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Abstract

In this work, we develop a wavelet-inspired, L>-based convex integration framework
for constructing weak solutions to the three-dimensional incompressible Euler equa-
tions. The main innovations include a new multi-scale building block, which we call
an intermittent Mikado bundle; a wavelet-inspired inductive set-up which includes
assumptions on spatial and temporal support, in addition to L?” and pointwise estimates
for Eulerian and Lagrangian derivatives; and sharp decoupling lemmas, inverse diver-
gence estimates, and space-frequency localization technology which is well-adapted
to functions satisfying L? estimates for p other than 1, 2, or co. We develop these tools
in the context of the Euler-Reynolds system, enabling us to give both a new proof of
the intermittent Onsager theorem from Novack and Vicol (Invent Math 233(1):223—
323, 2023) in this paper, and a proof of the L3-based strong Onsager conjecture in the
companion paper Giri et al. (The L>-based strong Onsager theorem, arxiv).
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1 Introduction
1.1 The L3-based Strong Onsager Conjecture

We consider the three-dimensional incompressible Euler equations on [0, T] X T3,
which are given by
ou+ w-V<u+Vp=0

1.1
divu =0. (1D

Smooth solutions of these equations satisfy a pointwise energy balance obtained by
taking the dot product of the first equation in (1.1) with «. Integration of this balance
in time and space then implies that smooth solutions conserve the total kinetic energy
120Ju(e, )| iz (T3)" However, there is significant mathematical and physical motivation
behind the study of weak solutions of (1.1) which allow for the dissipation of kinetic
energy. These dissipative weak solutions of (1.1) will satisfy the local energy identity

1 2 . 1 2
0y §|u| + div §|u| +plu)=—Dlu] (1.2)

in the sense of distributions, where the Duchon-Robert measure D[u] captures the
dissipation due to possible singularities [19]. For Euler flows arising as vanishing-
viscosity limits of suitable Navier-Stokes flows, this measure is non-negative [19],
and the resulting inequality in (1.2) is referred to as the local energy inequality.

The well-known Onsager conjecture [33] postulates that L{°C )1(/ ? serves as a thresh-
old, below which weak solutions of the Euler equations (1.1) may dissipate the total
kinetic energy [33], and above which solutions must conserve the kinetic energy.
Recent years have seen remarkable success in the validation of Onsager’s conjecture.
The conservation of kinetic energy for solutions in L?Bg"’ oo for o > 1/3 has been
proven by Constantin, E, and Titi in [9] (see also [7, 16-20]), and the flexibility state-
ment was proven by Isett in [23] and extended by Buckmaster, De Lellis, Székelyhidi,
and Vicol [2]. The proofs in [2, 23] utilize the convex integration framework initiated
by De Lellis and Székelyhidi in [12, 14], inspired by Nash’s work [31] and following
work of Scheffer [34] and Shnirelman [35]; we refer the reader to the survey papers [5,
15] for further history of the Onsager program.

The regularity threshold C'? is also intimately connected to Kolmogorov’s 1941
(K41) phenomenological theory of turbulence [27-29], which may be interpreted as
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A Wavelet-Inspired [3-Based Convex Integration... Page3of271 19

suggesting that turbulent fluids enjoy uniform L B ;,/ 300,x regularity in the vanishing
viscosity limit for p € [1, o). Here we define the inhomogeneous Besov norms for
s € (0,1)and p € [1, 00] by

lv(- +2z) — U||Lp('[r3)
|z|$ '

”v”Bi},oo(W) ~ ||U||LP('J]‘3) + sup
|z|>0

Such uniform regularity bounds would then imply that dissipative solutions of Euler
obtained as vanishing viscosity limits enjoy L?OC;/ ’ regularity, or the maximum
amount of regularity identified by Onsager as allowing for the dissipation of kinetic
energy. In the case p = 3, K41 scaling is strongly supported by experimental evi-
dence [21, Figure 8.8], [6, Figure5], [25, Figure 3], [26, Figure 1], indicating that
Bgl/ ;O may indeed be a natural function space for turbulent flows. In the case p # 3,
it is convenient to base our discussion on structure function exponents, which for our
purposes will be defined as
Cpu=psupls € (0, 1) :uce L{’B;,,oo’x}.

Itis well known that turbulent fluids exhibit deviations from the K41 scaling ¢, , = 7/3
when p # 3. When p < 3, one typically observes that ¢pu/p > 1/3, while for
p > 3, one typically observes that ¢p.u/p < 1/3; see [21, Figure 8.8], or [26, Figure 6]
for a recent numerical simulation. These observations suggest that the Holder space
C' in which Onsager’s theorem has been proven may not be the most reasonable
space for turbulent flows. In this direction, the third author and Vicol recently proved
an intermittent Onsager theorem [32] for non-conservative solutions in C ,O(H 2= n

L>®7) C C,()BI/3_' see Theorem 1.2 below.

3,00°
1/3

With the significance of the local energy inequality, the L3-based Besov space B3{ .

and intermittency in mind, we can now introduce the L3-based Onsager conjecture.

Conjecture (L3-based strong Onsager conjecture). Let 3 € (0, 1) and T € (0, 00).

(a) (Conservation and local energy equality) For any 3 > 1/3, if a weak solution
to the Euler equations belongs to C 0o, T71; Bf OO(T3)), then it satisfies the local
energy identity (1.2) in the sense of distributions with D[u] = 0.

(b) (Dissipation and local energy inequality) For any 3 < 1/3, there exist weak
solutions u to the Euler equations belonging to C 00, T1; Bf’ OO(’JI‘3)) which sat-
isfy the local energy balance (1.2) in the sense of distributions, where D[u] is
non-negative and does not identically vanish.

The rigidity part has been established by Duchon-Robert [19]. For the flexibility
part, on the other hand, some partial results are known. The current best result is
due to the second author and De Lellis [11], who showed the existence of Holder
continuous weak solutions to the Euler equations in C, fx for any 3 < 1/7 which also
satisfy the strict local energy inequality (1.2); we also refer to earlier results of De
Lellis and Székelyhidi [13] and Isett [24], the latter of which formulated the strong
C° Onsager conjecture. In the companion paper [22], we give a proof of the flexible
side for B € [1/7, 1/3), thus resolving the L>-based strong Onsager conjecture.
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19 Page4of271 V.Girietal.

Theorem 1.1 (Dissipation and local energy inequality [22]). For any fixed 3 €

©0,1Y3) and T > 0, we can find a weak solution u in CO(B3[3 N L1-38 35) to the Euler
equations (1.1) which dissipates the total kinetic energy and satisfies the local energy
inequality (1.2) with D[u] non-negative.

The proof of this theorem is lengthy and technical, and it is the main motivation for
the present work. As a point of comparison, note that the above theorem is strictly
stronger than the following intermittent Onsager theorem from [32].

Theorem 1.2 (Dissipation, but no local energy inequality [32]). For any fixed 3 €
1

0, 13)and T > O, there exist weak solutions u to (1.1) belonging to C?(BgooﬂLm)
which dissipate the total kinetic energy.

Not only does Theorem 1.1 imply Theorem 1.2, but also our proof of Theorem 1.1
furnishes a new proof of Theorem 1.2, which we believe to be of independent interest.
In a nutshell, we obtain a new proof of Theorem 1.2 by pursuing a proof of Theo-
rem 1.1 and simply omitting the unnecessary components. We therefore undertake
this task in the present paper, focusing on the elements of the proof of Theorem 1.1
which directly furnish a proof of Theorem 1.2. These include both general “blackbox”
lemmas, applicable to any construction of high regularity, intermittent' weak solutions
to a variety of fluid equations, and definitions and estimates specific to our particular
construction of high regularity, intermittent weak solutions to the Euler equations. We
describe these various components in subsection 1.2. However, there are portions of
the proof of Theorem 1.1 which are not necessary for the proof of Theorem 1.2, but
which we have included in the present paper, either for convenience, or due to their
technical nature. We shall always isolate and explain these results so that the reader
who wishes to ignore them on the way to proving Theorem 1.2 can safely do so. We
notate these results with an asterisk; for a first example of this notation, we refer to
Sections 7 and 10 from the table of contents.

Remark 1.3 (* Notation). Throughout this article, any section, lemma, theorem, etc.
which is amended with an asterisk * is only essential for the proof of Theorem 1.1
given in [22], and not essential for our proof of Theorem 1.2 in this paper. Readers
interested only in the proof of Theorem 1.2 may skip these sections and need not
consult [22] at any point.

In subsections 1.2—-1.4 of the introduction, we outline the contents of this paper,
focusing respectively on the novel aspects of our wavelet-inspired scheme, the role
of the intermittent pressure in pointwise estimates, and the technical tools we have
developed. Then in subsection 1.5, we give two guides to the rest of the paper; one
aimed at understanding the proof of Theorem 1.1, and the other aimed at understanding
the proof of Theorem 1.2.

1.2 The Wavelet-Inspired Scheme

From a bird’s-eye view, our wavelet-inspired scheme is a natural generalization of
the classical Fourier-inspired convex integration (Nash iteration) schemes. All convex

! Here, “intermittent” means that different L;’: norms satisfy very different bounds
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integration arguments, including ours, construct weak solutions to a given PDE as a
limit of a sequence of approximate solutions u,. However, in all previously existing
iterations, the approximate solution u, is equal (up to negligible errors) to the fre-
quency truncation P<; ~of the limiting solution u, where generally A, — oo at a
super-exponential rate as ¢ — 00. As a consequence of such a construction, velocity
increments wy = ug — ug—1 and wy = uy — ugy—; for g # g have no significant
overlap in their active frequencies. In our new proof of Theorem 1.2, however, u,
functions as a partial wavelet decomposition of the limiting solution u, in the sense
that w, and w, may have frequency overlap even if ¢ # ¢’. We use the parameter
n to quantify the number of velocity increments which have frequency overlap; that
is, wy and wy have non-trivial frequency overlap if and only if |¢ — ¢'| < #/2. Fur-
thermore, the frequency support of w41 in our setting is not contained in between A
and A4y, but rather A, 15/, and A4;. To highlight this distinction, we often use the
notations Wy := Wy+1 to emphasize that the maximum frequency of wyy1 is Ay,
and ity 471 = ug to emphasize that the maximum frequency present in iy is Agyi—1.

This perspective greatly affects the structure of the Euler-Reynolds system at stage
q, which is the system satisfied by u,. In our wavelet-inspired setting, u, satisfies

Oiug + div (uq ® uq) + Vp, =div (Rq - nqld) (1.3)
divu, =0, '

where k, := 1/2tr (R, — 741d). The Reynolds stress R, and intermittent pressure 7,
can be decomposed into components

q+i—1 q+i—1
_ k _ k
Ry= ) Ry, 7= ) 7.
k=q k=q

The superscript k indicates that the stress or pressure oscillates at frequencies no larger
than Aj. The velocity increment w41 is then designed to cancel out RZ — n;’ Id, leaving
R’; — 714‘ Id untouched forg +1 < k < g + n — 1. This stands in contrast to all existing
schemes, in which the entire Reynolds stress is cancelled.

In order to replace the lack of frequency separation between various velocity incre-
ments, we instead impose that w, and w, have disjoint spatial support if |g —g'| < 7.
Therefore spatial support information is a key component of our inductive assump-
tions. In order to successfully propagate the spatial support information we require,
we utilize a new stationary solution to the Euler equations as our main building
block, which we call an “intermittent Mikado bundle.” Intermittent Mikado bun-
dles B, are multi-scale shear flows consisting of a product of a high frequency,
highly-intermittent shear (Mikado, following [10]) flow W, 5, and an essentially
homogeneous? shear (Mikado) flow Pg+1- The frequency support of Wy is con-
tained in the set [ryAg47, Agtal, where ry = )‘q+ﬁ/2)‘;.lm’ whereas the frequency
support of p, | is highly concentrated around A441. We point out that the intermit-

tency ratio rq ~ (A4 )L;iﬁ)]/ 2 has been identified as the “Goldilocks ratio” in [32] for

2 Homogeneous here means the opposite of intermittent.
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19 Page6of 271 V.Girietal.

producing solutions to the 3D Euler equations in C ? B;/ ; The second key component
of our spatial support toolkit is a synthetic Littlewood-Paley projector @9 ,» Which
replaces the kernel corresponding to the usual Fourier projector P<; , onto frequencies
no larger than A, with a kernel which is compactly supported in a ball of size ~ A;l.
As one would expect, the synthetic Littlewood-Paley projector obeys the usual deriva-
tive estimates with cost A4, but produces outputs supported in the fattened (by )\;1)
support of the input. We formulate all the necessary results related to the synthetic
Littlewood-Paley decomposition as standalone lemmas, so that they can be re-used as
blackboxes both in [22] and any future constructions.

The flexibility afforded by the wavelet-inspired scheme and the multi-scale intermit-
tent Mikado bundles allows us to rectify one of the seemingly unnatural components of
the construction in [32] of solutions satisfying Theorem 1.2. In [32], the velocity incre-
ment wy 41 consisted of a collection of sub-increments wy 11 ¢, all with varying degrees
of intermittency (i.e. scaling between L2 and L norms). These sub-increments were
designed to cancel a collection of sub-stresses produced at a fixed stage ¢ — g+ 1. Our
wavelet-inspired scheme instead produces a sequence of perfectly self-similar velocity
increments, which obey uniform intermittent scaling laws in terms of the Goldilocks
intermittency ratio. Furthermore, there is no longer a need for the sub-stresses or
sub-increments which complicated the scheme in [32].

1.3 Pointwise Estimates

One of the difficulties of an intermittent scheme, such as those in [1, 4, 8, 30] is the lack
of homogeneity in estimates. For example, inductive assumptions on Vu, in [32] are
propagated in L?, meaning that the local L> norm of Vu, may vary greatly across
different space-time regions. This affects the stability of solutions to the transport
equation with velocity u,, which is used to flow the intermittent bundles (a la Taylor’s
frozen turbulence hypothesis). Similarly, the size of the Reynolds stress R, (or RZ in
our case) will vary greatly across different space-time regions, forcing us to normalize
wgy1 as roughly |R,‘]’ |/ *By+1 s0 as to enact a quadratic cancellation between wy 41 ®
wy+1 and Rg. We approach these issues by defining a novel intermittent pressure 7,
which streamlines these estimates by building into 7, information regarding the local
size of Ry, Vug, and their derivatives. Our inductive estimates assert that

-~ 2 -2 .2
IR{l <7g,  |Vagl> <r Zaend

with similar bounds holding for R]; and Vuy for k # g. Using D, 4 to denote the
material derivative o; —i—ﬁq -V, we are in fact able to show the much stronger estimates
(which we refer to as “pointwise estimates”)

M
DYDY RY| < 73 (rtirg@h'?) (1.42)
M
DV DMV, | < 1 g VY (1 g ') (1.4b)
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DY D xd| < 7Y (rq—jﬁxq(ng)'/z)M . (1.40)
These estimates show that we can use ng in conjunction with the parameters A, and
rq as multiplicative factors controlling the pointwise size of both spatial and material
derivatives on RZ, Vﬁq, and ng . While we still choose to formulate estimates in terms
of carefully constructed cutoff functions as in [32], the intermittent pressure centralizes
all the necessary size and frequency information needed throughout the iteration.

1.4 Toolkit

At a technical level, this manuscript contains generalizations of a number of the tools
from [3] and [32]. First among these is a sharp L? decoupling estimate for products
fg, where f has maximum effective frequency A and g is periodic to scale A~! «
A~!. Estimates for such a product in L' and L? were first shown by Buckmaster
and Vicol in [4]. We generalize this estimate to any p € [1, oo]. With a sharp L?
decoupling estimate in hand, we construct an inverse divergence operator inspired
by [3] which is well-adapted to error terms of the form fg o @, where f and g satisfy
the same properties as above, ® is a low frequency flow map, and g can be written
as the iterated divergence of a tensor potential diviG = g. Our inverse divergence
operator can produce estimates in any Lebesgue space, propagates arbitrarily large
numbers of spatial and material derivatives, preserves the spatial support of the inputs
f and G, and can be iterated an arbitrarily large number of times. Finally, we have
generalized the cutoff machinery developed in [3] for intermittent functions with L'
or L? estimates to intermittent functions with L estimates for any p € [1, 00); for
the sake of convenience and concreteness, we specify to the cases (Ll, LY 2 and L3)
which are used to measure current errors, stress and pressure errors, and velocity fields
in the proofs of Theorems 1.1 and 1.2.

1.5 Guides to the Paper
We present guides to Theorem 1.1 and Theorem 1.2.
1.5.1 Guide to Theorem 1.1

The reader interested in the proof of Theorem 1.1 should begin by reading [22, Sec-
tions 1,2], the former of which contains an introduction and an outline of the main
components of the proof, and the latter of which contains the statement of the crucial
inductive proposition needed for the proof of Theorem 1.1.3 The remaining sections
of [22] contain the proof of this inductive proposition. The proof begins with [22,
Section 3], which contains the convex integration set-up, as well as all of the elements
of the construction in the present paper which are used in [22]. Therefore the reader
may progress through [22, Section 3], following the directions to cited results in this

3 For convenience, we have reproduced the inductive proposition for Theorem 1.1 in Proposition 2.12
below, together with an outline of how this manuscript contributes to the proof of Proposition 2.12.
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19 Page8of271 V.Girietal.

manuscript as desired, before continuing to read the rest of [22] without reference to
the present paper.

1.5.2 Guide to Theorem 1.2

The reader interested in the proof of Theorem 1.2 need not consult [22] at any point.
The reader has two options, the first of which is to follow the outline to the proof
given in the proof of Proposition 2.13, which includes a treatment of the intermittent
pressure ;. Alternatively, the reader who prefers to ignore the intermittent pressure
can follow the outline given in Remark 2.14, which replaces the intermittent pressure
with methodology more similar to that of [32].

2 Inductive Propositions and Proofs of Main Theorems

In this section, we present the main inductive assumptions and propositions required
for Theorems 1.1 and 1.2. The inductive assumptions which are required for Theo-
rem 1.1 but not 1.2 are sorted into subsection 2.7. Then in subsection 2.8, we present
the inductive propositions required for both the main theorems and outline how the
contents of this paper contribute to the proofs of Theorems 1.1 and 1.2.

2.1 General Notations and Parameters
We first introduce the primary parameters
ﬂ’ﬁ’bskqvaq’rquq58r‘

which appear in the inductive hypotheses. First, we choose an L3-based regularity
index B € [1/7,1/3). Since § < 1/3, we can choose n € 6N such that

1 /3 2 2 nf2—1
< - - , B<=- — . 2.1
3 a/3+2 /342 3 n

This in turn enables a choice of b € (1, 25/24) close to 1 such that

1 14b+-+b7!

P <3 Tbt o
204+ G =D +---4+b"7"H) 2 14 b2 (22
— — R — . — .a
14+b+-- -+ b 3" 14+ b
_ b=l L. 1 p+1)?
<2, ( Tt +)(b—l)<(b—1)l/2. (2.2b)

bl b1

Indeed the inequalities in (2.2a) are possible since (2.1) is just (2.2a) evaluated at
b = 1, and both expressions in (2.2a) are continuous in b in a neighborhood of b = 1.
The first inequality in (2.2b) is trivial, and the second is possible since the fraction
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in the expression is continuous at b = 1 and equal to #7/2 if b = 1. It is clear that as
B — 1/3, we are forced to choose n — oo and b — 1.

We now define the frequency parameter A, the amplitude parameter §,, the inter-
mittency parameter r,, and the multi-purpose parameter I'; by

Ay = 2B loga] A, 0D . 8, = )“;213’ 2.3)

po= rarele o oferon (] (et oner 2.4
a9 T q — A q ' ’
qg+n q

The large positive integer a and the small positive number 0 < er < (b—1)> < 1 are
defined in (xviii) and (v) of subsection 11.1, respectively. Note that the intermittency
parameter r, is determined by the “1/2 rule” as in [32].

We now introduce further parameters

T, Mg, Ty, Coo .

We shall often decompose u, = uy + (ug — uy), and heuristically speaking, the
gradient of velocity Vit will have spatial derivative cost ~ A, and L3 norm ~ rq_/l ~

81//2;"_,22)»(,/. We in fact adjust the definition of 7~ ! using the parameter A, (slightly

larger than A, ), which accounts for small spatial frequency losses due to mollification,
and introduce the parameter T(;I (much larger than 7~ 1), which accounts for temporal
frequency losses due to mollification. We set

hg < Mg =2gT00 .t =8 TP < T 2.5)
and refer to (11.12) for the precise definition of T, . For the L norm of Rg (and other
inductive objects), we use the parameter C,, which will satisfy (we refer to (11.8) for
the precise choice of Co)

1 1
7 C
A STS <A

S

s

Finally, we will inductively propagate spatial and material derivative estimates,
where we use the notation and parameters

Dy g =308+ @y -V),  Neutt,Nindt, Nind, Nfin -
The integers N, above quantify the number of spatial and material derivative estimates
propagated inductively and satisfy the ordering (see subsection 11.1 for the precise
choices)

1« Ncut,t < Nind,t & Ning < Nfip

In particular, Nipq helps us keep track of both sharp and lossy material derivative
estimates. For this purpose, we use the following notation, which roughly says that
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19 Page 10 0f 271 V.Girietal.

“the first N, material derivatives cost 71, while additional derivatives cost T~!.” We
also list a few other notations in the subsequent two remarks.

Remark 2.1 (Geometric upper bounds with two bases). For all n > 0, we define
M (n Ny, t ! T—l) .— ¢~ min{n, Ny} p—max{n—N,,0}
k) ko ’ — A

Remark 2.2 (Space-time norms). In the remainder of the paper, we shall always mea-
sure objects using uniform-in-time norms sup; (7, 7,7 || - (1) ||, where || - ()| is any of
a variety of norms used to measure functions defined on T3 x [Ty, T»] but restricted
to time 7. In a slight abuse of notation, we shall always abbreviate these space-time
norms with simply || - ||.

Remark 2.3 (Space-time balls). For any set 2 C T3 x R, we shall use the notations

B, 27Ny = |(x, 1)+ A(x0, 1) € Q with |x — xo| < r1] (2.62)

B, 2!, 1) = {(x, 1)+ 3 (x0, fo) € Q with [x — xo| <A1, |7 — 1] < r]
(2.6b)

for space and space-time neighborhoods of € of radius A~! in space and 7 in time,
respectively.

2.2 Relaxed Equations

We assume that there exists an approximate solution (ug, Pq» Rg, —m4) at the g™
step, ¢ > 0, where u, : T x [—tg-1. T + Tq_1]4 — R- is the velocity field, p, :
T3 x [—14—1, T +74—1]1 — Risthe pressure, R, : T3 x [—74—1, T +74-1] — Rg;nfm
is the symmetric stress tensor, and 7, : T x [—74—1, T +14-1] — Ris ascalar field
which we shall refer to as the intermittent pressure. We assume that the approximate

solution satisfies the Euler-Reynolds system

Oiug +div(ug @ uy) + Vpy = div(Ry — m4ld) @7
diviy, =0. '
We use the decomposition and notations
Ug =Ug—1 + Wy +Wys1 + -+ + Wyti—1 = Ug4i—1 (2.8)
—_———

=iy,

4 We adopt the convention that 7_1 := 1.
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for the velocity field; one purpose of the notation it ;1 is to emphasize that u, has
effective maximum spatial frequency A, 1. The stress error R, has a decomposition

qg+n—1

Ry= Y RY, 2.9
k=q

where each R'(; is a symmetric stress tensor. The intermittent pressure 77, has a decom-
position

=y 7. (2.10)

In our wavelet-inspired scheme, the Reynolds stress R, will have a wide band of
frequency support in between A, and A, (effectively speaking). We correct the
portion of it which lives at frequencies no higher than A,. We denote this portion by
R{. More generally, we denote the portions of R, with spatial derivative cost A; by
ok

7
2.3 Inductive Assumptions for Velocity Cutoff Functions

The inductively-defined velocity cutoff functions v; 4 partition space-time into dis-
tinct level sets of the gradient of velocity. We first record here the key properties which
will be required throughout the inductive assumptions, and the local L*° estimates for
velocity increments w,/ and velocity i/, obtained as a consequence of the definition
of ¥; 4/, can be found in subsection 2.6. The concrete construction of v; 447 and the
verification of (2.11)—~(2.17) for g — g + 1 (i.e., ¢’ = g + i) will be given in Section
9.

All assumptions in subsection 2.3 are assumed to hold forall0 < ¢ — 1 < ¢’ <
q +n — 1. First, we assume that the velocity cutoff functions form a partition of unity:

waq,zl, and VY oY g =0 for |i—i'|>2. .11)

i>0

Second, we assume that there exists an imax = imax(¢’) > 0, which is bounded
uniformly in ¢’ by

Coo + 12
imax (@) < ————— 2.12
lmdx(q ) < & — Der , ( )
such that
Yig =0 forall i>imn(g), and rj;mm gr;‘,’i/;+ ‘85;‘/%;,2_/;.
(2.13)
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For all 0 < i < imax, we assume the following pointwise derivative bounds for the
cutoff functions ; . First, for mixed space and material derivatives and multi-indices
o, B e NK k>0,0< || 4+ |B| < Ngn, we assume that

k
B
(1_[ DO([ Dt,lq/—l> wi’ql
=1

< Ty (Cyag)“ M (181, Ninas = Newo T 700 T 0T ) - @214)

1supp1//,-4q/
w]*(K+M)/Nﬁn
iq'

Next, with o, B, k as above, N > 0 and D := ﬁq/ -V, we assume that

1supp wi_qr
1—(N+K+M)/Ngn

k
N ar B
D (H Dq,Dt’q,_1> Vi g
Vig I=1

< Ty (Cyrig )V O 1AM (18], Ningy = News T2 Ty T, )
(2.15)

for 0 < N + |a| + |B] < Ngy. Finally, for 0 < i < imax(g’), we assume the L! bound

_6+b
Tbh—1"

iy lgrj’*cb where  C, (2.16)

Lastly, we assume that local timescales dictated by velocity cutoffs at a fixed point
in space-time are decreasing in g. More precisely, for all ¢’ < ¢ + 7 — 1 and all
q" < q' — 1, we assume

VigVirg 0 = 1Tl <tpl 7. 217

This will be useful when we upgrade material derivative from D, 47 to Dy 4.

