+n̄)

−m−M ′′
(λq+n̄�q+n̄)

−n−K ′′
δ
−1/2
q+n̄ r

1/3
q
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|Dn+K ′′
Dm+M ′′
t,q+n̄−1ŵq+n̄|

× (τ−1
q+n̄−1�

2
q+n̄)

−m−M ′+M ′′
(λq+n̄�q+n̄)

−n−K ′+K ′′
δ
−1/2
q+n̄ r

1/3
q

|Dn+K ′−K ′′
Dm+M ′−M ′′
t,q+n̄−1 ŵq+n̄| . (9.65)

By the characterization (9.62), for every (x, t) in the support described on the left
side of (9.63) we have that for every m ≤ R ≤ Ncut,t , there exists iR ≤ im and jR
with i∗( jR) ≤ iR , such that (x, t) ∈ suppψ jR ,q+n̄−1ψR,iR , jR ,q+n̄ . As a consequence,
for the terms in the sum (9.65) with L ∈ {n + K ′′, n + K ′ − K ′′} ≤ Ncut,x and
R ∈ {m+M ′′,m+M ′ −M ′′} ≤ Ncut,t , we may appeal to estimate (9.19) which gives
a bound on hR, jR ,q+n̄ , and thus obtain

(τ−1
q+n̄−1�

2
q+n̄)

−R(λq+n̄�q+n̄)
−Lδ

−1/2
q+n̄ r

1/3
q

∥∥∥DLDR
t,q−1ŵq+n̄

∥∥∥
L∞(suppψR,iR , jR ,q+n̄)

≤ �
(R+1)i∗( jR)
q+n̄ �

(R+1)(iR+1−i∗( jR))
q+n̄

≤ �
(R+1)(im+1)
q+n̄ .

On the other hand, if L > Ncut,x, or if R > Ncut,t , then by (6.38b), we have that

(τ−1
q+n̄−1�

2
q+n̄)

−R(λq+n̄�q+n̄)
−Lδ

−1/2
q+n̄ r

1/3
q

∥∥∥DLDR
t,q+n̄−1ŵq+n̄

∥∥∥
L∞(suppψ jm ,q+n̄−1)

≤ �
C∞/2+16
q r−1

q �−L
q+n̄�

L
q+n̄−1�

−2R
q+n̄

M
(
R,Nind,t, �

jm−1
q+n̄−1, τq+n̄−1T

−1
q+n̄−1

)
≤ M

(
R,Nind,t, �

im−1
q+n̄ , τq+n̄−1T

−1
q+n̄−1

)
. (9.66)

since Ncut,x and Ncut,t were taken sufficiently large to obey (11.14) and im ≥ i∗( jm).
Combining (9.65)–(9.66), we have that

1supp (ψ"i,q+n̄)
1supp (ψ jm ,q+n̄−1)

∣∣∣DK ′
DM ′
t,q+n̄−1h

2
m, jm ,q+n̄

∣∣∣
� �

2(m+1)(im−i∗( jm)+1)
q+n̄ (λq+n̄�q+n̄)

K ′M
(
M ′,Nind,t − Ncut,t, τ

−1
q+n̄−1�

i+3
q+n̄,T

−1
q+n̄−1

)
(9.67)

for all K ′ +M ′ ≤ Nfin. The upshot of (9.67) is that the condition in [3, (A.25)] is now
verified, with Ch = �

2(m+1)(im−i∗( jm )+1)
q+n̄ , and λ = λ̃ = �q+n̄λq+n̄ , μ = τ−1

q+n̄−1�
i+3
q+n̄ ,

μ̃ = T−1
q+n̄−1, and Nt = Nind,t − Ncut,t . We obtain from [3, (A.26)] and the fact that

(�ψ�)
−2Ch = 1 that (9.63) holdswhen k = 1 for those (x, t) such that hm, jm ,q+n̄(x, t)

satisfies (9.25). The case when hm, jm ,q+n̄(x, t) satisfies the bound (9.30) is nearly
identical, as was the case in the proof of Lemma 9.9. The only changes are that now
�ψ = 1 (according to (5.17)), and that the constant Ch which we read from the right

side of (9.67) is now improved to �2(m+1)(im−i∗( jm ))
q+n̄ . These two changes offset each
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other, resulting in the same exact bound. Thus, we have shown that (9.63) holds when
k = 1.

The general case k ≥ 1 in (9.63) is obtained via induction on k, in precisely the same
fashion as the proof of estimate (9.42) in Lemma 9.13. At the heart of the matter lies
a commutator bound similar to (9.55), which is proven in precisely the same way by
appealing to the fact that we work on supp (ψ"i,q+n̄) ⊂ supp (ψi,q+n̄), and thus bound
(9.51) is available; in turn, this bound provides sharper space and material estimates
than required in (9.63), completing the proof. In order to avoid redundancy we omit
further details.

Proof of (9.64). This estimate follows from Lemma A.6 in a manner identical to the
proof of [3, (6.77)], and we omit the details. ��
Lemma 9.16 (Mixed spatial and material derivatives for velocity cutoffs). Let q+
n̄ ≥ 1, 0 ≤ i ≤ imax(q+ n̄), N , K ,M, k ≥ 0, and let α, β ∈ N

k be such that |α| = K
and |β| = M. Then we have

1

ψ
1−(K+M)/Nfin
i,q+n̄

∣∣∣∣∣
(

k∏
l=1

Dαl Dβl
t,q+n̄−1

)
ψi,q+n̄

∣∣∣∣∣
� (λq+n̄�q+n̄)

KM
(
M,Nind,t − Ncut,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄+1T

−1
q+n̄−1

)
(9.68)

for K + M ≤ Nfin, and

1

ψ
1−(N+K+M)/Nfin
i,q+n̄

∣∣∣∣∣DN

(
k∏

l=1

Dαl
q+n̄ D

βl
t,q+n̄−1

)
ψi,q+n̄

∣∣∣∣∣
� (λq+n̄�q+n̄)

N (�i−5
q+n̄τ

−1
q+n̄)

K

M
(
M,Nind,t − Ncut,t, �

i+3
q+n̄τ

−1
q+n̄−1, �q+n̄+1T

−1
q+n̄−1

)
(9.69)

holds for N + K + M ≤ Nfin.

Proof of Lemma 9.16 Note that forM = 0 estimate (9.68) holds by (9.24b). The bound
(9.69) holds for M = 0, due to the expansion (9.39)–(9.40), the bound (9.41) on the
support of ψi,q+n̄ , the bound (9.68) with M = 0, and to the parameter inequality
(11.7b). The rest of the proof is dedicated to the cases M ≥ 1 for both bounds.

The argument is very similar to the proof of Lemma 9.9 and so we only emphasize
themain differences.We start with the proof of (9.68).We claim that in a the sameway
that (9.24a) was shown to imply (9.32), one may show that estimate (9.63) implies
that for any "i and 0 ≤ m ≤ Ncut,t as on the right side of (9.62) (in particular, as in
Lemma 9.13), we have that

1supp (ψ"i,q+n̄)

ψ
1−(K+M)/Nfin
m,im ,q+n̄

∣∣∣∣∣
(

k∏
l=1

Dαl Dβl
t,q+n̄−1

)
ψm,im ,q+n̄

∣∣∣∣∣
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� (λq+n̄�q+n̄)
KM

(
M,Nind,t − Ncut,x, �

i+3
q+n̄−1τ

−1
q+n̄−1, �q+n̄T

−1
q+n̄−1

)
.

(9.70)

The proof of the above estimate is done by induction on k. For k = 1, the
first step in establishing (9.70) is to use the Leibniz rule and induction on
the number of material derivatives to reduce the problem to an estimate for
ψ
−6+(K+M)/Nfin
m,im ,q+n̄ DK DM

t,q+n̄−1(ψ
6
m,im ,q+n̄); this is achieved in precisely the same way

that (9.34) was proven. The derivatives of ψ6
m,im ,q+n̄ are now bounded via the Leib-

niz rule and the definition (9.9). Indeed, when DK ′
DM ′
t,q+n̄−1 derivatives fall on

ψ6
m,im , jm ,q+n̄ , the required bound is obtained from (9.63), which gives the same upper

bound as the one required by (9.70). On the other hand, if DK−K ′
DM−M ′
t,q+n̄−1 derivatives

fall onψ6
jm ,q+n̄−1, the required estimate is provided by (2.33)with q ′ = q + n̄−1 and i

replaced by jm ; the resulting estimates are strictly better thanwhat is required by (9.70).
This shows that estimate (9.70) holds for k = 1.We then proceed inductively in k ≥ 1,
in the same fashion as the proof of estimate (9.42) in Lemma 9.13; the corresponding
commutator bound is applicable becauseweworkon supp (ψm,im ,q+n̄)∩supp (ψi,q+n̄).
In order to avoid redundancy we omit these details, and conclude the proof of (9.70).

As in the proof of Lemma 9.9, we are now able to show that (9.68) is
a consequence of (9.70). As before, by induction on the number of mate-
rial derivatives and the Leibniz rule we reduce the problem to an estimate for
ψ
−6+(K+M)/Nfin
i,q+n̄

∏k
l=1 D

αl Dβl
t,q+n̄−1(ψ

6
i,q+n̄); see the proof of (9.34) for details. In

order to estimate derivatives of ψ6
i,q+n̄ , we use identities (9.60) and (9.61), which

imply upon applying a differential operator, say Dt,q+n̄−1, that

Dt,q+n̄−1(ψ
6
i,q+n̄)

= Dt,q+n̄−1

⎛
⎝Ncut,t∑

m=0

m−1∏
m′=0

+6
m′,i,q+n̄ · ψ6

m,i,q+n̄ ·
Ncut,t∏

m′′=m+1

+6
m′′,i−1,q+n̄

⎞
⎠

=
Ncut,t∑
m=0

m−1∑
m̄′=0

Dt,q+n̄−1(ψ
6
m̄′,i,q+n̄)

∏
0≤m′≤m−1

m′ �=m̄′

+6
m′,i,q+n̄ · ψ6

m,i,q+n̄

·
Ncut,t∏

m′′=m+1

+6
m′′,i−1,q+n̄

+
Ncut,t∑
m=0

Ncut,t∑
m̄′′=m+1

m−1∏
m′=0

+6
m′,i,q+n̄ · ψ6

m,i,q+n̄

· Dt,q+n̄−1(+
6
m̄′′,i−1,q+n̄)

∏
m+1≤m′′≤Ncut,t

m′′ �=m̄′′

+6
m′′,i−1,q+n̄
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+
Ncut,t∑
m=0

m−1∏
m′=0

+6
m′,i,q+n̄ · Dt,q+n̄−1(ψ

6
m,i,q+n̄) ·

Ncut,t∏
m′′=m+1

+6
m′′,i−1,q+n̄ .

(9.71)

Higher order material derivatives ofψ6
i,q+n̄ , andmixtures of space andmaterial deriva-

tives are obtained similarly, by an application of the Leibniz rule. Equality (9.71) in
particular justifies why we have only proven (9.70) for "i and 0 ≤ m ≤ Ncut,t as on the
right side of (9.62)! With (9.70) and (9.71) in hand, we now repeat the argument from
the proof of Lemma 9.9 (see the two displays below (9.34)) and conclude that (9.68)
holds.

In order to conclude the proof of the Lemma, it remains to establish (9.69). This
bound follows now directly from (9.68) and an application of Lemma A.6 (to be more
precise, we need to use the proof of this Lemma), in precisely the same way that
(9.63) was shown earlier to imply (9.64). As there are no changes to be made to this
argument, we omit these details. ��

9.7 Lr Size of the Velocity Cutoffs

The purpose of this section is to show that the inductive estimate (2.16) holds with
q ′ = q + n̄.

Lemma 9.17 (Support estimate). For all 0 ≤ i ≤ imax(q + n̄) and 1 ≤ r ≤ ∞, we
have that

∥∥ψi,q+n̄
∥∥
r � �

−3i+Cb
r

q+n̄ (9.72)

where Cb is defined in (2.16) and thus depends only on b.

Proof of Lemma 9.17 First, note that the cases 1 < r ≤ ∞ follow from the case r = 1
and interpolation. Next, observe that if i ≤ 1/3Cb, then (9.72) trivially holds because
0 ≤ ψi,q+n̄ ≤ 1 for all q + n̄ ≥ 1 once a is chosen to be sufficiently large. Thus, we
only consider i such that 1/3Cb < i ≤ imax(q + n̄).

First, we note that Lemma 9.5 implies that the functions+m,i ′,q+n̄ defined in (9.59)
satisfy 0 ≤ +2

m,i ′,q ≤ 1, and thus (9.61) implies that

∥∥ψi,q+n̄
∥∥
1 ≤

Ncut,t∑
m=0

∥∥ψm,i,q+n̄
∥∥
1 . (9.73)

Next, we let j∗(i) = j∗(i, q + n̄) be the maximal index of jm appearing in (9.9). In
particular, recalling also (9.3), we have that

�i−1
q+n̄ < �

j∗(i)
q+n̄−1 ≤ �i

q+n̄ < �
j∗(i)+1
q+n̄−1 . (9.74)
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Using (9.9), in which we simply write j instead of jm , the fact that 0 ≤
ψ2

j,q+n̄−1, ψ
2
m,i, j,q+n̄ ≤ 1, and the inductive assumption (2.16) at level q + n̄− 1, we

may deduce that

∥∥ψm,i,q+n̄
∥∥
1≤
∥∥ψ j∗(i),q+n̄−1

∥∥
1+
∥∥ψ j∗(i)−1,q+n̄−1

∥∥
1+

j∗(i)−2∑
j=0

∥∥ψ j,q+n̄−1ψm,i, j,q+n̄
∥∥
1

≤ �
−3 j∗(i)+Cb
q+n̄−1 + �

−3 j∗(i)+3+Cb
q+n̄−1 +

j∗(i)−2∑
j=0

∣∣supp (ψ j,q+n̄−1ψm,i, j,q+n̄)
∣∣ .

(9.75)

The second term on the right side of (9.75) is estimated using the last inequality in
(9.74) as

�
−3 j∗(i)+3+Cb
q+n̄−1 ≤ �−3i

q+n̄�
6+Cb
q+n̄−1 ≤ �

−3i+Cb−1
q+n̄ �

6+Cb−b(Cb−1)
q+n̄−1 = �

−3i+Cb−1
q+n̄ (9.76)

where in the last equality we have used the definition of Cb in (2.16). Clearly, the first
term on the right side of (9.75) is also bounded by the right side of (9.76). We are left
to estimate the terms appearing in the sum on the right side of (9.75). The key fact is
that for any j ≤ j∗(i)−2 we have that i ≥ i∗( j)+1; this can be seen to hold because
b < 2. Recalling (9.20), for j ≤ j∗(i)− 2 we have that

supp (ψ j,q+n̄−1ψm,i, j ,q+n̄) ⊆
{
(x, t) ∈ supp (ψ j ,q+n̄−1) : h3m, j,q+n̄ ≥ 1

8
�
3(m+1)(i−i∗( j))
q+n̄

}

⊆
{
(x, t) : ψ6

j±,q+n̄−1h
3
m, j ,q+n̄ ≥ 1

8
�
3(m+1)(i−i∗( j))
q+n̄

}
. (9.77)

Here, ψ j±,q+n̄−1 denotes ψ6
j±,q+n̄−1 =

j+1∑
j ′= j−1

ψ6
j ′,q+n̄−1. In the second inclusion

of (9.77) we have appealed to (2.11) at level q + n̄ − 1. By Chebyshev’s inequality
and the definition of hm, j,q+n̄ in (9.4) we deduce that

∣∣supp (ψ j,q+n̄−1ψm,i, j,q+n̄)
∣∣

≤ (2Ncut,x)
3�

−3(m+1)(i−i∗( j))
q+n̄

Ncut,x∑
n=0

�
−3i∗( j)
q+n̄ δ

−3/2
q+n̄ rq(λq+n̄�q+n̄)

−3n

×
(
τ−1
q+n̄−1�

i∗( j)+2
q+n̄

)−3m ∥∥∥ψ j±,q+n̄−1D
nDm

t,q+n̄−1ŵq+n̄

∥∥∥3
3
.

Since in the above display we have that m ≤ Ncut,t ≤ Nind,t from (11.15), we may
combine the above estimate with (6.38a) to deduce that

∣∣supp (ψ j,q+n̄−1ψm,i, j,q+n̄)
∣∣ ≤ 8N4

cut,x�
−3(m+1)(i−i∗( j))
q+n̄ �

−3i∗( j)
q+n̄
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�60
q

(
�

j−1
q+n̄−1�

−i∗( j)−2
q+n̄

)3m
≤ 8N4

cut,x�
60
q �−3i

q+n̄

≤ �
−3i+Cb−1
q+n̄ . (9.78)

We have used here that � j
q+n̄−1 ≤ �

i∗( j)
q+n̄ , thatm ≥ 0, and that Cb ≥ 62 since b ≤ 25/24

from (2.2).
Combining (9.73), (9.75), (9.76), and (9.78) we deduce that

∥∥ψi,q+n̄
∥∥
1 ≤ Ncut,t j∗(i) �−3i+Cb−1

q+1 .

In order to conclude the proof of theLemma,weuse thatNcut,t is a constant independent
of q, and that by (9.75) and (2.12) we have

j∗(i) ≤ i
log�q+n̄

log�q+n̄−1
≤ imax(q + n̄ − 1)b ≤ C∞ + 12

(b − 1)ε�
b .

Thus j∗(i) is also bounded from above by a constant independent of q, and upon taking
a sufficiently large we conclude the proof. ��

9.8 Verifying Eqn. (2.17)

The following lemma verifies the inductive assumption (2.17) at level q ′ = q + n̄.

Lemma 9.18 (Overlapping and timescales). Let q ′′ ∈ {q + 1, . . . , q + n̄}. Assume
that ψi,q+n̄ψi ′′,q ′′ �≡ 0. Then it must be the case that τq+n̄�

−i
q+n̄ ≤ τq ′′�

−i ′′−25
q ′′ .

Proof of Lemma 9.18 We split the proof into two steps. In the first step, we prove the
claim for q ′′ = q+n̄−1, while in the second step we prove the claim for the remaining
cases.

Step1:Wemust prove that ifψi,q+n̄ψi ′′,q+n̄−1 �≡ 0, then τq+n̄�
−i
q+n̄ ≤ τq+n̄−1�

−i ′′−25
q+n̄−1 .

By (9.11), if ψi,q+n̄(t, x) �= 0, then there exists "i = (i0, . . . , iNcut,t ) such that
maxm im = i , and ψm,im ,q+n̄ �= 0 for all 0 ≤ i ≤ Ncut,t . By (9.9) and Definition (9.1),

for each im there exists a corresponding jm such thatψ jm ,q+n̄−1(t, x) �= 0 and�im
q+n̄ ≥

�
jm
q+n̄−1. From (2.11) and (11.7b), it then follows that ifψm,im ,q+n̄ψ j ′,q+n̄−1 �= 0, then

τq+n̄�
−im
q+n̄ ≤ τq+n̄−1�

− j ′−40
q+n̄−1 .

Then (9.11) gives that if ψi,q+n̄ψi ′′,q+n̄−1 �≡ 0,

τq+n̄�
−i
q+n̄ ≤ τq+n̄−1�

−i ′′−30
q+n̄−1 .
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Step 2: Suppose that q ′′ ≤ q+ n̄−2 and thatψi,q+n̄(t, x)ψi ′′,q ′′(t, x) �= 0. Then from
(2.11), there exists j such that ψi,q+n̄(t, x)ψ j,q+n̄−1(t, x)ψi ′′,q ′′(t, x) �= 0. Applying
the result of Step 1 in combination with the inductive assumption (2.17) concludes the
proof. ��

10 * Velocity Increment Potential

In order to analyze certain current errors (see for example [22, Lemma 6.13]), it will be
necessary to write the mollified velocity increment ŵq+n̄ as the iterated Laplacian of
a potential. We first carry out this construction forwq+1 in the first subsection, as well
as construct a pressure increment which dominates the resulting velocity increment
potential and analyze its associated pressure current error. Then in subsection 10.2,
we analyze the mollified velocity increment potential, which completes the bulk of
the work required to verify the inductive assumptions in subsubsection 2.7.6. Finally,
in subsection 10.3 we prove a lemma which allows us to verify (2.21) at level q + n̄
in [22, Lemma 6.8].

10.1 * Defining theVelocity Increment Potential

In this section, we define a potential for wq+1 along with an error term, construct its
pressure increment and the associated current errors, and investigate their properties.

* Lemma 10.1 (Velocity increment potential). For a given w
(l)
q+1, l = p, c, as in

(6.16), there exists a tensor υ(l)q+1 and an error e(l)q+1 such that the following hold.

(i) Let d be as in (xvi). Then w(l)
q+1 can be written in terms of υ(l)q+1 and e(l)q+1 as

w
(p)
q+1 = divdυ(p)q+1 + e(p)q+1

w
(c)
q+1 = divd(rq�

−1
q υ

(c)
q+1)+ rq�

−1
q e(c)q+1 ,

(10.1)

or equivalently notated component-wise as (w(p)
q+1)

• = ∂i1 . . . ∂idυ
(p,•,i1,...,id)
q+1 +

e•q+1.

(ii) υ
(l)
q+1 and e(l)q+1 have the support property

24

supp (υ(l)q+1), supp (e
(l)
q+1)

⊆
⋃

ξ,i, j,k,"l,I , 
supp

(
χi,k,qζq, ,i,k,ξ,"l

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)

∩ B
(
supp� I

(ξ), , 2λ
−1
q+n̄

)
◦	(i,k) . (10.2)

24 For any smooth set� ⊂ T
3, we use�◦	(i,k) to denote the set	

−1
(i,k)(�) ⊂ T

3×R, i.e. the space-time
set whose characteristic function is annihilated by Dt,q .
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(iii) For 0 ≤ k ≤ d, (υ(l)q+1,k)
• := λd−k

q+n̄∂i1 · · · ∂ikυ(l,•,i1,...,id)q+1 ,25 satisfies the esti-
mates∥∥∥ψi,q D

N DM
t,qυ

(l)
q+1,k

∥∥∥
3
≤ �10

q δ
1
2
q+n̄r

− 1
3

q λNq+n̄M
(
M,Nind,t, �

i+14
q τ−1

q , �8
qT

−1
q

)
(10.3a)∥∥∥ψi,q D

N DM
t,qυ

(l)
q+1,k

∥∥∥∞ ≤ �
C∞
2 +10

q r−1
q λNq+n̄M

(
M,Nind,t, �

i+14
q τ−1

q , �8
qT

−1
q

)
(10.3b)

for N ≤ Nfin/4− 2d2 and M ≤ Nfin/5.
(iv) e(l)q+1 satisfies∥∥∥DN DM

t,qe
(l)
q+1

∥∥∥∞ ≤ δ3q+3n̄T
20Nind,t
q+n̄ λ−10

q+n̄λ
N
q+n̄M

(
M,Nind,t, τ

−1
q , �8

qT
−1
q

)
.

(10.4)

for N ≤ Nfin/4− 2d2 and M ≤ Nfin/5.

* Remark 10.2 (Notation for cumulative velocity increment potential). We let
υq+1 := υ

(p)
q+1 + rq�−1

q υ
(c)
q+1 and υ•q+1,k := λd−k

q+n̄∂i1 · · · ∂ikυ(•,i1,...,id)q+1 . As a corol-
lary of Lemma 10.1, we have that

wq+1 = divdυq+1 + eq+1 ,

where υq+1 and eq+1 share the properties (10.2)–(10.4) with υ
(l)
q+1 and e(l)q+1 after

adjusting the inequalities to include an implicit constant.

Proof Recall from subsection 6.1 that wq+1 = wq+1,R + wq+1,ϕ where

wq+1, =
∑

i, j,k,ξ,"l,I
a(ξ), ∇	−1

(i,k)(ρ
 
(ξ)ζ

I , 
ξ ) ◦	(i,k)W

I
(ξ), ◦	(i,k) (10.5)

+
∑

i, j,k,ξ,"l,I
∇
(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)a(ξ), 

)
×
(
∇	(i,k)U

I
(ξ), ◦	(i,k)

)
(10.6)

for  = R, ϕ. To construct υq+1 and eq+1, we will apply Corollary A.21 to the right
hand side terms. We shall adhere to the convention set out in Remark A.18 and treat
each component separately, so that the resulting tensor potential does not have any
special symmetry properties.

Fix values for all indexes i, j, k, ξ, "l, I , set  = R, and consider one component,
indexed by •, of the vector field in (10.5). Set

p = 3,∞ , N∗ = Nfin/4, M∗ = Nfin/5, Mt = Nind,t,

25 If k = 0, we adopt the convention that ∂i1 · · · ∂ik is the identity operator.
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G = a(ξ),R∇	−1
(i,k)(ρ

R
(ξ)ζ

I ,R
ξ ) ◦	(i,k)ξ

•r−1/3
q , 	 = 	(i,k),

π = π��
30
q , rG = rq

CG,p =
∣∣∣supp (ηi, j,k,ξ,"l,Rζ

I ,R
ξ

)∣∣∣1/p δ 1
2
q+n̄�

j+7
q , λ = λq+n̄/2,

λ′ = λq�q ,

ν = τ−1
q �i+13

q , ν′ = T−1
q �8

q ,

� = r
1/3
q �

ξ,λq+n̄ ,
λq+(n̄/2)�q

λq+n̄

,

ϑ̃ = ϑ̃
ξ,λq+n̄ ,

λq+(n̄/2)�q
λq+n̄

,R

C∗,3 = 1 , C∗,∞ = r−2/3
q , μ = λq+n̄/2�q , ϒ = ϒ ′ = � = λq+n̄,

where ϑ̃ is constructed from Proposition 4.5 with D = d2. Then, all assumptions of
Corollary A.21 hold by (11.21a), (6.26d), (6.28a), (2.30), Corollary 5.4, (5.11), and
Proposition 4.5. Then from (A.89), there exist R =: υ(p)(ξ),I ,R and E =: e(p)(ξ),I ,R such
that

a(ξ),R∇	−1
(i,k)(ρ

R
(ξ)ζ

I ,R
ξ ) ◦	(i,k)W

I
(ξ),R ◦	(i,k) = divdυ(p)(ξ),I ,R + e(p)(ξ),I ,R .

From (A.92), we have that

∥∥∥DN DM
t,q∂i1 · · · ∂il υ

(p)
(ξ),I ,R

∥∥∥
3
≤
∥∥∥DN DM

t,q D
lυ

(p)
(ξ),I ,R

∥∥∥
3

�
∣∣∣supp (η(ξ),Rζ

I ,R
ξ

)∣∣∣1/3 δ 1
2
q+n̄�

j+7
q r−1/3

q λl−d+N
q+n̄

M
(
M,Mt , τ

−1
q �i+13

q ,T−1
q �8

q

)
, (10.7a)∥∥∥DN DM

t,q∂i1 · · · ∂il υ
(p)
(ξ),I ,R

∥∥∥∞ ≤
∥∥∥DN DM

t,q D
lυ

(p)
(ξ),I ,R

∥∥∥∞
� δ

1
2
q+n̄�

j+7
q r−1

q λl−d
q+n̄λ

N+α
q+n̄

M
(
M,Mt , τ

−1
q �i+13

q ,T−1
q �8

q

)
� �

(C∞+20)/2
q r−1

q λl−d
q+n̄λ

N+α
q+n̄ M

(
M,Mt , τ

−1
q �i+3

q ,T−1
q

)
, (10.7b)

for 0 ≤ l ≤ d, N + l ≤ Nfin/4 − d2, and M ≤ Nfin/5, where we used (5.29) in the last
inequality. From (A.93), we have that

∥∥∥DN DM
t,qe

(p)
(ξ),I ,R

∥∥∥∞
� δ

1
2
q+n̄�

j+7
q r−1

q

(
λq+n̄/2/λq+n̄

)d
λN+αq+n̄

M
(
M,Mt , τ

−1
q �i+13

q ,T−1
q �8

q

)
. (10.8)
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for N ≤ Nfin/4− d2, and M ≤ Nfin/5. Furthermore, from (A.90) and (7) from Proposi-
tion 4.5, we have that the supports of υ(p)(ξ),I ,R and e(p)(ξ),I ,R are contained in the set on
the right-hand side of (10.2).

We now sum over indexes i, j, k, ξ, "l, I and set

υ
(p)
q+1,R =

∑
i, j,k,ξ,"l,I

υ
(p)
(ξ),I ,R , e(p)q+1,R =

∑
i, j,k,ξ,"l,I

e(p)(ξ),I ,R , (10.9)

which verifies the first equality in (10.1) and (10.2). Using (5.47) to obtain an L∞
bound for the sum and Corollary 5.18 with Hi, j,k,ξ,"l,R = υ

(p)
(ξ),I ,R, θ2 = θ = 1, p =

3, CH = δ
1
2
q+n̄�

7
qr

−1
q , Nx = N∗ = Nfin/4 − d2, the obvious choices for the other

parameters, (10.7a), (10.7b), (10.8), and (11.20b), we have that υ(p)q+1,R and e(p)q+1,R
satisfy

∥∥∥ψi,q D
N DM

t,q∂i1 . . . ∂ik (υ
(p)
q+1,R)

(i1,...,id)
∥∥∥
3

� �10
q δ

1
2
q+n̄r

−1/3
q λk−d

q+n̄λ
N+α
q+n̄ M

(
M,Mt , τ

−1
q �i+14

q ,T−1
q �8

q

)
∥∥∥ψi,q D

N DM
t,q∂i1 . . . ∂ik (υ

(p)
q+1,R)

(i1,...,id)
∥∥∥∞

� �
C∞
2 +10

q r−1
q λk−d

q+n̄λ
N+α
q+n̄ M

(
M,Mt , τ

−1
q �i+14

q ,T−1
q �8

q

)
,∥∥∥DN DM

t,qe
(p)
q+1,R

∥∥∥∞
� δ3q+3n̄T

2Nind,t
q+n̄ λ−10

q+n̄λ
N
q+n̄M

(
M,Mt , τ

−1
q �i+14

q ,T−1
q �8

q

)

for N ≤ Nfin/4 − d2, and M ≤ Nfin/5. The first inequality follows from Lemma (5.17)
and Remark 5.18, and the second and the last inequalities use the support property
noted earlier.

In a similar way, we work on (10.5) with ϕ and (10.6) with R, ϕ and generate
(υ

(p)
q+1,ϕ, e

(p)
q+1,ϕ), (υ

(c)
q+1,R, e

(c)
q+1,R), and (υ

(c)
q+1,ϕ, e

(c)
q+1,ϕ), respectively. Indeed, for

(10.5) with ϕ, we set

G = a(ξ),ϕ∇	−1
(i,k)(ρ

ϕ

(ξ)ζ
I ,ϕ
ξ ) ◦	(i,k)ξ, � = �

ξ,λq+n̄ ,
λq+(n̄/2)�q

λq+n̄
,ϕ
,

ϑ̃ = r−1/3
q ϑ̃

ξ,λq+n̄ ,
λq+(n̄/2)�q

λq+n̄
,ϕ

where ϑ̃ is constructed from Proposition 4.6 with D = d2, and choose the rest of
parameters and functions as in the case  = R. The rest of the conclusions follow
analogously to the case  = R, and we omit further details. In the case of (10.6), we
write

(w
(c),I
(ξ), )

• = rq�
−1
q G (� ◦	) ,
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where G and � are defined by

GR = λ−1
q+n̄/2ε•pr∂p

(
a(ξ),R

(
ρR
(ξ)ζ

I ,R
ξ

)
◦	(i,k)

)
∂r	

s
(i,k),

�R = λq+n̄(U
I
(ξ),R)

s, 	 = 	(i,k)

Gϕ = r
1/3
q λ−1

q+n̄/2ε•pr∂p
(
a(ξ),ϕ

(
ρ
ϕ

(ξ)ζ
I ,ϕ
ξ

)
◦	(i,k)

)
∂r	

s
(i,k),

�ϕ = r−1/3
q λq+n̄(U

I
(ξ),ϕ)

s, 	 = 	(i,k) .

Due to the rescaling by rq�−1
q , we may apply Corollary A.21 to (rq�−1

q )−1(w
(c),I
(ξ), )•

with the same choice of parameters as in the case l = p. As a consequence, we
obtain (υ

(c)
q+1, , e

(c)
q+1, ), defined as in (10.9), which enjoy the same properties as

(υ
(p)
q+1,R, e

(p)
q+1,R). Note that from the construction, the velocity increment potential

associated to the correctors satisfies

w
(c)
q+1, = divd(rq�

−1
q υ

(c)
q+1, )+ rq�

−1
q e(c)q+1, .

We may now set

υq+1 =
∑

 =R,ϕ

υ
(p)
q+1, + rq�

−1
q υ

(c)
q+1, =: υ(p)q+1 + rq�

−1
q υ

(c)
q+1

eq+1 =
∑

 =R,ϕ

e(p)q+1, + rq�
−1
q e(c)q+1, =: e(p)q+1 + rq�

−1
q e(c)q+1 .

which leads to (10.2), (10.3a), (10.3b), and (10.4). ��
* Remark 10.3 (Decompositions of potentials into pieces to facilitate pressure cre-
ation). From the proof of Lemma 10.1, the velocity increment potentials υ(l)q+1,k ,
l = p, c, k = 0, · · · ,d, have the additional properties listed below.
(i) Using Corollary A.21, (ii), we have that υ(l)q+1,d = λdq+n̄υ

(l)
q+1 can be decomposed

as

υ
(l)
q+1,d = λdq+n̄

∑
i, j,k,ξ,"l,I , 

CH∑
j=0

Hα( j)
(ξ),I , (ρ

β( j)
(ξ),I , ◦	(i,k))

=:
∑

(ξ),I , 
H(ξ),I , ρ(ξ),I , ◦	(i,k) (10.10)

wherewe abuse notation slightly by using (ξ) to include the indices i, j, k, ξ, "l, j
as well as the indices in α( j) or β( j) in the final expression, which take a finite
number of values independent of q.

(ii) Let p = 3 or∞. H(ξ),I , satisfies

suppH(ξ),I , ⊆ supp
(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)

)
, (10.11a)
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∥∥∥∥∥∥
k∏

i=1

Dαi D
βi
t,q H(ξ),I , 

∥∥∥∥∥∥
p

�
∣∣∣supp (ηi, j ,k,ξ,"l, ζ

I , 
ξ

)∣∣∣1/p δ1/2q+n̄�
j+7
q r−1/3

q

× λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
, (10.11b)∣∣∣∣∣∣

k∏
i=1

Dαi D
βi
t,q H(ξ),I , 

∣∣∣∣∣∣ � (π��
30
q )

1/2r−1/3
q λ

|α|
q+n̄/2

M
(
|β|,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
, (10.11c)

for all integer k ≥ 1 and multi-indices α, β ∈ N
k with |α| ≤ Nfin/4 − d2 and

|β| ≤ Nfin/5.
(iii) ρ(ξ),I , is (T/λq+n̄/2�q)

3-periodic and satisfies

suppρ(ξ),I , ⊆ supp

(
ϑ̃
ξ,λq+n̄ ,

λq+(n̄/2)�q
λq+n̄

, 

)
(10.12a)

∥∥∥DNρ(ξ),I , 
∥∥∥
L p

� r
2
p− 2

3
q λNq+n̄ (10.12b)

for all N ≤ Nfin/4− d2 and ((ξ), I , ).
These properties of H(ξ),I , and ρ(ξ),I , follow from items (i)–(iv).

From the above properties, we may derive similar formulae and properties for all
of the various velocity increment potentials υ(l)q+1,h defined in item (iii) for 0 ≤ h ≤ d.

Specifically, we have that υ(l)q+1,h can be decomposed using (10.10) and the Leibniz

rule26 as

υ
(l,•,ih+1,··· ,id)
q+1,h = λd−h

q+n̄∂i1 · · · ∂ihυ(l,•,i1,...,id)q+1

= λd−h
q+n̄

∑
"ah ,"bh

C"ah ,"bh
∑

i, j,k,ξ,"l,I , 

CH∑
j=0

∂"ah H
α( j)
(ξ),I , ∂"bh

(
ρ
β( j)
(ξ),I , ◦	(i,k)

)

=:
∑

(ξ),I , ,h′
Hh,h′
(ξ),I , ρ

h,h′
(ξ),I , ◦	(i,k)

=:
∑

(ξ),I , ,h′
ϒ

h,h′
(ξ),I , , (10.13)

26 We use the notation

∂i1 · · · ∂ih ( f g) =
∑

"ah=(a1,...,aA),"bh=(b1,...,bB )

C"ah ,"bh ∂ia1 · · · ∂iaA f ∂ib1
· · · ∂ibA g =

∑
"ah ,"bh

C"ah ,"bh ∂"ah f ∂"bh g ,

where "ah , "bh are multi-indices with A, respectively B distinct components for which the union of all indices
belonging to either "ah or "bh is {i1, . . . , ih}.
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where Hh,h′
(ξ),I , , ρ

h,h′
(ξ),I , , andϒ

h,h′
(ξ),I , satisfy the following, andwe again abuse notation

slightly by letting (ξ) denote all indices i, j, k, ξ, "l, j , as well as those indices needed
for the application of the Faa di Bruno formula from (A.9) to ∂"bh

(
ρ
β( j)
(ξ),I , ◦	(i,k)

)
.

We again have that (ξ) includes i, j, k, ξ, "l, ξ , as well as the a finite, q-independent
number of indices.

(i) Let p = 3 or∞. Hh,h′
(ξ),I , satisfies

suppHh,h′
(ξ),I , ⊆ supp

(
(ρ (ξ)ζ

I , 
ξ ) ◦	(i,k)

)
, (10.14a)∥∥∥∥∥

k∏
i=1

Dαi Dβi
t,q H

h,h′
(ξ),I , 

∥∥∥∥∥
p

�
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣1/p δ1/2q+n̄�
j+7
q r−1/3

q

× λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

(10.14b)∣∣∣∣∣
k∏

i=1

Dαi Dβi
t,q H

h,h′
(ξ),I , 

∣∣∣∣∣ � (π��
30
q )

1/2λ
|α|
q+n̄/2M

(
|β|,Nind,t, τ

−1
q �i+13

q ,T−1
q �8

q

)
,

(10.14c)

for all integer k ≥ 1 and multi-indices α, β ∈ N
k with |α| ≤ Nfin/4 − 2d2 and

|β| ≤ Nfin/5.
(ii) ρ

h,h′
(ξ),I , is (T/λq+n̄/2�q)

3-periodic and satisfies

suppρh,h
′

(ξ),I , ⊆ supp

(
ϑ̃
ξ,λq+n̄ ,

λq+(n̄/2)�q
λq+n̄

, 

)
(10.15a)

∥∥∥DNρ
h,h′
(ξ),I , 

∥∥∥
L p

� r
2
p− 2

3
q λNq+n̄ (10.15b)

for all N ≤ Nfin/4− 2d2 and ((ξ), I , ).
(iii) For p = 3,∞, we have that

∥∥∥ϒh,h′
(ξ),I , 

∥∥∥
p

�
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣1/p δ1/2q+n̄�
j+7
q r

2/p−1
q . (10.16)

The proofs of these properties follows from backwards induction on the index h.
Indeed, the case h = d has already been shown in the beginning of the remark. The
subsequent cases follow from application of the Faa di Bruno formula to (10.10) to
derive (10.13), (10.11a)–(10.12b), Corollary 5.4, and Lemma A.3.

* Lemma 10.4 (Pressure increment). Define υ(l)q+1,k , 0 ≤ k ≤ d, l = p, c, as in

Lemma 10.1. Then there exists a pressure increment συ(l) = σ+
υ(l)

− σ−
υ(l)

associ-

ated to the sum
∑d

k=0 υ
(l)
q+1,k of velocity increment potentials such that the following

properties hold.
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(i) We have that for all k = 0, 1, . . . ,d,

∣∣∣ψi,q D
N DM

t,qυ
(l)
q+1,k

∣∣∣
� (σ+

υ(l)
+ δq+3n̄)

1/2r−1
q (λq+n̄�

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(10.17)

for any 0 ≤ k ≤ d and N ,M ≤ Nfin/5.
(ii) Set

σ±υ := σ±
υ(p)

+ σ±
υ(c)

, συ = σ+υ − σ−υ . (10.18)

Then we have that

∣∣∣ψi,q D
N DM

t,qσ
+
υ

∣∣∣ � (σ+υ + δq+3n̄)(λq+n̄�
1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.19a)∥∥∥ψi,q D

N DM
t,qσ

+
υ

∥∥∥
3/2

≤ �−9
q+n̄δq+2n̄(λq+n̄�

1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.19b)∥∥∥ψi,q D

N DM
t,qσ

+
υ

∥∥∥∞ ≤ �
C∞−9
q+n̄ (λq+n̄�

1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.19c)∥∥∥ψi,q D

N DM
t,qσ

−
υ

∥∥∥
3/2

≤ �−9
q+n̄δq+2n̄(λq+n̄/2�q+n̄/2)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.19d)∥∥∥ψi,q D

N DM
t,qσ

−
υ

∥∥∥∞ ≤ �
C∞−9
q+n̄ (λq+n̄/2�q+n̄/2)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.19e)∣∣∣ψi,q D

N DM
t,qσ

−
υ

∣∣∣ � π��
30
q r

4/3
q (λq+n̄/2�q+n̄/2)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
. (10.19f)

for all N ≤ Nfin/5 and M ≤ Nfin/5− Ncut,t.
(iii) We have that

supp (σ+υ ) ∩ B(ŵq ′′ , λ
−1
q ′′ �q ′′+1) , supp (σ−υ ) ∩ B(ŵq ′, λ

−1
q ′ �q ′+1) = ∅

(10.20)

for q + 1 ≤ q ′′ ≤ q + n̄ − 1 and q + 1 ≤ q ′ ≤ q + n̄/2.
(iv) Define

mσυ (t) =
ˆ t

0

〈
Dt,qσυ

〉
(s) ds . (10.21)
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Then we have that

∣∣∣∣ dM+1

dtM+1mσυ

∣∣∣∣ ≤ (max(1, T ))−1δ2q+3n̄M
(
M,Nind,t, τ

−1
q ,T−1

q+1

)
(10.22)

for 0 ≤ M ≤ 2Nind.

* Remark 10.5 (Pointwise bounds for principal and corrector parts). From (10.1)–
(10.4), (10.17), and (11.21a), we have that

∣∣∣ψi,q D
N DM

t,qw
(p)
q+1

∣∣∣ � (σ+
υ(p)

+ δq+3n̄)
1/2r−1

q (λq+n̄�
1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
, (10.23a)∣∣∣ψi,q D

N DM
t,qw

(c)
q+1

∣∣∣ � (σ+
υ(c)

+ δq+3n̄)
1/2�−1

q (λq+n̄�
1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
(10.23b)

for N ,M ≤ Nfin/5. Note that thanks to the factor rq�−1
q in (10.1), the bound in (10.23b)

has extra gain of rq�−1
q compared to (10.23a). This gain will be useful when we deal

with the divergence corrector stress errors in subsection 8.4 and divergence corrector
current errors in [22, subsection 5.5]. We also record an upgraded version of (10.23),
which states that in the same range of N and M , we have that

∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1w
(p)
q+1

∣∣∣ � (σ+
υ(p)

+ δq+3n̄)
1/2r−1

q (λq+n̄�
1/10
q+n̄)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1�

i−5
q+n̄−1,T

−1
q+n̄−1�

−1
q+n̄

)
,

(10.24a)∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1w
(c)
q+1

∣∣∣ � (σ+
υ(c)

+ δq+3n̄)
1/2�−1

q (λq+n̄�
1/10
q+n̄)

N

×M
(
M,Nind,t, τ

−1
q+n̄−1�

i−5
q+n̄−1,T

−1
q+n̄−1�

−1
q+n̄

)
.