2.4 Inductive Bounds on the Intermittent Pressure 74

The intermittent pressure 7, is designed to majorize derivatives of errors and velocity
increments pointwise. In this subsection, we introduce estimates for 77, which are part
of the proof of Theorem 1.2, and establish precise relations between the intermittent
pressure and errors/velocity increments. The reader who is interested in the proof of
Theorem 1.1 should refer to [22, subsection 2.4] for a complete listing of the inductive
assumptions related to the intermittent pressure. On the other hand, the reader only
interested in the proof of Theorem 1.2 can refer to the proof of Proposition 2.13 for an
outline of how to verify the inductive assumptions from this subsection. Alternatively,
it is possible to prove Theorem 1.2 by treating the more familiar L” bounds on the
Reynolds stress in Remark 2.5 as the main inductive assumptions and ignoring the
rest of the content of this subsection. This approach is completely analogous to that
of [32], and we discuss this further in Remark 2.14.
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2.4.1 [*2, 1°, and Pointwise Bounds for 7[";

We assume that forqg <k < g+ —1and N + M < 2Njnq, 715 satisfies

H l/fi,k—lDND,%_lﬂg H3/2 < TyTidepa Ay M (M, Ning,¢» F;LIT,:_II, T,:_ll) .
(2.18a)

i DYDYk | = T AN M (M N T T )
(2.18b)
Wik DY DY | < T Tamh A M (M N, Ty TEY ) - 21180)
Throughout the paper, we shall use the phrase “pointwise estimates” to refer to bounds

on stress errors, current errors, or velocities in terms of various 7°’s which resemble
(2.18¢).

2.4.2 Pointwise Bounds for Errors, Velocities, and Velocity Cutoffs

We assume that we have the pointwise estimates

ik 1 DY DY RE| < T TSl A M (M, Ny, T T T
(2.19a)

Wikt DY DY | < Ty ey AR M (M Ninao, T oy T TR )
(2.19b)

where the first bound holds forq < k < g+n—1and N+ M < 2Njpq4, and the second
bound holds for N + M < 3Nn/2. While the main L? estimates on the Reynolds stress
will follow from the pointwise estimates in terms of the pressure (see Remark 2.5),
we are forced to assume that R’,; has a decomposition Rg = qu"l + Rf;’* , where Rf;’*
satisfies the stronger bound

N M k,*
| DY Dl R

2Nip, — —
=TT AN M (M N 7 T ) (2200

for all N + M < 2Njpq. The extra superscript / stands for “local,” in the sense that
R’,;’l is a stress error over which we maintain control of the spatial support, whereas
x refers to non-local terms which are negligibly small. The reader can safely ignore
such non-local error terms.

Finally, we assume that forallg < ¢’ <g+n — 1,

Imax

3 pberg i 2 @z
i=0
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19 Page 14 of 271 V.Girietal.

Combining this bound with (2.30) and (2.5) shows that for N + M < 3Nfn/2,

N
N pM o~ 50 .—1 1 50 —1 1
DYDY Vit | = T30 Ay ) Ay (T30 s g () )
Remark 2.4 (Velocity cutoffs, timescales, and intermittent pressure). Using the
timescale parameter 7.~ S 6[1/ 2Aq r;/nf defined precisely in subsection 11.1, item (v),
we may now record the following version of (2.21) for ¢’ = ¢;

_ i 1 _
Vigty ' Th < xTy (2d) " r, " (2.22)

Remark 2.5 (L estimates on Reynolds errors from pointwise estimates). The esti-
mates on R’(; in (2.19a) and the estimates on n[’; in (2.18) imply that for ¢ < k <

g+n—1land N+ M < 2Ny, R’q‘ satisfies

[pia DYDY Ry < T AN M (M N, T e T )
(2.23a)

Hwi,k_IDND%(,IR’; HOO <2 T AN M (M, Nind,(, F,’;ﬁor,;jl,T,jjlr;O> :
(2.23b)

2.5 Dodging Principle Ingredients

As discussed in the introduction, one of the crucial elements for the wavelet-inspired
scheme is dodging between velocity increments, which is elaborated upon in Hypoth-
esis 2.6. To construct a new velocity increment with such dodging, it is necessary to
keep arecord of the density of previous velocity increments as stated in Hypothesis 2.7.
These two hypotheses can be seen as improved and inductive versions of the “pipe
dodging” technique used in [3] or [32], and will be verified rigorously for g — g + 1
in [22, section 4]. We however outline the main heuristics behind the proof following
the statement of Lemma 6.2.

Hypothesis 2.6 (Effective dodging).Forq’, ¢” < g+n—1thatsatisfy0 < |¢”"—¢q'| <
i — 1, we have that®

B (supp Wy, k;,l Fq/+1) N B (supp W, k;,,l Fqn_H) =0. (2.24)

Hypothesis 2.7 (Density of old pipe bundles). There exists a g-independent constant
Cp such that (2.25)—(2.27), which are described below, hold. Let g’, " satisfy ¢ <

5 Here we are considering the support of W, in time and space, then expanding to a ball of radius hg ! |
in space only; see (2.6).
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q" <q <q+n—1,andsetd
d(G,3") := min [(,\q”r;/,)*‘, (xq,_h/zr,;,_ﬁ)*‘] . (2.25)

Let 7o € R be any time and  C T? be a convex set of diameter at most d(g’, §”'). Let
i be such that Q2 x {to} N supp¥; g # ¥. Let ®;» be the flow map such that

Dgr + (g - V) dgr =0
Dy (to, x) = x .

We define Q(#) = @z (1)~ (2).” Then there exists a set® L = L(g', ", Q, 1) <
T3 x R such that forall 7 € (¢g — 5 F;,,’Jrz, to + T5n F;,,’H),

O + g0 -V)1p(t,) =0 and  supp, iy (x,)) Q) S LN{r}. (2.26)

Here, the first identity holds in distribution sense. Furthermore, there exists a finite
family of Lipschitz curves {Zj,L}fil of length at most 2d(¢’, ¢”") which satisfy

Cp
Lnit=n)c|JB (@,,L, 3%;,1) . (2.27)
j=1

Remark 2.8 (Segments of deformed pipes of thickness )»;/1 ). We will sometimes
refer to a 3)»;,1 neighborhood of a Lipschitz curve of length at most 2(A5/_i/» qu_ﬁ)_l

as a “segment of deformed pipe” - see Definition 4.8. Since ()\.q/_ﬁ/zré’_ﬁ)_l will be
the scale to which our high-frequency pipes will be periodized, Hypothesis 2.7 then
asserts that at each step of the iteration, our algorithm can use at most a finite number
of high-frequency pipe segments inside any single periodic cell.

2.6 Inductive Velocity Bounds

In this subsection, we present inductive L°°-bounds for velocity increments and
velocity, which are derived from the construction of velocity cutoffs. All inductive
assumptions in subsection 2.6 except for (2.46) at ¢ — g + 1 will be verified in
Section 9.

6 The reasoning behind the choice of d(g’, ¢’) is as follows. The set should be small enough that it can
be contained in the support of a single " velocity cutoff. Since these functions oscillate at frequencies no
larger than &~ X q" the first number inside the minimum ensures that this is the case. The set should also be
no larger than the size of a periodic cell for pipes of thickness ¢’, which is ensured by the second number
inside the minimum.

7 For any set @' C T3, &z1(1)~1(Q) = {x € T3 : @z (r, x) € Q). We shall also sometimes use the
notation 2 o @qu (1).

8 Heuristically this set is U;supp, ﬁq/(-, t) N Q(¢), but in order to ensure that (9; + ﬁé// V)1, =0, L
does not include any “time cutoffs” which turn pipes on and off.
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Assume that 0 < g/ < g + 71 — 1. First, for 0 < i < imax, k > 1, &, B € NF, we
assume that

(H Dozth g — 1) Wy
Lo (supp ¥; 4r)

—1 [ —
= D280 O T M (11 Ninaas TP Ty T ) 228

for || + |B| < 3Nan/2 4+ 1. We also assume that for N > 0,

k
N a1 B -~
D (HD o, 1) ol
=1

< (Fz+251/2 —l/%)lwl—i-l()k Ty )N+|a\M (|ﬂ| Nind,, I J,F 1— -1 “1 FquT;}_])

Lo (supp ; 1)

q q-n
(2.29a)
i 1 —1 — —
< T2 0V G TN T2 M (181, Ninas TP 2! Ty T, )
(2.29b)
whenever N + |a| + |B| < 3Nsn/2 4 1. Next, we assume
k
‘ (H p*pf ) Diiy
I=1 Lo (supp ; ,1)
< 75 T g T M (181 Ninaos T2 Ty i T3 ) 230)

for || + | B| < 3Nfn/2. In addition, we assume the lossy bounds

k
B\~
<]_[ D™ Dt’q,> iy
I=1 Lo (supp¥; 47)

< 7 Ty O T M (181 Ninas T 70 T Ty ) 2310)

D37,

12 p |a| 1Bl
| = AT (2.31b)

hold, where the first bounds holds for |«| + |8] < 3Nan/2 + 1, and the second bound
holds for || + |B| < 2Ngp.

Remark 2.9 (Upgrading material derivatives). By applying Lemma A.6 and (2.29b),
we have the bound

N M =
| DY D i,

Lo (supp ¥ 1)
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< F,+251/z _1/3 S (g TV M (M Ning., T " T, LTy lT—, 1) (2.32)

for all N + M < 3Nn/2 + 1. Specifically, we set B = D; ;1 and A = D/, so that
A+ B = D; 4. Then the estimate (2.32) follows from the aforementioned Lemma and
(11.7b). We similarly have that (2.15) and (11.15) imply that for all N + M < Ngp,

Lsuppy;

iq N M

1—(N+M)/Ngn D7Dy iy

Vi
< Ty Ui Tg)™ M (M, Nings = Newos T 9750 T T, )
< T, (g Ty )N M (M, Nipgr, D450 T2, T 233
STy(gTy) > Nind,ts L gy T Ll y ) - (2.33)

2.7 * Inductive Assumptions for the Local Energy Inequality

In this subsection, we record several extra inductive assumptions which are only used
in the proof of Theorem 1.1, but not in the proof of Theorem 1.2. All assumptions in
this subsection will be verified for g — ¢+ 1 in the companion paper [22], and we refer
to [22, section 2] for a presentation of these inductive assumptions which is integrated
with the rest of the inductive assumptions required for the proof of Theorem 1.1.

2.7.1 * Approximate Solution
First, we assume that the approximate solution now includes a scalar field ¢, : T3 x

[—74—1, T + 74—1], which is called the current error. The current error plays the role
of the Reynolds stress in the relaxation of the local energy inequality, given by

1 1 - . —~
0; <§|uq|2> + div <<§|uq|2 + pq> uq> = (0 +uy - VIkg +div((Ry — mgld)uy)
+divgp, — E(x,1). (2.34)

We use the notation «;, = tr(Rg—741d)/2, and E (x, ) is given continuous function which
independent of ¢ and will become the Duchon-Robert measure of the limiting solution.
The current error ¢, has a decomposition

q+n—1

> b (2.35)
k=q

Analogous to R¥, the portions (plq‘ of ¢, have spatial derivative cost A, in an effective
sense.

@ Springer



19 Page 18 of 271 V.Girietal.

2.7.2 * Bounds for Intermittent Pressure 11'5 fork >q+n

For g +n < k < g + Np — 1 (where Ny is defined in subsection 11.1, item ix) and
N + M < 2Njnq, we assume that né‘ satisfies

o N M k
sz,q—&-n—lD D,,q_,.;,_l”q

3/2
N i -1 -1
< Ty TidiraA s M (M, Nindas T 41 g b Tq+,-l_1> (2.362)
H I/fi,q+ﬁ71DND%]+ﬁ_17Tg Hoo
Cootl s N j -1 -1
= FquJrﬁflAq-ﬁ—ﬁ—lM (M, Nind,t, F;+ﬁ—qu+ﬁfl’Tq+ﬁfl) ) (2.36b)
‘I/’i,q+ﬁ—1DND%I+ﬁ_1ﬂ5‘
< Ty AN MM Ninas Tl Tyl ) (2.36¢)
2.7.3 * Lower and Upper Bounds for ﬂ’é
For k > g, we assume that ”5 has the lower bound
Th > Sy (2.37)

Ty <my (2.38)
Forallk > g + Npr, we assume that
Th = Tidi - (2.39)
We finally assume that for all ¢ < ¢’ < q¢” < o0,
Sq”-ﬁ—ﬁ q/ o q// . _ ”
mg <2977,  ifg+n2<gq (2.40a)
8/ +in
8q”+ﬁ q/ q// .
—ny <7y , otherwise . (2.40b)
8q'+in

This final bound says that the n;‘ ’s obey a scaling law which may be roughly translated

as any 7, or m > 0 can be bounded from below by an appropriately rescale
“any 7p " f 0 can be bounded from below b iatel led
k o
T, .
q
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2.7.4 * Pointwise Bounds for Current Error

We assume that we have the pointwise estimate

_ ER i _ _
Vit DV DYk < Ty 263 AN M (M Ny, T T 10, )
(2.41)
for N + M < Ning/4.

2.7.5 * More Dodging Hypotheses

In order to treat several current errors related to the term (R, — 7,1d)u, appearing in
(2.34), we require the following two additional dodging assumptions, which state that
certain velocity increments are either disjoint from pressures and stresses, or may be
controlled pointwise via already existing intermittent pressure.

* Hypothesis 2.10 (Stress dodging). For all k, ¢” such that ¢ < ¢” < k — 1 and
q <k <q+n—1,we assume that

B (supp Wy, )»;,,1 Fqn+1) N supp RI(;’[ =0. (2.42)
* Hypothesis 2.11 (Pressure dodging). We assume that forall¢g < k < g +n — 1,
k<k',and N + M < 2Njpgq,
Yix 1 DNDY (ﬁkﬂf)
< 1,071 (né‘)m A M (M N T 7T T L 243w)

2.7.6 * Velocity Increment Potentials

We assume that forall g — 1 < ¢’ < g +7 — 1 and W, as in (2.8), there exists a
velocity increment potential U, and an error ¢, such that w,/ can be decomposed as

Dy = divit, + 25, (2.44)

which written component-wise gives @;, = 0; -0

Dot id) ~|—'E:1,. Next, we
assume that U,/ and ¢ satisfy

idq

-1 ~ ~
B (supp (Wyr), A Fj//) N (supp (T,7) U supp (€,)) = ¥ (2.45)
foranyg+1 < ¢” < ¢'.Inaddition, we assume that T, , := Ajr"ail . .3ikﬁ(§j*ilw*"d),

0 < k < d, satisfies the estimates
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’I//i,q’—l DND%]/_IU(I/’/( ‘
’ 1/2
<TyTy () 7 3G TN M (M Nas T2t T, T2 ) 246)

for N + M < 3Nsn/2. Finally, we assume that ?q/ satisfies the estimates

|p o

3 Sde,l —10 N -1 2
S0 Ty M gy M (M Ninao 7L Tl T2 )

(2.47)

t,q'— lq

for N + M < 3Nun/2. The velocity increment potential is used in [22, section 5.3]
to help invert the divergence on a product of a velocity increment with stresses and
intermittent pressures.

2.8 Inductive Propositions

In this section, we first introduce the inductive proposition required for Theorem 1.1,
and point out the inductive assumptions for g — ¢+ 1 which are verified in this article.
The proof of Theorem 1.1 is contained in [22, subsection 2.7], and [22, Section 3]
includes a discussion of the portion of the proposition which is verified in this article.
Next, we present a simplified inductive proposition which is sufficient for flexibility
statements analogous to that contained in Theorem 1.2.

* Proposition 2.12 (Inductive proposition for Theorem 1.1). Fix 8 € [1/7, 1/3), and
choose n satisfying (2.1), b € (1, 25/24) satisfying (2.2), T > 0, and a continuous
positive function E(x,t) > 0. Then there exist parameters er, Coo, Npr, Neut,ts Nind,t
Ning, Nfin, depending only on B, b, and n (see section 11.1 and subsection 2.1) such
that we can find sufficiently large a, = a. (b, B, n, T) such that fora > a.(b, 8, n, T),
the following statements hold for any g > 0. Suppose that an approximate solution
(g, pg, Ry, 0q, —74) of the Euler-Reynolds system (2.7) and the relaxed local energy
identity (2.34) with dissipation measure E on the time interval [—t,_1, T + t4_1] is
given, and suppose that there exist partitions of unity {1//2(], Yisoof [=tg—1, T +14-1]%

T3 forq — 1 < q' < q -+ — 1 such that

o Y o satisfies (2.11)~(2.17), and

o thevelocity uy and the errors Ry, g4, and w4 may be decomposed as in (2.8)—(2.10)
and (2.35) so that (2.18)—(2.21), (2.36)—(2.41), Hypotheses 2.6-2.7 and 2.10-2.11,
(2.28)—(2.31), and (2.44)—(2.47) hold.

Then there exist a new partition of unity {¢56,4+;,}i20 of [-74, T + 74] % T3
satisfying 2.11)—(2.17) for ¢ = q + n, and a new approximate solution
(g1, Pg+1> Ry, @g+1, —mg11) satisfying (2.7) and (2.34) on [—14, T + 14] with
dissipation measure E and also the following conditions. The approximate solution
may be decomposed as in (2.8)—(2.10) and (2.35) for g — g+ 1 so that (2.18)—(2.21),
(2.36)—(2.41), Hypotheses 2.6-2.7 and 2.10-2.11, (2.28)—(2.31), and (2.44)—(2.47)
hold for g — g + 1.
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Partial proof of Proposition 2.12 In section 6, we construct a new velocity ug41 =
ug+ Wy, and in section 10, we construct the associated velocity increment potential.
In section 8, we construct a stress error EqH defined on T3 x [—74, T + 74]. Finally,
in section 9, we construct a new partition of unity {I/Ii(jq_H—l}iZ() of T3 x [—74, T +14].
From the results in the aforementioned sections, the new velocity, stress error, and
partition of unity satisfy the following conditions.

o i g4i satisfies (2.11)-(2.17) for ¢’ = g +n.
e The pair (ug+1, pg, Rg+1, — (g — 7)) solves

8t’/iq-H"’div(uq-ﬁ-l Qug+1)+Vpy = diV(_(Trq - ﬂ5)1d+§q+1), diqu_H =0,

analogous to (2.7). _
o The new velocity u, 11 can be decomposed as in (2.8), and the stress R, 11 can be
decomposed as

q+n
= —k —k k.l —k,*
g+1 = E : Ry Ry =Ry + R4y,
k:q+l

=

analogous to (2.9). Furthermore, we have that (2.28)—(2.31), (2.44), (2.45), (2.47)
hold for ¢’ = ¢ + i, and R](;’frl = F];’frl verifies Hypothesis 2.10 for g +— g + 1.

e Hypotheses 2.6-2.7 hold, provided that Lemma 6.2 holds true. This lemma will
be verified in [22, section 4].

For the full proof of this proposition, we refer to [22]. In particular, [22, section 3]
recalls the set-up of the proof of the inductive proposition and contains a summary of
the specific results from this paper which the proof requires. O

For the purpose of proving Theorem 1.2, it is enough to propagate the following
subset of the inductive assumptions.

Proposition 2.13 (Inductive proposition for Theorem 1.2). Fix g € [1/7,1/3), and
choose n satisfying (2.1), b € (1,25/24) satisfying (2.2), and T > 0. There exist
parameters er, Coo, d, Npr, Neu,ts Nind,tr Nind, Nfin, depending only on B, b, and n
(see section 11.1 and subsection 2.1) such that we can find sufficiently large a, =
ax(b, B,n,T) such that for a > a.(b, B,n, T), the following statements hold for
any q > 0. Suppose that we have an approximate solution (uy, py, Ry, —m4) which
satisfies the Euler-Reynolds system (2.7) on the time interval [—t4_1, T + 74-1],
and suppose there exist partitions of unity {wfq,}izo of T3 x [—tg-1, T + t4—1] for
qg—1=<q <q+n—1suchthat

o ;o satisfies (2.11)~(2.17).

o Thevelocity ug, the error Ry, and the intermittent pressure i, may be decomposed

asin (2.8)—(2.10) so that (2.18)—(2.21), Hypotheses 2.6 and 2.7, and (2.28)—(2.31)
hold.
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Then there exist a new partition of unity {¢t§q+ﬁ}izo of T3 x [—74, T + 4] satisfying
(2.11)~2.17) for q' = q + i and a new approximate solution (ug4+1, Pg+1, Rg+1,
—1441) satisfying (2.7) forq +— q+1 on T3 x [—14, T +14] as well as the following.
The approximate solution may be decomposed as in (2.8)—(2.10) for g +— g + 1 so
that (2.18)—(2.21), Hypothesis 2.6 and 2.7, and (2.28)—(2.31) hold for g — q + 1.

Outline of the proof of Proposition 2.13 Throughout this proof, we restrict our attention
to the Euler-Reynolds system. The main components of the proof, drawing from the
rest of the article, are as follows.

e First, we construct the new premollified velocity increment w, 41 in subsection 6.1
by setting wy41,o = 0, and hence wy+1 = wy11,g. In the definition of wy 11 &,
furthermore, we set Ry ; x = —V&(; 1) (R¢ — rrgId)V@g’k) in (6.8). The velocity
increment W, is then defined in (6.17).

e A new partition of unity {wfﬁﬁ}izo is defined on T? x [—74, T + 14] as in
Definition 9.4. Then, under the restricted inductive assumptions listed in Proposi-
tion 2.13, (2.11)—-(2.17), (2.28)—(2.31), and (2.8) for ¢ — g + 1 are verified, by
the arguments given in section 9.

e Hypotheses 2.6— 2.7 are verified in [22, section 4], and we refer to the discussion
following the statement of Lemma 6.2 for an outline of the proof.

e Referring to Definition 8.15, we set Ry = Eq_H and define R, , RY!

q+1° g+
Rk’jl in a similar fashion. Then by definition, R,y satisfies the decomposi-

tion (2.9) at level_q + 1 from (8.104)—(8.105). We now have from (8.3) that the

triple (ug+1, pg, Rgy1, — (4 — ng)) solves

, and

Qg +1+div(ug+1 ® ug+1)+Vpy = div(—(7y — 7)Id+Ry41), divig = 0.
(2.48)

e Lastly, we define myy1 = my — ng + o441 and pyy1 = pg — 0441, Where
— gt k k
Og41 = Zk:q+ﬁ/2+1 0,41 and o, are defined by

k + + + +
Oq—i-l :O’S,(() "|'GS]é + lm:q+ﬁ(0S§N +UU ) +5q+3ﬁ ,

using the pressure increments associated to stress errors which are defined in
Section 8. Combined with (2.48), this shows that (2.7) and (2.10) are satisfied at
level ¢ + 1.

e In order to verify (2.18), we appeal to the definition of 7,1 above, the inductive
assumptions in (2.18) for 7, and Lemmas 8.4, 8.8, 8.12, and 10.4. In order to
verify (2.19a), we refer again to Lemmas 8.4, 8.8, and 8.12, while for (2.19b) we
refer to Lemma 10.4. The nonlocal estimate in (2.20) follows by the same estimate
at level ¢, the definition of R;+1 above, and Lemmas 8.1, 8.6, and 8.10. Finally,
(2.21) at level g + 1 follows from the same estimate at level g, the above definition
of 441, and Lemma 10.8. O

Remark 2.14 (Inductive proposition without intermittent pressure). It is worth
pointing out that for the purpose of proving Theorem 1.2, we do not need to propa-
gate pointwise estimates for ”CI; 41 and R’; 41+ Asin [32], it actually suffices to remove
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7, from the inductive assumptions entirely and propagate the L”-estimates given in
Remark 2.5. Upon doing so, (2.7) no longer contains 7, and (2.10) and (2.18)—(2.21)
are no longer needed. Then in order to prove the iterative step, one may proceed as
follows.

e Define cutoffs for Ry, analogous for those of 7, in Definition 5.6, by

NCLI[ X NCllll
. \ . 2
g ) =14 > 8 2Ty A) > (Thz, ") DD Re(x, 1),
k=0 m=0

-2 .
i, j.q(xX, 1) = Y04 (Fq jg,-yq(x, l)) , j=>1,

~ 27
wi,O,q(x7 r) = Y0,q9 <Fq ]gi,q(x7 t))

where yg 4 and ) 4 are defined as in Lemma 5.5. This definition is completely anal-
ogous to that of [32, (5.24)—(5.26)]. Then following the method of [3, section 6.7],
one can obtain estimates for w; j , on the support of ¥; , exactly analogous to
those obtained for w; 4 in subsection 5.

e Define

)
Ry ik = VP (5q+ﬁr,/1d _ R/g) vol ., (2.49)

substituting for the definition of Ry ; x in (6.8). Then define the velocity increment
exactly as in (6.9)—(6.11), except choosing K = 1 in Proposition 4.1.

o At this point, no modifications are needed to the rest of the argument - only omis-
sions. Specifically, one may skip sections 7 and 10, and simply go through the
portions of sections 8 without asterisks, and all of section 9. This will suffice to
prove a reduced inductive proposition which is sufficient for the construction of
weak solutions to Euler which however do not satisfy the local energy inequality.