(10.24b)

The proof of (10.24) is immediate from Hypothesis 2.17 at level q and Remark 6.3,
which asserts that Hypothesis 2.6 is verified at level q + 1 with q ′ = q + n̄.

Before giving the proof of Lemma 10.4, we record the following lemma, which
investigates the current error generated by the pressure increment συ . The proof of
both lemmas will proceed using Proposition 7.3.

* Lemma 10.6 (Current error from the pressure increment). There exists a current
error φυ generated by συ such that the following hold.

123



19 Page 222 of 271 V. Giri et al.

(i) We have the decomposition and equalities

φυ = φ∗υ︸︷︷︸
nonlocal

+
q+n̄∑

m′=q+n̄/2+1

φm′
υ

︸ ︷︷ ︸
local

(10.25a)

divφυ = Dt,qσυ −mσυ ,

where mσυ is defined as in (10.21).
(ii) For all N ≤ Nfin/5 and M ≤ Nfin/5− Ncut,t − 1 and q + n̄/2+ 1 ≤ m′ ≤ q + n̄,

∣∣∣ψi,q D
N DM

t,qφ
m′
υ

∣∣∣ � �−100
m (πm′

q )
3/2r−1

m (λm�m′)N

M
(
M,Nind,t, τ

−1
q �i+16

q ,T−1
q �9

q

)
. (10.26)

(iii) For all N ≤ 3Nind and M ≤ 3Nind,

∥∥∥DN DM
t,qφ

∗
υ

∥∥∥∞ � δ
3/2
q+3n̄T

2Nind,t
q+n̄ λ−10

q+n̄+2(λq+n̄�q+n̄)
N

M
(
M,Nind,t, τ

−1
q ,T−1

q �9
q

)
. (10.27)

(iv) For all q+1 ≤ q ′ ≤ q+ n̄/2, q+ n̄/2+2 ≤ m ≤ q+ n̄, and q+1 ≤ q ′′ ≤ m−1,
we have the support properties

supp (φq+n̄/2+1
υ ) ∩ B(ŵq ′, λ

−1
q+1�

2
q) = ∅ , supp (φm

υ ) ∩ supp ŵq ′′ = ∅ .
(10.28)

Proofs of Lemma 10.4 and Lemma 10.6 Step 1: Setup and Assumptions
from Proposition 7.3. In order to create a pressure increment which domi-
nates all of the various velocity increment potentials υ(l)q+1,h defined in item (iii), we
shall create pressure increments which dominate each separate piece, and then sum
at the end. We fix all indices (ξ), I , , h, h′ from the formula in (10.13) and apply
Proposition 7.3 with the following choices:

N∗ = Nfin/4− 2d2, M∗ = Nfin/5, Mt = Nind,t, N◦ = M◦ = 3Nind ,

υ̂ = ϒ
h,h′
(ξ),I , , G = Hh,h′

(ξ),I , , ρ = ρ
h,h′
(ξ),I , , π = π��

30
q , K◦ as in

CG,p =
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣1/p � j+7
q δ

1
2
q+n̄r

−1/3
q + λ−10

q+n̄ , K◦ as in item (xv)

Cρ,p = r
2
p− 2

3
q , λ = λq+n̄/2, λ′ = �q , ν = τ−1

q �i+13
q , ν′ = T−1

q �8
q , � = λq+n̄,

rG = rυ̂ = rq , μ = λq+n̄/2�q , � = �
1/10
q , 	 = 	(i,k) , v = ûq , Cv = �

1/2
q ,

μ0 = λq+n̄/2+1, μ1 = λq+n̄/2+3/2, μm = λq+n̄/2+m , μm̄ = λq+n̄+1, δtiny = δq+3n̄ ,
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where μm = λq+n̄/2+m above is defined for 2 ≤ m ≤ m̄. Then we have that (7.54a)–
(7.54d) are verified from (10.14a)–(10.16), (7.55a) holds by definition and by (11.18),
(7.56a)–(7.56c) hold from (2.30), Corollary 5.4, (2.31b), and (11.12), (7.57a) holds
from (11.14a), (7.57b) holds due to (11.14b), (7.57c) holds due to (11.21a), (7.58)
holds from direct computation, and (7.59a)–(7.59c) hold due to (xvi).

Step 2: Part 2 from Proposition 7.3 and proof ofLemma 10.4.
Wenow apply the conclusions fromPart 2 of Proposition 7.3.We first have from (7.60)
and (7.61) the existence of a pressure increment σ

ϒ
h,h′
(ξ),I , 

= σ+
ϒ

h,h′
(ξ),I , 

− σ−
ϒ

h,h′
(ξ),I , 

such

that

∣∣∣DN DM
t,qϒ

h,h′
(ξ),I , 

∣∣∣ � (σ+
υ
h,h′
(ξ),I , 

+ δq+3n̄

)1/2

r−1
q (λq+n̄�

1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
(10.29)

for all N ≤ Nfin/4 − 2d2 and M ≤ Nfin/5. Then using items (ii)–(iii) and (11.15), we
have that

∣∣∣∣DN DM
t,qσ

+
ϒ

h,h′
(ξ),I , 

∣∣∣∣ �
(
σ+
ϒ

h,h′
(ξ),I , 

+ δq+3n̄

)
(λq+n̄�

1/10
q+n̄)

N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
, (10.30a)∥∥∥∥DN DM

t,qσ
+
ϒ

h,h′
(ξ),I , 

∥∥∥∥
3/2

�
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣2/3 �2 j+14
q δq+n̄r

4/3
q

× (λq+n̄�
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
,

(10.30b)∥∥∥∥DN DM
t,qσ

+
ϒ

h,h′
(ξ),I , 

∥∥∥∥
∞

� �C∞+20
q (λq+n̄�

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
,

(10.30c)∥∥∥∥DN DM
t,qσ

−
ϒ

h,h′
(ξ),I , 

∥∥∥∥
3/2

�
∣∣∣supp (ηi, j,k,ξ,"l, ζ I , 

ξ

)∣∣∣2/3 �2 j+14
q δq+n̄r

4/3
q

× (λq+n̄/2�q+n̄/2)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
,

(10.30d)∥∥∥∥DN DM
t,qσ

−
ϒ

h,h′
(ξ),I , 

∥∥∥∥
∞

� �C∞+20
q (λq+n̄/2�q+n̄/2)

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
,

(10.30e)∣∣∣∣DN DM
t,qσ

−
ϒ

h,h′
(ξ),I , 

∣∣∣∣ � π��
30
q r

4/3
q (λq+n̄/2�q+n̄/2)

NM
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
,

(10.30f)
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for all N ≤ Nfin/4− 2d2−Ncut,x and M ≤ Nfin/5−Ncut,t . In (10.30c) and (10.30e), we
used (5.29). Finally, from (7.65), (10.14a), (10.15a), (10.2), and Lemma 6.2, we get
the support properties

supp

(
σ+
ϒ

h,h′
(ξ),I , 

)
⊆ supp

(
ϒ

h,h′
(ξ),I , 

)
⊆ supp

(
χi,k,qζq, ,i,k,ξ,"l

(
ρ (ξ)ζ

I , 
ξ

)
◦	(i,k)

)
∩ B

(
supp� I

(ξ), , 2λ
−1
q+n̄

)
◦	(i,k) ,

supp

(
σ−
ϒ

h,h′
(ξ),I , 

)
∩ B(ŵq ′, λ

−1
q ′ �q ′) ⊆ supp

(
ηi, j,k,ξ,"l, ζ

I , 
ξ

)
∩ B(ŵq ′, λ

−1
q ′ �q ′) = ∅ ,

for q + 1 ≤ q ′ ≤ q + n̄/2.
We now sum over h, h′, (ξ), i, (while recalling from (10.13) that summation

over (ξ) includes summation over i, j, k, ξ, "l, j as well as any indices needed for the
application of the Faa di Bruno formula) and set

σ±υ :=
∑

(ξ),I , ,h′,h
σ±
ϒ

h,h′
(ξ),I , 

.

From (10.29), (10.13), (5.47), and Corollary 5.20 with H = ϒ
h,h′
(ξ),I , and # =

σ+
ϒ

h,h′
(ξ),I , 

+1
suppϒh,h′

(ξ),I , 
δq+3n̄ , we have that (10.17) holds. We have (10.18) from the for-

mula above. In order to verify (10.19a)–(10.19f), we appeal to (10.30a)–(10.30f) and
Corollaries 5.18 and 5.20. Specifically, the L3/2 estimates in (10.19b) and (10.19d) use
(11.7g) and Corollary 5.18 with θ2 = θ = 2, H = σ±

ϒ
h,h′
(ξ),I , 

, and CH = δq+n̄r
4/3
q �14

q .

The L∞ estimates in (10.19c) and (10.19e) follow from (5.47), (11.10a), and Corol-
lary 5.20 and with the same choice of H and # = �

C∞+20
q 1

suppϒh,h′
(ξ),I , 

. Finally, the

pointwise estimates in (10.19a) and (10.19f) follow from Corollary 5.20 in much the
same manner as the L∞ estimates just derived, and we omit further details.

Step 3: Part 3 from Proposition 7.3 and proof of
Lemma 10.6. We now apply the conclusions from Part 3 of Propsition 7.3. From
item (i), there exist current errors φ

ϒ
h,h′
(ξ),I , 

such that we have the decompositions and

equalities

φ
ϒ

h,h′
(ξ),I , 

= φ∗
ϒ

h,h′
(ξ),I , ︸ ︷︷ ︸

nonlocal

+
q+n̄∑

m′=q+n̄/2+1

φm′
ϒ

h,h′
(ξ),I , ︸ ︷︷ ︸

local

(10.31a)

= (H+R∗)
(
Dtσ

∗
ϒ

h,h′
(ξ),I , 

)
+

q+n̄∑
m′=q+n̄/2+1

R∗
(
Dtσ

m′
ϒ

h,h′
(ξ),I , 

)
︸ ︷︷ ︸

nonlocal
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+
q+n̄∑

m′=q+n̄/2+1

H
(
Dtσ

m′
ϒ

h,h′
(ξ),I , 

)
︸ ︷︷ ︸

local

,

div

(
φm′
ϒ

h,h′
(ξ),I , 

(t, x)+R∗
(
Dtσ

m′
ϒ

h,h′
(ξ),I , 

)
(t, x)

)

= Dtσ
m′
ϒ

h,h′
(ξ),I , 

(t, x)−
ˆ
T3

Dtσ
m′
ϒ

h,h′
(ξ),I , 

(t, x ′) dx ′ ,

div

(
φ∗
ϒ

h,h′
(ξ),I , 

(t, x)−
m̄∑

m=0

R∗
(
Dtσ

m′
ϒ

h,h′
(ξ),I , 

)
(t, x)

)

= Dtσ
∗
ϒ

h,h′
(ξ),I , 

(t, x)−
ˆ
T3

Dtσ
∗
ϒ

h,h′
(ξ),I , 

(t, x ′) dx ′ .

Next, from (ii) in Proposition 7.3, (11.15), and (11.21a), we have that for (p, p′) =
(3, 3/2) or (∞,∞) and 2 ≤ m ≤ m̄,

∥∥∥∥∥DN DM
t φ0

ϒ
h,h′
(ξ),I , 

∥∥∥∥∥
p′

� τ−1
q �i+14

q

(
δq+n̄r

−2/3
q �

2 j+14
q

∣∣∣supp (ηi, j,k,ξ,"l, ζ
I , 
ξ

)∣∣∣2/p + λ−20
q+n̄

)

×
(
λq+n̄/2+1

λq+n̄/2

) 4
3− 2

p′
r2qλ

−1
q+n̄/2(λq+n̄/2+1)

N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
, (10.32a)∣∣∣∣∣DN DM

t φ0

ϒ
h,h′
(ξ),I , 

∣∣∣∣∣ � τ−1
q �i+50

q π�r
4/3
q

(
λq+n̄/2+1

λq+n̄/2

)4/3

λ−1
q+n̄/2

× (λq+n̄/2+1)
NM

(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
, (10.32b)∥∥∥∥∥DN DM

t φm

ϒ
h,h′
(ξ),I , 

∥∥∥∥∥
p′

� τ−1
q �i+16

q

(
δq+n̄r

−2/3
q �

2 j+14
q

∣∣∣supp (ηi, j,k,ξ,"l, ζ
I , 
ξ

)∣∣∣2/p + λ−20
q+n̄

)

×
(
min

(
λq+n̄/2+m , λq+n̄

)
λq+n̄/2

) 4
3− 2

p′
r2q (λ

−2
q+n̄/2+m−1λq+n̄/2+m )

× (min(λq+n̄/2+m , λq+n̄�q+n̄))
N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
, (10.32c)∣∣∣∣∣DN DM

t φm

ϒ
h,h′
(ξ),I , 

∣∣∣∣∣ � τ−1
q �i+50

q π�r
4/3
q

(
min(λq+n̄/2+m , λq+n̄)

λq+n̄/2�q

)4/3

(λ−2
q+n̄/2+m−1λq+n̄/2+m )

× (min(λq+n̄/2+m , λq+n̄�q+n̄))
N

M
(
M,Nind,t, τ

−1
q �i+15

q ,T−1
q �9

q

)
, (10.32d)

for N ≤ Nfin/5 and M ≤ Nfin/5 − Ncut,x − 1. In the case m = 1, we have bounds
which match the bounds for m = 2 above, except that the inverse divergence gain of
λ−2
q+n̄/2+m−1λq+n̄/2+m is replaced with λ−2

q+n̄/2+3/2λq+n̄/2+1. Furthermore, we have from
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(7.68) and item (xv) that

∥∥∥∥DN DM
t φ∗

ϒ
h,h′
(ξ),I , 

∥∥∥∥∞ � δ
3/2
q+3n̄T

2Nind,t
q+n̄ λ−60

q+n̄(λq+n̄�q+n̄)
N (τ−1

q �i+14
q )M (10.33)

for N ,M ≤ 3Nind. Finally, (iii) from Proposition 7.3, (10.15a), (10.14a), and Lemma
6.2 give that for each 1 ≤ m ≤ m̄ and any q + 1 ≤ q ′ ≤ q + n̄/2 and q + 1 ≤ q ′′ ≤
q + n̄/2+ m − 1

supp

(
φ0
ϒ

h,h′
(ξ),I , 

)
∩ B(ŵq ′, λ

−1
q+1�

2
q) = ∅ , supp

(
φm

ϒ
h,h′
(ξ),I , 

)
∩ supp ŵq ′′ ,

supp

(
φ0
ϒ

h,h′
(ξ),I , 

)
, supp

(
φm

ϒ
h,h′
(ξ),I , 

)
⊆ supp

(
ηi, j,k,ξ,"l, ζ

I , 
ξ

)
.

(10.34)

We now sum over h, h′, (ξ), i, (while recalling from (10.13) that summation
over (ξ) includes summation over i, j, k, ξ, "l, j as well as any indices needed for the
application of the Faa di Bruno formula) and set

φq+n̄/2+1
υ :=

∑
(ξ),I , ,h′,h

φ0
ϒ

h,h′
(ξ),I , 

, φq+n̄/2+2
υ :=

∑
(ξ),I , ,h′,h

2∑
m=1

φm

ϒ
h,h′
(ξ),I , 

(10.35)

φq+n̄/2+m
υ :=

∑
(ξ),I , ,h′,h

φm

ϒ
h,h′
(ξ),I , 

, φq+n̄
υ :=

∑
(ξ),I , ,h′,h

m̄∑
m=m̄−1

φm

ϒ
h,h′
(ξ),I , 

,

φ∗υ :=
∑

(ξ),I , ,h′,h
φ∗
ϒ

h,h′
(ξ),I , 

for 3 ≤ m ≤ m̄ − 2.
We can now conclude the proof of Lemma 10.6. First, we have that item (i) follows

from the definitions in (10.35) and (10.31a). Next, we have that (10.28) follows from
the same definitions, (10.34), and Lemma 6.2. We can achieve the nonlocal bounds
in (10.27) from (10.33) and summation over all indices (ξ), I , , h′, h, which from
Lemma 5.16, (2.12), Lemma 5.10, and the discussion following (10.13) is bounded
by λ4q+n̄ . The bound for mσυ in item (iv) follows similarly from (7.70) (11.19), and a

large choice of a∗ in (xviii) to ensure that we can put the prefactor of max(1, T )−1 in
the amplitude. Finally, wemay conclude (10.26) from an application of Corollary 5.21
with H = φ•

ϒ
h,h′
(ξ),I , 

(with the value of • according to the divisions in (10.35)) and

# = �50
q π�r

4/3
q

(
min(λq+n̄/2+m, λq+n̄)

λq+n̄/2

)4/3

λ−2
q+n̄/2+m−1λq+n̄/2+m .

123



A Wavelet-Inspired L3-Based Convex Integration… Page 227 of 271 19

Indeed appealing to (5.58b), (3.6), (2.40), (11.24c), and the fact that

r
4/3
q

(
min(λq+n̄/2+m, λq+n̄)

λq+n̄/2

)4/3

≤ �10
q

from the definition of rq , we conclude the proof. ��

10.2 * Estimates for the Velocity Increment Potentials

We will now verify the inductive assumptions of subsubsection 2.7.6 in the following
proposition. We first recall the definitions of υq+1 and eq+1 from Remark 10.2 and
the mollifier P̃q+n̄,x,t from Definition 6.1 and define

υ̂q+n̄ := P̃q+n̄,x,tυq+1, êq+n̄ := P̃q+n̄,x,t eq+1 . (10.36)

* Proposition 10.7 (Verifying (2.44), (2.45), and (2.47) and setting up (2.46) at level
q + 1). The velocity increment and velocity increment potentials satisfy the following.

(i) ŵq+n̄ can be decomposed as

ŵq+n̄ = divdυ̂q+n̄ + êq+n̄ , (10.37)

which written component-wise gives ŵ•
q+n̄ = ∂i1 · · · ∂id υ̂(•,i1,··· ,id)q+n̄ + ê•q+n̄ .

(ii) For all q + 1 ≤ q ′ ≤ q + n̄ − 1, the supports of υ̂q+n̄ and êq+n̄ satisfy

B

(
supp (ŵq ′),

1

4
λq ′�

2
q ′

)
∩ (supp (υ̂q+n̄) ∪ supp (̂eq+n̄)

) = ∅ . (10.38)

(iii) For N +M ≤ 3Nfin/2, we have that υ̂•q+n̄,k := λd−k
q+n̄∂i1 · · · ∂ik υ̂(•,i1,...,id)q+n̄ , 0 ≤ k ≤

d, satisfies the estimates

∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1υ̂q+n̄,k

∣∣∣
< �q+n̄

(
σ+
υ(p)

+ σ+
υ(c)

+ 2δq+3n̄

)1/2
r−1
q (λq+n̄�q+n̄)

N

×M
(
M,Nind,t, �

i
q+n̄−1τ

−1
q+n̄−1,T

−1
q+n̄−1�

2
q+n̄−1

)
. (10.39)

(iv) For N + M ≤ 3Nfin/2, êq+n̄ satisfies

∥∥∥DN DM
t,q+n̄−1êq+n̄

∥∥∥∞ ≤ δ3q+3n̄T
10Nind,t
q+n̄ λ−10

q+n̄(λq+n̄�q+n̄)
N

×M
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�

2
q+n̄−1

)
.

(10.40)
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Proof of Proposition 10.7 We first note that (10.37) follows immediately from the def-
inition of υ̂q+n̄ and êq+n̄ in (10.36) and the identity in Remark 10.2.

Next, an immediate consequence of (10.2) and (6.23) is that

B

(
supp (ŵq ′),

1

2
λq ′�

2
q ′, 2Tq

)
∩ (supp (υq+1) ∪ supp (eq+1)

) = ∅ .

for all q + 1 ≤ q ′ ≤ q + n̄− 1. Now notice that by properties of the mollification, we
have that

supp (υ̂q+n̄) ⊆ B

(
supp (υq+1),

(
λq+n̄�

1/2
q+n̄−1

)−1
,T−1

q+1

)
,

and similarly

supp (̂eq+n̄) ⊆ B

(
supp (eq+1),

(
λq+n̄�

1/2
q+n̄−1

)−1
,T−1

q+1

)
.

With this we now see that (10.38) is satisfied.
Note that from (10.38) and an application of Lemma A.23, we see that (10.17)

implies that for all N ,M ≤ Nfin/5, 0 ≤ k ≤ d and l = p, c,

∣∣∣ψi,q+n̄−1D
N DM

t,q+n̄−1υ̂
(l)
q+n̄,k

∣∣∣
� (σ+

υ(p)
+ δq+3n̄)

1/2r−1
q (λq+n̄�

1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1�

i−4
q+n̄−1,T

−1
q �9

q

)
.