Remark 2.15 (Theorem 1.2 and different flavors of flexibility results). With the
above inductive proposition in hand, the proof of any flexibility result, such as that
contained in Theorem 1.2, may be carried out in a manner essentially identical to that
of [32] or [3]. Achieving a decreasing kinetic energy profile will require an inductive
assumption measuring the difference between the energy profile of u, and the desired
energy profile. This can be done in the same manner, for example, as in [4]. We refer
the reader to these references for further details.

3 Mollification and Upgrading Material Derivatives

In this section, we introduce suitable mollifications of né‘, R’(; , /cg ,and <pZ in preparation

of later analysis; we have opted to include the mollification of the current error <pg in
this section since the method of proof is identical as for the stress or pressure. The
following lemma says that the mollified functions satisfy the same estimates essentially
as the unmollified ones, ignoring extra 'y costs. The difference between the mollified
function and the original function, on the other hand, can be made small.
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19 Page 24 of 271 V.Girietal.

Lemma 3.1 (Mollification and upgrading material derivative estimates). Assume
that all inductive assumptions listed in subsections 2.2-2.6 hold. Let P, ., be a

space-time mollifier for which the kernel is a product of Py (x), which is compactly
=12
r

q-1
time at scale T, 1" q/ s we further assume that both kernels have vanishing moments

up to 10Ng, and are C 1ONsin _differentiable. Define

supported in space at scale A and Py ((t), which is compactly supported in

Ry = pq,x,tRZ s Ty = ,Pq,x,tngv 3.1

on the space-time domain [—%-1/2, T + t4-1/2] x T3. For q' such that ¢ < q' <
q+n—1,wedefine Py v, ,lnananalogouswayaftermaklngtheapproprlateparameter

substitutions, and we set RZ = Py x, ,R and n[ =Py x tnq For q' withq +n <
q <q+ Npr, we define 77,1_,_,, Lx.t analogously at the spatial scale Aq+n ]F;i/$7]

and temporal scale Ty 171 Fq+/ﬁ_1 and set JTE = Pq+ﬁ71,x’tﬂ'q/. Then the following
hold.

(i) The following relaxed equation (replacing (2.7) ) is satisfied:

Orug +div(ug ® ug) + Vpy

g+ii—1 q+Npr—1
=div|Re+ Y RE—|m+
k=q+1 k=q+1
+div (R — Re + (m¢ — nl ) 1d) . (3.2)

(ii) The inductive assumptions for Jqu in (2.18) are replaced with the following
upgraded bounds for wg for all N + M < Ngy:

N P — —
[0 DY, 70 H3/2 S 26017 (8 Tg)Y M (M, Nipa Ty 751
(3.3a)
N i _— _
[ i.DY DY 7 HOO S T2HC (AgT)Y M (M. Nipaos T T
(3.3b)

N P — _
| DY DY | < T (AgTg)™ M (M. Nina, T, ', T,1) - (B30)

While we do not replace the inductive bounds in (2.18) and (2.36) for k # ¢, we
do record the following additional bounds for né‘ withqg <k <qg+n—1and

N
Vi1 DYDYy < Do (AkTeen) M (M Mg T T e )
(3.4a)
2+4-C, N i — _
i k-1 DV D,k 17 ” ST (AgTey) M<MvNind,ts F,’izlfk_ll,Tk_llrkA) ,
(3.4b)
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i+3_—1 -1
Vi k1 DN DY _ mf| <2rixf (arro m (M, Nina. Ty 7 T r,%_l) :

(3.40)
andforné‘ withqg +n <k < q + Npr and N + M < Ngy,
N
‘ Vig+io1 DV DY i) H3/2 S Tkt (Agaia—1Tgvi1)
! it2 -1 —1 )
x M (M’ Nind,t: T 1 Tgra—10 Tgqamt Fq+n—1) )
(3.5a)
N M k 24C N
‘ Vig+ia—1 D" Dy 17 HOQ ST 5% (Agti-1Tg+i-1)
! it2 -1 —1 )
x M (M’ de’t’ l—‘q-t—ﬁ—] tq+ﬁ—] ’ Tq+li—] F‘H‘"_]) ’
(3.5b)

N

_ pNpM k 3k )
Vi g+i—1D Dt,q+ﬁ—1n£‘ = 2Ty, (Aq+n—qu+ﬁ—l)

: i+3 -1 ~1 2
xM (M’ Nind,t: Ty 5 1710 Tq+ﬁfqu+ﬁ—]> :

(3.5¢)
The inductive assumptions (2.39) and subsection 2.3 remain unchanged. While

we do not discard the estimate in (2.37), we however record the additional esti-
mate

1 q 1 k k k
§8q+ﬁ <m < 27Tq <dm, §5k+ﬁ <m, < 27Tq = 47[@ . (3.6)

(iii) The inductive assumptions in (2.192)—(2.19b) for k = q are replaced with the
following upgraded bounds for all N + M < Ng, in the first two inequalities,
and N + M < 3Ngn/2 in the third:

— N ;] — _
‘w,-,qDND%]R,g’ <17 (A7) M (M, Ninao T, L, T, 1) (3.72)
~ — 1 N i — _

i DY DY | < it (8T )" M (M, Mg, Tz L TST) L (37b)

For k such that g < k < q +n — 1, we have for N + M < Ng, the additional
bound

‘Wi,quND%(_lRﬂ S Ffﬂf (A TN M (M, Nind,t, F,':sz,;ll,T,:,llF,ﬁl) .
3.8)

(iv) The symmetric tensor Ry — RZ and the pressure ng — 1y satisfy
N M q N M q
001 ]+ [0t 1]
4Nip, _ N
S Lt Ty 18 kg 11 M (M, Ninat, 7, ' T, 'T 1) (3.9)

q+1 “q q9 4
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forall N+ M < 2Ninq. Fork suchthatq <k <g+n—1and N+ M < 2Njyq,
we have that

N M kK _k N M k_ pk
[o" Dl (g =), + [0 Dl (RS - &)
4Nip, _ _
N Fk+1Tk+1d‘[5;%+3ﬁ(Aka—1)NM (M, Nind ¢, Tk,llrk—l, Tk,llrlil_l) .
(3.10)

and for k withq +n <k < g + Npr and N + M < 2Njpq,
N M k k ANindr 2 N
HD Dy g1 (”q - ”E)HOO S Pt Ty i1 8 447 D g+i—1Tgiim1)

-1 -1
x M (M, Nind,t- 7y 51 Dgin—15 Tq+ﬁfqu+ﬁfl) .
(3.11)

*Lemma 3.2 (Mollification and upgrading material derivative estimates). Assume
that all inductive assumptions listed in subsections 2.2-2.7 hold. Let Py x s and Py x ;
be defined as in Lemma 3.1. Define

90 = Pyx104 (3.12)
onthe space-time domain [—%4-1/2, T+74-1/21xT3. Forq' suchthatq < q' < q+n—1,
set 902 = qu,x,,gog .

(i) The following relaxed equation (replacing (2.34)) is satisfied:
1 B . 1 )
or E|uq| + div §|uq| + pq | uq

g+i—1 g+Np—1
=@ +ig Vikg+div| [ Re+ D RE—|me+ > b |1d|ay

k=g+1 k=q+1

q+n—1
+ div ((Rg — Ry + (g — ng)ld) ﬁ,,) +div ((pe + Z q)’,;)

k=g+1
+ div (wg —ng) —E@). (3.13)

(ii) The inductive assumptions in (2.41) for k = q are replaced with the following
upgraded bounds for all N + M < Ngy,:

_ 3/2 _ N i — _
x//,-,qDND[,"{[W‘ <t (agTg)Y M (M, Nindg. Thry '\ T, 1) . (3.14a)

The difference @y — (pg satisfies
N M q 32 4N -1 p=lp-1
| DYDY, (e = 0d) | = 8 kaar i M (M Ning 7 T TS Y) - B1S)
forall N + M < Nina/4.
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Proof of Lemmas 3.1 and 3.2 We first note that (3.2) and (3.13) are immediate from
(2.7), (2.34) and the definitions in (3.1). At this point, we split the proof into steps, in
which we first carry out the mollifications, and then upgrade the material derivatives.

Step 1: Mollifying the pressure né‘ . We first consider the case k = ¢
and apply the abstract mollification Proposition A.24 with the following choices:

P = 3/2’ oo, Ng’ NC as in (XIl)a Ml = Nind,t ) N* = 2Nll’ld )
Ny, = Nfn, S =supp¥ig_1, v=it\q_1, i=1i,
A=Ag1, A=ANTyq, T =Ty, t=11T3-1, T=T4y,

~ 1
f= 7'[3, Cf,,%/z = F§8q+ﬁ, Cf,oo = Cf = Fg"o_ﬂ Cy, = Aq/il

First, we have that the assumptions on the parameters in (A.115a) are satisfied by
(11.16¢), (11.17a),(11.21a), (11.12) and (2.13). The assumptions in (A.115b) are sat-
isfied from (11.16b), and the assumptions in (A.116) are satisfied from (2.31b). Next,
the assumptions in (A.117a) are satisfied from (2.18) (where we apply the bound
with ¥+ 41 in order to obtain a bound for L” (supp ¥; ;—1)). Finally, in order to
verify (A.117b), we apply Remark A.10 with the following choices. We set p = oo,

Ny = N; = 00, Ny = 2Nijng, Q@ = T3 XR v=—w=1y 1,Cp = r’m”al/z A2

Ay = Aw = Ag—1, P = Ly = F T_ | in (A.34), while in (A 27) and (A.28)
we set v —uq 1, Cy _Cw,AU _kv = Aq L o = Tl = r, qul’f = nd,
Cr = FC°° S Af = Af = Hf = ,uf = qul. Then (A.27) and (A.28) are sat-
isfied from (2.30) at level g — l, (2.18), (2.13), and (11.12). Next, (A.34) is satisfied
from (2.31a) at level g — 1. Thus from (A.35) and (11.12), we obtain that

Coot2 —
HDNa,MngH SISt ANT M (3.16)

for N + M < 2Njpq, thus verifying the final assumption (A.117b) from Lemma A.24.
We first apply (A.118) to conclude that for N + M < Ngq,

N M 20 N . +2_-1 -1
Vig-1D Dz,q—1”13H3/25Fq5q+n (AqTq-1) M(M’ Nind,t» Fq 1751 ququﬂ)

(3.17a)
(x//i,q,]DNDt{‘{Hn@Hoo <152 (A1, )Y M (M, Ning., THH3 71 T rq_l) .
(3.17b)

Next, we have from (A.119) and (11.16a) that the difference rrg — 7y satisfies
DDl =)
q+1

4Nip —
S T T 62 5 (Mg Do) M (M Ninaas 72 Tyt Ty Tyt ) (3118)

for N + M < 2Nj,q. Note also that since we have a lower bound on ng given by
(2.37), the above estimate implies that (after a sufficiently large choice of A so that
the implicit constant is absorbed)
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19 Page 28 0f 271 V.Girietal.

1
Ty > g — Sq40i > §5q+ﬁ»

which is the first inequality for 7, and nff in (3.6). The other two inequalities there
follow similarly. Finally, we note that by (2.18c) and (3.6),

. N pM , NpM  _q N M q_
Vig 1 DYDY | < w1 DYDY, + | DN DY (e — o)

< F;?'Q?AZIVM <M, Nind,ty Ff]_ltq_,ll , Tq_il)
+ 5§1+3,_,(Aqr,,_1)NM (M, Nind,t, r,j_ll, T;lll“q—l)

< T3y gDV M (M N Ty 7 T Ty )

for N+ M < 2Njnq. For 2Njhg < N + M < Ngp, we have from (3.17b) and (11.17b)
that

1 1 i — —
DNDtﬂ,dqflnl = 8§+ﬁ (Aq Fq/il Fq/z)NM (M7 Nind,h F(llt:il qul ’ q,ll F(?fl) .

In the case k # ¢, we may obtain the bounds (3.4a), (3.4b), (3.5a), (3.5b), and the
second inequality of (3.6), via an argument identical to the proof of (3.3) and the first
inequality of (3.6). We additionally have the pointwise bound forg+1 < k < g+n—1
and N + M < Ngp,

M 2 12 1172 i+3_—1 =1 2
ik DV DY mf| < (k4 7 ey N M (M N TER o T TR )

< 2orfmf 2 Y M (M N T 5T TR ) (Bi19)
andforg +n <k <q+Npand N + M < Ngy

_ pNpM k
Vig+i-1D Dz,q+ﬁ—1”e’

3_k 2 _ 2 N . i+3 -1 -1 2
= (Fkﬂq + 5k+f,)(Aq+n71Fq+ﬁ_1) M (M, de,ts rq+;,,1fq+,—1,1 s Tq+ﬁ—qu+ﬁ—l)

3_k 2 N _ i3 -1 -1 2
< 2y (Agi—1Tg 17" M (M, Nind,t: Fq+ﬁ—qu+ﬁ—1’Tq+ﬁ—qu+ﬁ71) ;
(3.20)

which again follows from a similar argument as in the proof of the corresponding
bounds for ¢ = k and (3.6). Furthermore, we have that the difference n;‘ -7 é‘ satisfies
(3.10) and (3.11), which follows directly from the mollification lemma and (11.16a)
with ¢ replaced by k — 1 or ¢ + 1, as in the case k = ¢. Finally, the bounds in (3.6)
for 7r;" follow similarly as before. At this point we have completed the proofs of the

required estimates in (3.4)—(3.6) and (3.10)—(3.11) for né‘.

Step 2: Mollifying the stress and current errors. We apply
the abstract mollification Proposition A.24 with the same choices as before, except
for the stress error we choose

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page 29 0f 271 19

f=RS, g<k<q+in-1, p=oo, Cf,oo=F,S°°+2, T = Tk—1,
=20, T=TpI,".
We then have that (A.115a)—(A.115b) are satisfied as in the previous step, asis (A.116).

In order to verify (A.117a), we appeal to (2.19a) and (2.18b). In order to verify
(A.117b), we use Remark A.10 exactly as in the previous step, but with R’; replacing

né‘. Thus from (A.118)—(A.119) and (11.16a), we have that forqg < k < g +n — 1
(we denote R, by RZ for concision here)

)Wi,k—lDNDt,k—lRéf’
S TP (AT M (M Nina, T2 T TR ) (3:21a)
N nM k k

DD, (RE - RY)|

4Ny, — —
S Ten1 T 18 35 (kTN M (M, Nind.» Te_ 1 Tk_llr,lll) ., (321b)

where the first bound holds for N + M < Ng,, and the second bound holds for
N + M < 2Njnq. The second bound verifies (3.10) for the difference R’; — Rle‘.
Appealing to (2.19a), (3.21b), and (3.6), we then may write that in the case k = ¢,

lﬂi,q—lDND%],lRe‘ < ‘lﬂi,q—lDND%I,le‘ + ‘DND%Fl (RG — Rz)‘

—7_4 AN . i+20_—1 —1 11
< T, 7xd AN M (M, Ning THH207 1 T, 1 T) )

2 N —1 —1 11
8253 (Ag gDV M (M N 7 T L)

ST Ty M (M Nina i, Ty 7t T4 L)

for N + M < 2Njnq. For 2Njpg < N + M < Ngj,, we have from (3.21a) and (11.17b)
that

N M 2 2 R12\N i+23_—1 =1 12
‘D D,,q_le‘ <82 2 (AT T M(M, Ningo, T2 1), Hrq_l).

In the case g # k, we have that for N + M < Ngp,
i1 DY DY RE|
— 1 1 1 — —
< @O + 6 a2 THY M (M, Nina.e, [ 232,71, Tk_llr,lil) :
giving the desired bound in (3.8) after using (2.40a) again.
In the case of the current error, we again apply Proposition A.24 with the same

choices as in the first portion of this step, except we choose
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3Coo
F=0l, Croo=Ty2 "r;' ¢=20, T=T, T, N,=Nuys.

We then have that (A.115a)—(A.115b) are satisfied exactly as in the previous step, as
is (A.116). In order to verify (A.117a), we appeal to (2.41) and (2.18b). In order to
verify (A.117b), we use Remark A.10 exactly as in the first part of this step, but with
(pg replacing Rg. We conclude that (A.117b) is satisfied with C  =Cf,00. Thus from
(A.118)—(A.119), we have that

‘wi,qleNDt,qflwi‘

3Cxo
=e+3 N ) i+22_—1 m—1 ll
<T, ra {(Ag Ty )N M (M, Niga g, TP 0 T T

(3.22a)
DYy g1 (00— )|

4Nip _ _
S T Ty 82 (A Ty )V M (M N 7, T LTI ) L (322b)

where the first bound holds for N + M < Ng,, and the second bound holds for
N + M < Nina/4. Appealing to (2.41), (3.22b), and (3.6), we then may write that

M M N M
Vig1 DV DY e < [Wiq 1 DYDY |+ DV DY (o — 0|

—11,_49\3/2 . —1 N . i+20_—1 -1 10
= 1 e AN MM Nipa g T Tt )

2 N -1 =1 1l
+82 455 (AgTg—1) M(M,Nind,t,rq_l,Tq_qu_l)
—11_3/2 —1 N . i+20_—1 =1 11
ST )P (Mg Ty M(M, Ning.c, 51207 71,Tq7]I‘q_1>
for N + M < Nind/4. For Nind/4 < N + M < Ngjp, we have from (3.22a) and (11.17b)
that

DVDY | <8

1 1 1 — —
20 (AT TN M (M Nipa o T T T2 )

q q—1°

Step 3: Upgrading material derivatives for k = ¢g. We begin
with the pointwise bounds for 7,. Combining the bounds from Step 1 with (2.17)
with ¢’ = g and ¢” = g — 1, we have that for N + M < Ngy,

i 12\ N Cpmie? e
Vi DV DY, < 203w (AT T) T M (M N 7 T2 T T2 )

(3.23)

We shall apply Remark A.10 (with the adjustment in Remark A.8 for derivative bounds)
with the following choices, at a point (¢, x) € int (supp I//l"q) for which the neighbor-
hood €2, x C supp¥; 4:
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(A.34) choices: p =00, Ny=00, N;=Ningt, Ni=Npn, w=1y,,

I’ 212 —1/3
Q=Qy, v=1Uuy_, Cw:FfI 84 ryii »

Y i+3 _—1 ~ —1p—1
)sz)\szqv Mw:rlqtlqul’ ,uwzrq Tq s

(A27) choices: C, = T8 0 2y =7, = A,

po=Tpr, ' He=T,'T7 , Q=Qu,

(A.28) choices: f =m;, Cy=supmy, Af= Xf = Aq(Fq_ll"q)'/2, Kf = [y,

tx

:D:f:ﬁv, QZQI,X'

Then we have that (A.34) holds from (2.28) at level g, (A.27) holds from (2.30) at level
q, and (A.28) holds from (3.23). Taking €2; , to be arbitrary and using the continuity
of my, we thus have from (A.35) that for N + M < Ngp,

N .
Wi,qDND,,Mqﬂe’ S Fsﬂz (Aq(rq—qu)l/z) M (M, Nind,ts TJIF(’,, chll“f) ,

matching (3.3c). In order to obtain (3.3a) and (3.3b), we use the L¥* and L™ bounds
on 7y shown in (3.3). Combined with Step 1, this concludes the proof of (ii).

In order to prove (3.7a), we argue in a manner very similar to the proof of (3.3¢c)
carried out just previously. The only difference is that from Step 2, we have the bound

N .
DY Dy gt Re| STy T (Mg (Tgi T ) M (M, N, T2 T T2 ).
(3.24)

Carrying out the same steps with the obvious modifications, we deduce that (3.7a)
holds as desired. The proof of (3.14a) is again quite similar, and we omit the details.
To conclude the proof of (iii), we must show (3.7b). Following the exact same steps as
before but beginning instead with the bound (2.19b) and appealing to (3.6), we obtain
the desired estimate, concluding the proof of item (iii).

Finally, we must upgrade the material derivatives to D, 4 on the differences in order
to conclude the proofs of (3.9)—(3.15) from item (iv). Arguing in a similar fashion
as in the first part of this step but applying Remark A.10 to the differences, choosing
Co =ty =My =Cy =y =y = T_il and using the extra prefactors from T4'ii‘{d“
to absorb the lossy material derivative cost yields the desired estimates in (3.9)—(3.15).

]
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4 Intermittent Mikado Bundles and Synthetic Littlewood-Paley
Decompositions

In this section, we recall the geometric lemmas which enact the cubic and quadratic
cancellations and the basic definitions of intermittent Mikado flows in subsection 4.1.
Then in subsection 4.2, we introduce intermittent Mikado bundles. Finally, in subsec-
tion 4.3, we introduce the synthetic Littlewood-Paley decomposition.

4.1 Definition of Intermittent Mikado Flows and Basic Properties

We shall require the following lemmas regarding decompositions of symmetric pos-
itive definite tensor fields. Typically such lemmas are stated and applied for tensors
in a neighborhood of the identity. Since it will be convenient for us to decompose
tensors for which some rescaling of the original tensors belongs to a neighborhood of
the identity, and later estimates (see Lemma 6.5) will depend on the rescaling factor,
we include a slightly altered statement with full proof.

Proposition 4.1 (Geometric lemma I). Ler E < Q3 N S? denote the set
{3/Sei +4/5e; } l<icj<3 Then there exists € > 0 such that every symmetric 2-tensor in

B(Id, €) can be written as a unique, positive linear combination of £ ® & for & € E.
Furthermore, for a given large number K > 1, let Cg denote the set

Cx:= |J Bkld. ke), “.1)
1<k<K

which we note is contained in the set of positive definite, symmetric 2-tensors for €
sufficiently small. Then there exist functions yg g for § € E such that every element
R € Ck can also be written as a unique, positive linear combination

R=Y (rex(R) & ®F. 4.2)

EeB

Additionally, we have that for all 1 < N < 3Ng,
lg’yg,ﬂ,SKI/z, ‘DNys)K‘SI, on Cg 4.3)

where the implicit constants above depend on E and Ny, but not K.

Proof By direct computation, we have that the identity matrix can be written as a
strictly positive linear combination of £ ® & for § € E, and that the set of simple
tensors {§ ® & }¢ez is linearly independent in the set of symmetric matrices. Therefore,
there exists € < 1 and linear functions ()/5)2 for £ € E such that for all R € B(Id, ¢),

R=> "y (RE®E,

E€EB
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and there exist implicit constants depending only on E such that for all R € B(Id, €),
ISr® S, [pR2®) st PYARI=0 WWz2. @4

Now let K be given. We define y¢ ¢ : Cx — R by

R
Ve (R) = vZ(R) = ky}? (Z) : (4.5)

In the last identity, 1 < k < K is chosen to satisfy R/k € B(Id, €) (cf. (4.1)), and the
identity holds because of linearity of (yg)z. Then, we have

R
ZVEZ,K(R)E@)é:Zng(Z)kE@E:R,
el Eel

and (4.2) is satisfied. Also, we have that for all R € Cg,
LS vex® S K [DIZg®) S1, DVIZg(RI=0 YN =2,

where the implicit constants are those from (4.4) and depend only on E. We immedi-
ately deduce from the lower bound for yg x (R) that

D2 (R

Dyex(R)| < 28 1

Now for N > 1, we may write that

2k (RIDV e (R) = DV (32 ¢ (B))

+ Z CN,N’DN/ (ve.x (R)) pN+I=N (ve.x (R)) -
0<N’'<N+1

Assuming by induction that |DNN Ye.k (R)] S 1for1 < N” < N, we use the lower
bound for y¢ g (R) to divide both sides by y¢, ¢ (R) and deduce that |DN+1 Yexk (R S
1, concluding the proof of (4.3). O

We now recall [11, Lemma 3.3].

* Proposition 4.2 (Geometric lemma II). Let {£], &, &3, £4) C 73 be a set of nonzero
vectors satisfying

{&1, &, &} is an orthogonal basis of]R3 and &4 = — (&1 + & + &).
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Fix Co > Oand let B¢, = {¢ € R3 : || < Co}. Then, there exist positive functions
(Ve }le C C*°(Bc,) such that for each ¢ € Bc,, we have

4
I
o=32 Fa@)E.

i=1

In particular, the set {e1, 2e>,2e3, —(e1 + 2ey + 2e3)} satisfies the assumption. We
denote the set of their normalized vectors by &' := {ey, ez, e3, —1/3(e1 +2e3+2e3)} C
Q® N'S?, and with slight abuse of the notation we redefine Ye to have

20 = (). (4.6)

EeE’

Definition 4.3 For any £ € E U &, we choose £/, £” € Q3 N'S? such that {&, &, £"}
is an orthonormal basis of R3. We then denote by n, the least positive integer such
that n.&, ny&'n&" € Z3 forall € € EU E'.

We now recall [3, Proposition 4.3], which details the choices for shifts enjoyed by
a function with sparse support. In our setting, such functions will be pipe densities, or
equivalently the densities associated to their potentials.

Proposition 4.4 (Rotating, Shifting, and Periodizing). Fix § € E (or € E'), where
E is as in Proposition 4.1 (or as in Proposition 4.2). Let r—', & € N be given such that
Ar € N. Let 3 : R* — R be a smooth function with support contained inside a ball
of radius 1/a. Then for k € {0, ...,r~' — 1}, there exist functions %)i,r,é ‘R3> R
defined in terms of s, satisfying the following additional properties:

3

3 T
(1) We have that %{A,r,s is simultaneously (?—:)-periodic and (_5> -periodic. Here,

Arng

by Tg we refer to a rotation of the standard torus such that 'H‘g has a face perpen-

dicular to &.
5

(2) Let Fg be one of the two faces of the cube J—Z* which is perpendicular to &. Let
Gyr C Fe N 21 Q3 be the grid consisting of r~2-many points spaced evenly at
distance 27 (Any) " on F: and containing the origin. Then each grid point g, for
k € {0, ..., rl— 1}2 satisfies

(supp}/‘kgr’g N Fg) C {x dx — gkl <2m (4)»n>,<)71 } “@.7

(3) The support of J#)i‘r’s is a pipe (cylinder) centered around a (%j)—periodic and
T2
ARy

-periodic line parallel to &, which passes through the point gi. The radius

of the cylinder’s cross-section is as in (4.7).
(4) We have that & - Vﬂi’r‘é =0.

(5) Fork #k, suppiﬂiyr,é N supp;#;:mE = 0.

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page350f271 19

We now state a slightly modified version of [3, Proposition 4.4] or equivalently [32,
Proposition 3.3], which rigorously constructs the L2-normalized intermittent pipe
flows and enumerates the necessary properties.

Proposition 4.5 (Intermittent pipe flows for Reynolds corrector). Fix a vector &
belonging to the set of rational vectors & C Q3 NS? from Proposition4.1,r~', » € N
withAr € N, and large integers N, and D. There exist vector fields VVI‘S or T — R3
fork € {0, ...,r~' — 1}? and implicit constants depending on Nfin and D but not on A
or r such that:

(1) Thereexistso : R — R given by the iterated divergence divP9 =: o of a pairwise
symmetric tensor potential © : R?> — R with compact support in a ball of radius JT
such that the following holds. Let Q]g’ 5. and l?é" 5., bedefined as in Proposition 4.4,
in terms of ¢ and ¥ (instead of »). Then there exists ng or T3 — R3 such that
if {€,&,&"}y € Q®N'S? form an orthonormal basis of R® with & x &' = £”, then

we have®
| . y
U = =580V (P2 (0f, ) +567 2708 v (P2 (0F,,)) "
=:(pé',,k)»,r ::(pék,k,r

(4.8)

and thus
curlls, , = &37Pain® (9, ) =60k, , = WE,., . (4.9)

and

£V, =E-VIW,, =E-VU,, =0. (4.10)

(2) The sets of functions {ué,)\,r}k’ {ng,A,r}k’ {l?é")hr}k, and {va,)\,r}k satisfy items -5
in Proposition 4.4.
(3) V\/g 5. IS a stationary, pressureless solution to the Euler equations.

(4) . Win, ®WE,, =£®E.

2 k 2 k
(5) ]{1‘3 |VV§,AJ| Vvlg,)\,r :ﬁS(QS,A,r) Z’{]g,k,r = /[[‘3 Q&,A,rb{g,k,r =0.
(6) Foralln < 3Ng,

2 2
"ok <G gt <)
[vok,., B P Y (@.11)
and
2 2
n < qn—1 (;*]) H n < 3n (;*1)
o T A T N AR ANCAE

9 The double index ii indicates that divP—2 (ﬁg A r) is a 2-tensor, and we are summing over the diagonal

components. The factor of 1/3 appears because each component on the diagonal of this 3 x 3 matrix is
A_lglg 5+ The formula then follows from the identity curlcurl = —A for divergence-free vector fields.
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(7) We have that supp 0;")“ CB (supp Ot hrs 2)(1).
(8) Let d : T3 x [0, T] — T3 be the periodic solution to the transport equation

YO +v-VO=0, Dl—y=x, 4.13)

with a smooth, divergence-free, periodic velocity field v. Then

S>

Vol (WE,, 0 @) = aurl (VT - (U, 0 @)). (4.14)

(9) For any convolution kernel K, ® as in (4.13), A = (V®)~!, and fori = 1,2,3,

[v : <A K * (W’g,k)r ® Wg)“) (¢)Ar)]
= ALK 5 (O, )" ONE, ) (@) 9, 4

i

. X 2
— ALEELD AL K <(Q§,A,,) (@)) . (4.15)

In the above display, k indicates the choice of placement, i is the component of
the vector field on either side of the equality, and m, I, and j are repeated indices
over which summation is implicitly encoded.

Proof The only small changes relative to the cited Propositions are as follows. First,
we write the pipe density o as the iterated divergence of a pairwise symmetric vector
potential divP® = o to match the form required for our inverse divergence operator
(cf. Proposition A.13). By “pairwise symmetric,” we mean that permuting the 2n — 1
and 2n components for 1| < n < D/2leaves ¥ unchanged. Since one can always rewrite
the identity A f = g as 0;0;6;; f = g, it is easy to convert the equality APy = 0
into divPy = o where ¥ is a pairwise symmetric tensor (see (4.35)).

Second, (5) is new. We will show that the second and third integrals vanish for any
radial pipe density, while the first vanishes by choosing a suitable radial pipe density
to have fT3 (g’g, M)3dx = 0. In order to compute the second and third integrands, we
shall assume that & = e3 and leave the case for general § € E, &' to the reader. Since
U, »..r 1s mean-zero and divergence free, it can be written as the curl of a radial scalar
potential V(r) according to the formula

ue3,}»,r = (_ayveg,k,rs BXVE3,)L,V7 0) .

Writing out the above expression in axial coordinates (x, y, z) — (R, 8, z) centered
around the axis of a single cylinder of the pipe, we have

Up s (R) = (—sin@)V,, , ,(R), cos(@)V., , ,(R),0).
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Then since

22 2 Ry 22 2 Ry
/ / / sin(0) f(R)dR dO dz =/ / / cos(@) f(R)dRdO dz
z1 JO Ry z1 J0 Ry

for any Ry, R», 71, z2 and radial function f(R), and both the second and third integrals
from (5) can be written in this form, we see that the second and third integrals vanish
as desired.

Finally, (7) is new, but it follows immediately from definitions and (4.7). m]

We shall require a set of intermittent pipe flows which possess nearly the same
properties as above, but which are however normalized in L3, and have non-vanishing
cubic mean.

* Proposition 4.6 (Intermittent pipe flows for current corrector). Fix a vector &
belonging to the set of rational vectors ' C 7> from Proposition 4.2. The statement
is same as in Proposition 4.5, but item 4 is not imposed, and items 5—6 are replaced

by

(5)][ We o PWesr = EPE, ][ (ng Er =]€T3Q]§,A,r”1§,x,r =0.
(6) Foralln < 3Ngy,

2 2 2 2
nyk < (373) H n ok < (373)
[v"ok,., ey SATOT v | S (4.16)
and
2 2 2 2
n < yn—1L.\p73 n <n, \»p73
HV L{g‘,,\yr Lr(T%) SA r(P ), ”V V\/{S,A,r Lp(T®) ~ A r(l’ )

4.17)

Proof The differences in (6) relative to (6) from the preceding proposition are simply
aresult of the L3 normalization and require no further justification. In order to ensure
(5), it remains to show that one can construct a radial pipe density gg,;,» which has
non-vanishing cubic mean and is the iterated Laplacian of a scalar potential, and
then convert the scalar potential to a pairwise symmetric tensor potential. As the
latter task has already been carried out in the previous proposition, we can focus
on the former. One can start with a smooth function f : (1/2,1) — R for which
fozn(f(D))3(x) dx # 0, and then define F(r) = f(Air + A2), where A and XA, are

chosen to ensure that to leading order, Ay F ~ AP F® (xir + A2). Then periodizing
concludes the proof. O

In order to control the geometry of pipes which are deformed by a velocity field on
a local Lipschitz timescale, we recall [32, Lemma 3.7].
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Lemma 4.7 (Control on Axes, Support, and Spacing). Consider a convex neighbor-
hood of space 2 C T3. Let v be an incompressible velocity field, and define the flow
X (x, 1) and inverse ®(x,t) = XL (x, 1), which solves

3,CD+U-VCD:O, Cb|t:t0:x.

Define Q(t) := {x € T3 : ®(x,t) € Q} = X(Q,1). For an arbitrary C > 0, let
T > 0 be a timescale parameter and I > 3 a large multiplicative prefactor such that
the vector field v satisfies the Lipschitz bound

sup Vo, Dl Loy < Ir2.
telty—t,t0+7]

Let V\/g ar T3 — R3 be a set of straight pipe flows constructed as in Proposition 4.4,

Proposition 4.5, and Proposition 4.6 which are (T/ir)3-periodic and concentrated
around axes {A;}ic1 oriented in the vector direction & for§ € E, &/, passing through
the grid-points in item 2 of Proposition 4.4. Then W = V\/g’k,r(fb(x, 1) : Q@) x
[to — T, to + ] satisfies the following conditions:

(1) We have the inequality
diam(Q (1)) < (1 + r—1> diam(2) . (4.18)

(2) If x and y with x # y belong to a particular axis A; C 2, then

X(x»f)—X()”t) X =y
= Si(x,y, 4.19
X0 =Xy o (.19

where |§;(x, y, )| < r-1

(3) Let x and y belong to A; N 2 for some i, where the axes A; are defined above.
Denote the length of the axis A;(t) := X(A; N Q,t) in between X(x,t) and
X(y,t) by L(x,y,t). Then

Lx,y,0) < (1 +r*‘) x -yl . (4.20)

(4) The support of W is contained in a (1 + F_1> 2 (4n*k)_l-neighb0rh00d of the
set

U Ai(1). 4.21)

(5) W is “approximately periodic” in the sense that for distinct axes A;, Aj with
i # j, we have

(1 —T7)dist(A;NQ, Aj N Q) <dist (Ai(t), A; (1))
<(1+T Ndist(AiNQ, A NQ). 4.22)
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A consequence of Lemma 4.7 is that a set of (T/ar)3-periodic intermittent pipe
flows which are flowed by a locally Lipschitz vector field on the Lipschitz timescale
can be decomposed into “segments of deformed pipe” in the sense of Remark 2.8.
Furthermore, any neighborhood of diameter ~ (Ar)~! contains at most a finite number
of such segments of deformed pipe.

Definition 4.8 (Segments of deformed pipes). A single “segment of deformed pipe
with thickness A~! and spacing (Ar)~!'” is defined as a 3A~! neighborhood of a
Lipschitz curve of length at most 2(Ar)~!.

4.2 Intermittent Mikado Bundles

In the continuous scheme, the building block flows are intermittent Mikado bundles,
which are bundles of pipes carefully designed to dodge previously placed intermittent
Mikado bundles. To give the idea, suppose that intermittent Mikado bundles comprised
of deformed pipes of thickness )»;Jlrl, . -A;iﬁ are given in a rectangular prism 2 of
particular dimensions. If certain conditions are satisfied with respect to the spacing of
the new bundles and the dimensions of the prism €2, we can successfully place new

bundles of thickness A; Jlrr-l that dodge all given bundles. Furthermore, the pipes in each
new bundles will be placed to be at least at a distance )‘;ii Iy+i away from a given

. . -1 . L . .
defo.rme.d pipe of thlc?mess A a+it We call this additional property effective dodging,
and it will play a crucial role throughout our scheme.

The key observation is that the intermittency alone need not dictate the spacing

. . . . . —1
of the plpef in a bundle. For example, consider a set of pipes of thickness A g+ and

g+ restricted to the support of a set of a small number of pipes of thickness
and spacing A;Jlrl. An intermittent Mikado bundle is precisely such an object; a low
frequency, small number of nearly homogeneous pipes on which high frequency, large
numbers of intermittent pipes live. We call the nearly homogeneous pipes bundling
pipes.

spacing A

Proposition 4.9 (“Bundling” pipe flows plg’ . for Reynolds and current correctors).
Fixavector& belonging to either of the sets of rational vectors from Propositions 4.1 or
4.2. Then fork € {1, ..., 1"2}, there exist master scalar functions pg ;. and subsidiary

bundling pipe flows p]g R= ﬁg, «Jor Reynolds correctors and pg o = ﬁé o Jor current
correctors satisfying the following.

(i) péo is (T/Aq+lr(;4)3-peri0dic and satisfies & - V,o]g’<> = 0, where either © = R or

o =q.
(ii) The set of functions {p’g’ oJk satisfies the conclusions of Proposition 4.4 with

rl = Fg, A= )LqHFq’l. In particular, supp;o’é‘y<> N supp/o]g:<> =@ fork £k,
and there are FS disjoint choices of placement.

(iii) /T3 ﬁg’k =1
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(iv) For alln < 3Ng, and p € [1, o0,

-3(3-1) |

n
< (r-! )
Lp(T3) ™ (Fq Aq+1) T ’

_ n 35—
< (07 "gm) Ty

k k
[ V76t V"6t |

LP(T3)
(3

2
5) . (4.23)

Proof The proof is a straightforward adaptation of the proofs of Propositions 4.5 or
4.6 after construction of an L® normalized master function Pe ;. Which satisfies the
shift and support properties from Proposition 4.4. We omit further details. O

Now we further divide the support of the bundling pipes using the following
anisotropic cutoffs and assign different pipes on the support of different cutoffs. We
remark that these cutoffs have the same dimensions as the analogous objects in [32,
Definition 5.17] and correspond to a length just larger than the scale to which the pipes
have been periodizied, which is (A4 rq)_l.

Definition 4.10 (Strongly anisotropic cutoffs). To each § € E, we associate a parti-
tion of the orthogonal space & € T? into a grid'® of squares of sidelength ~ Aq_}rﬁ /2
We index the squares S in this partition by /¢ which we will also denote by simply /.

To this grid, we associate a partition of unity ¢ é, ie.,

1 on3S
I = +! he =1 424
4 {0 outside %S; ’ XI:(C‘E) ’ (4.24)

which in addition satisfies (£ - V)¢, = 0 and H Vgl H <A, forall N < 3Ng,
o0

and all 7, where the implicit constants depend only on E.

Remark 4.11 We note that the number of grid squares of sidelength Ay Jlrﬁ /2 partitioning
the orthogonal space £+ c T3 is < )\3 S+ Consequently, we bound the cardinality
of the index set / as

I € SH <A ap-

We now introduce intermittent pipe bundles. These objects are multi-scale and

consist of nearly homogeneous bundling pipes at scale A;}rl, upon which various

intermittent pipes are placed on the support of the strongly anisotropic cutoffs.

Definition 4.12 (Intermittent pipe bundles). We define intermittent pipe bundles by

B: r = pe g Z(§§)3W§,R and By = pg Z(;é)ZWéw.
I 1

10 We refer to the grid used in Proposition 4.4, as any periodicity issues have been avoided there.
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where pg , = ,og” o, defined as in Proposition 4.9 for some m = mg , and W’

£ g s tgriaTaligs , constructed as in Propositions 4.5 or 4.6, for some m’ = ms ol

We use ¢ as a stand -in for either R or ¢ in order to streamline notation.

Remark 4.13 (Choice of the placement). The placements m and m will be chosen to
have effectlve dodging with deformed pipes of thickness A , AL and that of

+1’ o q+/2
thickness A +,, TASTRENE A qlﬁ, respectlyely. The requisite properties of these pipe§ are
contained in Hypothesis 2.7. The specifics of the placement procedure are contained

in [22, section 4]; see also the discussion following Lemma 6.2.

Remark 4.14 (Notational conventions). We shall frequently denote the intermittent
pipe bundles defined above as follows:

I, 1
B),o = p?g) Z ;g OW@),Q . (4.25)
1

The meaning of this notation is as follows:

(i) We assign a different intermittent Mikado bundle (where the difference is in
terms of the placement mentioned in Remark 4.13) to each mildly anisotropic
checkerboard cutoff function Cyoike 7 defined in Definition 5.13. Therefore,
the choice of placements m for the bundhng pipes will depend on all the indices

for ¢ god ke > S well as the index j for the pressure cutoffs defined in Def-

inition 5.6. We will suppress these indices most of the time and simply write
(&) in parentheses, where the parentheses is a stand-in for the omitted indices
q,i, k, I , j. As aresult, the bundling pipe has dependence on (£), ©, and so does
the intermittent Mikado bundle.

(ii) The subscript “o” in B ¢)  will be equal to either ¢ or R, corresponding to veloc-

ity increments designed to correct current errors or stress errors, respectively.

(iii) We abbreviate the bundling pipes p ) ., by pé). We write the ¢ in the exponent

to emphasize that the only difference between ¢ = ¢ and ¢ = R is the power of
the scalar function p¢ ; used to define them.

(iv) We abbreviate the very anisotropic cutoff functions by ;g’o. We do not write £ in

parentheses, since ;1’0 does not depend on anything besides the vector direction
& and the index 7 used to index the partition of unity. Also, the only difference
between ¢ = ¢ and ¢ = R is the power, so we write ¢ in the exponent.

(v) We write W ., Tor the following reasons: first, the pipe flow depends on more
indices than ]ust &, so we write (§) to denote the omitted indices; we include the
index / to emphasize that the placement of the intermittent pipe flow depends
not just on the omitted indices in (£), but on the index I as well. Finally, we leave
¢ in the subscript since the difference between W €).R and W v is more than
just a power; the former has vamshmg cubic mean, while the latter does not. We
note that the placement of W(g), - Will depend on (§), ¢, 1.
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4.3 Synthetic Littlewood-Paley Decomposition

When we estimate material derivatives of oscillation stress errors, we need dodging
in order to estimate the application of the differential operator (iik_l - Tiq) -V to the
error; this operator appears in the material derivative estimates of the error term. To
ensure that the error term enjoys a spatial support property even though it is defined
using an inverse divergence operator and a frequency projection operator, we intro-
duce a synthetic Littlewood-Paley projector P, ,,). This operator is defined using
convolution with a compactly supported kernel, and thus behaves like the original
projection operator P, ,] in estimates but allows control on the spatial support of
the output.

Definition 4.15 (Synthetic Littlewood-Paley projector). Let ¢ € C2°(R) satisty

supp (¢) C (—1/+/2,1/¥2), /q')ds:l, /s"gf)ds:O
R R

forn = 1,..., 10Ng,. Define ¢, (-) = A@(A-), and set @) (x) = @5 (x1)@x(x2). For
f € C®(T?), we define the synthetic Littlewood-Paley projectors by

B, fx) = /]R GO —dy, o=@, -For. @0

where in the convolution we consider f as a periodic function defined on R2.

From the definition, it is easy to see that supp (¢, — @x,) < supp (¢,,) and hence
supp (P;,2,1f) C B(supp (f), Xfl). With a bit of care, this property persists even
after inverting the divergence.

Lemma 4.16 (Inverse divergence with spatial support property). For given f €
C>®(T?) and D > 1,"! there exists a symmetric tensor field @?’AZ T2 = R®Y such
that

~ ~ _ (D) —
o1 (D =Boy gt (f = () = (k7 div) 041722 supp (0172) < Blsupp (1), 37
4.27)

Proof By a simple computation, we have

o (X) — @3, (X) = (@1, (x1) — @y (X1)) P, (x2) + @5 (x1) (P2, (x2) — @5, (x2)) .
(4.28)

Now define go(z) = @, (z) — @x, (z). We first construct a function gp(z) : R — R
with zero mean such that upon differentiating D many times,

e =g, supp(gp) C (—(2a)~!, (V2a)7h.

11 The value of this number will be specified using the parameter d from item (xvi).
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The construction follows from applying the following claim iteratively: if g; € C2°(R)
forsome i € {0, ..., D — 1} satisfies fs”gids =O0foralln =0,---,D —1i, then we
can find g; 41 such that

g1 =8 supp(git1) C (—(v2a)~ (V2a)Th,

/s”gi+1ds:0f0rn:0,...,D—i—l.
R

Assuming the claim, then gg satisfies fR s"go(s)ds =0forn =0, --,D, so we can
find gp with zero-mean such that

eP =gl V= =gy, supp(gp) C (~(v2A)\, (V2.

To prove the claim, we define g;+1 by g;i+1(t) := fia gids, where a is chosen so that
supp (gi) C (—a, a). Since g; has zero-mean, we can easily see that supp (gi+1) C
(—a,a), and gi11(a) = gi+1(—a) = 0. Using the latter, the vanishing moment
condition follows from

1 a 1 @
s"givids = —— s gids = ——— s"Hgids =0.
/]R 8i+1 T _a( ) &i+1 nt+l/)., 8i
Now, we set 91(1 """ b (x1, x2) = gp(x1)P;,(x2), and otherwise 91(“ """ i0) i zero, and

By ipf ) = go(x1)@ay (x2) . supp (8 € B0, AT Y
ipOs ) = G (x)go(x2),  supp 0SB0, ATY). (4.29)

Lastly, we define the desired tensor function @}1 A2 by

(4.30)

(D) ~
which by (4.28) and direct computation satisfies ()Lfldiv) 6)}' *2 = P, ) f- The
desired spatial support property follows from (4.30) and (4.29). We note that since
¢, — @5, has zero mean, P, 1,1(f) = 0. O

With the previous Lemma in hand, we aim to apply various synthetic Littlewood-
Paley projectors to smooth functions (such as squared pipe densities) and derive
estimates for the projected function, and its “inverse divergence potentials.” We shall
generally decompose a smooth, (T/1r)3-periodic function p which has derivative cost
A as a sum of the form

K
Py, () + (Z %l,xknm) +(1d =Py (). (4.31)

k=1
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where A is slightly larger than A7, and Lk is slightly larger than A. The terms in the sum
are precisely of the form to which the previous lemma applies, and we estimate these
in Lemma 4.18. The bottom and top shells which correspond to the two terms not in the
summand are slightly unique cases; for these we record the following Lemma. Note
that spatial localization is not relevant for these unique cases, as the lowest shell will
have no spatial localization properties at all, and the highest shell will be vanishingly
small.

Lemma 4.17 (Inverse divergence, special cases). Fix g € [1, 0o]. Let N a positive
integer, Ny < N/2 a positive integer, r, A such that A\r, A € N, and p : (T/Ar)z — Ra
smooth function such that there exists a constant C,, 4 with

|p¥ <Cp At (4.32)

PllLq (T2)
for N < N. Let o, Ag be given with \r < Ay < A < Ak. If the kernel ¢ used in
Definition 4.15 has N4 vanishing moments, then for p € [q, oo] we have that

N~ 2o Yq=2/p v
HD (®,,0) Hu <Cpy <E) A VN <N,  (433a)

Ny
| DY (12— B1.) p) HLOC S (ﬁ) CogtV 3 YN <N=N,, —3. (433b)

Furthermore, for any chosen positive even integer D and any small positive number o,

there exist adjacent-pairwise symmetric'? rank-D tensor potentials o and Ok such
that for 0 < k < D and N in the same range as above,

divDﬁo = FAOP#),O , ‘

DN divk 9y H
LP

*o 2q—=2/p D
<A4Chy <;> O P M (N, D =k, ar, 2o) , (4.34a)
divPox = (1d— B, )p, ” DV divk vy H .
)\‘ N**
< (T) Cp g2 PM (N, D =k, ar, 1) . (4.34b)
K

The implicit constants above depend on «a but do not depend on A, ho, Lk, orr.

Proof For the proof of (4.33a), we firstdefine F (x) = (@M p)(*/r) to be the 1-periodic
rescaling of Py, p. Then we can write that

DY (Byr0)| (6) = )" sup

xeT?

sup DNF) (x)

xeT?

12 By “adjacent-pairwise symmetric,” we mean that permuting the 2n — 1 and 2n components for 1 <n <
D/2 leaves ¥ unchanged.
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= ()N sup DY /R 2/O(X/M—y)mo(y)a’y‘
xeT
xX—z
= )N sup Dﬁ’/ p(—) @i (2)dz
xeT? R2 AF Ar
X —2Z
— )Y sup / o (2=2) (DY) @) dz
xeTz R2 )\.l" Ar
)MO N )MO 2/‘1 )\0 2/11
N N
< () (ﬁ) (ﬁ) Co.q =20 o Co.q

for all N, and in particular for all N < N. This proves (4.33a) for p = oo, and the full
estimate follows from interpolation with the trivial L7 estimate. To prove the second
estimate, we use the vanishing moments condition to expand p as a Taylor series and
eliminate the first N, — 1 terms; in particular, we have that

DY (1= F) )| 0

=’/RQ<PAK(X—y)(

5 H DN+N**Q

—x)B 1
> e | <1—n>N**‘DﬂDNp<x+n<y—x>),dn) dy
|,3|:N** ’

-N.
L O
N
A ok N43
§(TK> AT Cog -

The above computation holds for N + N, + 3 < N, concluding the proof of the
second estimate.
To prove the estimates for the tensor potentials, for k = 0, K we first define

pitiz-io-iio _ ghiz ... gioio A=3F, Pop, (435)

(4.35b)

i1i2...ip—1ip ii
9 = shi2.

i - g1 (1d — B, ) A" I Psop

where 87! is the usual Kronecker delta. Then by direct computation and standard
Littlewood-Paley analysis, (4.34a) and (4.34b) hold. The « loss in the first estimate is
due to the failure of the Calderon-Zygmund inequality in endpoint cases. O

We now move to the middle cases from (4.31), for which the spatial localization
will be important.

Lemma 4.18 (General localized inverse divergence). Fix g € [1, 0o]. Let p : T -
R be a smooth function which is (T/ir)*-periodic and for N < 2Ny, satisfies

|>*

DVp S Cpa.

4.36
Lo (4.36)
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For Ar < A1 < X\, define @i‘,")‘z using Lemma 4.16. Then for p € [q, 00],0 <k <D,
0 <a <1, and N < Ngp,, we have

1, 3DP ~ ~
(ndiv) "~ 0512 =B 11000 = By sy 0 — (o) (4.37a)
2
N —D A A2N (i, i min (A, A2) \ ¢ P k. N
HD ail“'iD_k (}\,] (H),Dl 2)(11 ip) HLp(’]I‘Z) /SD,OZ Cp’q <T }\.] min (A, }\,2)
(4.37b)
supp (@2“”) C B(supp(p), )\1_1)‘ (4.370)

The implicit constants above depend on a but do not depend on A, Ay, Lo, orr.