(10.41)

Now we apply Proposition A.24 with the parameter choices

p = 3,∞ , Ng, Nc as in (xii) , Mt = Nind,t , N∗ = Nfin/5 ,

Nγ = 2Nfin , � = suppψi,q+n̄−1 , v = ûq+n̄−1 , i = i , c = −1 ,

λ = λq+n̄ , � = λq+n̄�q+n̄−1 , � = �q+n̄−1, τ = τq+n̄−1�
−2
q+n̄−1 , T = Tq+n̄−1 ,

f = υ
(l)
q+1,k , C f ,3 = �20

q δ
1/2
q+n̄r

−1/3
q , C f ,∞ = C̃ f = �

C∞/2+16
q r−1

q , Cv = �
1/2
q+n̄−1 .

In a similar way to the proof of Lemma 6.7, we see that all the assumptions of the
proposition are satisfied. Therefore, conclusion (A.119) implies that N ,M ≤ Nfin/5,
0 ≤ k ≤ d and l = p, c,

∥∥∥DN DM
t,q+n̄−1

(
υ̂
(l)
q+n̄,k − υ

(l)
q+1,k

)∥∥∥∞
� δ3q+3n̄T

25Nind,t
q+n̄ (λq+n̄�q+n̄−1)

NM
(
M,Nind,t, τ

−1
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

Combining this estimate with the pointwise estimate (10.41) implies (10.39) for
N ,M ≤ Nfin/5. The case when Nfin/5 ≤ N + M ≤ 3Nfin/2 follows from first noticing
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that conclusion (A.118) implies that for all N ,M ≤ 2Nfin, 0 ≤ k ≤ d and l = p, c,
we have∥∥∥ψi,q+n̄−1D

N DM
t,q+n̄−1υ̂

(l)
q+n̄,k

∥∥∥∞
� �

C∞/2+16
q r−1

q (λq+n̄�
1/10
q+n̄)

NM
(
M,Nind,t, τ

−1
q+n̄−1�

i−4
q+n̄−1,T

−1
q+n̄−1�q+n̄−1

)
.

Then combining this estimate with (11.17b) implies estimate (10.39) in this case.
Finally, to prove (10.40), we must upgrade the nonlocal derivative bound in (10.4).

This is trivial using the extra prefactors of T
20Nind,t
q+n̄ , and so we omit the details. ��

10.3 * New Inductive Cutoffs are Dominated by the Pressure Increment

We conclude this section with a lemma which shows that a rescaled combination of
the intermittent pressure and the velocity pressure increment can be used to dominate
a weighted sum of the velocity cutoff functions.

* Lemma 10.8 The new velocity cutoff functions ψi,q+n̄ satisfy

imax∑
i=0

ψ2
i,q+n̄δq+n̄r

−2/3
q �2i

q+n̄ � r−2
q

(
π
q+n̄
q + σ+υ + δq+3n̄

)
(10.42)

for a q-independent implicit constant.

Proof From (9.11) and the fact that all cutoff functions are bounded in between 0 and
1, we have that

imax∑
i=0

ψ2
i,q+n̄δq+n̄r

−2/3
q �2i

q+n̄ � δq+n̄r
−2/3
q

imax∑
i=0

�2i
q+n̄

∑
{
"i : max

0≤m≤Ncut,t
im=i

}
Ncut,t∏
m=0

ψ2
m,im ,q+n̄

≤
Ncut,t∑
m=0

δq+n̄r
−2/3
q

∑
im≥0

ψ2
m,im ,q+n̄�

2im
q+n̄ . (10.43)

Therefore it will suffice to show that the right-hand side of (10.42) dominates the
double sum above. We will in fact fix m, take the sum over im ≥ 0, multiply by �q+n̄ ,
and show that this is dominated by the right-hand side of (10.42). Using that m is
bounded by Ncut,t and choosing a large enough will then conclude the proof.

From the definition of ψm,im ,q+n̄ in (9.9), we have that

�
2im
q+n̄ψ

2
m,im ,q+n̄ � �

2im
q+n̄

∑
{ jm :i∗( jm )≤im }

ψ2
jm ,q+n̄−1ψ

2
m,im , jm ,q+n̄

= �
2i∗( jm )
q+n̄ ψ2

jm ,q+n̄−1ψ
2
m,i∗( jm ), jm ,q+n̄
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+ �
2im
q+n̄

∑
{ jm :i∗( jm)<im }

ψ2
jm ,q+n̄−1ψ

2
m,im , jm ,q+n̄ . (10.44)

From (9.3), we know that the first term above is dominated by

�
2 jm+4
q+n̄−1ψ

2
jm ,q+n̄−1 .

Since m and im only take finitely many values, we may bound the contribution to the
right-hand sides of (10.43) and (10.44) from the terms with jm such that i∗( jm) = im
by an implicit constant multiplied by

∑
jm≥0

�
2 jm+4
q+n̄−1ψ

2
jm ,q+n̄−1δq+n̄r

−2/3
q ≤ r−2

q−1π
q+n̄−1
q �5

q+n̄−1
δq+n̄r

−2/3
q

δq+n̄−1r
−2/3
q−1

≤ �−2
q+n̄r

−2
q π

q+n̄
q .

Herewe have used the inductive assumption (2.21) to achieve the first inequality above
and the inequalities (11.7c) and (2.40) to achieve the second inequality. We have thus
concluded that the lowest terms with im = i∗( jm) from (10.44), summed over im and
appropriately weighted, are indeed dominated by the right-hand side of (10.42).

We now must consider the rest of the terms in (10.44), for which i∗( jm) < im .
Assume that (t, x) ∈ supp (ψ2

jm ,q+n̄−1ψ
2
m,im , jm ,q+n̄). By (9.4) and Lemma 5.5,

item (2), and there exists n ≤ Ncut,x such that

1

4Ncut,x
≤ �

−2im (m+1)
q+n̄ δ−1

q+n̄r
2/3
q (λq+n̄�q+n̄)

−2n(τ−1
q+n̄−1�

2
q+n̄)

−2m |DnDm
t,q+n̄−1ŵq+n̄|2 .

Note that due to Definition 9.1, the fact that we consider (t, x) ∈ supp
(ψ2

jm ,q+n̄−1ψ
2
m,im , jm ,q+n̄), and (9.7), which gives im ≥ i∗( jm), we have that

�
−im
q+n̄�

jm
q+n̄−1 ≤ 1. Now using (11.15) and that we are on the support of ψ j,q+n̄−1

by assumption so that we may appeal to (10.24), we have that

�
2im
q+n̄δq+n̄r

−2/3
q

� (λq+n̄�q+n̄)
−2n(τ−1

q+n̄−1�
2+im
q+n̄ )−2m (σ+υ +δq+3n̄

)
r−2
q (λq+n̄�q+n̄)

2n

(τ−1
q+n̄−1�

jm−5
q+n̄−1)

2m

≤ (σ+υ + δq+3n̄
)
r−2
q . (10.45)

Thus, (10.42) follows from summing (10.45) over im ≥ 0, from which we find that

∑
im≥0

∑
{ jm :i∗( jm )<im }

ψ2
jm ,q+n̄−1ψ

2
m,im , jm ,q+n̄�

2im
q+n̄δq+n̄r

−2/3
q � r−2

q

(
π
q+n̄
q +σ+υ +δq+3n̄

)
.

Now summing over 0 ≤ m ≤ Ncut,t concludes the proof of (10.42). ��
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11 Parameters

11.1 Definitions and Inequalities

In this section,we choose the values of the parameters and list important consequences.
The choices in items (i)–(vii) are rather delicate, while all the choices in items (viii)–
(xviii) follow the plan of “choosing a giant parameter which dwarfs all the preceding
parameters.” It is imperative that each inequality below depends only on parameters
which have already been chosen, and that none depend on q. We point out that in
item (iii), we define two parameters λq and δq in terms of an undetermined large
natural number a. This is merely for ease of notation and computation. Indeed one can
check that none of the inequalities below require a precise choice of a, nor depend on q;
rather, any sufficiently large choice of awhichmay be used to absorb implicit constants
will do. Therefore the precise choice of a is made at the very end in item (xviii).

(i) Choose β ∈ [1/7, 1/3) and n̄ a large positive multiple of 6 as in (2.1).
(ii) Choose b ∈ (1, 25/24) as in (2.2).
(iii) For an undetermined natural number a, define λq and δq as in (2.3). Note that

with this definition of λq , we have that

a(b
q ) ≤ λq ≤ 2a(b

q ) and
1

3
λbq ≤ λq+1 ≤ 2λbq . (11.1)

As a consequence of these definitions, we shall deduce a number of inequalities,
each of which is independent of the choice of a and of q once a is sufficiently
large. At the end we will thus choose a sufficiently large to absorb a number of
implicit constants, including those in (11.1). Therefore, in many of the following
computations, we may make the slightly incorrect assumption that λq is actually
equal to a(b

q ) in order to streamline the arithmetic.

(a) An immediate consequence of these definitions and of the first inequality in
(2.2a) is that

δq+n̄

(
λqλ

−1
q+n̄/3

)2/3
λ4q+n̄+1λ

−4
q+n̄

λ4qλ
4
q+n̄

λ8q+n̄/2

< δq+4n̄/3+2

⇐⇒ 2βb4n̄/3+2 − 2βbn̄ <
2

3
bn̄/3 − 2

3
− 4bn̄+1 + 4bn̄ − 4bn̄ + 8bn̄/2 − 4

⇐⇒ 2βbn̄(b − 1)(1+ b + · · · + bn̄/3+1) <
2

3
(b − 1)(1+ b + · · · + bn̄/3−1)

− 4bn̄(b − 1)− 4(1+ · · · + bn̄/2−1)2(b − 1)2

⇐⇒ β <
1

3bn̄
· 1+ b + · · · + bn̄/3−1

1+ b + · · · + bn̄/3+1
− 2

1+ b + · · · + bn̄/3+1

− 2(b − 1)(1+ · · · + bn̄/2−1)2

(1+ b + · · · + bn̄/3+1)bn̄
,

wherewehavewritten out the quantity at the beginning in termsofλq ≈ a(b
q )

and then compared exponents on both sides. It is easy to generalize the above
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to

δq+n̄

(
λqλ

−1
q+k

)2/3
λ4q+n̄+1λ

−4
q+n̄

λ4qλ
4
q+n̄

λ8q+n̄/2

< δq+n̄+k+2 ∀k ≥ n̄/3 . (11.2)

(b) A consequence of the second inequality in (2.2a) is that

δq+n̄

δq+n̄−1

(
λq+n̄/2/λq+n̄

λq+n̄/2−1/λq+n̄−1

)4/3

<
δq+2n̄

δq+2n̄−1

⇐⇒ −2βbn̄ + 2βbn̄−1 + (bn̄/2 − bn̄)(b − 1)
4

3b
< −2βb2n̄ + 2βb2n̄−1

⇐⇒ 2βbn̄−1
(
bn̄+1 − b − bn̄ + 1

)
< (bn̄ − bn̄/2)(b − 1)

4

3b

⇐⇒ β <
2

3bn̄/2
1+ · · · + bn̄/2−1

1+ · · · + bn̄−1
.

(c) A consequence of the definition of λq is that for q ′ ≥ q − n̄/2+ 1,

λq ′+n̄/2λq+n̄/2

λqλq ′+n̄
< 1 . (11.3)

Indeedwhenq ′ = q−n̄/2+1, the inequality reduces toλq+1λ
−1
q λq+n̄/2λ

−1
q+n̄/2+1

< 1, which is an immediate consequence of the super-exponential growth;
larger q ′ are similar.

(d) We have that δqλ
2/3
q < δq ′λ

2/3

q ′ for all q
′ > q. A stronger inequality is that for

all k ≥ 1, δq+n̄λ
2/3
q < δq+k+n̄λ

2/3
q+k , which is in fact equivalent to β < 1/3bn̄ ,

which is implied by the first inequality in (2.2). A final consequence of both
inequalities is

δq+n̄
λ
2/3
q

λ
2/3
q+n̄

< δq+2n̄ �⇒ δ
1/2
q+n̄δ

1/2
q

λq

λq+n̄
< δq+2n̄

�⇒ δ
1/2
q+n̄δ

1/2
q

λq

λq+n̄

λ
1/3
q+n̄/2λ

−1/3
q+n̄

λ
1/3
q+n̄/2−1λ

−1/3
q+n̄−1

< δq+2n̄ . (11.4)

(e) From the second inequality in (2.2a), we have that

β <
2

3bn̄/2
· 1+ · · · + bn̄/2−1

1+ · · · + bn̄−1 �⇒ δq+n̄λ
4/3
q+n̄/2 < δq+2n̄λ

4/3
q+n̄ .

(iv) Choose Cb = 6+b
b−1 .
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(v) Define �q , rq , τq , and �q by27

�q = 2

⌈
ε� log2

(
λq+1
λq

)⌉
≈
(
λq+1

λq

)ε�
≈ λ(b−1)ε�

q , rq = λq+n̄/2�q

λq+n̄
(11.5)

τ−1
q = δ

1/2
q λqr

−1/3
q−n̄�

35
q , �q = λq�

10
q , (11.6)

where we choose 0 < ε� � (b − 1)2 < 1 such that

(δq−n̄δ
−1
q−n̄−1)

1/10�1000
q+n̄ ≤ 1 , (11.7a)

�25
q λqδ

1/2
q r−1/3

q−n̄ ≤ τ−1
q ≤ �50

q λqδ
1/2
q r−1/3

q−n̄ , �300
q+n̄τ

−1
q+n̄−1 ≤ τ−1

q+n̄ ,

(11.7b)

�25
q+n̄

δq+n̄

δq+n̄−1

(
rq
rq−1

)4/3

<
δq+2n̄

δq+2n̄−1
(11.7c)

λ−2
n−1λnλq+n̄/2 ≤ �−1

q for q + n̄/2+ 3 ≤ n ≤ q + n̄ + 2 ,
(11.7d)

�3
q+n̄�

−2
q

λq ′+n̄/2λq+n̄/2

λqλq ′+n̄
≤ 1 for all q ′ such that q + n̄/2+ 1− n̄ ≤ q ′ ≤ q ,

(11.7e)(
λq

λq ′

)2/3

�
2000+10Cb
q+n̄ <

(
δq

δq ′

)−1

(11.7f)

r
4/3
q δq+n̄�

600
q ≤ δq+2n̄ �⇒ r

4/3
q �600

q δq ≤ δq+n̄ (11.7g)(
rq+1

rq

)
�
1000+10Cb
q+n̄ ≤ 1 (11.7h)

�5Cb+300
q δ

1/2
q+n̄r

1/3
q λ−1

q+n̄τ
−1
q ≤ �−10

q+n̄δq+2n̄ , (11.7i)

�q+n̄δ
−1/2
q+n̄−1r

−2/3
q−1 ≤ δ

−1/2
q+n̄ r

−2/3
q , (11.7j)

�1000
q+n̄ < min

(
λqλ

−1
q+n̄r

−2
q , λ

−1/10
q λ

1/10
q+1, δ

1/10
q δ

−1/10
q+1

)
(11.7k)⌈

(bn̄/2−1 + · · · + b + 1)2

ε�(bn̄−1 + · · · + b + 1)

⌉
≥ 20 , 2000ε�b

n̄ < 1 . (11.7l)

Indeed we have that the first inequality in (11.7b) is immediate, the second is
possible since τ−1

q is increasing in q, (11.7c) is possible due to item (iiib), (11.7d)
and (11.7l) are possible from immediate computation, (11.7e) is possible due to
item (iiic), (11.7f), (11.7g), and (11.7i) are possible due to item (iiid), (11.7h),
(11.7j), and (11.7a) are possible since rq and δq are decreasing in q, and (11.7k)
is possible due to (11.5) and the super-exponential growth, which shows that
λqλ

−1
q+n̄λ

−2
q+n̄/2λ

2
q+n̄, λqλq+2λ

−2
q+1 > 1.

27 The same type of comparability that we have in (11.1) holds for �q as defined in (11.5).
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(vi) Choose C∞ as

C∞ = 3

⌈
(bn̄/2 − 1)2

(b − 1)2ε�(bn̄/2−1 + · · · + b + 1)
+ 2000bn̄

bn̄/2 − 1
+ 4bn̄−1

(b − 1)ε�(1+ · · · + bn̄/2−1)

⌉
.

(11.8)
As a consequence of this definition and (11.7l), we have that

10 ≤ C∞ . (11.9)

We furthermore have that for all n̄/2 ≤ k ≤ n̄,

�C∞
q λ2qλ

4
q+kλ

−4
q+n̄/2λ

2
q+kλ

−4
q+k−1 < �

C∞
q+n̄/2

⇐⇒ 2
(
1− 2bn̄/2 + bk + 2bk − 2bk−1

)
< C∞(b − 1)ε�(b

n̄/2 − 1)

⇐� 2
(
1− 2bk/2 + bk + 2bn̄ − 2bn̄−1

)
< C∞(b − 1)ε�(b

n̄/2 − 1)

⇐⇒ 2
(
bk/2 − 1

)2 + 4bn̄−1(b − 1) < C∞(b − 1)2ε�(1+ · · · + bn̄/2−1)

⇐⇒ 2
(
bk/2 − 1

)2
(b − 1)2ε�(1+ · · · + bn̄/2−1)

+ 4bn̄−1

(b − 1)ε�(1+ · · · + bn̄/2−1)
<C∞ ,

which is implied by (11.8). As a consequence of the above inequality, (11.7l),
(11.7k), and (11.8), we have that for all n̄/2 ≤ k ≤ n̄,

�C∞
q ≤ �

C∞
q+n̄/2�

−2000
q+n̄ , �C∞+500

q �q

(
λq+k

λq+n̄/2

)2

λ−2
q+k−1λq+k ≤ �

C∞
q+n̄/2�

−200
q+n̄ .

(11.10a)

(vii) Choose α = α(q) ∈ (0, 1) such that

λαq+n̄ = �
1/10
q . (11.11)

(viii) Choose Tq according to the formula

1

2
T−1
q−1 = τ−1

q �C∞+100
q δ

−1/2
q r−2/3

q + �C∞+100
q δ

−1/2
q r−1

q �3
q . (11.12)

(ix) Choose Npr such that

�q+Npr�
4
q+n̄ ≤ �q+Npr+1 . (11.13)

(x) Choose Ncut,t and Ncut,x such that

Ncut,t ≤ Ncut,x , (11.14a)
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λ200q+n̄

(
�q−1

�q

) Ncut,t
5 ≤ min

(
λ−4
q+n̄δ

2
q+3n̄, �

−C∞−17−Cb
q+n̄ δ2q+3n̄rq

)
,

(11.14b)

δ
−1/2
q+n̄ r

−1
q �

C∞/2+16+Cb
q+n̄

(
�q+n̄−1

�q+n̄

)Ncut,x

≤ �−1
q+n̄ . (11.14c)

(xi) Choose Nind,t such that

Nind,t ≥ Ncut,t, �
−Nind,t
q (τ−1

q �i+40
q )−Ncut,t−1(T−1

q �q)
Ncut,t+1 ≤ 1 . (11.15)

(xii) Choose Ng, Nc so that

�
−Ng
q−1 �

2
q ≤ �q+1T

50Nind,t
q+1 δ3q+3n̄ ,

(11.16a)

2(T−1
q+n̄−1�

10
q+n̄−1)

5Nind,t�
2C∞+Cb+100
q+n̄ r−2

q �
−Nc/2
q−1 ≤ �

−Ng
q+n̄ δ

3
q+3n̄τ

50Nind,t
q+n̄−1 ,

(11.16b)

Ng ≤ Nc ≤ Nind

40
.28 (11.16c)

(xiii) Choose Nind such that (11.16c) is satisfied and

Nind,t ≤ Nind , (11.17a)(
�
Nind
q−1�

−Nind
q

)1/10 ≤ δ3q+5n̄�
−2C∞−3
q rq . (11.17b)

(xiv) Choose Ndec such that

(λq+n̄+2�q)
4 ≤

(
�

1/10
q

4π

)Ndec

, Nind ≤ Ndec . (11.18)

(xv) Choose K◦ large enough so that

λ−K◦
q ≤ δ3q+3n̄T

5Nind
q+n̄ λ

−100
q+n̄+2 . (11.19)

(xvi) Choose d and N∗∗ such that

2d+ 3 ≤ N∗∗ ,

(11.20a)

28 This inequality is independent from the first two, and can be ensured by a large choice of Nind in the
next step. Since all the inequalities in (11.16) are used together, we break the order slightly and include
(11.16c) in this bullet point.
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λ100q+n̄�
−d/200
q �

5+K◦
q+n̄+2

(
1+ max(λ2q+n̄T

−1
q ,�

1/2
q �q+n̄)

τ−1
q

)20Nind

≤ T
200Nind,t
q+n̄ ,

(11.20b)

λ100q+n̄�
−N∗∗/20
q �

5+K◦
q+n̄+2

(
1+ max(λ2q+n̄T

−1
q ,�

1/2
q �q+n̄)

τ−1
q

)20Nind

≤ T
20Nind,t
q+n̄ .

(11.20c)

(xvii) Choose Nfin such that

2Ndec + 4+ 10Nind ≤ Nfin/40000− d2 − 10Ncut,x − 10Ncut,t − N∗∗ − 300 .
(11.21a)

(xviii) Having chosen all the parameters mentioned in items (i)–(xvii) except for a,

there exists a sufficiently large parameter a∗ such that a(b−1)ε�b−2n̄

∗ is at least
fives times larger than all the implicit constants throughout the paper, as well as
those which have been suppressed in the computations in this section. Choose a
to be any natural number larger than a∗.