Proof The spatial property immediately follows from Lemma 4.16. To obtain L”-
norm estimates, we will obtain L4 and L norm estimates and then interpolate them.
We first rescale by setting

50) ( : ) PO B AL S T (4.38)
o) = —_— , = —, = — =7 . .
P P Ar Ar 2 AF Ar

so that p'is T2 periodic and satisfies

|7

Constructing 61 and ; as in the previous lemma but for the choices in (4.38), we have

SCogh.

L4(T?)
— 1,...,1 - — 2,..,2 -
a0 (x1, x2) = @)@y, (x2) . 85057 (x1, x2) = @, (¥ gk (x2) -

By direction computation, i.e. simply integrating a difference of mollifiers, we have
that gy, satisfies

N Yk >
”D ng L® S AU M (N k= 1,41, 42)
MHEM(N k=1, % k>1
gk LOOR ND 1 ( ) — 1, A, 2) ) jutl 3
pN ‘ <N HDN H < TN+
H 80l 1wy ~P 42 80| ooy ~P 2
Then we have the bounds
[Daptal| <o TR, [pNapteln] oM,
L1(R?) L®(R2)

N oD—k(2,...,2) < FNT—k N qD—k(2,...,2) < TNHIT—k+1
o, ST ot 0T
Thus it follows by interpolation for 1/g’ = 1 — 1/q that
HDN ke(l ,,,,, 1)” AN+2/q)L—k HDN 4D— k0(2 ..... 2)” }»N+l/q)\—k+1

L4 (RZ L4 (Rz) '
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We therefore have that fork =0, ..., D,

< ’)t?_k min (X XZ)N Coq

PO T
[ DY 0y ip (@572 1)

L4(T?)

PN T ~D—k . ~ \ N4+
HDNahniD_k(@[;‘l 2)(11, ,iD) ,SD A? kmln (’X’ )Lz) /a Otcp’q ,

Loo(T2)

where if Xz < X, we let the derivatives fall on 6;, and if 12 > X, we let the derivatives
fall on p. Using the interpolation inequality, we obtain

AT ok N
[ DY yip (@3 7)) <p 20K min(x, Tp)NHartec,

LP(T2)

Undoing our original rescaling, we find that

H DNail i (@21,12)(1'1 ,++,iD)

LP(T?)
<o ()N HPE HDN [81‘.‘.‘,',3_,((@%l’kz)(ilw,iD>]‘

LP(T2)

< <min(k, A2)

2_2
it D—k . N
— Cpgry  min(k, A2)" .

5 Non-inductive Cutoffs

In this section, we introduce all the non-inductive cutoffs which will be required
throughout the proof. First, we introduce a collection of time cutoffs in subsection 5.1.
Then in subsection 5.2, we can estimate flow maps related to the flow of V'L?q/ for
q’ < g +n — 1 on the support of time and velocity cutoffs. Then in subsection 5.3,
we introduce the intermittent pressure cutoffs for m,. Subsection 5.4 contains the
definitions and estimates for the mildly and strongly anistropic checkerboard cutoffs,
whose properties are put to use in the discussion following Lemma 6.2. Finally, in
subsection 5.5, we introduce the cumulative cutoff functions given as a product of all
previously defined types of cutoffs. The last subsection of this section then contains a
number of “cutoff aggregation lemmas” which allow us to turn estimates in localized
regions of space-time into global pointwise and L? bounds.

5.1 Time Cutoffs

Lety : (—1,1) — [0, 1]bea C function which induces a partition of unity according
to

dox—-k=1. (5.1)

keZ
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Consider the translated and rescaled function
X <2tr(1_1Fé+2 — k) ,
which is supported in the set of times ¢ satisfying

=120y T 2k < 125, T2 = e [(k — DIj2t, 7 72k + 1)1/zrqrq—"—2] )

(5.2)
We then define temporal cut-off functions
Xikg () = X (Ztrq—ll“;“ - k) ) (5.3)
It is then clear that
10" Xi kgl S (L2271 (5.4)
form > 0 and
Xiki,q () Xi ks g (1) =0 (5.5)
for all t € R unless |k; — k2| < 1. In analogy to v+ 4, we define
1
Ko ®) = (X1, 0 + X O + X1, ©)° (5.6)
Kx,q . ik—1,q ik,q i,k+1,q > :
which are cutoffs with the property that
Xik+,g = 1 onsupp (Xik,q) - (5.7)
Next, we define the cutoffs x; ¢, by
Fikq ) = x (nq—lr; - krf) . (5.8)

For comparison with (5.2), we have that X; s 4 is supported in the set of times ¢
satisfying

[t =T = Ty (5.9)
Let (i, k) and (i*, k*) be such that supp x; x,q N supp xi*k*,q # ¥ and i* € {i —

1,i,i + 1}. Then as a consequence of these definitions and a sufficiently large choice
of Ao,

SUPP Xi k.q C SUPP Xi* k*.q - (5.10)

5.2 Estimates on Flow Maps
We can now make estimates regarding the flows of the vector field #, forg’ < g+n—1

on the support of a velocity and time cutoff function. This section is completely
analogous to [3, Section 6.4], and we omit the proofs.
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Lemma 5.1 (Lagrangian paths don’t jump many supports). Ler ¢’ < g + 71 — 1
and (xo, to) be given. Assume that the index i is such that 1//2 ,(x0, T0) > K2, where
K € [16’ ] Then the forward flow (X(t),t) := (X (xo, to; 1), t) of the velocity field
Uy originating at (xo, to) has the property that 1/fl.2q, (X (1), 1) = <*/2for all t such that
[t —to] < rq/l“q‘,”“.

We note that v; ,» for g’ < g 47 — 1 are given inductively. The proof of the lemma
uses their properties recorded in subsection 2.3 only.

Corollary 5.2 (Backwards Lagranglan paths don’t jump many supports). Suppose
(x0, to) is such that I/f ,(xo, 1) > k2, where k € [Y/16, 1]. For |t — to| < Ty F ’“
define x to satisfy

xo = X(x,t;19) .

That is, the forward flow X of the velocity field iy, originating at x at time t, reaches
the point xq at time ty. Then we have

I/Ii,q/(x, t) 75 O

Definition 5.3 (Flow maps). We define ®; q (x t) = @ 1)(x,1) to be the flows
induced by #, with initial datum at time kz,/ 2 2 given by the identity, i.e.

(3;4—74\(1 V)(Dtkq =0
{ i g (kg T 72 = . .11

We will use D®; x) to denote the gradient of ®(; x) (which is a thus matrix-valued
function). The inverse of the matrix D®; x) is denoted by (D, k))_l , in contrast to
D<I>alk), which is the gradient of the inverse map dJ(_l.lk).

Corollary 5.4 (Deformation bounds). Fork € Z, 0 < i < imux, ¢ < q+7 — 1,
and 2 < N < 3Nm/2 + 1, we have the following bounds on the support of
Vig (X, 1) Xi kg ().

—1

”Dq)(i,k) - Id||L°°(supl7(‘/fi.q’7i.k=q’)) ~T 7 .
HDNcb(i k) ST g TN ! (5-12b)

N oo (supp (v; ' Xikg') q
” (DD )~ —1d STy o

. Loo(supp(wl',q’)?i.k»q/)) !
”DN_I ((qu(ivk))_l> L (supp (; 1 %; )) v (A ' ,)N | -

iq' Xik,q'
e e N-1 5.12

H (l k) Lo (supp (¥, q’X! kq') N q ( 1) ( e)
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Furthermore, we have the following bounds for1 < N+M < 3Nm/2and0 < N’ < N:

ol
, LO(supp (Y; 4/ Xi k')

< (g TV M (M, Ninas. T Tq—,l_qu/_1> (5.13a)

09 0 080
i Lo (supp (Y; 4 Xi k')

< (g Ty M (M, Ninag Tt T Ty ) (5.13b)

5.3 Intermittent Pressure Cutoffs

In this section, we introduce cutoff functions for the level sets of 7y. Estimates for 7,
are provided by (3.3a)—(3.3c).

5.3.1 Definition of the Intermittent Pressure Cutoffs

We first introduce a partition of unity which is slightly more general than is needed
at the moment; however, the generality will prove useful in the construction of the
velocity cutoffs. The statement is almost identical to [3, Lemma 6.2]. The only slight
difference is that (5.14) holds for the sixth power (the least common multiple of two
and three, corresponding to cubic and quadratic error terms, respectively), and the
estimates in (5) hold for arbitrary integer powers of the cutoff functions. The more
general bounds follow from the fact that since the cutoff functions are defined by
gluing together exponential functions, raising to a power is (locally) equivalent to
dilation.

Lemma5.5 Forall g > 1 and 0 < m < Ny, there exist smooth cutoff functions
Ym,g> Ym,q + [0, 00) — [0, 1] which satisfy the following.

(1) Theﬁmcn:on Ym.q satt:sﬁes 1[0’%r2(m+1)] < Vmg =< I[O’r§<m+1>].

(2) The function yy, 4 satisfies 1[1’%1-.Z(m+l)] < Ymg = 1[%’1,3(”&1)].

(3) Forall y > 0, a partition of unity is formed as

g )+ D v (L2 0y) = 1. (5.14)

i>1
(4) )7;"!‘1 and Vrn,q(r(;Zi(m+l)') satisfy

SUPP Vm.q () N supp Y g (T2 D) =0 if i > 2,

SUPP Vi, q (1";2i(m+1).) O SUPP Yim.q (Fq_Zi/(erl).) =0 if li—i'l>2. (515
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(5) For0 < N < Ng, when0 <y < Fg(mH) we have
|DN P g S Fing ()N N 22N 0D, (5.16)
Forz—l1 <y < 1 we have
1DV VgD S (g ))!NMin (5.17)
while for %Fg(m_l) <y< Fg(mﬂ) we have
1DV Y g S Ty 2N (g (o) N (5.18)
In each of the above inequalities, the implicit constants depend on N but not m
or q. If Ym.q OF Vinq is replaced on the left hand side with y,f,q, respectively )7,5,(1

for p € N, then a similar inequality holds after substituting the same power on
the right-hand side and changing implicit constants.

We now introduce the intermittent pressure cut-off functions.

Definition 5.6 (Intermittent pressure cutoff functions). For j > 1 the cut-off func-
tions are defined by

w6, 1) = yo(Fq_zj Bqi) e (x, z)), (5.19)

while for j = 0 we let
w046 1) = o (@4 me(x, 1) (5.20)
where yo := yo,4 and o 1= Y04

An immediate consequence of (5.14) with m = 0 is that {w?’ q} j=0 satisfies

Yol =1 wjgwig =0 if |j—j|>1 5.21)
j=0

onT? x R.
5.3.2 Estimates for Intermittent Pressure Cutoffs

Lemma 5.7 (Simple derivative bounds). For all m + k < Ng, and j > 0, we have
that

2j+6 i — _
Lyupp @ g | D¥ D}y, )] < T/ 708,15 (Dg Ag)* M (m Nina,- Thz, . T, 1) :
(5.22a)
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Ny
1/45q+ﬁrq] = Isupp(w_,',q)”é (5.22b)
18 wjg84+iTy < e, (5.22¢)

2j—4

Loupp w; 4.0 DD Re(x, )] < Ty 84 17Ty Ay M (m Ninat T, T;l) :

(5.22d)

Proof First, observe that by the construction of w; 4, we have that for all j > 0,

2(j+1
lsupp(wj,q)|7T€| = lsupp(a)j,q)”l =< Fq(]Jr )8q+ﬁ . (5.23)

Then, recalling the pointwise estimate (3.3c) and using (5.23), we have that
Laupp (.0 1V g D Dy 0005, D1 S Lsupp (.0 Ty e (T M) M (1, Nina Ty T3 )
2(j+3 — _
= 13984y A M (m Nipa g Ty T, )
To obtain the lower bounds on 7, on the support of w; ,, we appeal to (3.6) in the case
J = 0 and the definition of w; 4 in the case j > 1. Summing over j and appealing to
(5.21) yields (5.22c). Next, we can obtain the pointwise estimates (5.22d) for Rq in

a similar way by using (3.7a). Finally, we obtain (5.22c) from (3.6), the definition of
wj 4 for j > 0. a

Corollary 5.8 (Higher derivative bounds). For ¢ > 0,0 <i < iy, and o, B € N’(‘)
with |a| + | 8| < Nfn, we have

k
(1_[ D% Df@) e
=1 Lo (supp (Yi qwj q))

ST 0804a 0y A M (181, Ninass Tz T, (5.24a)

ﬁ DO![ Dﬁé )

(=1

-

L (supp (Vi g@j.q4))

ST 80148 M (11, Nnaoo Ty, T, (5.24b)

Proof of Corollary 5.8 We only work on the estimate for 7y because the estimates for
Rg can be obtained in a completely analogous way from Lemma 5.7 and Lemma A.7,
Remark A.8. We then apply Lemma A.7 with v = Uy, f = m, Q = supp g N
suppwj 4, and p = oo. In view of estimate (2.30) at level ¢, the assumption (A.27)
holds with C, = r‘ll”A Ly =%y = Ay, Ny = 00, pty = F’ q—l,ﬁv =TI, lT—
and N; = Nipd- On the other hand, the bound (5.22a) implies assumptlon (A. 28) Wlth
Cr= rflﬁ%ﬁ,—l, hp=ahp=TgAg py=Tht 1l iy =T;' and N; = Nings. We
then deduce from the bound (A.31) that (5.24a) holds, thereby concluding the proof.
O
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*Lemma 5.9 (Current error estimates). For all m +k < Ng, and j > 0, we have
that

3j-7 — 1 g
Loty g 1D Dl 01 = T/ 702 i Ty A M (Mmoo Py 75
(5.25)
Forg > 0,0 < i < imax, and o, p € N§ with |a| + || < Ny, we have
Dl |
H (H( 1 e Lo (supp (Yigwj.q4))
3j-17 - Ty a

<TT 8[,2+;,rq NIy Ag) M (|ﬂ|, Nind.i, Tg 7, I’qu) ' (20

Proof The proofis completely analagous to the proofs of Lemma 5.7 and Corollary 5.8,
and we omit the details. O

Lemma 5.10 (Maximal j index). Fix g > 0. There exists a jmax = jmax(q) > 1
determined by the formula

. . Y
Jmax = inf {] : Zréqu-i-ﬁ > F3+Coo} (5.27)

and which is bounded independently of q, such that
wjqg =0 forall j> jmax-. (5.28)
Moreover, we have the bound
g/ <6, 1 rGete, (5.29)

Proof of Lemma 5.10 The proof of (5.28) follows immediately from the definition in
(5.27), the bound (5.22a), and the bound (3.3b), where the extra factor of I'; absorbs
the implicit constant in (3.3b). Checking that jp.x is independent of g is a simple
calculation, as is the bound in (5.29). m]

Lemma 5.11 (Derivative bounds). For ¢ > 0, 0 < i < imax, 0 < j < Jjmax, and
N + M < Ngy, we have

N M
Isuppw;‘q |D Dt,qquq|
1—(N+M)/Ng,
J.q

S AN M (M N, T, LT, ) L (530)

Proof of Lemma 5.11 We shall apply the mixed-derivative Fa’a di Bruno formula
from [3, Lemma A.5] with the following choices, where we use the parameter names
from there:

1ﬂ=)’00r)70, FWZqu V=Ug,
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12 n=i kY —lpi o~ -1
F:84+ﬁrq . A=A=A4Ty, m=1, F;, /L:Tq ,

Ny=00, Ny=Nindae, h=me, Ch=3544iT5 °.

The assumption [3, A.24]is verified due to (5.16)—(5.18), and [3, (A.25)] is verified due
to (5.24a), which holds on the support of w; ,¥; 4. From conclusion [3, (A.26)] and the
equality (I'y ') ~2C, = I'*, we find that (5.30) holds; note that for the N = M = 0
case, we just use the fact that w; , < 1 rather than incur the loss ChF_2 from [3,
(A.26)]. m]

Lemma 5.12 (Support bounds). For any r > 3/2and 0 < j < jmax, we have that

3Ad=j)

ST " (5.31)

“wj,q

Proof of Lemma 5.12 We prove only the case r = 3/2, at which point the remaining
estimates follow from Lebesgue interpolation and the fact that w; , < 1 forall j, g.
For j = 0,1 the estimate is trivial from the pointwise bound for w; 4, and so we
consider now j > 2. Using Chebyshev’s inequality, (3.3a), and (5.22b), we have that

3/2

¥ , lells, _ sa-p)

a5, < P /1r3 Lzt ar2y 3% S 572 13 SRV
qg+n- 4

5.4 Mildly and Strongly Anisotropic Checkerboard Cutoffs

We first construct mildly anisotropic checkerboard cutoff functions which are well-
suited for intermittent pipe flows with axes parallel to e . The construction for general
& € E follows by rotation. We include all the details since the power for which the
partition is summable to 1 is absolutely crucial for the definition of the perturbation
in (6.8) and its estimates in Lemma 6.5, and the Reynolds oscillation errors in subsec-
tions 8.2. These summability properties are also crucial in the estimates for the current
oscillation errors in [22, section 5.2].

Step 1: Partitioning the space perpendicular to xj.Consider

a partition of Tizm into the squares defined using the periodized base square

i -
[ ) €T 102000 < 305 () (532)
and its periodized translations by

(l-7/8 - T2Ogn) ™ I3 7/8 - T () ™)

for
l.l3 €0, ..., 16T Phgpy — 1}
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Note that the periodized squares evenly partition [—, 7]%>. We let I+ := (I, I3) be
an ordered pair using the indices defined above, and choose {X,, ,, ;1};1 to be a C*
partition of unity adapted to these periodized squares such that

2 (2, x3) =1, Vo, x3) € T2

q.e1 X2,X3°
[L
Xy i X, =0 iflb—Dh|>1[3-T5]>1, (5.33a)
supp X, ,, 1 = [—1/sToh 1y, 8Ty 1,17 forly =(0,0).  (5.33b)
We shall later need that
DKot (xz,X3)> =c3, (5.34)
IJ_

where the constant c¢3 is geometric and bounded independently of g.
Step 2: Partitioning the space parallel to x;. Next, consider
a partition of T, into the line segments defined using the base line segment

T,y
{meT:0=m =32t (5.35)
and its translations by
L1208 1e{o,. .. 160,'T 5 —1).

Note that the segments evenly partition [—, 7r]. Choose {X; ¢, 1}, tobea C ° partition
of unity adapted to these segments such that for N < 3Ngjy,

Zkg,el,z(xl) =1 VY(x)) eT,,
1

Xq,el,l-)( ’TE 0 if |l —T| > 1 s ‘DNX(]»,E/J/

q.¢1

S 0gTHY, (5.36a)
supp (Xy.¢;.0) = [ /8, 'T, %, 5831081 (5.36b)
Step 3: Reynolds cutoffs. Combining [,/' into integer triples [ =

{, lg, I3) = (,1%), we now have a division of T? into rectangular prisms indexed
by /. We define

3
Xy o RO X2, x3) = &y () o g1 (X2, x3)

and note that

2 _ 3
v LgFLX2.x3) =1 V(x,x,x3) € T
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Step 4: Current cutoffs. We combine /, [ into integer triples [ as above
but now define

X

2
ger Lo (X1 X2, x3) = &g o (X)X 4, g1 (x2, x3)

and note that for each fixed value of | = [y,

2 — 3
DA G =X, () Y nax) € T

1:1=ly

Conversely, for each fixed value of [+ = ZOL, we have that

A8 = (x1,x2,x =2 X2, X3) .
Z W,I’W( 1, X2, X3) q’el’ld_(z 3)

Iit=if
With the time-independent cutoffs in hand, we define the time-dependent cutoff which
is adapted to the flows of the velocity field .

Definition 5.13 (Mildly anisotropic checkerboard cutoff functions). Given ¢, & €
E,1 < imax, and k € Z, we define

Coikef D =X, o7 (Pikg(r.D) - (5.37)
These cutoff functions satisfy properties which we enumerate in the following

lemma.

Lemma 5.14 The cutoff functions {¢ 1o k£ 717 satisfy the following properties.

(i) The material derivative D, 4 (quo’i’k,é 7) vanishes.
(ii) We have the summability properties for all (x, 1) € T> x R;

2
Y Criner®n) =1, (5.382)
7
2 ng,w,i,k,s,i(x’ D=y ¢ (kg (x.1), (5.38b)
T:1=ly
D G ke i@ X2x3) = XZ’SJOL(Q)Lk’q(x, n). (5.38¢)

Lidk=if
(iii) Let A = (VCD(,-,;{))_l. Then we have the spatial derivative estimate
. Ny N
Ny yM (€ 4J q \N: . -5 8
HD lDl,q(E AK al) zé‘q,<>,i,,’c,§,l HLoo(suppw,-,q}Z;’k,q) ’S (Fq )LqJFl) (Fq)‘q)
x M (M, N Ty ' T, (5.39)
forall N + Ny + M < 3Ngwn/2 4 1.
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(iv) There exists an implicit dimensional constant C, independent of q, k, i, and ]
such that for all (x, t) € supp Vi 4 Xi k.q» the support of{q i k£ i (-, 1) satisfies

diam(supp (¢, o ; 6.7 (1)) ST (5.40)

Proof of Lemma 5.14 The proof of (i) is immediate from (5.37). The first equality in
(5.38) follows from (i) and the definition of the Reynolds cutoffs in Step 3 above. The
second and third equalities follow from (i) and the definition of the current cutoffs in
Step 4 above. To verify (iii), the only nontrivial calculations are those including the

differential operator & ZAé d;. Using the Leibniz rule, the contraction

é A} ajé-q o i k& = é: A (8 X 510)((1)1 kq)a (I)l kg = gm(aqu’%-j’o)(qu,k,q) s

the diameter of the cutoffs defined in Steps 1 and 2 above, and (5.13a)—(5. 13b) gives
the desired estimate. The proof of (5.40) follows from the construction of X’ . and
the Lipschitz bound obeyed by #, on the support of v; 4 see for example (4. 18) O

We may similarly obtain estimates on the flowed cutoff functions Cé which come
from Definition 4.10. The proof is quite similar to the one above, and we omit the
details.

Lemma 5.15 (Strongly anisotropic checkerboard cutoff function). The cutoff func-
tions ¢ é o ®; ) satisfy the following properties:

(1) The material derivative Dt,q(;‘é o @ r)) vanishes.
(2) For all fixed values of q,1,k, &, eacht € R, and all x = (x1, X2, X3) € T3,

Z(;g 0o @) l(x, 1) =1. (5.41)
1

(3) Let A = (V®(i7k))_l. Then we have the spatial derivative estimate

| DM DY 6470 ¢ L 0 @60 | o (suppyi o 71009

1
S At MM Nipag, Tz T (5.42)

forall Ny + Ny + M < 3N/2 4 1.

(4) There exists an implicit dimensional constant C, independent of q, k, i, and &
such that for all (x, t) € supp Vi g Xi k.q» the support ofg'é o @ k) (-, t) satisfies

diam(supp (£ 0 @4y (. 1)) ST, 5,0 (5.43)

We also need the following lemma that bounds the cardinality of these anisotropic
cut-offs.
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Lemma5.16 For fixed q,1i, k, &, we have that
4 {(7, 1) : supp (éq,i,k,gjé'é ° q>(,,k)) £ (/)} ST n. (544

Proof Note first that for a fixed I, there are at most 4 values of lé‘ such that
supp (qug’loLcéI__) = ). Also note that for a fixed I+, we have #{Z: = l(J)-} < )“IFS'
Putting these together along with the bound on the number of / given by Remark 4.11,
we get that

#1(1) supp (X, 7 &0 # B} STEAA2

Now the desired conclusion follows as all these cut-offs are flowed by the same
qD(i,k)- O

5.5 Definition of the Cumulative Cutoff Function

Finally, combining the cutoff functions defined in subsection 2.3, Definition 9.4, Defi-
nition 5.6, (5.3), and the previous subsection, we define the cumulative cutoff functions
by

M jrelo @D =V (0,007 (0 OX g (DC, oo a e T (D), (5.45)

where the ¢ in the superscript of the first three functions is equal to 2 if ¢ = ¢ (so that
they are cubic-summable to 1) and 3 if © = R (so that they are square-summable to
1). We conclude this section with estimates on the L? norms of the cumulative cutoff
functions.

Lemma 5.17 (Cumulative support bounds for cutoff functions). Forr, r € [1, 00]
with &+ L = land any 0 < i < imax, 0 < j, < jmax § € E, E, and 0 = ¢, R, we
have that for each t,

—31:+Cb+i+3
> |supp (n,,j,k,g,;,o(t, x))] VI (5.46)
I
We furthermore have that
~ o <
Z ISHPPﬂi_j,k,gj,oﬁé)é‘é Z IS“PP’I,-,j,k.gj’OP(E) ~ L. (547)

ijkE 0o ijkE o

Proof of Lemma 5.17 We shall prove the first bound for ¢ = ¢. Then from (5.45), the
only differences between ¢ = R and ¢ = ¢ are the powers to which various cutoff
functions are raised, and so we shall omit the proof for ¢ = R. To prove the bound for
¢ = @, we have that
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> ‘S“PP Ni,jkLy
I

5 H(wlﬁfl q + 1pzéq + 1ﬁi6+l q)l/ﬁ(w?fl q + w6' + w?+1,q)1/6

1/6
NH(wz ]q+¢zq+wt+lq
=33i-D+Cy =3(-D
1 n
S Fq F‘]

LI
)/e

6 6
I )( @j-14 T@jq T @197,

To achieve the ﬁnal inequality, we have used interpolation, (2.16) atlevel ¢, and (5.31).