11.2 A FewMore Inequalities

For all q + n̄/2− 1 ≤ m ≤ m′ ≤ q + n̄, we have that

�
500+5Cb
q λq

(
δq+n̄

δm+n̄

)3/2

�
2/3
q

(
λ−2
m′−1λm′

)2/3 (min(λm , λq+n̄)�q

λq+n̄/2

)4/3

λ−2
m−1λm ≤ �−250

q ,

(11.22)

and

�500+5Cb
q �q

(
min(λm′, λq+n̄)

λq+n̄/2

)2/3 ( δq+n̄

δm+n̄

)3/2

�qλ
−2
m′−1λm′

(
min(λm, λq+n̄)�q

λq+n̄/2

)4/3

λ−2
m−1λm ≤ �−250

q . (11.23)

We claim the first inequality is morally equivalent to

λq

(
δq+n̄

δm+n̄

)3/2

λ
2/3
q
(
min(λm, λq+n̄)

)2/3
λ
−4/3
q+n̄/2λ

−1
m ≤ 1 .

This equivalence is due to (11.2) (used to absorb a feq meaningless losses of λkλ
−1
k−1)

and (11.7f) (used to absorb�2000+10Cb
q+n̄ , which itself can be absorbed in onmeaningless

loss of λkλ
−1
k−1 from (11.7k)). Checking the simplified inequality then boils down to
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applying (11.2).We leave further details to the reader. The second inequality ismorally
equivalent to

λq

(
λm′

λq+n̄/2

)2/3 ( δq+n̄

δm+n̄

)3/2

λqλ
−1
m′ λ−1

m

(
λm

λq+n̄/2

)4/3

≤ 1 ,

which can be checked by again using similar reasoning.
At this point, we list a number of additional inequalities, each of which can be

checked by similar reasoning as the two inequalities above. We leave further details
to the reader.

λq�
250
q �

2/3
q

(
rq+n̄/2+1

rq

)2/3

λ
−2/3
q+n̄/2

(
λq+n̄/2+1�q

λq+n̄/2

)4/3

λ−1
q+n̄/2δ

3/2
q+n̄ ≤ δ

3/2
q+n̄+n̄/2+1 ,

(11.24a)

λq�
250+5Cb
q �qλ

−1
q+n̄/2

(
λq+n̄/2+1�q

λq+n̄/2

)2

λ−1
q+n̄/2δ

3/2
q+n̄ ≤ δ

3/2
q+n̄+n̄/2+1 ,

(11.24b)

δq+n̄�
500
q �

2/3
q

(
λ2m−1λ

−1
m

)−2/3 ≤ δm+n̄ for q + n̄/2− 5 ≤ m ≤ q + n̄ + 5 ,

(11.24c)

δq+n̄�q�
400+5Cb
q

(
λm

λq+n̄rq

)2/3

λ−2
m−1λm ≤ �−9

m δm+n̄ ,

(11.24d)

δq+n̄

δm+n̄
�200+5Cb
q

(
min(λm, λq+n̄)

λq+n̄rq

)2/3

�qλ
−2
m−1 min(λm, λq+n̄) ≤ �−100

q+n̄/2 .

(11.24e)
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A Appendix and Toolkit

The appendix serves a number of purposes. First, we prove general L p decoupling
lemmas in subsection A.1. Then in subsection A.2, we recall a number of lemmas
from [3, 32] which handle sums, iterates, and commutators of different differential
operators. Then in subsection A.3, we construct and prove estimates for the various
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inverse divergence operators used throughout the proofs of Theorems 1.1 and 1.2. Sub-
section A.4 contains a general lemma which allows us to upgrade material derivative
estimates from Dt,q to Dt,k for k > q. Finally, subsection A.5 contains a general mol-
lification lemma which we apply whenever we need to estimate a mollified function
and its difference with the original function.

A.1 Decoupling Lemmas and Consequences of the Faà di Bruno Formula

Webeginwith an L p decoupling lemma in the spirit of that from [3]. Some adjustments
to the proof are required to treat the cases p �= 1, 2,∞ and d �= 3, as well as the slight
adjustment to the assumption (A.3) on the high-frequency function, which provides
a slight increase in generality. Note that the first inequality in (A.1) is implied by the
second and the assumption that λ ≥ 2, and so in practice we shall only check the
second inequality.

Lemma A.1 (L p decoupling). Let Ndec, κ, λ ≥ 1 be such that

(
2 · 2π

√
d

κ

)
· λ ≤ 2

3
, λNdec+d+1 ·

(
2 · 2π

√
d

κ

)Ndec

≤ 1 . (A.1)

Let p ∈ [1,∞), and for d ≥ 1, let f be a T
d-periodic function such that there exists

C f such that for all 0 ≤ j ≤ Ndec + d + 1,

∥∥∥D j f
∥∥∥
L p

≤ C f λ
j . (A.2)

Let g be a T
d-periodic function and Cg > 0 a constant such that for any cube T of

side-length 2π/κ,

κ
d/p ‖g‖L p(T ) ≤ Cg . (A.3)

Then there exists a dimensional constant C = C(p, d) which is independent of f and
g such that

‖ f g‖L p(Td ) ≤ C(p, d)C f Cg . (A.4)

Proof of LemmaA.1 Let {Tj } j be disjoint cubes of side-length 2π/κ such that

⋃
j

Tj = T
d .

For any Lebesgue integrable function h, let

h̄ j := −
ˆ
Tj

h(x) dx .
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Note that from Jensen’s inequality, we have that

|h̄ j |p =
∣∣∣∣∣−
ˆ
Tj

h(x) dx

∣∣∣∣∣
p

≤ −
ˆ
Tj

|h(x)|p dx = |h|p j . (A.5)

For any x ∈ Tj , we have that

| f (x)|p = (| f̄ j | + | f (x)− f̄ j |
)p

≤ 2p
(| f̄ j |p + | f (x)− f̄ j |p

)
≤ 2p

(
| f̄ j |p +

(
sup
x∈Tj

| f (x)− f̄ j |
)p)

≤ 2p
(
| f̄ j |p +

(
2π

√
d

κ
sup
Tj

|Df |
)p)

≤ 2p| f |p j + 2p
(
2π

√
d

κ

)p

sup
Tj

|Df |p , (A.6)

where in the last line we have used (A.5). Iterating, we obtain

| f (x)|p ≤ 2p| f |p j + 2p
(
2π

√
d

κ

)p (
2p|Df |p j + 2p

(
2π

√
d

κ

)p

sup
Tj

|D2 f |p
)

≤
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

|Dm f |p j+
(
2 · 2π

√
d

κ

)Ndec p ∥∥∥DNdec f
∥∥∥p
L∞

.

Multiplying by g, integrating over Tj , and using (A.3), we obtain29

‖ f g‖pL p =
∑
j

ˆ
T j

| f g|p

≤
∑
j

ˆ
Tj

|g|p
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

|Dm f |p j

+
(
2 · 2π

√
d

κ

)Ndec p ∥∥∥DNdec f
∥∥∥p
L∞

Cp
g

=
∑
j

−
ˆ
Tj

|g|p
Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp ∥∥Dm f
∥∥p
L p(Tj )

29 Note that in the third line, we move the average from |Dm f |p to |g|p . In the fourth line, we used the
assumption (A.3) on g. In the second to last line, we used the assumption (A.1).
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+
(
2 · 2π

√
d

κ

)Ndec p ∥∥∥DNdec f
∥∥∥p
L∞

Cp
g

≤ (C(d))pCp
g

Ndec−1∑
m=0

2(m+1)p

(
2π

√
d

κ

)mp

Cp
f λ

mp

+
(
2 · 2π

√
d

κ

)Ndec p (
C ′(d)C f λ

Ndec+d+1Cg
)p

≤ (C(d))pCp
g2

p · 3 · Cp
f + (C ′(d))pCp

f Cp
g

=: (C(p, d))pCp
f Cp

g . (A.7)

Taking pth roots on both sides concludes the proof. ��
Wenow recall themultivariable Faà di Bruno formula (see for example the appendix

in [3]). Let g = g(x1, . . . , xd) = f (h(x1, . . . , xd)), where f : R
m → R, and

h : R
d → R

m are Cn functions. Let α ∈ N
d
0 be such that |α| = n, and let β ∈ N

m
0 be

such that 1 ≤ |β| ≤ n. We then define

p(α, β) =
{
(k1, . . . , kn ; �1, . . . , �n ) ∈ (Nm

0 )
n × (Nd

0 )
n : ∃s with 1 ≤ s ≤ n s.t.

|k j |, |� j | > 0 ⇔ 1 ≤ j ≤ s, 0 ≺ �1 ≺ . . . ≺ �s ,

s∑
j=1

k j = β,

s∑
j=1

|k j |� j = α

}
. (A.8)

The multivariable Faà di Bruno formula states that

∂αg(x) = α!
n∑

|β|=1

(∂β f )(h(x))
∑
p(α,β)

n∏
j=1

(∂� j h(x))k j

k j !(� j !)k j
. (A.9)

Throughout this manuscript, we must estimate only finitely many derivatives.
Therefore we ignore the factorials in (A.9) and absorb them into the implicit con-
stant of the symbol “�.” We now recall the following lemma from [3], which gives a
useful consequence of the Faà di Bruno formula.

Lemma A.2 (Compositions with flowmaps).Given a smooth function f : R
d×R →

R, suppose that for λ ≥ 1 the vector field 	 : R
d × R → R

d satisfies the estimate

∥∥∥DN+1	

∥∥∥
L∞(supp f )

� λN (A.10)

for 0 ≤ N ≤ N∗. Then for any 1 ≤ N ≤ N∗ we have

∣∣∣DN ( f ◦	) (x, t)
∣∣∣ � N∑

m=1

λN−m
∣∣(Dm f ) ◦	(x, t)

∣∣ (A.11)
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and thus trivially we obtain

∣∣∣DN ( f ◦	) (x, t)
∣∣∣ � N∑

m=0

λN−m
∣∣(Dm f ) ◦	(x, t)

∣∣ .
for any 0 ≤ N ≤ N∗.

Many estimateswill require estimates for derivatives of products of functionswhich
decouple and which are composed with a diffeomorphism. The proof is a minor vari-
ation on [3, Lemma A.7].

Lemma A.3 (Decoupling with flow maps). Let p ∈ [1,∞], and fix integers N∗ ≥
M∗ ≥ Ndec ≥ 1. Fix d ≥ 2 and f : R

d × R → R, and let 	 : R
d × R → R

d be a
vector field satisfying Dt	 = (∂t + v · ∇)	 = 0. Denote by 	−1 the inverse of the
flow	, which is the identity at a time slice which intersects the support of f . Assume
that for some λ, τ−1,T−1 ≥ 1 and C f > 0 the function f satisfies the estimates

∥∥∥DN DM
t f
∥∥∥
L p

� C f λ
NM

(
M, Nt , τ

−1,T−1
)

(A.12)

for all N ≤ N∗ and M ≤ M∗, and that 	 and 	−1 are bounded for all N ≤ N∗ by
∥∥∥DN+1	

∥∥∥
L∞(supp f )

� λN (A.13)∥∥∥DN+1	−1
∥∥∥
L∞(supp f )

� λN . (A.14)

Lastly, suppose that there exist � : T
d → R and parameters� ≥ ϒ ≥ μ and C� > 0

such that for any cube T of side length μ−1,

1

μd/p

∥∥∥DN�

∥∥∥
L p(T )

+
∥∥∥DN�

∥∥∥
L p(Td )

� C�M (N , Nx , ϒ,�) (A.15)

for all 0 ≤ N ≤ N∗. If the parameters

λ ≤ μ ≤ ϒ ≤ �

satisfy

�d+1 ≤
(

μ

4π
√
3λ

)Ndec

, (A.16)

and we have
2Ndec + d + 1 ≤ N∗ , (A.17)
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then for N ≤ N∗ and M ≤ M∗ we have the bound∥∥∥DN DM
t ( f � ◦	)

∥∥∥
L p

� C f C�M (N , Nx , ϒ,�)M
(
M, Nt , τ

−1,T−1
)
.

(A.18)

Remark A.4 Wenote that if estimate (A.12) is known to hold for N+M ≤ N◦ for some
N◦ ≥ 2Ndec+d+1 (instead of N ≤ N∗ andM ≤ M∗), and if the bounds (A.13)–(A.14)
hold for all N ≤ N◦, then it follows from the method of proof that the bound (A.18)
holds for N+M ≤ N◦ andM ≤ N◦−2Ndec−d−1. The onlymodification required is
that instead of considering the cases N ′ ≤ N∗−Ndec−d−1 and N ′ > N∗−Ndec−d−1,
we now split into N ′ + M ≤ N◦ − Ndec − d − 1 and N ′ + M > N◦ − Ndec − d − 1.
In the second case we use that N − N ′′ ≥ N0 − M −Ndec − d − 1 ≥ Ndec, where the
last inequality holds precisely because M ≤ N◦ − 2Ndec − d − 1.

Proof of LemmaA.3 Since Dt	 = 0 we have DM
t (� ◦ 	) = 0. Furthermore, since

div v ≡ 0, we have that 	 and 	−1 preserve volume. Then using Lemma A.2, which
we may apply due to (A.13), we have

∥∥∥DN DM
t ( f � ◦	)

∥∥∥
L p

�
N∑

N ′=0

∥∥∥DN ′
DM
t f DN−N ′

(� ◦	)
∥∥∥
L p

�
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′ ∥∥∥DN ′
DM
t f (DN ′′

�) ◦	
∥∥∥
L p

�
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′ ∥∥∥(DN ′
DM
t f
)
◦	−1DN ′′

�

∥∥∥
L p

.

(A.19)

In (A.19) let us first consider the case N ′ ≤ N∗ − Ndec − d − 1. Due to assumption
(A.14), we may apply Lemma A.2, and appealing to (A.12) we have that

∥∥∥Dn
(
(DN ′

DM
t f ) ◦ (	−1, t)

)∥∥∥
L p

�
n∑

n′=0

λn−n′
∥∥∥(Dn′+N ′

DM
t f ) ◦	−1

∥∥∥
L p

� C f

n∑
n′=0

λn−n′λn
′+N ′M

(
M, Nt , τ

−1,T−1
)

�
(
C f λ

N ′M
(
M, Nt , τ

−1,T−1
))

λn (A.20)

for all n ≤ Ndec + d + 1. This bound matches (A.2), with C f replaced by
C f λ

N ′M (
M, Nt , τ

−1,T−1
)
. Since the function DN ′′

� satisfies (A.15), wemay apply
(A.20), the fact that λ ≤ ϒ ≤ �, assumption (A.16), and Lemma A.1 to conclude
that∥∥∥(DN ′

DM
t f

)
◦	−1DN ′′

�

∥∥∥
L p

� C f λ
N ′M

(
M, Nt , τ

−1,T−1
)
C�M

(
N ′′, Nx , ϒ,�

)
.
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Inserting this bound back into (A.19) concludes the proof of (A.18) for N ′ ≤ N∗ −
Ndec − d − 1 as considered in this case.

Next, let us consider the case N ′ > N∗ − Ndec − d − 1. Since 0 ≤ N ′ ≤ N , in
particular this implies that N > N∗−Ndec−d−1.Using furthermore that N ′′ ≤ N−N ′
and (A.17), we also obtain that N − N ′′ ≥ N ′ > N∗ − Ndec − d − 1 ≥ Ndec. Then
Hölder’s inequality, the fact that 	−1 is volume preserving, the Sobolev embedding
Wd+1,1 ⊂ L∞, the ordering � ≥ ϒ ≥ μ ≥ 1, and assumption (A.16) implies that

λN−N ′−N ′′ ∥∥∥(DN ′
DM
t f
)
◦	−1DN ′′

�

∥∥∥
L p

� λN−N ′−N ′′ ∥∥∥DN ′
DM
t f
∥∥∥
L p

∥∥∥DN ′′
�

∥∥∥
L∞

� λN−N ′−N ′′C f λ
N ′M

(
M, Nt , τ

−1,T−1
)
C�M

(
N ′′ + d + 1, Nx , ϒ,�

)
� C f C�M (N , Nx , ϒ,�)M

(
M, Nt , τ

−1,T−1
)
�d+1

(
λ

ϒ

)N−N ′′

� C f C�M (N , Nx , ϒ,�)M
(
M, Nt , τ

−1,T−1
)
�d+1

(
λ

μ

)Ndec

� C f C�M (N , Nx , ϒ,�)M
(
M, Nt , τ

−1,T−1
)
.

Combining the above estimate with (A.19), we deduce that the bound (A.18) holds
also for N ′ > N∗ − Ndec − d − 1, concluding the proof of the lemma. ��

A.2 Sums and Iterates of Operators and Commutators with Material Derivatives

We first record the following identity for material and spatial derivatives applied to
functions raised to a positive integer power.

Lemma A.5 (Leibniz rule with material and spatial derivatives). Let d ≥ 2 be
given, g : T

d → R be a smooth function, v : T
d ×R → R

d a divergence-free vector
field, and set Dt = ∂t+v ·∇, and p ∈ N. Fix M, N ∈ N, and useα = (α1, α2, . . . , αp)

and β = (β1, β2, . . . , βp) to denote multi-indices with |α| = N , |β| = M. Then we
have the identities

DN DM
t g p =

∑
{
α,β :∑p

i=1 αi=N ,∑p
i=1 βi=M

}
(

N

α1, . . . , αp

)(
M

β1, . . . , βp

) p∏
i=1

Dαi Dβi
t g

(A.21a)

pgp−1DN DM
t g = DN DM

t g p −
∑

⎧⎨
⎩
α,β :∑p

i=1 αi=N ,∑p
i=1 βi=M ,

αi+βi<N+M ∀ i

⎫⎬
⎭

(
N

α1, . . . , αp

)(
M

β1, . . . , βp

)
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p∏
i=1

Dαi Dβi
t g . (A.21b)

We recall [3, Lemma A.10]. We have generalized the statement slightly so that it
applies in T

d rather than just T
3; in fact the statement and proof have nothing to do

with the dimension.

Lemma A.6 Fix Nx , Nt , N∗ ∈ N, � ∈ T
d × R a space-time domain, and let v be

a vector field and B a differential operator. For k ≥ 1 and α, β ∈ N
k such that

|α| + |β| ≤ N∗, we assume that we have the bounds∥∥∥∥∥
(

k∏
i=1

Dαi Bβi

)
v

∥∥∥∥∥
L∞(�)

� CvM
(|α|, Nx , λv, λ̃v

)M (|β|, Nt , μv, μ̃v) (A.22)

for some Cv ≥ 0, 1 ≤ λv ≤ λ̃v , and 1 ≤ μv ≤ μ̃v . With the same notation and
restrictions on |α|, |β|, let f be a function which for some p ∈ [1,∞] obeys
∥∥∥∥∥
(

k∏
i=1

Dαi Bβi

)
f

∥∥∥∥∥
L p(�)

� C fM
(|α|, Nx , λ f , λ̃ f

)M (|β|, Nt , μ f , μ̃ f
)

(A.23)

for some C f ≥ 0, 1 ≤ λ f ≤ λ̃ f , and 1 ≤ μ f ≤ μ̃ f . Denote

λ = max{λ f , λv}, λ̃ = max{̃λ f , λ̃v}, μ = max{μ f , μv}, μ̃ = max{μ̃ f , μ̃v}.

Then, for
A = v · ∇

we have the bounds∥∥∥∥∥Dn

(
k∏

i=1

Aαi Bβi

)
f

∥∥∥∥∥
L p(�)

� C f C|α|v M (
n + |α|, Nx , λ, λ̃

)M (|β|, Nt , μ, μ̃) (A.24)

� C fM
(
n, Nx , λ, λ̃

)
(Cvλ̃)|α|M (|β|, Nt , μ, μ̃)

� C fM
(
n, Nx , λ, λ̃

)M (|α| + |β|, Nt ,max{μ, Cvλ̃},max{μ̃, Cvλ̃}
)

(A.25)

as long as n + |α| + |β| ≤ N∗. As a consequence, if k = m then (A.25) and an
expansion of the operator (A + B)M imply that for all n + m ≤ N∗,

∥∥Dn(A + B)m f
∥∥
L p(�)

� C f M
(
n, Nx , λ, λ̃

)M (
m, Nt ,max{μ, Cvλ̃},max{μ̃, Cvλ̃}

)
.

(A.26)

A corollary of the previous lemma is the commutator lemma [3, Lemma A.14],
which we now record along with several useful remarks.
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Lemma A.7 Let p ∈ [1,∞]. Fix Nx , Nt , N∗,M∗ ∈ N, let v be a vector field, let
Dt = ∂t + v · ∇ be the associated material derivative, and let � be a space-time
domain. Assume that the vector field v obeys

∥∥∥DN DM
t Dv

∥∥∥
L∞(�)

� CvM
(
N + 1, Nx , λv, λ̃v

)M (M, Nt , μv, μ̃v) (A.27)

for N ≤ N∗ and M ≤ M∗. Moreover, let f be a function which obeys

∥∥∥DN DM
t f
∥∥∥
L p(�)

� C fM
(
N , Nx , λ f , λ̃ f

)M (
M, Nt , μ f , μ̃ f

)
(A.28)

for all N ≤ N∗ and M ≤ M∗. Denote

λ = max{λ f , λv}, λ̃ = max{̃λ f , λ̃v}, μ = max{μ f , μv}, μ̃ = max{μ̃ f , μ̃v}.

Let m, n, � ≥ 0 be such that n + � ≤ N∗ and m ≤ M∗. Then, we have that the
commutator [Dm

t , D
n] is bounded as

∥∥∥D�
[
Dm
t , D

n] f ∥∥∥
L p(�)

� C f Cvλ̃vM
(
�+ n, Nx , λ, λ̃

)M (
m − 1, Nt ,max{μ, Cvλ̃v},max{μ̃, Cvλ̃v}

)
(A.29)

� C fM
(
�+ n, Nx , λ, λ̃

)M (
m, Nt ,max{μ, Cvλ̃v},max{μ̃, Cvλ̃v}

)
. (A.30)

Moreover, we have that for k ≥ 2, and any α, β ∈ N
k with |α| ≤ N∗ and |β| ≤ M∗,

the estimate

∥∥∥∥∥
(

k∏
i=1

Dαi Dβi
t

)
f

∥∥∥∥∥
L p(�)

� C fM
(|α|, Nx , λ, λ̃

)M (|β|, Nt ,max{μ, Cvλ̃v},max{μ̃, Cvλ̃v}
)

(A.31)

holds.

Remark A.8 If instead of (A.27) and (A.28) holding for N ≤ N∗ and M ≤ M∗, we
know that both of these inequalities hold for all N + M ≤ N◦ for some N◦ ≥ 1, then
the conclusions of the Lemma hold as follows: the bounds (A.29) and (A.30) hold for
� + n + m ≤ N◦, while (A.31) holds for |α| + |β| ≤ N◦. We refer to [3] for further
discussion.

Remark A.9 If the assumption (A.28) is replaced by

∥∥∥DN DM
t f
∥∥∥
L p(�)

� C fM
(
N − 1, Nx , λ f , λ̃ f

)M (
M, Nt , μ f , μ̃ f

)
, (A.32)
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whenever 1 ≤ N ≤ N∗, then the conclusion (A.31) instead becomes

∥∥∥∥∥
(

k∏
i=1

Dαi Dβi
t

)
f

∥∥∥∥∥
L p(�)

� C fM
(|α| − 1, Nx , λ, λ̃

)M (|β|, Nt ,max{μ, Cvλ̃v},max{μ̃, Cvλ̃v}
)

(A.33)

whenever |α| ≥ 1. We again refer to [3] for further discussion.

Remark A.10 Fix p ∈ [1,∞], Nx , Nt , N∗ ∈ N, and a space-time domain� ∈ T
d×R.

Define Dt = ∂t + (v · ∇) as in Lemma A.7. Suppose that for k ≥ 1 and α, β ∈ N
k

such that |α| + |β| ≤ N∗, we have the bounds

∥∥∥∥∥
(

k∏
i=1

Dαi Dβi
t

)
w

∥∥∥∥∥
L∞(�)

� CwM
(|α|, Nx , λw, λ̃w

)M (|β|, Nt , μw, μ̃w) (A.34)

for some Cw ≥ 0, 1 ≤ λw ≤ λ̃w, and 1 ≤ μw ≤ μ̃w. Then, under the assumption
(A.27) and (A.28) in Lemma A.7 with M∗ = N∗, we have that for all N ,M ≤ N∗,∥∥∥DN (Dt + (w · ∇))M f

∥∥∥
L p(�)

� C fM
(
n, Nx , λ, λ̃

)M (m, Nt , μ, μ̃) (A.35)

where

λ = max{λ f , λv, λw}, λ̃ = max{̃λ f , λ̃v, λ̃w}, μ = max{μ f , μv, μw, Cvλ̃v, Cwλ̃w},
μ̃ = max{μ̃ f , μ̃v, μ̃w, Cvλ̃v, Cwλ̃w} .

If (A.27) and (A.28) hold for N +M ≤ N∗, as in Remark A.8, then (A.35) holds also
for N + M ≤ N∗.

A.3 Inversion of the Divergence

Proposition A.11 (Inverse divergence iteration step). Let n ≥ 2 be given. Fix a
zero-meanT

n-periodic function � and a zero-meanT
n-periodic symmetric tensor field

ϑ(i, j)which are related by� = ∂i jϑ
(i, j). Let	be a volumepreserving diffeomorphism

of T
n. Define the matrix A = (∇	)−1. Given a vector field Gk, we have

Gk(� ◦	) = ∂�R
k� + Ek (A.36)

where the symmetric stress Rk� is given by

Rk� = Gk A�i (∂ jϑ
(i, j) ◦	)+ G�Ak

i (∂ jϑ
(i, j) ◦	)− Gn∂n	

m Ak
i A

�
j (∂mϑ

(i, j) ◦	) ,
(A.37)
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and the error term Ek is given by

Ek = −∂�(G�Ak
i )(∂ jϑ

(i, j) ◦	)− (∂�G
k)A�i (∂ jϑ

(i, j) ◦	)
+ ∂n(G

�Ak
i ∂�	

m)An
j (∂mϑ

(i, j) ◦	) . (A.38)

Remark A.12 (Linearity with respect to G). From (A.37) and (A.38), it is clear that
the symmetric stress and error term are linear in G; more precisely, each term of the
symmetric stress and error may be written as a product of flow maps, high frequency
functions, and a single component of eitherG or∇G. This will be a useful observation
when determining the support properties of the symmetric stresses and error terms.

Proof of Proposition A.11 By the definition of A, we have An
�∂k	

� = δnk , and the
volume-preserving property of	 gives the Piola identity ∂n An

� = 0. These then imply
a useful identity (∂�ϕ) ◦	 = ∂n(An

�(ϕ ◦	)). Using this, we first get

Gk(� ◦	) = Gk(∂i∂ jϑ
(i, j) ◦	) = Gk∂�(A

�
i (∂ jϑ

(i, j) ◦	))
= ∂�(G

k A�i (∂ jϑ
(i, j) ◦	))

− (∂�G
k)A�i (∂ jϑ

(i, j) ◦	)
= ∂�(G

k A�i (∂ jϑ
(i, j) ◦	)+ G�Ak

i (∂ jϑ
(i, j) ◦	))

− G�Ak
i ∂�	

m(∂m∂ jϑ
(i, j)) ◦	

− ∂�(G
�Ak

i )(∂ jϑ
(i, j) ◦	)− (∂�G

k)A�i (∂ jϑ
(i, j) ◦	) .

In the last equality,the first two terms match the first two terms in ∂�Rk�, while the last
two terms will go into the error term Ek . To deal with the remaining term, we use

G�Ak
i ∂�	

m(∂m∂ jϑ
(i, j)) ◦	 = G�Ak

i ∂�	
m∂n(A

n
j (∂mϑ

(i, j) ◦	))
= ∂n(G

�∂�	
m Ak

i A
n
j (∂mϑ

(i, j) ◦	))
− ∂n(G

�Ak
i ∂�	

m)An
j (∂mϑ

(i, j) ◦	) .

Indeed, plugging this identity into the second term, we obtain the symmetric stress
Rk� and error term Ek . Note that the first term above is symmetric due to the assumed
symmetry of ϑ(i, j). ��

With the iterative step in hand, we can now state the proposition which contains our
main inverse divergence algorithm. The spirit of the statement and proof is similar to
the corresponding statements and proofs in [3, 32], modulo minor adjustments. After
stating the main proposition, we record a number of useful remarks which follow from
the proof.

Proposition A.13 (Main inverse divergence operator). Let dimension n ≥ 2 and
Lebesgue exponent p ∈ [1,∞] be free parameters. The remainder of the proposition
is composed first of low and high-frequency assumptions, which then produce a local-
ized output satisfying a number of properties. Finally, the proposition concludes with
nonlocal assumptions and output.
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Part 1: Low-frequency assumptions

(i) LetG bea vector field andassume there exist a constantCG,p > 0andparameters

N∗ ≥ M∗ ≥ 1 , (A.39)

Mt , and λ, ν, ν′ ≥ 1 such that∥∥∥DN DM
t G

∥∥∥
L p

� CG,pλNM
(
M,Mt , ν, ν

′) (A.40)

for all N ≤ N∗ and M ≤ M∗.
(ii) Fix an incompressible vector field v(t, x) : R×T

n → R
n and denote its material

derivative by Dt = ∂t + v · ∇. Let 	 be a volume preserving diffeomorphism of
T
n such that

Dt	 = 0 and ‖∇	− Id‖L∞(suppG) ≤ 1/2 . (A.41)

Denote by 	−1 the inverse of the flow 	, which is the identity at a time slice
which intersects the support of G. Assume that the velocity field v and the flow
functions 	 and 	−1 satisfy the bounds∥∥∥DN+1	

∥∥∥
L∞(suppG)

+
∥∥∥DN+1	−1

∥∥∥
L∞(suppG)

� λ′N (A.42a)∥∥∥DN DM
t Dv

∥∥∥
L∞(suppG)

� νλ′NM (
M,Mt , ν, ν

′) ,
(A.42b)

for all N ≤ N∗, M ≤ M∗, and some λ′ > 0.

Part 2: High-frequency assumptions

(i) Let � : T
n → R be a zero mean scalar function such that there exists a large

positive even integer d * 1 and a smooth, mean-zero, adjacent-pairwise

symmetric tensor potential30 ϑ(i1,...,id) : T
n → R

(
nd
)
such that �(x) =

∂i1 . . . ∂idϑ
(i1...id)(x).

(ii) There exists a parameter μ ≥ 1 such that � and ϑ are (T/μ)n-periodic.
(iii) There exist parameters 1 � ϒ ≤ ϒ ′ ≤ �, C∗,p > 0 such that for all 0 ≤ N ≤

N∗ and all 0 ≤ k ≤ d,∥∥∥DN ∂i1 . . . ∂ikϑ
(i1,...,id)

∥∥∥
L p

� C∗,pϒk−dM (
N ,d− k, ϒ ′,�

)
. (A.43)

(iv) There exists Ndec such that the above parameters satisfy

λ′, λ � μ ≤ ϒ ≤ ϒ ′ ≤ �, max(λ, λ′)ϒ−2ϒ ′ ≤ 1 , N∗ − d ≥ 2Ndec + n + 1 ,
(A.44)

30 We use i j for 1 ≤ j ≤ d to denote any number in the set {1, . . . , n}. We refer to Lemma 4.17 for the
meaning of adjacent-pairwise symmetric.
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where by in the first inequality in (A.44) we mean that

�n+1
(

μ

2π
√
3max(λ, λ′)

)−Ndec

≤ 1 . (A.45)

Part 3: Localized output

(i) There exists a symmetric tensor R and a vector field E such that

G � ◦	 = divR + E =: div (H (G� ◦	))+ E . (A.46)

We use the notation R = H(G� ◦	) for the symmetric stress.
(ii) The support of R is a subset of suppG ∩ suppϑ .
(iii) There exists an explicitly computable positive integer CH, an explicitly com-

putable function r( j) : {0, 1, . . . , CH} → N and explicitly computable tensors

ρβ( j) , β( j) = (β1, β2, . . . , βr( j)) ∈ {1, . . . , n}r( j) ,
Hα( j) , α( j) = (α1, α2, . . . , αr( j), k, �) ∈ {1, . . . , n}r( j)+2

of rank r( j) and r( j) + 2, respectively, all of which depend only on G, �, 	,
n, d, such that the following holds. The symmetric, localized stress R can be
decomposed into a sum of symmetric, localized stresses as31

Hk�(G� ◦	) = Rk� =
CH∑
j=0

Hα( j)ρβ( j) ◦	 . (A.47)

Furthermore, we have that

supp Hα( j) ⊆ suppG , suppρβ( j) ⊆ suppϑ . (A.48)

(iv) For all N ≤ N∗−d/2, M ≤ M∗, and j ≤ CH, we have the subsidiary estimates32

∥∥∥DNρβ( j)
∥∥∥
L p

� C∗,pϒ−2ϒ ′M (
N , 1, ϒ ′,�

)
(A.49a)∥∥∥DN DM

t Hα( j)
∥∥∥
L p

� CG,p
(
max(λ, λ′)

)N M (
M,Mt , ν, ν

′) . (A.49b)

31 The contraction is on the first r( j) indices, and the resulting rank two tensor is symmetric.
32 In fact it is clear from the algorithm that as j increases, the estimates become much stronger. For
simplicity’s sake we simply record identical estimates for each term which are sufficient for our aims.
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(v) For all N ≤ N∗ − d/2 and M ≤ M∗, we have the main estimate∥∥∥DN DM
t R
∥∥∥
L p

� CG,pC∗,pϒ ′ϒ−2M (
N , 1, ϒ ′,�

)M (
M,Mt , ν, ν

′)
(A.50)

(vi) For N ≤ N∗ − d/2 and M ≤ M∗ the error term E in (A.46) satisfies

∥∥∥DN DM
t E

∥∥∥
L p

� CG,pC∗,p max(λ, λ′)d/2
(
ϒ ′ϒ−2

)d/2
�NM (

M,Mt , ν, ν
′) .

(A.51)

Part 4: Nonlocal assumptions and output

(i) Let N◦,M◦ be integers such that

1 ≤ M◦ ≤ N◦ ≤ M∗/2 , (A.52)

and let K◦ be a positive integer.33 Assume that in addition to the bound (A.42b)
we have the following global lossy estimates∥∥∥DN ∂Mt v

∥∥∥
L∞

� Cvλ′Nν′M (A.53)

for all M ≤ M◦ and N + M ≤ N◦ + M◦, where

Cvλ′ � ν′ . (A.54)

(ii) Assume that d is large enough so that

CG,pC∗,p max(λ, λ′)d/4(ϒ ′ϒ−2)
d/4�n+2+K◦

(
1+ max{ν′, Cv�}

ν

)M◦
≤ 1 .

(A.55)

Then we may write

E = divRnonlocal +
 
T3

G� ◦	 dx =: div (R∗(G� ◦	))+  
T3

G� ◦	 dx ,

(A.56)

where Rnonlocal = R∗(G� ◦	) is a traceless symmetric stress which satisfies

∥∥∥DN DM
t Rnonlocal

∥∥∥
L∞

≤ 1

�K◦ max(λ, λ′)d/4(ϒ ′ϒ−2)
d/4�NνM (A.57)

for N ≤ N◦ and M ≤ M◦.

33 K◦ serves as an extra amplitude gain which will be used later to eat some material derivative losses.
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Remark A.14 (Lossy derivatives on v and estimates for Rnonlocal). Let us specify the
estimates we expect to obtain from (A.57) for the nonlocal error term Rnonlocal. For
our applications, we need to choose parameters so that the estimate reads

∥∥∥DN DM
t Rnonlocal

∥∥∥
L∞

≤ λ−10
q+n̄δ

2
q+3n̄T

4Nind,t
q+n̄ λNq+n̄τ

−M
q (A.58)

for N ,M ≤ 2Nind. We therefore choose N◦ = M◦ = 2Nind, and since in applications
M∗ will be at least Nfin/10000, we have from (11.21a) that M◦ ≤ N◦ ≤ M∗/2. Next,
we choose K◦ large enough so that λ−K◦

q ≤ δ2q+3n̄T
4Nind,t
q+n̄ λ−100

q+n̄ , which follows from
(11.19). The lossy estimates in (A.53) follow from the inductive assumption (2.31b)
with Cv = �

1/2
q ; note that (A.54) is precisely (11.12). Finally, the inequality in (A.55)

will be a consequence of our choices of λ, λ′, ϒ ′, ϒ , which from (11.7d) give a gain
of at least �−(d/40)

q , and (11.20b).

Remark A.15 (Special case for negligible error terms). The inverse divergence oper-
ator defined in the proposition can be applied to an input without the structure of low
and high frequency parts when � = 1 and CG,p are sufficiently small. More precisely,
we keep the low-frequency assumption (Part 1), replace the high-frequency assump-
tions (Part 2) with � = 1, and set ϒ = ϒ ′ = � = max(λ, λ′), C∗,p = 1, d = 0. 34

Then, as long as CG,p is small enough to satisfy (A.55), the conclusions in Part 4 hold.
In particular, we have that

G = divR∗G +
 
T 3

G dx .

Note that R∗G = RG in the special case, where R is the usual inverse divergence
operator defined in (A.80).

Remark A.16 (High frequency part of the output as a potential). In order to obtain
the conclusions in Remarks 8.2, 8.7, and 8.11, we need to write ρβ( j) as a potential.
This can be done if the potentials ϑ(i1,··· ,id) used in the application of the inverse
divergence in Section 8 can be written as ϑ(i1,··· ,id) = ∂id+1···i2dθ(id+1,··· ,i2d), where θ
satisfies ∥∥∥DNdivkθ(i1,··· ,i2d)

∥∥∥
L p

� C∗,pϒk−2dM (
N , 2d− k, ϒ ′,�

)
for 0 ≤ k ≤ 2d and N ≤ N∗. This is easily ensured by initially choosing � as
� = ∂i1···i2dθ(i1,··· ,i2d), where we save half of the divergences for later to enable the
application of the inverse divergence algorithm a second time, as will be done in for
the transport/Nash current errors in 8.8. Since the inverse divergence algorithm shows
that ρβ( j) consists of spatial derivatives and divergences of ϑ , it is clear that ρβ( j) can

be written in potential form as ρβ( j) = ∂id+1···id+k θ
(id+1,··· ,ik ,β( j)) for some potential

34 Since we do not need decoupling, μ does not need to be specified.
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θ
(id+1,··· ,ik ,β( j)). Furthermore, we have∥∥∥DN ∂id+1···id+k θ

(id+1,··· ,id+k ,β( j))
∥∥∥
L p

� C∗,p(ϒ−2ϒ ′)ϒk−dM (
N ,d− k + 1, ϒ ′,�

)
for 0 ≤ k ≤ d and N ≤ N∗ − d/2.

Remark A.17 (Mean of the error term).We claim that the mean 〈G(� ◦	)〉 satisfies
∣∣∣∣ dM

dtM
〈G(� ◦	)〉

∣∣∣∣ ≤ �−K◦(max(λ, λ′)ϒ−1)
3
4dM (

M,Mt , ν, ν
′)

for M ≤ M◦. To see this, first note that since v is incompressible, dM

dtM
〈G(� ◦	)〉 =

〈(DM
t G)(� ◦	)〉. Then using Lemma A.1 with (A.45), (A.40), (A.42a), (A.43), and

(A.55), we have the desired estimate∣∣∣∣
ˆ
T3
(DM

t G)(� ◦	)dx
∣∣∣∣ =

∣∣∣∣
ˆ
T3
(DM

t G) ◦	−1divdϑdx

∣∣∣∣
=
∣∣∣∣
ˆ
T3
∂(i1,··· ,id)((D

M
t G) ◦	−1)ϑ(i1,··· ,id)dx

∣∣∣∣
�
∥∥∥∂(i1,··· ,id)((DM

t G) ◦	−1)

∥∥∥
1

∥∥∥ϑ(i1,··· ,id)
∥∥∥
1

� CG,pC∗,p(max(λ, λ′))dϒ−dM (
M,Mt , ν, ν

′)
≤ �−K◦(max(λ, λ′)ϒ−1)

3
4dM (

M,Mt , ν, ν
′) .

Inn particular, under the same choice of parameters suggested in Remark A.14, we
have ∣∣∣∣ dM

dtM
〈G(� ◦	)〉

∣∣∣∣ ≤ λ−10
q+n̄δ

2
q+3n̄T

4Nind,t
q+n̄ τ−M

q

for M ≤ 2Nind.

Remark A.18 (Inverse divergence for scalar fields).Adjusting the above proposition
so that G is a scalar field and the output is a vector field is simple; one can make

the substitution G →
⎛
⎝G, 0, . . . , 0︸ ︷︷ ︸

n−1 0′s

⎞
⎠, apply the Proposition to the newly constructed

vector field, and take the first row or column of the symmetric stress as the output.

Remark A.19 (Inverse divergence with pointwise bounds). Let us consider the set-
ting in which all the inductive assumptions from the proposition hold, or are adjusted
according to Remark A.18, but we know in addition that there exists a smooth, non-
negative function π such that∣∣∣DN DM

t G
∣∣∣ � πλNM (

M,Mt , ν, ν
′) . (A.59)
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for N ≤ N∗ and M ≤ M∗. Then it is clear from the algorithm utilized in the proof
that we may additionally conclude that∣∣∣DN DM

t Hα( j)

∣∣∣ � π
(
max(λ, λ′)

)N M (
M,Mt , ν, ν

′) (A.60)

for N ≤ N∗ − (d/2) and M ≤ M∗.

Remark A.20 (Avoiding abuses of notations). Proposition A.13, and indeed many of
the other “abstract nonsense” lemmas and propositions in the manuscript, are written
using generic notations such as λ, CG,3/2, etc. Application of the lemma or proposition
then requires specification of values for these various inputs. Occasionally several
such lemmas or propositions will be applied in succession; for example, repeated
applications of the inverse divergence as in Corollary A.21. In such situations, we shall
add bars above all symbols in the statements of the “abstract nonsense” lemmas, and
then specify an input for the “bar variable.” For example, applying Proposition A.13
to a term from the sum in (A.47) (which has the same form as the input of the inverse
divergence, just with different parameters!) would be done using the parameter choices
CG,p = CG,p, λ = max(λ, λ′), C∗,p = C∗,pϒ−2ϒ ′, and N∗ = N∗ − (d/2), which are
all valid choices due to (A.49).

Proof of Proposition A.13 We divide the proof into four steps. First, we collect some
simple preliminary bounds. Next, we apply Proposition A.11 the first time and show
that an error term is produced which obeys the estimates required in (A.50). After-
wards we indicate how to apply the algorithm (d/2) − 1 more times to produce R and
E obeying (A.50) and (A.51), respectively. By construction, both R and E will be
supported in suppG ∩ suppϑ ◦	. The support property for R and the conclusions in
(A.47), (A.49), (A.50), and (A.51) will be proven along the way. Finally, we outline
how to obtain the bounds in (A.57) for the nonlocal portion of the inverse divergence.
The entire proof follows closely the method of proof of [3, Proposition A.18], the
main differences being the slight adjustment to the iteration step due to the difference
between Proposition A.11 and [3, Proposition A.17], and the slightly more general
assumption in (A.43) compared to [3, A.69]. The only significant difference to the
conclusion is that the amplitude gain is ϒ ′ϒ−2, cf. (A.50) compared to [3, A.73].