Using that - ot —2 = 1 gives the desired estimate. Finally, to prove (5.47), we appeal to
(2.11) atlevel g, (5.1) and (5.5), (5.21), item (ii) from Proposition 4.9, Definition 4.10,
and Lemma 5.14. O

5.6 Cutoff Aggregation Lemmas

Corollary 5.18 (Aggregated L? estimates). Let 0 € (0, 3], and 61, 6, > 0 with 6, +

0 =0.Let H= Hl]kSloorH H”kélloheafunctionwith

Supp H; ; i e 7o S SUPPN; g el OF
suppHJks!loCsuppn”ksml;S od>(,k) (5.48)

Let p € [1,00) and let 01, 0> € [0, 3] be such that 61 + 6, = 3/p. Assume that there
exists Cg, Ny, My, N, My and A, A, T, T such that

Np 1/p
HD ,qu JkELo S sup | |supp ("i,j,k,é,l-,o(t’x))‘
teR
x CHTg T M, N, 3 My M (M, My, 1T, T71)(5.492)
1/p
Np 1,0
”D quz,],k,E,l,l,o Lp 5;"61HI£<SMPPJC (ﬂi,j,k,éj,oé'g °¢(i,k)(f,X))‘ >

x CHTV 2T M(N, Ny, 2, A) M (M, My ', T—1> (5.49b)

for N < Ny, M < M,. Then in the same range of N and M,

N
Vig ), D injkg Lo

i’ ,/,k,SJ,O LP

ST OOCH MV, Nos i )M (M, My, 7 T T (5.50a)

. N M .
Vig > DVDMNH, i.ii.
i jkETTo Lp

ST M N, Nesds )M (M, M o7 T T L (5.500)
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Proof We prove only (5.50b), as (5.50a) is slightly easier and follows the same method.
Using (5.48),(2.11) atlevel g, (5.49b), Lemma5.17 withr| = %, ry = %, 01+6, =
3/p, we may write that

p

. N pM .
Vig D, DVDYH, ieire
i j kLo

N nM
<swp [ Yig| Y. DVDYMH, . .. (t,x)dx

3
1eR T i—l<i'<i+1

JjkE LT

1, O1i+pbaj
=< sup Z ‘Suppx (ni’jyk’gj&;g °o cI>(i,k)(tv x)) ‘ CZF(}U 1

tERi—lsi’§i+1

Jk.E LT

% (M (N, Ny, A, A) M (M, M;, I*IF;,T*1>)p

01i+p0O j
Ssup ) ’SUPPX (ni,j,k,é,f,o(t’x)))czrg e

1R _1<it<it1

JokE Lo

MO, Ne.w, Y M (N N =i 7))’
q

; p
= Ry (MW, N M (M M7 T )

concluding the proof. O

Remark 5.19 (Aggregated L' estimates with F;). Assume that (5.48)—(5.49b) hold
for p = 3/2, but with Cy = F;EH. Then we can obtain the L' estimates

. N M .
Vig y, DVDUH, .7,
i jkE o '

SCuTZH3M (N, Ny 2 A) M (M, My, 7 'Ti, T_1> (5.51a)

. N M .
Vig Y, DVDMNHy i
i, kE Lo 1

SCUTIPMN, No oo 8) M (M, My, 7T 7). (5.51b)
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Indeed, considering (5.51b), we have

. N M i
Vig Y, DVDMNH, i,

i"jkELLo 1
N pM
- Z / Vil ” ‘D D" H, ., .-, |(t, x)dx
= 3 supp(n, o g 7.8 0Pk LaTiL kgL Lo
zeRi—ISi’§i+1 T ( BjkglLobE T >)
JokELTLS
1/3
3
3i
< sup Z L) ¥igl !
< q »q .. 7 © D
TER | 1<izi supp. (1758 %) |
J.k.E 110
2/3
| ”
—3)2i N M -
Z r, DDy Hy i e 7o ¥
i—l<i’<i+1
JokELTo
1/3
3i
Ssup| Y }Suppx ("i,j,k,s,f,o(t’x))‘rq
R -
te j,k,§,1,<>
2/3
3 3/2(61i+62)
> ‘suppx (’ii,j,k,s,l,o(” x)>’ K
JokE Lo

T MN, Nosio, ) M (M, My, 7', T

< CuT 23 MU(N, Ny, 2, A) M (M, M, T, T’1> .

In the last inequality, we used Lemma 5.17 with r; = 1,7 = oo and with r; =

3 . _ 3 _
p91’r2_ pez,andel + 6, = 3/p.

We now state two similar corollaries which allow us to aggregate pointwise esti-
mates.

g
T
I

Corollary 5.20 (Aggregated pointwise estimates). Let H = H,

: . ij kg 1o
Hi,j,k,s,f,l,o be a function with

1,0
SUpPH; ; g 7.0 SSUPPN; jrelo OF SUPPH; j 1 eiro SSUPPY; e iobe © Pl
(5.52)

and letw = ;i kelo O = ei,j,k,é,i,l,o be a non-negative function such that

Supp @ 7. Csu 7 Or Suppw 7 C su *{I’Oodf
SUPP D i k&l =SUPPN; j k&1 o SUPP ;i k& 01,0 =SUPPN; k&1 05¢ (i.k)
(5.53)
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Let p € (0, 00) and assume that there exists A, A, T such that

N p i 1
DDy H, jyeiol Sl p MOV Ned M) M(N, Ny o', T

(5.542)
N R p —1pi 1
DYDigHy jpein ol S, o7 MO N M (NN, T
(5.54b)
for N < Ny, M < M,. Then in the same range of N and M,
N nM
Vig Z D Dz,qu/,j,k,g,i,o
il jk,E 0o
p
S| X wkeie| MO NG 8 M (MM T T
ijkE Lo
(5.55a)
N M -
Vig Z DDy Hy i reino
i jk,E 00
p
~ —1pitl 1
S|X wkeine] MO NG MMM ML T
i j.k,E110
(5.55b)

* Corollary 5.21 (Aggregated pointwise estimates with Ffl). Let H = H, JKELLo
be a function with

1,0
SuppHi,j,k,Sj,o C supp Mijkelo OF SuppHi,j,k,éj,I,o - S“Pp”i,j,k,g,f,ofg oD k)
(5.56)

and let w be a non-negative function and assume that there exists A, A, t, T such that

JorH=H; ;760" H jieino

‘DND{{{IH‘ S Ty g M (N, Ny, &y A) M (M, My, 7T, T_1> (5.57a)
for N < Ny, M < M,. Then in the same range of N and M,
N nM
Vig Z D Dz,qu/,j,k,gJ,o
ik E o

S Tyry g (1) MV, No i 8) M (MM 7 T T (5.58)
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. N M .
Yig Z DDy Hy i keine
il j k81,0

STy 'ag () @ M(N, Ny, A) M (M, M., r_lFf]H,T_l) . (5.58b)

Proofs of Corollaries 5.20 and 5.21 We will give the full details for estimate (5.58b)
from Corollary 5.21, since the proofs of all the other estimates are slightly easier
and f0119W the same method. We first note that summing the estimate in (5.57a) over
Jj,k,&,1, 1,0 and using (5.21), (5.5), (5.33a), (5.36a), and (4.24), we find that

N M N
Y. DYDYH e
JkELTo

S Vi g7y T MN. Nos i A) M (M, My, 7'T5, T

. I,
since suple.)j’k’ng’<> C Suppm; ;e loSe o ®ip C supp¥i 4 and Yiyr 4 =

(1/11.671’(1 + 1/13(1 + 1/;1.6H’q)1/6. Now summing on i and using (2.11) and Remark 2.4, we

find that
N M
Vig Z DU Dy Hr i peino
il jkE 1 TLo
(Z F;quwu:,q) @M (N, Ny, &, A) M (M, My, v T, T”)
;

S
STyrs ' @) Prgm MN, Ny, by A) M (M, M, r—lr;“,T—‘) .

6 Velocity Increment

In this section, we define and estimate the velocity increment. The first subsection
contains the definition of w1, save for the choice of placements of the bundles (see
Remark 4.13), which is addressed in the second subsection. The final subsection then
estimates both the pre-mollified velocity increment w,41 and the mollified velocity
increment Wy .

6.1 Definition of the Corrector

In this subsection, we define the premollified velocity increment w1, except for
the choice of placement, which we treat in [22, section 4]; see also the discussion

@ Springer



19 Page 64 of 271 V.Girietal.

following Lemma 6.2. None of the discussion or properties in this subsection depend
on the choice of placement.
6.1.1 * Definition of the Current Corrector

For any fixed values of i, k, we recall the constant ¢3 from (5.34) and define

@q.ik =3V oy . (6.1)

Let £ € &, cf. Proposition 4.2. For all £ € E’, we define the coefficient function
g i,j kT OY

Qg ikig =A@

_ s —I/zF, 1

— 3~ Dq.,i k
q+n Tq |

3/2 _1 3j-3 1"
q+nq F

®
W,q qutkqéhqwlkéllvcb(z k)‘g

(6.2)

where ¥ is defined in Proposition 4.2, ¢ 000 kE 7 is defined in Definition 5.13, and

o 2 ¢ . 2 [ 2
Vig =Vigr @5 =g Xikg T Xikg- (6.3)

From Corollary 5.8 and estimate (5.12a) from Corollary 5.4, we have that |@s| <
1_3]778 /~2Fn q_l’
sufﬁc1ently large.

The coefficient function a) , is then multiplied by an intermittent pipe bundle
Vq)alk)IB%(g))(p o & k), where we have used Proposition 4.6 (with A = A,4; and
r =ry), Definition 4.12, and the shorthand notation

and so @q ;  is well-defined on the support of v’ w

once Ag is
ig Jq 0

By = Pl Z‘is Wiy (6.4)

to refer to the pipe bundle associated with the region 29 = supp ikl N {r =
kty Fq’i} and the index j. The choice of placement of this pipe bundle will be detailed
in subsection 6.2. We will use U{S) to denote the potential satisfying curlU(’S) 0=

W@) Applying the algebraic identity (4.14) from Proposition 4.5, we define the
pr1nc1pal part of the current corrector by

I,
wt(IIjr)l,zp = Z ae),e <p(é)§$ ga) o ®; pycurl (VCI)(Y;J()U{S)#) o CD(,‘Qk)) . (6.5)
ik

()1
=W
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The notation wg))y’; refers to fixed values of the indices i, j, k, &, [,1. We add the

divergence corrector

(©) 8 T 1
weli,= >,V (“@W (/’(é)fs q)) ° q’ﬁ’k)) X <Vq’<i,k>U@>,w ° q’@k)) ;
ijkE11

(©).1
=W

(6.6)
so that the mean-zero, divergence-free total current corrector is given by

() (©)
Wy+l,p = Wyi1,e + Wotl,e

I,
= Z curl (a(g),(p (pé)fs go) o d>(l-,k)Vd>5,k)U{§)’(p o q)(i,k)) . (6.7)
ij k& LT

. |
=W

6.1.2 Definition of the Euler-Reynolds Corrector

For any fixed values of i, k, we recall (5.36a) and define

Ryik ==V <Re—wld

2j' =2 )
dq+al'y CF 4
+ Z 4/3 1pt’qwj/qxl’k/qr“‘kg g
o ‘vcp(l, €
k'l
0 By TV @ (vq>(—l k))>vq>Tk), (6.8)

where the constant C = cpcjc2 is geometric and bounded independently of g; see
(8.5b). For all £ € Eg, we define the coefficient function a €0 kLR by

L _ o2 il Ry.ik
aé,i,j,k,l,R =4ae),R _8q+nF 1'Z/z qw] qukngRzkglVEF (5 _l_,2j2>
q+nt q
(6.9)

where Ver? is defined in Proposition 4.1 with the parameter choice K = Fg, and

R ._ 3 R ._ 3 R |
wi’q = wi,q , Wi =W Xikg = Xitk,q - (6.10)

In order to show that (6.9) is well- deﬁned we first recall (5.22b) from Lemma 5.7,
which gives that 7Tg|suppw]’ > 1/4F 8q+n Using this in combination with Corol-
lary 5.8, we find that for all j,

7T€|suppwj,q 9
q = 2j—2 = Fq' ©.11)
8q+il'q
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Furthermore, from (6.8), (5.21), and CorollaryS 4, we have that the second termin (6.8)
is pointwise bounded by 2C8q+nF2 172 or upon division by 8,7 272 is bounded
above by 2C. Finally, from (5.22d), we have that Vd>(,-,k)RgV<D(i I is pointwise
bounded by 8,7 F,?j _3, or upon division by 8447 ng 2 s pointwise bounded by
Fq’l. Combining the above arguments, we find that

Ry.i b4
ek L1 <T,,
j—2 2j—-2 q
5q+7z Fq 5q+ﬁrq
and so Proposition 4.1 may be applied with K = 1"2 since % belongs to the
g+nt q

ball of radius I'; around %, which itself is a multiply of the identity bounded

q+nt q
between 1 and Fg from (6.11).
The coefficient function a), g is then multiplied by an intermittent pipe bundle

VdD(;lk)]B%(g),R o ®; k), where we have used Proposition 4.5 (with A = A, and
r = ry), Definition 4.12, and the shorthand notation

I,R
Be),r = P(g) ZC W@) R (6.12)

to refer to the pipe bundle associated with the region 29 = supp¢ g Ridel N {t =
kt,I’ _i} and the index j. We will use Ué) g to denote the potential satisfying

curlTU ©).R W(S) r- Applying (4.14) from Proposition 4.5, we define the princi-
pal part of the Reynolds corrector by

(») R .I.R T 11l
= X awr (oel") o eoneu (VO§ o Ul ko ®in) -
ik gL

(p).1
=We),R

(6.13)
The notation wg))”fe refers to fixed values of i, j, k,&,1, 1. We add the divergence
corrector

() R .I,R T 1
qu—i-l,R = Z \ (a(S),R (P(s)fs ) ° <I)(i,k)) X (Vcb(i,k)U(g),R ° <I>(i,k)) )
ij.kE1 1

(c),1
=We).R

(6.14)
so that the mean-zero, divergence-free total Reynolds corrector is given by

I,R
Wyt+1,R = Z curl (a(g),R (p(Ré)fé ) o q)(i,k)quZ,k)U(IE),R o Q(i,k)) .
ijk,E LT

T
=We).R

(6.15)
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6.1.3 Definition of the Complete Corrector

We shall sometimes want to aggregate pieces of the Reynolds and current velocity
correctors as

_ ) ._ (P (p)
Wg+1 = Wyg+1,R + Wg+1,¢ > We ) = Wiy g + Wl o

(e ., (© (©)
Wo i = Wiy g T W4, (6.16)

6.2 Dodging for New Velocity Increment

In this section, we define a mollified velocity increment @H,—z. We then introduce
Lemma 6.2, which is in fact a stronger statement than Hypothesis 2.6.

Definition 6.1 (Definition of 1’17(,+,-1 and u ). Let 7’5[,+,-l,x, ¢ denote a space-time mol-
lifier which is a product of compactly supported kernels at spatial scale )‘;+1ﬁ Fq_ Jlr/r-ff]
and temporal scale T, il. We again assume that both kernels have vanishing moments

up to 10Ng, and are C 10Nn differentiable and define
a)\q+ﬁ = 7~Dq+ﬁ,x,twq+l ) Ug+] = Ug + a)\q—&—ﬁ . (6.17)

We also recall from (2.6) the notations B(2, A=) and B(2, A~!, 1) for space and
space-time balls, respectively, around a space-time set 2. Using these notations, we
may write that

supp iy 7 © B (suppwg 41, /20 L5 12T, ) (6.18)

Now recalling the formula in (4.9) for an intermittent Mikado flow, (6.4), and (6.12),
we set

Ofey.o =& Wi, (6.19)

Next, in slight conflict with (2.6), we shall also use the notation
B (suppgé)’o, A_l) = {x eT? : dy € supr(Ig)’o, [x —y|] < A_l} (6.20)

throughout this section, despite the fact that supp o (IS) . 18 not a set in space-time, but
merely a set in space. We shall also use the same notation but with Qé) o replaced by

pfgf. Finally, for any smooth set € T3 and any flow map ® defined in Definition 5.3,
we use the notation

Qod:={(y,t):teR, O(y,1) € 2} =supp (Ig o P) . (6.21)

In other words, for any smooth set Q C T, Qodisa space-time set whose charac-
teristic function is annihilated by D 4.
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We can now introduce the workhouse which will help us verify Hypotheses 2.6 and
2.7. The full proof is contained in [22, section 4], although we outline the main idea
following the statement.

Lemma 6.2 (Dodging and preventing self-intersections for w, | and w,;). We
construct wy1 so that the following hold.

(i) Let g + 1 < q' < g + /2 and fix indices ©, i, j, k, S,Z which we abbreviate by
((§), ©), for a coefficient function a) . (cf. (6.2), (6.9)). Then

1
B <supp@q/, E)L(HIF;, 2T ) N supp (Zisk’ng,o,i,k,é,ip?cf) o <I><,',k)) =0.
(6.22)
(ii) Let q' satisfy q + 1 < q' < g +n — 1, fix indices ((§), ¢, I), and assume that
D 1) is the identity at time 1), cf. Definition 5.3. Then we have that

1 ~ I
B <supp W/, 4A [‘2,, 2T ) N supp (X"»k’ng,o,i,k,g,f (p&)gé’°> o CD(i,k)>

1
nB (S“PPQ{s),o’ Sk T ) o Qi) =10
(6.23)

As a consequence we have
B Dy, 22512, 2T =0 6.24
supp wy’ , 700 Vo 2T Nsuppwg+1 = 0. (6.24)

(iii) Consider the set of indices {((§), ¢, I)}, whose elements we use to index the
correctors constructed in (6.7) and (6.15), and let 1,1 € {p, c} denote either
principal or divergence corrector parts. Then if (o, (5), ) #* (0, (), 1), we
have that for any 1, T,

suppw %_ 'n supp w((;))é =0. (6.25)

(iv) Wy satisfies Hypothesis 2.7 with q replaced by q + 1.

Remark 6.3 (Verifying Hypothesis 2.6). We claim that (6.24) and (6.18) imply that
Hypothesis 2.6 holds with ¢ + 1 replacing all instances of g. To check this, we
must show that (2.24) holds for ¢’,¢” < g+nand 0 < |¢' —¢"| < n — 1. By
induction on ¢ and the symmetry of ¢” and ¢’, the only case we must check is the
case that g +7 = ¢” and 0 < g +n — g’ < i — 1. But it is a simple exercise
in set theory to check that for ¢ + 1 < ¢’ < g +n — 1, (6.24) is equivalent to
supp Wy N B(supp wy 41, ! /4)\.;,1 Fg,, 2T,) = ¥. Then using (6.18) and the inequalities

A r2 > A qin, b<2 = Iyy <K r;, implies that (2.24) holds.
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Idea behind the proof of Lemma 6.2 We shall give the idea behind the proof of Hypoth-
esis 2.6, as the precise statements written above are technical variants on this idea and
can be found in [22, section 4]. Consider the support of a single mildly anisotropic
cutoff Cq,o,i,k,éj from Definition 5.13 of dimensions (A4+1 Fq_s)_l X (Ag+1 Fq_s)_l X

(Ag FS)_I. The prism contains pipes from Wy 41, . .. Wy+i/, and we want to place a

—1

new set of bundling pipes pé) from Proposition 4.9 of thickness A__ ,I"; and spac-

]2

q+1

ing )Lq_J]r] I‘g disjoint from these pipes. To this end, we divide the face [0, k;}rl Ff]

of the prism perpendicular to €3 into the grid of squares of sidelength )\q_}r 1Ig (the

thickness of the support of pé) ). Since the support of pé) will be placed T2/ ()qu]r] Fg)-
periodically,

_ 2
Aqilrg 6
the possible number of placements of the support = | ————— | =T P

-1
)‘q+1 r q

The pipes that we want to dodge have spacing/thickness between X;,l,, /z/kgl (corre-

-1

q-+if2

spacing greater than (A, 1"2)_1, which is the longest side length of the prism. Then

from Hypothesis 2.7, at most a constant number of such pipes can intersect the prism.

Upon projecting these pipes onto the face [0, )»qjl_ng]z perpendicular to &3, each

pipe projection will be contained in a k;}rl -neighborhood of a line of length A; -il-l I’g .

Counting the number of grid squares of size A;i 1’4 taken by these projections, we
obtain

ponding to w,) and A;I/A (corresponding to Wy ,); note that each of these has

-1 5
)‘q—i-qu < FS
)\'—1 ~ " q’
q+1

which is less than the possible number of placements. Therefore we can place the
support of the bundling pipe pé) so that it is disjoint from Wy 41, ... Wy+ip» on the
support of ¢

q,9,i,k,8.1 ~ —~ . .
To enact the dodging with pipes from Wy yi/241, ..., Wyts of thickness/spacing
-1 -1
Aq+ﬁ/2+1/)»q+l, e
)»;Jlrﬁ/k;lrﬁ /2 We follow the exact same method, only replacing the mildly anistropic

cutoff ¢ 10 kE 7 with the highly anistropic cutoff ¢ g from Lemma 5.15, and the mildly

intermittent bundling pipe pfé) with the highly intermittent pipes W(IE) o, from Propo-
sitions 4.5 and 4.6. We leave further details to the reader. O

Remark 6.4 (Comparison with the placement technique in [32]). As described
above, atthe (¢+1) step, we place wy 11 = Wy tododge wy forg € [g+1, g+n—1],
where the support of w, is comprised of pipes with spacing A,/ i, and thickness At
In contrast, translating the dodging in [32] to our setting, [32] placed Wy 1,5 to dodge
Wy+1,m for any m € [0, 7 — 1], where Wy 1, has the same thickness (i.e. )\'(;-"1-1’_!) as
wgy+1, but its spacing varies from A;}rﬁ /> tO )qulrﬁ as m approaches to n. While in [32]
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19 Page700f 271 V.Girietal.

Wy+1,7 has spacing larger than the thickness of Wy41 ., in our setting this is not
the case; there are relatively old previously-placed corrections w, whose thickness
is larger than the spacing of wy1. To resolve this issue, our placement technique
is divided into two steps: first, placing mildly intermittent bundling pipe to dodge
relatively old corrections; and second, placing highly intermittent pipes to dodge the
remaining ones. The latter part is comparable to the procedure in [32].

6.3 Estimates for wg1 and W, 5

Lemma 6.5 (Coefficient function estimates). For N, N', N, M with N",N' €
{0, 1} and N, M < Njn/3, we have the following estimates.

[ DY D) 6 alia)™ DN

Qg ; 0T
§.0.).kLell,

Y —1anj- (s Nos \Y
ol targ T (T m) (T50y)

/

<

~

SUPP N k&0

M (M Ninae 7, ' Ty, T, 1) : (6.26a)

N=N" M (g€ gha \N' yN” I,
| Dl At 0 (ag gy (Pl5E7) 0 @),

1r , N’

Ly 2 —13-j+1 N (5

S |supp (ni,j,k,é,f,wcé ) Sgsita ' Tq  (Agtiip) (Fqu>

M (M Ninae 7, ' Ty, T, 1) : (6.26b)

N=N" M ;£ sho \N' N B
HD DM AN DY ag, i

r

Uroip Lt (pes N, VWY
s (1 h ) (1A,

M (M, Ninat 7, ' T3, T, 1l“fj) : (6.26¢)

S ‘supp Ni,j k&l R

N=N" /M (g€ gha \N' )N R IR
| Dl e At 0 (o g (o5 ") 0 @),

!