Step 1: An application of Lemma A.7, or more precisely Remark A.9, yields∥∥∥DN ′′
DM
t DN ′

D	
∥∥∥
L∞(suppG)

� λ′N ′+N ′′M (
M,Mt , ν, ν

′) (A.61)

whenever N ′ + N ′′ ≤ N∗ and M ≤ M∗. We similarly obtain∥∥∥DN ′′
DM
t DN ′

(D	)−1
∥∥∥
L∞(suppG)

� λ′N ′+N ′′M (
M,Mt , ν, ν

′) (A.62)

from the Fa’a di Bruno formula (A.9), the formula for matrix inversion in B1/2(Id),
the Liebniz rule, and (A.61). Another application of Lemma A.7 yields∥∥∥DN ′′

DM
t DN ′

G
∥∥∥
L p

� CG,pλN ′+N ′′M (
M,Mt , ν, ν

′) (A.63)
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whenever N ′ + N ′′ ≤ N∗ and M ≤ M∗. These preliminary bounds are similar to
those from the beginning of the proof of [3, Proposition A.18], and we refer there for
further details.

Step 2: For notational purposes, let �(0) = � and �(i1,...,id)
(d) = ϑ(i1,...,id), and for

1 ≤ k < d let �
id−k+1,...,id
(k) = ∂i1 . . . ∂id−kϑ

(i1,...,id). Then �(k−1) = div�(k) (assuming
contraction along the proper index, which we omit in a slight abuse of notation), and
for any “pairwise permutation”35 σ : {d − k + 1, . . . ,d} → {d − k + 1, . . . ,d},
�
id−k+1,...,id
(k) = �

iσ(d−k+1),...,iσ(d)
(k) , so that �(k) is pairwise symmetric. We also define

G(0) = G. Since ρ(0) = divdivρ(2) where ρ(2) is pairwise symmetric, we deduce from
Proposition A.11, identities (A.36)–(A.38) that

Gk
(0)�(0) ◦	 = ∂�R

k�
(0) + Gi jkm

(1) ∂m�
(i, j)
(2) ◦	 . (A.64)

The symmetric stress R(0) is given by

Rk�
(0) =

(
Gk
(0)A

�
i δmj + G�

(0)A
k
i δmj − Gn∂n	

m Ak
i A

�
j

)
︸ ︷︷ ︸

=:Si jk�m
(0)

(∂m�
(i, j)
(2) ) ◦	, (A.65)

and the error terms are given by

Gi jkm
(1) = −∂�(G�

(0)A
k
i )δ jm − ∂�G

k
(0)A

�
i δ jm + ∂n(G

�
(0)A

k
i ∂�	

m)An
j , (A.66)

where as before we denote (∇	)−1 = A. We first show that the symmetric stress Rk�
(0)

defined in (A.65) satisfies the estimate (A.50). First, we note that from (i) and (ii), the
function ∂m�

(i, j)
(2) has zero mean, is (T/μ)3 periodic, and satisfies

∥∥∥DN ∂m�
(i, j)
(2)

∥∥∥
L p

� C∗,pϒ−2ϒ ′M (
N , 1, ϒ ′,�

)
(A.67)

for N ≤ N∗ − 1, in view of (A.43). Second, we note that since Dt	 = 0, material
derivatives may only land on the components of the 5-tensor S(0). Third, the compo-
nents of the 5-tensor S(0) are sums of terms which are linear in G(0) and multilinear in
A and D	. In particular, due to our assumption (A.40) and the previously established
bounds in (A.61) and (A.62), upon applying the Leibniz rule, we obtain that∥∥∥DN DM

t S(0)
∥∥∥
L p

� CG,p max(λ, λ′)NM (
M,Mt , ν, ν

′) (A.68)

for N ≤ N∗ and M ≤ M∗. Having collected these estimates, the L p norm of the
space-material derivatives of R(0) is obtained from Lemma A.3. As dictated by (A.65)

we apply this lemmawith f = S(0) and ϕ = ∂m�
(i, j)
(2) . Due to (A.68), the bound (A.12)

holds with C f = CG and a spatial derivative cost of max(λ, λ′). Due to (A.42a), the

35 We refer again to Lemma 4.17 for the meaning of this.
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assumptions (A.13) and (A.14) are verified.Next, due to (A.67), the assumption (A.15)
is verified, with Nx = 1 and Cϕ = C∗,pϒ−2ϒ ′�α . Lastly, assumption (A.45) verifies
the condition (A.16) of Lemma A.3. Thus, applying estimate (A.18) we deduce that

∥∥∥DN DM
t R(0)

∥∥∥
L p

� CG,pC∗,pϒ−2ϒ ′M (
N , 1, ϒ ′,�

)M (
M,Mt , ν, ν

′) (A.69)

for all N ≤ N∗ − 1 and M ≤ M∗, which is precisely the bound stated in (A.50). Here
we have used that N∗ ≥ 2Ndec + n + 1, which gives that (A.17) is satisfied.

Step 3: To continue the iteration, we first analyze the second term in (A.64).
The point is that this term has the same structure as what we started with; for every
fixed i, j,m, we may replace Gk

(0) by Gi jkm
(1) , and we replace �(0) with ∂m�

(i, j)
(2) ; the

only difference is that the bounds for this term are better. Indeed, from (A.66) we see
that the 4-tensor G(1) is the sum of various entries from the tensors DG(0) ⊗ A and
DG(0) ⊗ A ⊗ A ⊗ D	. Recalling (A.61), (A.62), and (A.63) and using the Leibniz
rule, we deduce that

∥∥∥DN ′′
DM
t DN ′

Gi jkm
(1)

∥∥∥
L p

� CG,p max(λ, λ′)N ′+N ′′+1M (
M,Mt , ν, ν

′) (A.70)

for N ′ + N ′′ ≤ N∗ − 1 and M ≤ M∗. The only caveat is that the bounds hold
for one fewer spatial derivative. In order to iterate Proposition A.11, for simplicity we
ignore the i, j, k,m indices, since the argument works in exactly the same way in each
case. Specifically, we write Gi jkm

(1) simply as Gk
(1), and for the sake of convenience we

suppress indices on the tensors D�(k) and use D as a stand-in for ∂m . We first note that
D�(2) = divdiv

(
D�(4)

)
, where D�(4) is a symmetric 2-tensor once both indices have

been specified on the left-hand side of the equality for D�(2). Thus, using identities
(A.36)–(A.38) and (in a slight abuse of notation) reusing the indices we previously
tossed away, we obtain that the second term in (A.64) may be written as

Gk
(1)(D�(2)) ◦	 = ∂�R

k�
(1) + Gi jkm

(2) (∂mD�
(i, j)
(4) ) ◦	 (A.71)

where the symmetric stress R(1) is given by

Rk�
(1) =

(
Gk
(1)A

�
i δmj + G�

(1)A
k
i δmj − Gn

(1)∂n	
m Ak

i A
�
j

)
︸ ︷︷ ︸

=:Si jk�m
(1)

(∂mD�
(i, j)
(4) ) ◦	, (A.72)

the error terms are computed as

Gi jkm
(2) = −∂�(G�

(1)A
k
i )δ jm − ∂�G

k
(1)A

�
i δ jm + ∂n(G

�
(1)A

k
i ∂�	

m)An
j . (A.73)

We emphasize that by combining (A.65) and (A.66) with (A.72) and (A.73), we may
compute the tensors S(1) and G(2) explicitly in terms of just space derivatives of G,
D	, and A. Using a similar argument to the one which was used to prove (A.68),
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but by appealing to (A.70) instead of (A.63), we deduce that for N ≤ N∗ − 1 and
M ≤ M∗,∥∥∥DN DM

t S(1)
∥∥∥
L p

� CG,p max(λ, λ′)N+1M (
M,Mt , ν, ν

′) . (A.74)

Using the bound (A.74) and the estimate

∥∥∥DN (∂mD�(4))
∥∥∥
L p

� C∗,pϒ−4ϒ ′2M (
N , 2, ϒ ′,�

)
,

which is a consequence of (A.43), we may deduce from Lemma A.3 that

∥∥∥DN DM
t R(1)

∥∥∥
L p

� CG,pC∗,p max(λ, λ′)(ϒ−2ϒ ′)2M (
N , 2, ϒ ′,�

)M (
M,Mt , ν, ν

′) (A.75)

for N ≤ N∗ − 2 and M ≤ M∗, which is an estimate that is even better than (A.69),
aside from the fact that we have lost a spatial derivative. This shows that the first term
in (A.71) satisfies the expected bound. The low-frequency portion of the second term
in (A.71) may in turn be shown to satisfy

∥∥∥DN ′′
DM
t DN ′

Gi jkm
(2)

∥∥∥
L p

� CG,p max(λ, λ′)2+N ′+N ′′M (
M,Mt , ν, ν

′) (A.76)

for N ′ + N ′′ ≤ N∗ − 2 and M ≤ M∗.
At this point there is a clear roadmap for iterating this procedure (d/2) times, where

the limit on the number of steps comes from that fact that �(k) is only defined for
0 ≤ k ≤ d, and each step in the iteration increases the value of k by 2. Without
spelling out these details, the iteration procedure described above produces

G(0)�(0) ◦	 =
(d/2)−1∑
k=0

divR(k) + G((d/2)) :
(
D(d/2)�(2(d/2))

)
◦	︸ ︷︷ ︸

=:E

(A.77)

where each of the (d/2) symmetric stresses satisfies

∥∥∥DN DM
t R(k)

∥∥∥
L p

� CG,pC∗,p max(λ, λ′)k
(
ϒ−2ϒ ′)k+1

�NM (
M,Mt , ν, ν

′)
(A.78)

for N ≤ N∗−k−1 and M ≤ M∗. Furthermore, the formulae in (A.47) and (A.48) can
be computed explicitly from the algorithm already detailed above by keeping track of
the high-lowproduct structure of each term in each R(k) andRemarkA.12, althoughwe
forego the details. The subsidiary estimates are precisely those from (A.67) and (A.68),
which are immediate for the terms from the first step of the parametrix expansion, and
which follow for the higher order terms by transferring the amplitude gains from
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the high-frequency function onto the low-frequency function, and using (A.44). Each
component of the the error tensor G((d/2)) in (A.77) is recursively computable solely
in terms of G, D	, and A and their spatial derivatives and satisfies

∥∥∥DN ′′
DM
t DN ′

G((d/2))
∥∥∥
L p

� CG,p max(λ, λ′)(d/2)+N ′+N ′′M (
M,Mt , ν, ν

′) (A.79)

for N ′ + N ′′ ≤ N∗ − (d/2) and M ≤ M∗. Lastly, a final application of Lemma A.3,
which is valid due to with (A.79) and the assumption N∗ −d ≥ 2Ndec+ n+ 1, shows
that estimate (A.51) holds.

Step 4: Finally, we turn to the proof of (A.56) and (A.57). Recall that E is defined
by the second term in (A.77), and thus

ffl
Tn G� ◦	dx = ffl

Tn Edx . Using the standard
nonlocal inverse-divergence operator

(R f )i j = −1

2
�−2∂i∂ j∂k f

k − 1

2
�−1∂kδi j f

k +�−1∂iδ jk f
k +�−1∂ jδik f

k

(A.80)

we may define

Rnonlocal = RE .

By the definition of R we have that Rnonlocal is traceless, symmetric, and satisfies
divRnonlocal = E − ffl

Tn Edx , i.e. (A.56) holds.
Using the formulas in (A.114a), (A.114b), the assumption (A.53), and the fact that

D and ∂t commute withR, we deduce that for every N ≤ N◦ and M ≤ M◦ we have

∥∥∥DN DM
t Rnonlocal

∥∥∥
L∞ �

∑
M ′≤M

N ′+M ′≤N+M

M−M ′∑
K=0

CKv (λ′)N−N ′+K ν′−(M−M ′−K )
∥∥∥DN ′

∂M
′

t RE
∥∥∥
L∞

�
∑

M ′≤M
N ′+M ′≤N+M

(λ′)N−N ′
ν′−(M−M ′)

∥∥∥DN ′
∂M

′
t E

∥∥∥
L∞ (A.81)

where in the last inequality we have used that by assumption Cvλ′ � ν′−1, and that
R : L p(Tn) → L p(Tn) is a bounded operator.

Our goal is to appeal to estimate (A.26) in Lemma A.6, with A = −v · ∇, B = Dt

and f = E in order to estimate the L∞ norm of DN ′
∂M

′
t E = DN ′

(A+ B)M
′
E . First,

we claim that v satisfies the lossy estimate

∥∥∥DN DM
t v

∥∥∥
L∞

� Cvλ′Nν′−M (A.82)

for M ≤ M◦ and N+M ≤ N◦+M◦. This estimate does not follow immediately from
either (A.42b) or (A.53). For this purpose, we apply Lemma A.6 with f = v, B = ∂t ,
A = v · ∇, and p = ∞. Using (A.53), and the fact that B = ∂t and D commute, we
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obtain that bounds (A.22) and (A.23) hold with C f = Cv , λv = λ̃v = λ f = λ̃ f = λ′,
and μv = μ̃v = μ f = μ̃ f = ν′−1. Since A + B = Dt , we obtain from the bound
(A.26) and the assumption Cvλ′ � ν′−1 that (A.82) holds.

Second, we claim that for any k ≥ 1 we have

∥∥∥∥∥
(

k∏
i=1

Dαi Dβi
t

)
v

∥∥∥∥∥
L∞(suppG)

� Cvλ′|α|ν′|β| (A.83)

whenever |β| ≤ M◦ and |α| + |β| ≤ N◦ + M◦. To see this, we use Lemma A.7 with
f = v, p = ∞, and � = suppG. From (A.42b) we have that (A.27) holds with
Cv = ν/λ′, λv = λ̃v = λ′, μv = ν, and μ̃v = ν′. On the other hand, from (A.82) we
have that (A.28) holds with C f = Cv , λ f = λ̃ f = λ′, and μ f = μ̃ f = ν′−1. We then
deduce from (A.31) that (A.83) holds.

Third, we claim that

∥∥∥∥∥
(

k∏
i=1

Dγi Dβi
t

)
E

∥∥∥∥∥
L∞(suppG)

� CG,pC∗,p max(λ, λ′)(d/2)(ϒ ′ϒ−2)(d/2)�|γ |+n+1M (|β|,Mt , ν, ν
′) (A.84)

holds whenever |γ | ≤ N∗ − (d/2)− n− 1 and |β| ≤ M∗. This estimate again follows
from Lemma A.7, this time with f = E , by appealing to the previously established
bound (A.51) and the Sobolev embedding Wn+1,1(Tn) ↪→ L∞(Tn).

At last, we are in the position to apply Lemma A.6. The bound (A.83) implies
that assumption (A.22) holds with B = Dt , λv = λ̃v = λ′, and μv = μ̃v = ν′.
The bound (A.84) implies that assumption (A.23) of Lemma A.6 holds with C f =
CG,pC∗,p max(λ, λ′)(d/2)(ϒ ′ϒ−2)(d/2)�n+1, λ f = λ̃ f = �, μ f = ν, and μ̃ f = ν′.
We may now use estimate (A.26), and the assumption that � ≥ λ, λ′ to deduce that
∥∥∥DN ′

∂M
′

t E
∥∥∥
L∞

� CG,pC∗,p max(λ, λ′)(d/2)(ϒ ′ϒ−2)(d/2)�N ′+n+1(max{Cv�, ν′})M ′

(A.85)

holds whenever M ′ ≤ M◦ and N ′ + M ′ ≤ N◦ + M◦. Combining (A.81) and (A.85)
we deduce that∥∥∥DN DM

t Rnonlocal

∥∥∥
L∞

� CG,pC∗,p max(λ, λ′)(d/2)(ϒ ′ϒ−2)(d/2)�n+1

×
∑

M ′≤M
N ′+M ′≤N+M

λ′N−N ′
ν′−(M−M ′)�N ′

(max{Cv�, ν′})M ′

� CG,pC∗,p max(λ, λ′)(d/2)(ϒ ′ϒ−2)(d/2)�N+n+1(max{Cv�, ν′})M (A.86)

whenever N ≤ N◦ andM ≤ M◦. Estimate (A.57) follows by appealing to the assump-
tion (A.55). ��
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Observe that in the proof of Proposition A.13, ρβ( j) consists of
∇�(2), ∇2�(4), · · · ,∇(d/2)�2(d/2); recall that �(0) = � = divdϑ and �(k−1) =
div�(k) = divd−(k−1)ϑ . Keeping this in mind, when � is given as div(2d)

2
ϑ , we can

apply the proposition iteratively to get

G(ρ ◦	) = divdR + E .

The details are described in the following corollary. Since this operator will be applied
to velocity increments, some of the adjustments are specified for this particular appli-
cation.

Corollary A.21 (Iterated inverse divergence for scalar fields). We suppose that the
same assumptions hold as in Proposition A.13 together with Remark A.18 except for
the following substitutions.

(i) Fix Ndec, N∗,M∗d ≥ 1 such that d is even and N∗ − d2 ≥ 2Ndec + n + 1+ M∗
(replacing (A.39) and the last inequality in (A.44)).

(ii) � is given as an iterated divergence � = div(d
2)ϑ̃ (replacing (i)).

(iii) There exist parameters 1 � ϒ ≤ ϒ ′ = � and C∗,p > 0 such that for all
0 ≤ N ≤ N∗ and all 0 ≤ k ≤ d2, (A.43) is replaced with

∥∥∥DN ∂i1 . . . ∂ik ϑ̃
(i1,...,id2 )

∥∥∥
L p

� C∗,pϒk−d2ϒ ′N . (A.87)

Additionally, we assume that there exists a smooth, non-negative function π such that

∣∣∣DN DM
t G

∣∣∣ � π
1
2 r

− 1
3

G λNM (
M,Mt , ν, ν

′) (A.88)

for N ≤ N∗ and M ≤ M∗. Then, we have that

G(� ◦	) = divdR + E (A.89)

for a rank dpot tensor R and error E satisfying the following properties.

(i) The support of R is a subset of suppG∩supp (ϑ̃ ◦	), and hence so is the support
of E.

(ii) There exists an explicitly computable positive integer CH , an explicitly com-
putable function r( j) : {0, 1, . . . , CH } and explicitly computable tensors

ρβ( j) , β( j) = (β1, β2, . . . , βr( j)) ∈ {1, . . . , n}r( j) ,
Hα( j) , α( j) = (α1, α2, . . . , αr( j)) ∈ {1, . . . , n}r( j)+d ,

of rank r( j) and r( j)+d, respectively, all of which depend only on G, �,	, n,d
such that the following holds. The localized stress R can be decomposed into a
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sum of localized stresses as

R =
CH∑
j=0

Hα( j)(ρβ( j) ◦	) .

Furthermore, we have that

supp Hα( j) ⊆ suppG , suppρβ( j) ⊆ supp ϑ̃ . (A.90)

(iii) We have the subsidiary estimates

∥∥∥DNρβ( j)
∥∥∥
L p

� C∗,p(ϒ−2ϒ ′)d�N (A.91a)

for all N ≤ N∗ − d2 and j ≤ CH, and
∥∥∥∥∥

k∏
i=1

Dαi Dβi
t Hα( j)

∥∥∥∥∥
L p

� CG,p
(
max(λ, λ′)

)|α|M (|β|,Mt , ν, ν
′) (A.91b)

∣∣∣∣∣
k∏

i=1

Dαi Dβi
t Hα( j)

∣∣∣∣∣ � π
1
2 r−

1
3 (max(λ, λ′))|α|M (|β|,Mt , ν, ν̃) . (A.91c)

for all integer k ≥ 1, multi-indices α, β ∈ N
k with |α| ≤ N∗−d2 and |β| ≤ M∗,

and j ≤ CH.
(iv) We have the main estimate

∥∥∥∥∥
k∏

i=1

Dαi Dβi
t R

∥∥∥∥∥
L p

� CG,pC∗,p(ϒ ′ϒ−2)dϒ ′|α|M (|β|,Mt , ν, ν
′) (A.92)

for all integer k ≥ 1, multi-indices α, β ∈ N
k with |α| ≤ N∗−d2 and |β| ≤ M∗,

and j ≤ CH.
(v) For N ≤ N∗ − d2 and M ≤ M∗ the error term E in (A.89) satisfies36

∥∥∥DN DM
t E

∥∥∥
L p

� CG,pC∗,p max(λ, λ′)d/2
(
ϒ ′ϒ−2

)d/2
�N

M (
M,Mt , ν, ν

′) d−1∑
k=0

(
ϒ ′

ϒ

)2k

. (A.93)

36 In our applications, ϒ = ϒ ′, so the sum of loss factors is irrelevant. If one wanted to be more precise,
this loss could be eliminated using a more careful algorithm and a few more conditions on the relative sizes
of all the frequencies.
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Proof The proof is based on applying Proposition A.13 d times. In the first iteration,
we get

G(� ◦	) =
CH∑
j1=0

div
(
Hα( j1)(ρβ( j1) ◦	)

)
+ E(1)

where Hα( j1) satisfies (A.49b) and (A.53). From (A.47) and Remark A.18, we have
that the rank of Hα( j1) is one larger than the rank of ρβ( j1). Also, replacing π by
π

1/2r−1/3 in Remark A.19, we get

|DN DM
t Hα( j1)| � π

1
2 r−

1
3 λNM (M,Mt , ν, ν̃)

for N ≤ N∗−d/2 andM ≤ M∗. In addition, E(1) satisfies (A.93). Sinceweuse the same
	, all assumptions on G and	 in the proposition holds for N∗ replaced with N∗−d/2.
From the proof of PropositionA.13we note thatρβ( j) consists of∇k�(2k), 1 ≤ k ≤ d/2,

which can be written as∇kdivd
2−2k ϑ̃ = divd(∇kdivd

2−2k−dϑ̃). Then,∇k�(2k) and its

potential ∇kdivd
2−2k−dϑ̃ satisfy (i), (ii) in the assumption of Proposition A.13 and

∥∥∥DN ∂i1 · · · ∂ik′ (∇kdivd
2−2k−dϑ̃)

∥∥∥ � C∗,pϒ−2k−d+k′ϒ ′N+k

for any N ≤ N∗ − k and 0 ≤ k′ ≤ d. In particular, we have

∥∥∥DNρβ( j1)
∥∥∥
L p

� C∗,pϒ−2ϒ ′ϒ ′N (A.94)

for N ≤ N∗ − d/2 and j1 ≤ CH. This implies that (A.43) holds for C∗,p replaced
with C∗,pϒ ′ϒ−2 and N∗ with N∗ − d/2 and ϑ with the potential of ρβ( j), respectively.
Furthermore, from the construction it is easy to see that

supp
(
ρβ( j)

)
⊂ supp (ϑ̃) .