1/r . N
I,R 12 j+T AN (13

N ‘supp (”i,j,k,s,z",kfs ) 8yiTa " (rg+ia)) (Fq Aq)
M (M Nina, 7' THHP, T;IFS) : (6.26d)

In the case that r = 0o, the above estimates give that

Coo N
N=N" 1M (£ ghq \N' N +7 (-5
[ DY Dl A D a e ST ()

g
N’ ,
x (FiPAg)" M (M, Nipgg 7' THF 3,17 1TS ) (6.27a)
N=N" M ;£€ gha \N' HN” < 242 13 (15 N
| DY Dt ato DY a i, ST T (T )
N’ ,
x (T88y) " M (M, N 7' T3, T, (6.27b)
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with analogous estimates (incorporating a loss of F; for o = R and Fg foro = @)

holding for the product a(),o¢ é‘o pé). Finally, we have the pointwise estimates
DY N DY e Al Y DY a7

SEVESS (Fq’sf\qﬂ) (1“},31\4) M (M Nipgo 7 ' T2, T'T8) - (6.280)

N—N" M ;&€ gha \N' N"
‘D Dy (" Aydn)™ D “é,i,j,k,f,w‘

_ N N .
STy (0 5gm) - (T58g) M (M, N 7 T, TS
(6.28b)

Proof of Lemma 6.5 We first prove (6.26a) and (6.26b), since a portion of a ), , appears
in the definition of the Reynolds corrector in (6.8). We further simplify by computing
(6.26a) for the case r = oo first. Recalling estimate (5.26), we have that for all
N, M < Nﬁn/ 2,

“ DND%I (] “ L>®(supp¥i,qwj.q)

32 1377 N _ i 1
S8 T T (D)™ M (M N 7' T, T, )

Thus from definition (6.1), the Leibniz rule, and Corollary 5.4, and the fact that
SUPP; kg 1g is contained in sSupp ¥; 4w; 4 Xi k,q We have that for N, M < Nin/2,

N nM
|p¥ orlnia]
L (SUPP ni,j,k.gjw)

3 —13j-7 N —1 i —

S8y T T (TgAg)" M (M, Ninds. 7, ‘F;,qu) : (6.29)

The above estimates allow us to apply [3, Lemma A.5] with N’ = M = Nin/2, ¢ = P ,
~ 3 —113j—6

Iy =1L, v=1y, Di = D g, h(x,1) = ¢gix(x,1), Cp, = 5q/jrn ry T2/ 70 = 12,

A== ATy = 7 lrl , 71 = T;', and N, = Njpq. We obtain that for all

N, M < Nin/a,

N M ~ Pq,i k
D Digs (8%/2 13- 3)
q-+n Tq q

Finally, from Corollary 5.4 and an application of the mixed derivative Fa’a di Bruno
formula from [3, Lemma A.5] Wlth Y (-) : Bip(§) — R defined by (- ) =7,
ry = 1v=uq,r_1)\—x_Aq,M_z i, = r,'T,', Ny =0,
Ny = Nipgt, h = VdD k)é and C;, = 1, we have that forall N + M < %Nﬁn/z

HDND%IO <I>(‘,1k)$) )

S (g ag)™ M (M, Nipag 77T 15

LOO(suppm; ;4 67 )

(6.30)

< ANM (M, Nind. Ty ! T;qu”) .
L (supp (V! x 1)
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From the above three bounds, definition (6.2), the Leibniz rule, estimate (2.33) at level
q, (5.4), (5.30), and (5.39), we obtain that for N’ =0, 1 and N, M < Nin/2,
040 /
”DNDM & Aja ')N e i ik fzp“

<8l T PN AN M (M Ning., 7, ' THH, T, ) (6.31)

Using (5.29), we obtain (6.27b). When r # oo, we use || fliz- < || fll 1 [{supp FHr
and the demonstrated bound for » = 0o to obtain (6.26a) for the full range of r and for
N" = 0. The estimate in (6.26b) for N” = 0 follows in the same way using (4.23) for
p = oo and (5.42). Similar estimates for N” = 1 in both cases are nearly identical,
and we omit the details
We now compute (6.26¢) for the case r = oo, from which the remaining bounds
in (6.26d) and (6.27a) will follow as before. Recalling estimates (5.24a) and (5.24b),
we have that for all N, M < Nin/2,
|pY DM |DY D

l”LOO(suppnijks,-R) lanHLOO(suppn”k“R)

S 85 0 (g Ag)"™ M (M. Nipaio 7 T3, ;1)

From (2.33) and (2.11) at level g, (5.21), (5.30), (5.4), (5.36a), (5.4), and (6.30), we
find that

2j—4
Sg+nl C
N pM g+n” g 4 4 4
D7D, Z Vo 1143 1pi’,qwj’,qXi’,k’,qA‘fg,’;",l’
i’ j/ k' E’ i/ i’,k’g |

0@ kg PV P06 ®E' VO,
Leo(suppn; ; ¢ R)

2j—4 N i -
S 8l (T58g) M (M, Nipao 7' T 1)

Thus from the Leibniz rule and definition (6.8), we find that for N, M < Nn/2,

2j+6 N i _
< 8q+alq’ (FSA‘I) M (M’ Ning. 7 ' T4 T, 1) :

(6.32)

N M
HD Dt’qRq’i"k ‘Loo(su H
PP j k& 1R

the loss of I'y in the sharp material derivative cost comes from the fact that the sum
includes 7 , and is estimated on the supported of ¥; ,. The above estimates allow us to
apply [3, Lemma A.5] with N’ = M" = Nin/2, ¢ =Ty, ro as in 4.5,y =1,

2 6 2 2
v =g, Dy = Dyg, h(x,1) = Ryix(x,1), Ch = 8qqalg’ 0, T = 8,405 7,

13 Since Yero and all its derivatives are bounded by Fg from (4.3), we first rescale by 'y 5 on the outside
2L

q
and then apply the Faa di Bruno lemma, which requires ¥ to be bounded in between 0 and 1. Rescaling
back then produces the desired bound.
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A=A = Aql";, 0= tl;ll“f]”, o= Tq’l, and N; = Niyq. We obtain that for all
N, M < Nﬁn/2,

R, ik

N M q.i.
D Dt,qVS,FE( 21—2)

8q+il'g

L°°(supp nivjvkvsij)

N
5 (13 —1pi+13 =118
<rs (rq Aq> M (M, Ning.co 7 T3, T rq) .
From the above bound, definition (6.9), the Leibniz rule, estimate (2.33) at level ¢,
(5.13b), (5.4), (5.30), and (5.39), we obtain that for N/ =0, 1 and N, M < Nin/2,

” DNDrA,lq (“EEA;{; aj)N/aé,i,j,k,f,R ” Lo

S8 T T g N TR AN M (M, Ning.co 7 ' T3, T;lrg) .
Using (5.29), we obtain (6.27a) for N” = 0. When r # oo, we use || f];r <
Il £l |{supp f }I'7 and the demonstrated bound for r = oo to obtain (6.26¢) for
the full range of r and N” = 0. The estimate in (6.26d) follows in the same way using
(4.23) for p = oo and (5.42) and the fact that ;é’R < 1. Estimates for N” = 1 are
again nearly identical, and we omit further details.

Finally, we prove the pointwise estimates. Recalling that the left-hand side of (6.31)
is supported inside the support of w; 4, and using (5.21) and (5.22¢) proves the claim
for ¢ = ¢. Arguing analogously for ¢ = R concludes the proof. O

Corollary 6.6 (Full velocity increment estimates). For N, M < Nin/4, we have the
estimates

1/r 7 2
N M (p).d I 2 wj+7 LN
HD Diawis L,SJ‘S“PP (”i,j,k,g,l,Jé ) Sgvila Tg  Agia
M (M Niai, 7 T2, 75'T5) (6.332)
DN pM o, (1 < r%"”rlo LN A (M N: —Ipi+13 p—1p8
AR RN Tq Mq+n Nindt:Tg g e lg Tg) -
(6.33b)
Also, for N, M < Nin/4, we have that
DNDM (), 1 < N 1,0 Yr 5'/2 1"./""'7 %_1)\’1\/
tqW@).o|,, ~ Ta |SUPP i jkielobe g+itd Ta Aga
M (M. Npao 7 T2, 7, T) (6.34a)
DN pM (-1 < FCT°°+10 N (M. N —1pi+13 =18 6.34b
IR ISR Mgti +Ning» 7g " Tg™ 7 Ty ) . (6.34b)
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Proof of Corollary 6.6 Recalling the definition of wg)),’i from (6.5) and (6.13), we shall
prove (6.33a) by applying Lemma A.3 with

1,0
Ny = My = Nfin/4, f=ag)e (P?&)C; ) od, k)vq>(, k)’ D=,

1 lpitl3 -8 RV 2 LT
A= )\.q+Lﬁ/2J T=1 F’* s T= T,,Fq s Cf.R = ‘suppn(g),Rgg ‘ 5q/+ﬁr]
2 —173 J+7 _= _w! _ _
Cro= ‘SUPP'?@) oty ‘ 84+17q " Tq v=ig, ¢ =Wy oo k=gl
2_4 2_2
Y=A=xti. Cor=r{ . Cop=rq4 ° Nt = Ningyt -

From (6.26), Corollary 5.4, and (5.42), we have that for N, M < Nfn/4,

I,
|22 (acre (47088°) = )|,

2 ~j+7, N —1pi+13 =118
<‘SUPP71(S)0C5 ‘ 8q+1rj )\'q«H_n/zJM(M’ Nind,t 7 F;+ ,Tq Fq)

(6.35)
| DY D (D@ )7 < AYM (M Niao Theg TS,
L% (supp (¢i th k, q))
(6.36)
[N + ool Sra
" Lo (supp (Wi g T G Loo tsupp (Wi g i) 4
6.37)

showing that (A.12), (A 13), and (A.14) are satisfied. From Proposition 4.5 and 4.6,
we have that from W@) is periodic to scale Ay [i2) 'y, in addition to the estimates
(4.12) and (4.17), and so (A.15) is satisfied for © = R, ¢. Next, from (11.18) and
(11.21a), the assumptions (A.16) and (A.17) are satisfied. We may thus apply Lemma
A.3 to obtain that for N, M < Nan/4, (6.33a) is satisfied. Applying (5.29) then gives
(6.33Db).

The argument for the corrector is similar, save for the fact that D, , will land on
Vag), and so we require an extra commutator estimate from Lemma A.7, specifically
Remark A.8. We omit the details of this commutator estimates and refer the reader
to [3, Corollary 8.2]. However, we note that the gain in amplitude comes from the
quotient of a spatial derivative cost of A4 i) on the low-frequency function, and a
gain of A4y;; from (4.12) or (4.17). Using the definition of 7, gives a net gain of r, Fq’l ,
concluding the proof. O

Now we estimate the mollified velocity increment given in Definition 6.1.

Lemma 6.7 (Estimates on w,;). We have that W, satisfies the following proper-
ties.

(i) Forall N + M < 2Ny, we have that

N M -
D" D = (Wgin H
H LAV L3 (supp g g 1)

20412 —1/3 _ _ \N ) -1 -1 1 _
<Fq 8q+n (}”q+nrq+n—l) M<M’de,t g+n—1 q+n 1’ Tq+ﬁfqu+n—1)

(6.38a)
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N M -
D" D = (Wgin H
H A=A 100 (upp ;g 4 1)

Coo/24+16 1 N -1 - 1
ST 0y (g4l g i) M(M~Nind,t g+i—1%g i1 Tq+ﬁfqu+’7—])'
(6.38b)
(ii) Forall N + M < Njn/4, we have that

3 25Nind,t _ _ N
~ 8q+3an+n ()“1“'" F‘H’"—l)

1
x M (M Ninao 7o by 2Tl Tyan) -
(6.39)

HDNDz a1 (Wgr1 = D) |

Proof of Lemma 6.7 We prove items (i)—(ii) in steps. First, we apply Corollary (5.18)
with® = 1,0 = 0,0, = L H .7, =w() . withe = p,c, p=3,Cy =

1 —1 _
Sq/j_nl"(}z Tq a N* = M* = me/4 Ml‘ = det’ Nx = 00, A=A = )\.q+n, I —

_1 F4 T = T,. From the definition of w% I and Corollary 6.6, we have that(5.48)—
(5 49b) are satlsﬁed and so from (5.50b), we conclude that for N, M < Nen/4

H%’qDNDtAjlqqu H < [20sY2 =3 N

. —1pi+14 p—118
q “q+n Tq q+nM (N, Nll’ld,ts Ty Fq ,Tq Fq> .

(6.40)

In the case p = 0o, we may aggregate estimates from Corollary 6.6 using the fact that
only a finite, g-independent number of terms wg;i are non-zero at any fixed point in

space-time to give the bound

216 _ i _

Hw,,qDND%quH <% g AN M (N N 7 T, T L (6.41)

Next, from (6.24), which asserts that supp w41 Nsuppw, = B forg +1 < g’ <
PP Wq+ PP Wy q q

g +n—1, and from (2.17) applied with ¢’ = ¢ + 7 — 1 and ¢” = ¢, we may upgrade

(6.40)~(6.41) to

H DVD +1
t 1 q
qtn= L3(supp i g-+ii—1)

M(N, Nindt. T, 5 T2 T") (6.42a)

< 72052 =N 2

q “q+n Tq q+n

DNDM H
t, —1Wg+1
H a+n Lo (supp Vi g+ii—1)

M<N, Nind. 7L Ti72 T’l). (6.42b)

2 +16 71 N
2
ST A q+n—1" g+n—1°

~ " q q+n
We now apply Proposition A.24 with the choices

p=3,00, Ng Ncasin(xii), M; = Ningt, Ns=Nin/4,

N]/:2Nﬁl’la stuppwi,qﬂ—ﬁ—la U—uq—i-n 1, i=1,

A=Adgti>» N=rgilgri-1, T =T4ta-1,
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T =Tg4a-11 T=Ts+a-1,

+nl’

1 —1 -~ Coo 16 — 1
f=wg1, Cf3—F205q/inq/3» Croo=Cr 2 qlv Co _Aq/—zi-n 1
From (xii) and (11.12), we have that (A.115) is satisfied. From (2.31b), we have that
(A.116) is satisfied. From (6.42), we have that (A.117a) is satisfied. In order to verify
(A.117b), we apply Remark A.10 with the following choices. We set p = 0o, N, =

o~ 1
Ny = Oi, Ny = Nanfa, §2 = T x Ruv=w= Ug+i—1, Co = ;T;-leéq/in 1At21+n 1’
Ay = dw = Ngiiots P = fy = rqjﬁ qu—+n | in (A.34), while in (A.27)
and (A.28) we set v = lgqi1, CU = Cyy Ay = Ay = ANgtiia1s o = [y =
_ Coo 16 _

r -}—n IT ln 1’ f_wq+lvcf_r f ql }‘f_)‘f_}‘fﬁ‘”"u‘f_'u’f_qu
Then (A. 27) and (A.28) are satisfied from (2.30) at level ¢ +7 — 1, (6.42), (2.13), and
(11.12). Next, (A.34) is satisfied from (2.31a) at level ¢ + n — 1. Thus from (A.35)
and (11.12), we obtain that

Coo 16 —
H DY gMuy, H ST O N T (6.43)
for N + M < Niin/4, thus verifying the final assumption (A.117b) from Lemma A.24.
We first apply (A.118) to conclude that (6.38) holds. Finally, we have from (A.119)
and (11.16a) that the difference wy41 — Wy satisfies (6.39). m|

7 * Abstract construction of intermittent pressure

As in all convex integration schemes for the Euler equations, part of the goal of
the pressure my in our setting is to ensure that R, — m,Id is negative definite. Then
the low-frequency portion of wy 11 ® wy41, which is positive-definite, cancels Ry —
meld via Proposition 4.1; see (8.8). The simplest way to define my for this purpose
is to set my & |Ry|. However, in order to ensure additionally that 7, dominates the
Reynolds stress and the gradient of velocity via estimates such as (1.4) (see also (2.18)—
(2.21)), one must include in the definition of 7y derivative estimates on stresses and
velocities, similar to the procedure described in Remark 2.14. This is part of the goal of
Lemmas 7.1 and 7.2 and Step 1 from Proposition 7.3. The first of these two lemmas
carries out this task for stress errors, while the latter does the same for current errors.
For example, Lemma 7.1 defines a positive scalar function a; which dominates a
stress error S (for example part of RZ ) via an estimate such as (7.7). We also have that
0S+ dominates itself via an estimate such as (7.8).

One should view a; as essentially identical to 8,15 I“Sj from (2.49). However, due

to the fact that o S+ is positive, and no effort has been made yet to keep track of its active
frequencies, one will never be able to effectively invert the divergence on any term
containing 0’;_ . For the method of proof described in Remark 2.14, or the iterations
in [3, 32], this was not an issue. However, the relaxed local energy inequality 2.34
throws a rather large wrench into this method. Namely, the addition of w1 into this
equation will produce an error term of the form (9, + g - V) |wg41 |2, which can only
be handled by inverting the divergence to create a new current error term. This is the
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role of /(3 in (2.34), which is essentially equal to —P<;, (Jwg+1 1. Indeed then

(0, +i‘\q V) (KZ + |wq+l|2) ~ (0 +i’\q V) (P>Aq (|wq+l|2)) )

and so we can effectively invert the divergence on this term. But the appearance of the
term (9; + 1t - V)Kg in (2.34) means that one must have created current errors at earlier
stages of the iteration by adding in div_llP’#o ((Bt +y, - V)/cg ) Commuting for the
moment the projection operator past the material derivative, this means that one must be
able to estimate div™! ((3; + @, - V)P0 ), which we refer to as a “pressure current
error.” This will only be possible if we have accurate information on the frequency
support of Kff , 1.e. accurate frequency support information on the scalar function o;
which is approximately equal to —Ry + m¢Id. Therefore, rather than simply adding
U;" to dominate — R, + m¢Id, we must add oy = a;’ — oy, where oy is essentially
mean-zero and o is low-frequency; see (7.5). We then record an estimate of the
form (7.11), which asserts that o can be dominated by old intermittent pressure.
This is the second main goal of Lemmas 7.1 and 7.2; to show that the low-frequency
portion of the pressure increment can be absorbed by old intermittent pressure.

Now that the pressure increment oy = a; —og definedin Lemma 7.1 is effectively
mean-zero, we can apply a material derivative and invert the divergence. This is the
content of Proposition 7.4, which contains several steps. The first step is to use the
inverse divergence from Proposition A.13 to produce an error term S. The second step
is to apply Lemma 7.1 to produce a mean-zero pressure increment og. The final step
is to apply a material derivative to os and invert the divergence. Since this procedure
has to be carried out for essentially every stress error term, one is forced to write
a rather abstract, intricate result like Proposition 7.4 which can be applied over and
over again. Proposition 7.5 carries out a similar procedure, except for the current
error. Proposition 7.3 creates the pressure increment for the velocity field, and since
one need only apply this result one time at each step g +— ¢ + 1, Proposition 7.3 is
analogous to the combination of Lemma 7.1 and Proposition 7.4 for the stress. It would
be reasonable for the reader to read only the proofs of Lemma 7.1 and Proposition 7.4,
as the remainder of the section is identical in character to these results.

*Lemma 7.1 (Pressure increment for stress error). Let v be an incompressible vec-
tor field on R x T3. Denote its material derivative by D, = d; + v - V. We use large
positive integers Nv > My > M, for counting derivatives and specify additional
constraints that they must satisfy in assumptions (i)—@1v).

Suppose a stress error S = H p o ® and a non-negative, continuous function w are
given such that the following hold.

i) There exist constants Cg , and C 14 or p =3/2and p = o0 and fre uency
N7 0,D )4 )4 q
paramaters A, A, V' such that

HDND,MHH < Coph N M (M, My, v, ) (7.12)
14

149 practice, Cp p = Cx, pg“*zé A% from (A.492). We shall also assume that these constants are ordered
in the obvious way, i.e. Co 3/2 < Ce,00-
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‘DND,MH‘ <AV M (M, My, v, v) (7.1b)
HDN,OHP <CppAY (7.1c)
”S”p 5 CG,pCp,p =: 55,17 . (7.ld)

forall N < Ny, M < Mj.

(ii) There exist a frequency parameter |1, a parameter I" for measuring small losses
in derivative costs,"> and a positive integer Ngec such that p is (T/u)3-periodic
and A K u < A, whereby we mean that

Ndec
AT L) . 72

(iii) Let ® be a volume preserving diffeomorphism of T> such that D;® = 0 and ®
is the identity at a time slice which intersects the support of H, and

HDN“@H n HDN“cD—l H <N (7.3)

L (supp H) L®(supp H) ™

H DY DM Dy H SN M (M, M, v, V) (7.3b)
Lo (supp H)

forall N < Ny, M < Mj.
(iv) There exist positive integers Neyy x, Neut,c and a small parameter Siny < 1 such

that'®
Neut,t < Neutx (7.4a)
(Co.00+ 1) (Cooo + 1) TN < 84iny . CG3.Cpspp, (7.4)
2Ngec +4 < NT - Ncut,x, Ncut,t <M;. (7.4¢0)

Then one can construct a pressure increment og = a; — oy associated to the stress
error S, where

os = II(H) (I1(p) o ® — (T1(p))) , (7.5a)
of =TI(H)(p)o®, (7.5b)
and
Neutx Neut 3
M(H) == [ €Co.l M2+ 3" > D) N D) M| DV DM H|?
N=0 M=0

15 In practice, I' = Ty for some g’, which then makes I" a small power of A or A.

16 The choice of Ncut,t 18 such that [ ~Neut,t can absorb a Sobolev loss from H or p, or help absorb small
remainder terms into the miniscule constant dny -
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— Cg,ool Nett (7.6a)
Ncut.x %
M(p) i= | Cpool Mw)? + S (AD) VDV pP | —Cp ool Mt (7.6b)
N=0

and which has the properties listed below.

(i) o & dominates derivatives of S with suitable weights, so that for all N < N; and
S i
M < M;,

‘DNDZMS‘ < (0F + 8uny) ATV M (M, M, vDVT) . (17)

(ii) 0;' dominates derivatives of itself with suitable weights, so that for all N <
N‘I‘ - Ncut,x; M < M'&“ - Ncut,t:

‘DNDIMJ;‘ < (05 + Buny) (AT M (M, My — New, vTLV'T) . (7.8)

(iii) 0;' and og have the same size as S, so that

lof 1, <85 los |, <os.p- (7.9)

Furthermore T1(H) and T1(p) have the same size as H and p, so that for N <
N+ — Neut,xo M < My — Neyg, and p = 3/2, 00

| DYDY S Cop GIIN M (M, My = Noy, T 0T
p

HDNI'I(,O)HP <Cp (AN . (7.10)

We note also that T1(p) is (T/u)>-periodic.
(iv) 7 dominates oy and T1(H) and their derivatives with suitable weights, so that
forall N < Ny — Neyex and M < My — Neue

‘DND[MGS_‘ <IN GDYY M (M, M; = New, vI,v'T) , (7.11a)

’DND,MH(H)‘ < TN M (M, My = Neg, vI VT (7.11b)

v) 0;' and og are supported on supp (S) and supp (H), respectively.

Proof of Lemma 7.1 We break the proof into steps in which we prove each of the items
(H~(v).

Proof of (i): We first use (7.3a) and D,;® = 0 from (iii) and Lemma A.2 to deduce
that for N < Ny and M < My,

IDN D} S| = DN (D H)(p)o @) < Y [DM(DMH)|IDY (p o ®))]
Ni+N=N
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N
< Z DN (DM H)| Z(AF)NZ—”Z |(D™p) 0 ®| . (7.12)
Ni1+N=N npy=1

Estimate (7.7) will then follow from (7.12) and the following claims;

M(H) <C6.00 (7.13a)

M(p) <Cp.oo (7.13b)

IDM DM H| < (TI(H) + Cg,0o D Ny (YN M (M, My, vT,V'T)  (7.13¢)
AN D™ p| < (M) + Cp ool Mot (AT)N2 (7.13d)

for any integers 0 < Ny, ny < Ny, M < M;. Indeed, the above claims, (7.4a)—(7.4b),
and (7.12) give that for N < Ny and M < Mj,

DN DM S| < (T(H) +Cg.00l~NO(T1(p) 0 ® 4 Cp oo TNttt (AN M (M, My, 0T v'T)
N (l'l(H)l'I(p) o @ 4 I Neutt <CG,OOI'I(/)) 0 @+ Cp,ooll(H) + CG,OOCP,OOF*Ncut,t>>
x (AT)N M (M, M, vT, v'T)
< (05 + 8iny) (AD)N M (M, My, vT, v'T) .

The proofs of the claims are then given as follows. The first is immediate from the
definition of [T1(H) and the computation

M(H) < C6.00

—N 2 2
= (U +Conl ™) S o
— (D)2 D) 2M|DNpM 1?2 < 2

G,0

which holds for N < Neye,x and M < Ny ¢ from (7.1a). A similar computation holds
for I1(p). For the next two claims, if M < N¢yt and Ni, N2 < Nyt x, an argument
quite similar to the above computation shows that

IDNM (DM H)| < (TI(H) + Cg 0ol Nty DM (vI)M | (7.14a)

AN (D" p) o @ < (AN (n(p) od+ cp,oor*Nvutv*) ) (7.14b)

If however M > Ncyt,t, N1 > Neut,x, of N2 > Ney x, we use (7.4a)—(7.4b) and (7.1a)
in the first two cases and (7.1c) in the third case to obtain, respectively, that

H DM (DM H) HLOO S CG.ooh VM (M, My, v,0) (7.15)

S F—Ncul,ch’oo)LNlM (M, M,, vl ])/F) (7.15b)
HD’V1 (DM H) HLoo < N GDNM (M, M;, v, (7.15¢)
A N2—n2 ” Dnle”Loo < F_NCUI'ICIO’oo(AF)NZ , (7.15d)
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concluding the proof of the claims and thus (7.7).
Proof of (ii): We first show by induction that for integers K > 0 and N, M such that
N+M=K,N < NT - Ncut,x, and M < MT - Ncut,ta

DY D) < (H(H) + ca,oor—Nwm) (DY M (M, My — New,t, vT,V'T)
(7.16)

When K = 0 the claim is immediate. Now, suppose by induction that (7.16) holds true
forany K < Ky, Ko € NU{0}. To obtain (7.16) for Ko+ 1, we first note that for N”, M"
such that 0 < N” + M", |DN"DM'TI(H)| = |DY" DM (TI(H) 4 Cg. 0ol Newt)].
We then obtain the inequality

pN D,Ml'I(H)‘ - ‘DN pM (n(H) " CG’OC]"*Ncut,t>‘
< 1
IM(#) + Cg 0T ~Neatt

[ \DNDtM ((H(H) + cG,oor—Ncm.m)Z)‘

+ Y ‘DN/D,M’H(H))‘DN’N/DZZWM,H(H)‘],
0<N’'<N
0<M'<M
0<N'+M'<Kg
(7.17)
which follows from Lemma A.5 with p = 2 and the positivity of

|1'[(H )+ CG,OOF’NMt | Using the inductive assumption (7.16), which is valid since
0 < N'+ M’ < Ky, and (7.4b), the second term can be controlled by

1
[TI(H) + Cg, 00T ~Neute |

2
(n(H) n cG,OOr—Ncum) DN M (M, My = Newr, Tv, TV

< (H(H) 4 CG,OOF—NCUL»[) YN M (M, M; = Newe.r, Tv, TV) (7.18)
As for the first term, we have that

|DNDZM ((H(H) + CG,OOF*Ncut,1)2)|
|H(H) + CG’OOF_NCut‘t|

Neut,x Neut,t

1 : ; . ~ )

= TI(H) + Co ool et ZO Z‘a(”) 1)~ | DN pM D" Dy H |
: = e
Neut,x Neut,t

Z Z Z ()~ ZH(UF) 2m

n=0 m=0 0<N’'<N
0<M'<M

DY DM D" Dyt | | DN DM M DD H (7.19)

[men + cG oo Neuts
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To bound the quantity above, we first claim that for multi-indices «, B € N* with
k>2,]a] < Nt,and |B| < My,

k
[1p DPiH
i=1

() S (M) +Co.00T ™M) GD)M (1B, My, vT, VT

(7.20)
To prove this claim, let Q(x)Z supp (H) be a closed set containing x. Then applying
Lemma A.7 with p = oo, N, = M;, Ny = Ny, My = M;, Q = Q(x), Cy, = vi™ !,
Ay = Ay = A, Uy =, ﬁv =, f=H, Cf = SupQ(x)(H(H) +CG,00F_NCM")»
A = Xf = A, uy = vI', and iy = V'T, we have that (A.27) is satisfied from
(7.3b), and (A.28) is satisfied by (7.13c) and the assumption on |«/|, |8]. Then (A.31)
gives that

k
[1p“pfiH

i=1

x) < (sup TI(H) + CG,OOF—NW> D) M (18], My, vI,V'T)
Q(x)

(7.21)
Since €2 (x) is arbitrary and IT(H) is continuous, we have proven (7.20). Plugging the
bound in (7.20) into (7.19), we find that

|DN DM ((TI(H) + Cg 00T Newt)2)|
[TL(H) + Cg,00T ~News|
- 1
~ TI(H) + Cg 00T Neutt
x AN M (M, M; — Neyt, vI,V'T)

(E) ) + o por Nt )

which matches the desired bound in (7.16). This concludes the proof of (7.16).
Arguing in a similar way (in fact the proof is simpler since only spatial derivatives
are required), we also have that for each integer 0 < N < Ny — Ny x,

DY) < (T1(0) +CpoeT Mot} (AT, (7.222)

‘DN(H(,O) ° c1>)‘ < (n(p) o ® + C,,,OOF*NCW) (ATYN . (7.22b)

Combining (7.16), (7.22b), and the choice of 8y from (7.4b), we obtain the desired
estimate (7.8).