Iterating this process d times, we get

G(� ◦	) =
CH∑
j1=0

div
(
Hα( j1)(ρβ( j1) ◦	)

)
+ E(1)

=
CH∑

j1, j2=0

div2
(
Hα( j1, j2)(ρβ( j1, j2) ◦	)

)
+ divE(2) + E(1)

=:
CH∑
j=0

divd
(
Hα( j)(ρβ( j) ◦	)

)
+

d∑
k=1

divk−1E(k) .
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As a result, we get (A.89), where E is defined by

E :=
d∑

k=1

divk−1E(k) .

Since we have

suppHα( j) ⊂ · · · ⊂ supp (Hα( j1)) ⊂ supp (G), suppρβ( j1) ⊂ supp (ϑ̃) ,

(A.90) holds. Therefore, (i) and (ii) have been verified, as has (A.94) and (A.91a).
Furthermore, we have

∥∥∥DN DM
t Hα( j)

∥∥∥
L p

� CG,p
(
max(λ, λ′)

)N M (
M,Mt , ν, ν

′)
∣∣∣DN DM

t Hα( j)
∣∣∣ � π

1
2 r−

1
3 (max(λ, λ′))NM (M,Mt , ν, ν̃) .∥∥∥DN DM

t R
∥∥∥
L p

� CG,pC∗,p(ϒ ′ϒ−2)d�NM (
M,Mt , ν, ν

′)

for all integers N ≤ N∗ − d2 and M ≤ M∗. Also, E (k) satisfies

∥∥∥DN DM
t E (k)

∥∥∥
L p

� CG,pC∗,p(ϒ ′ϒ−2)k−1 max(λ, λ′)d/2
(
ϒ ′ϒ−2

)d/2
ϒ ′NM (

M,Mt , ν, ν
′)

for 1 ≤ k ≤ d, N ≤ N∗ − k · d/2, and M ≤ M∗.
Finally, we apply Lemma A.7 to upgrade these estimates to the one with commu-

tations of the operators, (A.91b), (A.91c), (A.92), and (A.93). We will work only for
(A.91b), then the last will follow by a similar argument. To avoid confusion in the
notations, we rewrite some repeated symbols from Lemma A.7 with bars above on
the left-hand side of the equalities below, while the right-hand side are parameters
given in the assumptions of the Corollary. Set p = p, Nt = Mt , N∗ = N∗ − dd/2,
M∗ = M∗, v = v, � = suppG, Cv = ν(λ′)−1, λv = λ̃v = λ′, μv = μ f = ν,
μ̃v = μ̃ f = ν̃, f = Hα( j), and λ f = λ̃ f = max(λ, λ′). Then, as a consequence of
the lemma, we have (A.91b). For (A.91c), we work at each point x in a similar way,
but set� = �(x) as a small closed neighborhood of x contained in supp (G) and use
the continuity of π so that sup�(x) π ≤ 2π(x). ��

Finally, we shall need a simpler case of the inverse divergence, when the density is
not flowed and the input is a scalar field.

Lemma A.22 (Inverse divergence without flowmap).Fix dimension n ≥ 2. Let G be
a smooth scalar field and let d be a non-negative integer such that the smooth scalar
field � and tensor field ϑ defined on R × T

n satisfy � = ∂i1 . . . ∂idϑ
(i1...id)(x) (note

that no symmetry assumptions needed).
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Part 1: Algorithm for inverse divergence
We have a decomposition

G� =: div(H(G�))+ E (A.95)

where the vector field H(G�) and scalar field E are defined by

H(G�)• :=
d−1∑
k=0

(−1)d−k+1∂ik+2 . . . ∂idG div(k)︸ ︷︷ ︸
∂i1 ,...,∂ik

ϑ(i1,...,ik ,•,ik+2,...,id), E = (−1)d∇dG : ϑ ,

(A.96)

where we use the convention ∂ik+2 · · · ∂idG = G and ϑ(i1,...,ik ,•,ik+2,...,id) =
ϑ(i1,...,id−1,•) when k = d− 1.

Part 2: Localized assumptions and output
Fix a set � ⊂ R × T

n. Let parameters N∗ ≥ M∗ ≥ 1 be given. Define v and Dt

as in Part 1 of Proposition A.13, where v satisfies (A.42b) with λ′, ν, ν′, N∗,M∗ and
L∞(suppG) replaced with L∞(�). Let smooth, non-negative functions π and π ′ be
given such that

∣∣∣DN DM
t G

∣∣∣ � πλNM (
M,Mt , ν, ν

′) on � (A.97a)

ϒd−k
∣∣∣DN DM

t ∂i1 . . . ∂ikϑ
(i1,...,id)

∣∣∣ � π ′�NM (
M,Mt , ν, ν

′) on � (A.97b)

for N ≤ N∗ and M ≤ M∗, where the parameters satisfy

λ′, λ ≤ ϒ ≤ �, max(λ, λ′)ϒ−1 ≤ 1, N∗ ≥ d, λ, ν, ν′ ≥ 1 . (A.98)

Then H(G�) satisfies
supp (H(G�)) ⊆ supp (Gϑ) , (A.99)

and for N ≤ N∗ − d and M ≤ M∗,∣∣∣DN DM
t H(G�)

∣∣∣ � ππ ′ϒ−1�NM (
M,Mt , ν, ν

′) on � . (A.100)

Part 3: Nonlocal assumptions and output
Finally, we assume that all assumptions from (i) in Part 4 in Proposition A.13 hold.
Next, we assume that for N ≤ N∗ and M ≤ M∗,∥∥∥DN DM

t G
∥∥∥
L∞

� CG,∞λN (ν′)M , (A.101a)∥∥∥DN DM
t ∂i1 . . . ∂ikϑ

(i1,...,id)
∥∥∥
L∞

� C∗,∞ϒk−d�N (ν′)M . (A.101b)
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Also, we choose d large enough to satisfy

CG,∞C∗,∞(max(λ, λ′)ϒ−1)
d/2�K◦

(
1+ max{ν′, Cv�}

ν

)M◦
≤ 1 . (A.102)

Then we may write

E =: div (R∗(G�)
)+  

T3
G� dx , (A.103)

where R∗(G�) is a vector field which satisfies

∥∥∥DN DM
t R∗(G�)

∥∥∥
L∞

� 1

�K◦ (max(λ, λ′)ϒ−1)
d/2�NνM (A.104)

for N ≤ N◦ and M ≤ M◦.

Proof of LemmaA.22 With the definition (A.96) in hand, we can easily check (A.95)–
(A.100). To define R∗(G�), we use the standard operator (R f )i = �−1∂i and let
R∗(G�) = RE . The desired estimate for R∗(G�) follows as in the Proof of Propo-
sition A.13 with minor modifications, and we leave the details to the reader. ��

A.4 UpgradingMaterial Derivatives

Lemma A.23 (Upgrading material derivatives). Fix p ∈ [1,∞] and a positive inte-
ger N* ≤ 3Nfin/4. Assume that a tensor F is given with a decomposition F = Fl + F∗
which satisfy

∥∥∥ψi,q D
N DM

t,q F
l
∥∥∥
p

� Cp,Fλ
N
FM

(
M,Nind,t, �

i+c
q τ−1

q , �−1
q T−1

q

)
(A.105a)∥∥∥DN DM

t,q F
∗
∥∥∥∞ � C∗,FTNind,t

q+n̄ λ
N
F τ

−M
q (A.105b)

for all M + N ≤ N*, an absolute constant c ≤ 20, and constants Cp,F and C∗,F .
Assume furthermore that there exists k such that q + 1 < k ≤ q + n̄ and

supp (ŵq ′, λ
−1
q ′ �q ′) ∩ supp (Fl) = ∅ ∀q + 1 ≤ q ′ < k . (A.106)

Finally, assume that

λF�
imax+2
q+n̄ δ

1
2
q+n̄r

− 1
3

q ≤ T−1
q+n̄ . (A.107)

Then F obeys the following estimate with an upgraded material derivative for all
M + N ≤ N*;∥∥∥ψi,k−1D

N DM
t,k−1F

∥∥∥
p
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� (Cp,F + C∗,F )max(λF ,�k−1)
NM

(
M,Nind,t, �

i
k−1τ

−1
k−1, �

−1
k−1T

−1
k−1

)
.

(A.108)

In particular, the nonlocal part F∗ obeys better estimate
∥∥∥DN DM

t,k−1F
∗
∥∥∥∞ � C∗,F max(λF , λk−1�k−1)

NM
(
M,Nind,t, τ

−1
k−1,T

−1
k−1�

−1
k−1

)
(A.109)

for N + M ≤ N*.
Similarly, if instead of (A.105a), Fl satisfies

∣∣∣ψi,q D
N DM

t,q F
l
∣∣∣ � πFλ

N
FM

(
M,Nind,t, �

i+c
q τ−1

q , �−1
q T−1

q

)
(A.110)

for all M + N ≤ N*, an absolute constant c ≤ 24, and a positive function πF with
πF ≥ C∗,F , we have
∣∣∣ψi,k−1D

N DM
t,k−1F

∣∣∣ � πF max(λF ,�k−1)
NM

(
M,Nind,t, �

i
k−1τ

−1
k−1, �

−1
k−1T

−1
k−1

)
(A.111)

for all M + N ≤ N*, provided that (A.107) holds.

Proof We first handle the local portion Fl by upgrading ψi,q in (A.105a) to the one
with ψi,k−1, and then upgrading Dt,q to Dt,k−1. Since ψ6

i ′,q forms a partition of unity

from (2.11) and we have τ−1
q �i ′+24

q ≤ τ−1
k−1�

i
k−1 when ψi ′,qψi,k−1 �= 0 by (2.17), we

obtain that

∥∥∥ψi,k−1D
N DM

t,q F
l
∥∥∥
p
=
∥∥∥∥∥ψi,k−1

imax∑
i ′=0

ψ6
i ′,q D

N DM
t,q F

l

∥∥∥∥∥
p

�
∑

i ′:ψi ′,qψi,k−1 �=0

∥∥∥ψi ′,q D
N DM

t,q F
l
∥∥∥
p

� Cp,Fλ
N
FM

(
M,Nind,t, τ

−1
k−1�

i
k−1, �

−1
k−1T

−1
k−1

)
. (A.112)

Here we used the maximal cardinality of i ′ is imax. Then, using (A.106), we have
DM
t,k−1F

l = DM
t,q F

l and the desired inequality (A.108) for Fl follows. In a similar

way, we can also get (A.111) for Fl .
On the other hand, we handle the nonlocal portion F∗ by claiming that for each

q ≤ k′ ≤ k − 1, we have

∥∥∥DN DM
t,k′F

∗
∥∥∥∞ � C∗,FTNind,t

q+n̄ max(λF , λk′�k′)
N (T−1

k−1�
−1
k−1)

M , (A.113)
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for all N + M ≤ N*. In particular, this implies that

∥∥∥DN DM
t,k−1F

∗
∥∥∥∞ � C∗,F max(λF , λk−1�k−1)

NM
(
M,Nind,t, τ

−1
k−1,T

−1
k−1�

−1
k−1

)

for N + M ≤ N*, which yields (A.108) and (A.111). The proof of the claim is then
given by an inductive argument on k′. When k′ = q, it easily follows from (A.105b).
Next, suppose that (A.113) holds for some k′ < k − 1, and we apply Remark A.10 to
v = ûk′ , w = ŵk′+1, f = F ,� = T

3, N∗ = N*, Nt = Nind,t. Then (A.113) holds for
k′ + 1, using (2.28), (2.30), the inductive assumption (A.113) for k′, and (A.107). ��

A.5 Mollification Estimates

In this subsection, we require two algebraic identities originally stated in [3, (5.17a)–
(5.17b)], which we now recall. Let v be a sufficiently smooth divergence-free vector
field and let Dt = ∂t+v ·∇ be the material derivative operator associated to v. For any
sufficiently smooth function F = F(x, t) and any n,m ≥ 0, the Leibniz rule implies
that

DnDm
t F = Dn(∂t + v · ∇x )

mF =
∑
m′≤m

n′+m′≤n+m

dn,m,n′,m′(v)(x, t)Dn′∂m
′

t F ,

(A.114a)

dn,m,n′,m′(v) =
m−m′∑
k=0

∑
{γ∈Nk : |γ |=n−n′+k,
β∈Nk : |β|=m−m′−k}

c(m, n, k, γ, β)
k∏

�=1

(
Dγ�∂

β�
t v(x, t)

)
,

(A.114b)

where c(m, n, k, γ, β) denotes an explicitly computable combinatorial coefficient
which depends only on the factors inside the parentheses. Identities (A.114a)–(A.114b)
hold because D and ∂t commute; the proof is based on induction on n and m and is
left to the reader.

Proposition A.24 (Mollification with spatial and material derivatives). Let p ∈
[1,∞], Ng, Nc, Mt , N∗, and Nγ be positive integers, v be a divergence-free vector
field, and Dt = ∂t + v · ∇. Fix parameters λ, �, τ , T, � ≥ 1, i , C f ,p ≤ C̃ f , Cv , and
c ∈ [0, 30] such that

Ng ≤ Nc ≤ N∗/4 , Mt ≤ N∗ ≤ Nγ , λ� ≤ �, τ−1�i+c ≤ T−1 , Cvλ ≤ T−1 ,

(A.115a)

(T−1�)Mt C̃ f �
−Nc/2 ≤ �−NgC f ,pτ

−Mt . (A.115b)
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Let (a, b)+T be a time domain and� ⊂ (a, b)+T×T
d be a subset in the space-time

domain. Assume that v satisfies

∥∥∥DN ∂Mt v(x, t)
∥∥∥
L∞((a,b)+T×T3)

� CvλNT−M (A.116)

for all N +M ≤ Nγ . Assume that f : (a, b)+T×T
d → R satisfies the estimates37

∥∥∥DN DM
t f
∥∥∥
L p(�)

� C f ,pλ
NM

(
M,Mt , τ

−1�i+c,T−1
)

(A.117a)∥∥∥DN ∂Mt f
∥∥∥
L∞((a,b)+T×Td )

� C̃ f λ
NT−M (A.117b)

for N + M ≤ N∗. Let γx be a compactly supported mollifier in space at scale
(λ−1�−1)

1/2, γt be a compactly supported mollifier in time at scale T�−1/2, and
assume that the kernels for both mollifiers have vanishing moments up to Nc and
are CNγ differentiable.

Set fγ = γt ∗ γx ∗ f . Then for N + M ≤ Nγ , we have that

∥∥∥DN DM
t fγ

∥∥∥
L p(�∩(a,b)×Td )

� C f ,p�
NM

(
M,Mt , τ

−1�i+c+1,T−1�
)
, (A.118)

while for N + M ≤ N∗, we have that
∥∥∥DN DM

t ( f − fγ )
∥∥∥
L p(�∩(a,b)×Td )

� �−NgC f ,p�
NM

(
M,Mt , τ

−1,T−1�
)
.

(A.119)

Proof We split the proof into steps. We first set up the Taylor expansion which allows
us to take advantage of the vanishing moments. Next, we prove (A.118) and (A.119)
for N ,M ≤ N∗/4. Finally, we prove (A.118) and (A.119) in the remaining cases where
either N > N∗/4 or M > N∗/4. Note that since γt has a compact support in time at
scale T�−1/2, fγ is well-defined in the domain (a, b)× T

d .

Step 1: Let us denote by Kt the kernel for γt and Kx the kernel for γx so that
K := Kt Kx is the space-time kernel for γt ∗ γx . We denote space-time points (t, x) ∈
(a, b)× T

d and (s, y) ∈ (a, b)+ T× T
d by

(t, x) = θ, (s, y) = κ . (A.120)

Using this notation we may write out fγ explicitly as

fγ (θ) =
ˆ
Td×R

f (θ − κ)K (κ) dκ . (A.121)

37 By L p(�), we mean L p for each fixed timeslice�∩{t = t0}, continuously in time which is non-empty.
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Expanding f in a Taylor series in space and time around θ yields the formula

f (θ − κ) = f (θ)+
Nc−1∑

|α|+m=1

1

α!m!D
α∂mt f (θ)(−κ)(α,m) + RNc(θ, κ) (A.122)

where

RNc(θ, κ) =
∑

|α|+m=Nc

Nc

α!m! (−κ)
(α,m)

ˆ 1

0
(1− η)Nc−1Dα∂mt f (θ − ηκ) dη .

(A.123)

Step 2: Assume that N ,M ≤ N∗/4. Here we note that because of the vanishing
moments of K ,

fγ (θ)− f (θ)

=
∑

|α|+m′′=Nc

Nc

α!m′′!
ˆ
Td×R

K (κ)

(−κ)(α,m′′)
ˆ 1

0
(1− η)Nc−1Dα∂m

′′
t f (θ − ηκ) dη dκ . (A.124)

Now we appeal to the identity (A.114a) with F = fγ − f to obtain

∥∥DnDm
t ( fγ − f )

∥∥
L∞((a,b)×Td )

�
∑
m′≤m

n′+m′≤n+m

∥∥dn,m,n′,m′(v)
∥∥
L∞
∥∥∥Dn′∂m

′
t ( fγ − f )

∥∥∥
L∞((a,b)×Td )

. (A.125)

From assumptions (A.115) and (A.116) and the formula (A.114b), we have that

∥∥dn,m,n′,m′(v)
∥∥
L∞ �

m−m′∑
k=0

Ckvλn−n′+k(T−1)m−m′−k � λn−n′(T−1)m−m′
. (A.126)

Combining this estimate with the bound (A.117b), we deduce that

∥∥∥DN DM
t ( fγ − f )

∥∥∥
L∞((a,b)×Td )

�
∑
m′≤M

n′+m′≤N+M

λN−n′(T−1)M−m′ ∥∥∥Dn′∂m
′

t ( fγ − f )
∥∥∥
L∞((a,b)×Td )

�
∑
m′≤M

n′+m′≤N+M

∑
|α|+m′′=Nc

λN−n′(T−1)M−m′
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× C̃ f λ
n′+|α|(T−1)m

′+m′′
ˆ
T3×R

∣∣∣κ(α,m′′)
∣∣∣ |K (κ)|dκ

� C̃ f

∑
|α|+m′′=Nc

λN+|α|(T−1)M+m′′
(�λ)−|α|/2(T�−1/2)m

′′

� C̃ f λ
NT−M�−Nc/2 � �−NgC f ,p�

NM
(
M,Mt , τ

−1,T−1�
)
, (A.127)

where the last inequality follows from (A.115) and holds for N ,M ≤ N∗/4. This
establishes (A.119) in this range of N ,M , and by the triangle inequality for fγ =
fγ − f + f establishes (A.118) in the same range of N ,M .

Step 3:We now consider (A.118) in the case that either M ≥ N∗/4 or N ≥ N∗/4, and
N + M ≤ Nγ . We first note that when N∗ ≤ N + M ≤ Nγ , applying the differential
operator to the kernels for the mollifiers, we get

∥∥∥DN ∂Mt fγ
∥∥∥
L∞((a,b)×Td )

� C̃ f min
n+m=N∗

n≤N ,m≤M

λnT−m(λ�)
1
2 (N−n)(T−1�

1/2)M−m

(A.128)

This implies that when either N or M exceeds N∗/4 but N + M ≤ Nγ , we have

∥∥∥DN DM
t fγ

∥∥∥
L∞((a,b)×Td )

�
∑
m≤M

n+m≤N+M

∥∥dN ,M,n,m(v)
∥∥
L∞
∥∥Dn∂mt fγ

∥∥
L∞

� C̃ f �
− N∗

8 �N (T−1�)M � C̃ f �
− Nc

2 �N (T−1�)M

(A.129)

� �−NgC f ,p�
NM

(
M,Mt , τ

−1,T−1�
)

where we have used (A.126), (A.117b), (A.128), (A.115), and (A.115b) . In the second

inequality, the factor �− N∗
8 gain has been obtained by paying lossy derivative costs.

This completes the proof of (A.118) when either N or M exceeds N∗/4 and N + M ≤
Nγ .

Finally, in order to prove (A.119) when either N or M exceeds N∗/4 and N + M ≤
N∗, we use the triangle inequality as in the previous step, the estimate just shown, and
the estimate

∥∥∥DN DM
t f
∥∥∥
L p(�∩(a,b)×Td )

� C f ,p�
−(M+N )�NM

(
M,Mt , τ

−1�i+c+1,T−1�
)

� �−NgC f ,p�
NM

(
M,Mt , τ

−1,T−1�
)
,

which follows from (A.117a) and (A.115). ��
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