Proof of (iii): Observe that by the construction of I1(H), (7.1a), and a computation
similar to that used to produce (7.13a), we have || I(H) + CG,OOF_NCULl ||p S Ca,p

for p = 3/2, 00, and so [TI(H)], < Cg, p- It follows from (7.16) and (7.4b) that

HDNDIMI"I(H) H < Co.p ()N M (M, My — Ny i, vI, V'T) (7.23)
p
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for N < Ny — Neur.x and M < My — Neye - Similarly, by the construction of I1(p),
(7.1¢) and (7.22a), we have that |T1(p)|l, < Cp.p, and so

” DVTI(p) H,, <Cpp(ADYY (7.24)

for N < N; — Ny x. Thus (7.10) is verified. Also, by the construction of IT(p),
its periodicity easily follows from (ii). Next, we can immediately deduce from the
definition of o¢ the easier bound

log ||, S I, 1T S Co.pCop = 85.p-
In the case of 05" and p = 3/2, we additionally apply Lemma A.3 by setting

N*:N%_Ncut,x, M*:MT_NCut,t’ fZH(H)’ D=7,
A=Al - '=wr, T !'=yT,

Cr=Cs3n v=v, 0=M(p), pn=n,

YT=A=AT, Co=Cp3n, N;y=M;—Ney.

Then (A.12) is verified from (7.23), (A.13)—-(A.14) follow from (7.3a), (A.15) follows
from (7.24) and the periodicity of I1(p), (A.16) follows from (7.2), and (A.17) follows
from (7.4c¢). We then obtain from (A.18) that

H GS+ ”3/2 5 CG,3/2Cp,3/z = 3353/2.

Finally, the estimate for || o ;’ || o is trivial, so that (7.9) holds and (iii) is totally verified.
Proof of (iv): We first prove (7.11b) by induction; namely, for each integer K =
N+M> 0, N < NT - Ncut,x’ M < My — NCUI,I?

IDNDMTI(H)| < n(AD)N M (M, My — Neyyi, vT, vI) (7.25)

The proof uses an argument quite similar to the proof of (7.16). The base case follows
from writing that

MH) Sm
— H(H) +CG,OOF_NCUM S CT[ +CG,OOF_NCHM

2
— (H(H) + CG,ooF_Ncm’l) < C27T2 + CZG,OOF_chm’l ,

for some absolute constant C = C(Ncyt,t, Neur,x) Which can be seen to hold from the
definition of I[T(H) and (7.1b). For the inductive step, we argue starting from (7.17),
although with slightly different steps to follow. Using the inductive assumption from
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(7.25) to control one term and the bound (7.16) to control the other term, and (7.4b),
we have that the second term from (7.17) may be bounded by

1
[TI(H) + Cg 00T ~Newt
SN M (M, My — Neyge, Tv, TV) (7.26)

i (H(H) + CG,OOF*NCHM> DN M (M, My — Newg r, Tv, TV

Thus it remains to control the first term from (7.17). Towards this end, we claim that
for multi-indices «, 8 € Nk with k > 2, la| < Ny, and |B| < My,

k
[[p“pfin
i=1

) S rODM (18], My, vD,V'T) (7.27)

We apply Lemma A.7 with precisely the same choices as in the proof of (7.20), save
for the choice of Cy = SUPQ (x) TT- Then (A.27) is satisfied from (7.3b), and (A.28)
is satisfied by (7.1b). Then applying (A.31), shrinking €2 (x) to a point, and using the
continuity of 7 provides (7.27). Plugging this bound into (7.19) and using (7.20) and
(7.4b), we find that for N < Ny — Neye x and M < M+ — Neue e,

|DN DM ((TI(H) + Cg 00T New)2)|
[TI(H) + Cg 00T Neut|
< 1
™ TI(H) + Cg ool Nt
M (M, M; — Newg,i, v, V'T)
SN M (M, M; — Ney, vI,V'T)

i (H(H) + CG,OOF*NCW) )N

which combined with (7.26) concludes the proof of (7.11b). To prove (7.11a), we use
(7.11b) and the definition of o .

Proof of (v): By the definition of [T(H) and I1(p), itis easy to see that supp (IT(H)) C
supp (H) and supp (IT(p)) < supp(p), and so (v) is verified. O

*Lemma 7.2 (Pressure increment for current error). Let v be an incompressible
vector field on R x T3. Denote its material derivative by D, = 8; +v - V. We use large
positive integers N, > M, > M, for counting derivatives and specify additional
constraints that they must satisfy in assumptions (i)—(iv).

Suppose a current error ¢ = H p o ® and a non-negative, continuous function
are given such that the following hold.

(i) There exist constants Cg p and C, , for p = 1,00, frequency parameters
A, A, v, V', and intermittency parameters 0 < rg, re < 1 such that

”DNDIMHH < Co ph N M (M, M, v, V) (7.284)
14

DYDY H| < g AN M (M, My, v, V) (7.28b)

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page 850f271 19

H DN,OHP <CppAY (7.28¢)

3 —
161, S Co.pCop =283 1" (7.284)

forall N < N, M < M,.

(ii) There exist a frequency parameter |1, a parameter I" for measuring small losses
in derivative costs, and a positive integer Ngec such that p is (T/u)3-peri0dic and
A KL u < A, whereby we mean that

Ndec
AT L) . 7.29

(iii) Let ® be a volume preserving diffeomorphism of T such that D;® = 0 and ®
is the identity at a time slice which intersects the support of H, and

H DN+1¢H + ” pN+lg—! H <N (7.30a)

L (supp H) Lo (supp H) ™

| DY D} Do SN M (M, My, v, V) (7.30b)
L (supp H)

forall N < N, M < M,.
(iv) There exist positive integers Neyy x, Neut,c and a small parameter 8iny < 1 such

that
Neut,x = Neut,t (7.31a)
(CG,oo + 1) (Cp,oo + 1) [ Neuwt < 5;/5}, ,C6.1,Cp 1, (7.31b)
2Ngec +4 < Ny — Newex — 4, Newt < M. (7.31¢)

Then one can construct a pressure increment (o) associated to the current error ¢,
where

oy = ry TI(H) (T(p) o & — (T(p))) . (7.320)
o =r TI(H(p) o @, (7.32b)
and
1
’ Neut,x Neut,t 3
M(H) := (cG,OOF*Ncum) + G0N D) 7M|pNpM g2
N=0 M=0
N\’

— (CG,ooF cut.t) , (7.33a)
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1
Ncut, X 3

M(p) := (cp,oor-Ncw)2+ Y (ar) 2N iR | - (Cpgoor-wm,[)%
N=0
(7.33b)

and which has the properties listed below.

(i) oq':_ dominates derivatives of ¢ with suitable weights, so that for all N < N, and
M < M,

DYDY 9| < () 15" + Biny ) (AN M (M, My, vT,0T) . (734)

(ii) 0(; dominates derivatives of itself with suitable weights, so that for all N <
N* - Ncut,x; M < M* — Neut,t,

DYDMo | S (o7 + Suny ) (AN M (M, My, v, ) (7.35)

(iii) Oy + and Oy have size comparable to ¢, so that

o<s <8 7.36
”0 Yo 01 Yo 001 (7.36a)
lof| Sto0 |oq | S 00e- (7.36b)

oo oo

Furthermore, T1(H) and T1(p) have size comparable to H and p, respectively,
so that for all N < Ny — Neye,x and M < My — Neye 1,

HDND,MH(H) ’3/ C2 00N M (M, M; = Neyy, v, 0'T)
2
H DVTI(p) ’ <P (AT)N, (7.372)
3/ P,

HDND;WH(H) 3 CP DN M (M, My = Nee i, vT,0'T)

HDNn(p) <Cloan)y, (7.37b)

We note also that T1(p) is (T/;L)3-peri0dic.
(iv) w dominates Uq; and T1(H) and their derivatives with suitable weights, so that
forall N < N, — Newex and M < M, — Ny t,

2/3
DYDMoy | ( s ) 7T}y GV M (M, My = Newt, v, V)
(7.382)
‘DND,MH(H)} < rg PN M (M, My — New, vT, 0'T) (7.38b)
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v) 0(;' and o, are supported on supp (¢) and supp (H), respectivly.

Proof of Lemma 7.2 We break the proof into steps in which we prove each of the items
(i)—(v). The proof follows quite closely the proof of Lemma 7.1, save for various
rescalings related to the different scalings for current errors versus stress errors.
Proof of (i): We first use (7.30a) and D;® = 0 from (iii) and Lemma A.2 to deduce
that for N < Nyand M < M.,

DYDYl = DN (DM H)(p)o @) < Y [DM(DYH)|IDM(p o @)

N1+Nr=N
N
< Y. IDYYDMH) Y )M (D) 0 @) (7.39)
Ni+N>=N na=1

Estimate (7.34) will then follow from (7.39) and the following claims;

M(H) < CL o (7.400)

M(p) < Chino (7.40b)

DM DMH| < (H3/2(H) + cg,oor—Ncum) (AD)YNI M (M, M, vT, v'T) (7.40¢)
N2 2| S (TT2(p) + Cp ool Nt ) (AT (7.40d)

for any integers 0 < Njy,ny» < Ny, M < M,. Indeed, the above claims, (7.31a)-
(7.31b), and (7.39) give that for N < N, and M < M,,

‘DND,qu)
< (1‘13/2(H) + CG,OOF—NCW) (1‘13/2(,0) od+ cp,oor‘Ncuu) (ADYN M (M, My, T, v'T)
S (D) 0 )2 4 77Nt (€ o T2(0) 0 ® + Cp, 0 TV2(H) + €, 00Cp 00T 01t ))

x (AN M (M, My, vI'V'T)
< (@ry 4 iy ) (ADYV M (M, My, DT

The proofs of the claims are then given as follows. The first is immediate from the
definition of [T1(H) and the computation

M(H) $C4 o

23\ 3
= (nons(eanr)”) <

— D)2V M| DN DM a1 < C2

G,00

which holds for N < N¢yx and M < Ngy from (7.28a). A similar computation
holds for IT(p). Next, if M < Ney,r and Ny, N2 < Ny x, a2 computation similar to

@ Springer



19 Page 88 of 271 V.Girietal.

the one above shows that
23\ ¥2
DM (DM H)| < (H(H) + (cG,oor—Ncum) > AN DM | (7.41a)
2/3 3/2
W (Dp) o | < (AT (H(p) 0od+ (cp‘oor—Ncm-t) ) . (7.41b)

If however M > Ncye,t, N1 > Neutx, of N2 > Neye,x, we use (7.31a)—(7.31b) and
(7.28a) in the first two cases and (7.28c¢) in the third case to obtain, respectively, that

HDN1 (DM H) HLOo < ConAM M (M, My, v, v)

S TN AN M (M, My, v, V'T) (7.42a)
HDM (DIMH) HLOO < F*Ncu[,[CG’OO()\IF)NlM (M, M, v, v/) (7.42b)
A N2—m ” Dnz,O”Loo < F_Ncul’[Cp’oo(AF)Nz , (7.42¢)

concluding the proof of the claims and thus of (7.34).
Proof of (ii): We first show by induction that for integers K > 0 and N, M such that
N+M=K,N <N, — Ncut,x’ and M < M, — Ncut,ta

DN DM TI(H)| S (TCH) + (Co.00T 407 ) GV M (M, My = Nea, v VT)
(7.43)

When K = 0 the claim is immediate. Now, suppose by induction that (7.43) holds
true for any K < Ko, Ko € N U {0}. To obtain (7.43) for Ko + 1, we first note
that for N, M" such that 0 < N” + M", |DN"DM'T1(H)| = [DN" DM (N(H) +
~|—(CG,<X,F_NC“"‘)2/ %)|. We then obtain the inequality

DY DM | = [V DY (T(H) + (€607 Nty )|

b 1 3 |: ’DNDtM ((I‘[(H) + (CG,OOF*NCuth)Z/j;)g)‘
‘H(H) + (CG,OCF_NCuLl)2/3‘
3
+ Z l_[ ‘Dai Dfi (H(H) + (CG,ooF_Ncu‘*‘)ZB)‘ ] ’
@ B: Y3 4=N,] =]
Y3 Bi=M.
o +Bi <N+MVi
(7.44)
which follows from Lemma A.5 with p = 3 and the positivity of

|TI(H) + (Cg,00" Newt)*3|. Using the inductive assumption (7.43), which is valid
since 0 < N’ + M’ < K, and (7.31b), the second term can be controlled by

1
ITH(H) + (C,00TNeutt)|

3
5 (M) + (€gaomMenny)” GO
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M (M, M[ — Ncut,[s FV, FV/)
< (n(H) + (CG,OOF—NCW)z/»‘) OV M (M, My — Newe,, Tv, TV') L (7.45)

As for the first term, we have that

‘DNDzM ((H(H) + (CG,OOF_NCU"l)2/3)3)‘
‘2

ML) + (€ 00T Neut)?3
1 Ncul.x Ncut,t

< 3 Y Y G en ™ |pNpM |ty |
)n(H) + (CG,wF*Ncum)w’ n=0 =0

Ncul,x Ncul.l

! o)~ r)y=2m |pN' pM pnpm g
; SIS | |

n=0 m=0 0<N'<N

ITL(H) + (€ o7 Neut 2
0<M'<M

x ’DN*N’D,M—M'D"D;"H‘ . (7.46)
To bound the quantity above, we first claim that for multi-indices «, § € N¥ with
k> 2, la| < Ny and |B| < My,

k
[[p“pfin

i=1

@) < (I'I(H)3/2(x) +CG,OOF’N°““) D) (18], My, vT, V'T)

(7.47)
To prove this claim, let Q(x) < suppH be a closed set containing x. Then
applying Lemma A.7 with p = oo, Ny = M;, N« = Ncux. M« = Neuts
Q= Q) C = vA LAy =%y = Ay = v,y =V, f = H,
Cr = supgy) (1'13/2(H) + CG,OOF_NCW), Af = Xf =Al pup=vl,and iy =V'T,
we have that (A.27) is satisfied from (7.30b), and (A.28) is satisfied by (7.40c). Then
(A.31) gives that

k
[[p“pfin

i=1

)3 (sup M(H)"” + cc,ooFNw‘v'> DM (18], My, vT,V'T) .
Q(x)

(7.48)
Since 2 (x) is arbitrary and [T(H) is continuous, we have proven (7.47). Plugging this
bound into (7.46), we find that

[DNDM ((T(H) + (Cg,000 N)™))| _ 1
() + (C.ooT M) ™ TI(H) + (Cg 00T ~Nent) s

|2
32 —Ng 2
(H (H) +CG,OOF Lut.t)
x ANV M (M, M; — Neye, vI,0'T)
which implies the desired bound in (7.43) concluding its proof.
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Arguing in a similar way (in fact the proof is simpler since only spatial derivatives
are required), we also have that for each integer 0 < N < N, — Ny x,

‘DN(H(p) ° CID)‘ < (H(p) o ® + (cp,oor—Ncum)%) (AT)V | (7.49)

DY) S (M) + (€l M) (DY, (7.49)

Combining (7.43), (7.49a), and the choice of &,y from (7.31b), we obtain the desired
estimate (7.35).
Proof of (iii): Observe that by the construction of I1(H), (7.28a), and a computation

similar to that used to produce (7.40a), we have || I(H) + (CG’OOF_'\'C“‘»‘)Z/3 ||3/2 <

Czé31, and so [[TT(H) |5 < Ci?l’ with analogous bounds holding for p. It follows
from (7.43) and (7.31b) that

| DY D) H%/ <P L)Y M (M, My = Neyi i, vT, 0'T) (7.50)
3/2 >

for N < Ny — Neue,x and M < M, — Neye . If the left-hand side is measured instead

in L°°, we may appeal to (7.40a) to deduce that (7.50) holds with C¢ ~ in place of

Cg,1. Arguing similarly for I1(p) but appealing to (7.49a) and (7.40b), we have that

(7.37a)—(7.37b) are verified. Also, by the construction of I1(p), its periodicity easily

follows from (ii). Next, we can immediately deduce from the definition of og" and for
= 3/2, oo the easier bound

los |, < g ITLCED L, T

which matches the desired bounds in (7.36a)—(7.36b) for oq; after using the afore-
mentioned bounds for IT(H), I1(p) and recalling the definition of §4 . from (7.28d).
In the case of 0(;' and p = 3/2, we additionally apply Lemma A.3 by setting

N*ZN*_Ncut,x, M*ZM*_Ncul,tv f:l_[(H), d):([),
A=Al t-l=wl, T !'=VT,
2
Cr=Cly v=v, o=T(p). u=pn
YT=A=AT, Co=C", Ni=M, —Ney,.

P’

Then (A.12)is verified from (7.50), (A.13)—(A.14) follow from (7.30a), (A.15) follows
from (7.49b) and the periodicity of I1(p), (A.16) follows from (7.29), and (A.17)
follows from (7.31c). We then obtain from (A.18) that
2/3 /% 2/3
log ||3/z~ Cz o1 = 0.1

Finally, the estimate for ”crs || is trivial, so that (7.36a)—(7.36b) holds for U(;“ , and
(iii) is totally verified.
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Proof of (iv): We first prove (7.38b) by induction; namely, for each integer K =
N + M 2 O, N S N* - Ncut,x, M 5 M* - Ncut,ta

72/3

IDNDYTI(H)| S rg PrD)N M (M, My — Ney g, v, 0IY) (7.51)

The proof uses an argument quite similar to the proof of (7.43). The base case follows
from writing that

NH) Sarg”

23 _ 2/3
= TH) + (Cool M) g+ (Cool Mo

23\ 3 2
— <H(H) + (Cool ™M) ) S 75t + (Cool M)

which can be seen to hold from the definition of IT(H) and (7.28b). For the inductive
step, we argue starting from (7.44), although with slightly different steps to follow.
Using the inductive assumption from (7.51) to control the term from the trilinear
product in the second term with the highest number of derivatives,'” the bound (7.43)
to control the other two terms from the trilinear product, and (7.31b), we have that the
second term from (7.44) may be bounded by

1

—2/3 _N 2/3 2 N
eI H(H)+(cg,oor wnt) (AT)

‘I'I(H) + (CG’OOF*NCUM)
M (M, M; — Newg,, Ty, T)

<Srg a0 M (M, My = Nei, Tv, TV) (7.52)

Thus it remains to control the first term from (7.44). Towards this end, we claim that
for multi-indices «, 8 € NF with k > 2, || < Ny, and |B] < M,

) S aPrg' DM (181, My, vT,V'T) . (7.53)

k
[1p“pfu
i=l1

As in the proof of (7.47), we apply Lemma A.7 with precisely the same choices
as led to the bound in (7.48), save for the choice of Cy = supg n3/2r(_;1. Then
(A.27) is satisfied from (7.30b), and (A.28) is satisfied by (7.28b). Then applying
(A.31), shrinking €2 (x) to a point, and using the continuity of 7 provides (7.53).
Then plugging this bound into (7.46) and using (7.47) and (7.31b), we find that for
N < Nyx — Neutx and M < My, — Ne s

17 In fact any term which has been differentiated at all will suffice, so that we may replace IT(H) + CzG/3l

with simply IT(H).
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‘DNDtM (TI(H) + (CG,OOF—NCUM)Z”)S’
2

ML) + (Cg ool Mot

1 -2/3 32 -N 43 N
< g (n (H) +CG.00T wm) (AT)
‘I'I(H) + (CG’OOF*NCL\LI) /3
M (M3 Ml - NCU[,[’ VF? I)/F)

4/3
oy TI2(H) + (Ca ool M) "

<g7ur

~

G (DN M (M, My — New,, vI,0'T)
N 232 ’
ITL(H) + (Cg o0l Ment)

< rg DN M (M, My — Neg i, T, V'T)

which combined with (7.52) concludes the proof of (7.38b). To prove (7.38a), we use
(7.38b) and the definition of O'¢7 .

Proof of (v): By the definition of [T(H) and I1(p), it is easy to see that supp (IT(H)) <
supp (H) and supp (I1(p)) < supp (p), and so (v) is verified. O

* Proposition 7.3 (Pressure increment and upgrade error from velocity increment
potential). We begin with assumptions which allow for the construction of a pressure
increment and an upgrade current error. Then we delineate a number of properties
satisfied by the pressure increment, before applying the material derivative and inverse
divergence to produce a current error satisfying additional properties.

Part 1: Assumptions

Let v be an incompressible vector field on R x T>. Denote its material derivative by
D; = 9; + v - V. We use large positive integers Ny, d, Ko, Ny > M, > M;, and
1 <M, < Ny, <12(My — Newt,t — 1 — Ny) and specify additional constraints that
they must satisfy below. Suppose a velocity increment potential 0 = G(p o ®) and a
non-negative continuous function w are given such that the following hold.

(i) There exist constants Cg p and C, , for p = 3,00, frequency parameters
A, A, v, V', and intermittency parameters rg, rg < 1 such that

H DND,MGHP < Cop N M (M. My v, V) (7.542)
_1
‘DND,MG’ Sarrg AN M (M, My, v, ) (7.54b)
HDN,OH <CppAY (7.54¢)
p
1 _1
1911, S Co.pCop = 82 15 (7.54d)

forall N < Ny, M < M,.
(ii) There exist frequency parameters p and )/, a parameter T' = A% for0 < a < 1
for measuring small losses in derivative costs, and a positive integer Ngec such
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that p is (T/M)3-peri0dic and ., M < u < A, whereby we mean that

Ndec
- w
max(h, ATl <1, (AF)4§( ) . (7.55a)
47r\/§max()d, Ml

(iii) Let ® be a volume preserving diffeomorphism of T such that D;® = 0 and ®
is the identity at a time slice which intersects the support of G, and

T e T
L (supp G) L (supp G)
| DY D Do SoANM (M, My, v,
L (supp G)

(7.56b)

forall N < Ny, M < M,. Furthermore, assume that we have the lossy estimate
HDN oM ”HLoo <CaANOOM, el <V (7.56¢)

forall M < M,and N + M < N, + M.
(iv) There exist positive integers Neyy x, Neut,t and a small parameter 8yiny < 1 such

that
Neut,t < Neut,x » (7.57a)
(C o0+ D(C oo + DIt < 8500 CE 5, €5 5, (7.57b)
2Ngec +4 < Ny — Ncut,x — Nix Ncut,t <M, —-1. (7.57¢)
(v) Let an increasing sequence of frequencies {ig, -+ , i}, 4 < Lo < -+ <

Uin—1 < AT < u; be given satisfying
max (A, A2 < 1 (7.58)

foralll <m < m.
(vi) Assume that d and N, are sufficiently large so that

max{v'T, Cy AT} \ Mo

2 2 ld/2],, —1d/2] 5+Ko
VIC ., p(max(h, MDY =LY ATy (1 + - <1,
(7.59a)
_ ax{v'T, Cy AT\ Mo
vIC €2 max(e, A0 (a2 DLV (AT SHK (1 ¢ UL QAT <y
(7.59b)
T, Cy AT\ Me
VICE (o Co 3 (AT HNer (AT HKo (1 + % <1,
(7.5%¢)

forl <m < m.
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Part 2: Pressure increment
There exists a pressure increment oy = agr — o5 associated to the velocity increment
potential U which is defined by

o5 = r2TI(G) (T1(p) o ® — (I1(p))) =: of — 05 , (7.60a)
Neut,x Neut,t
(G) := Z Z G2V )M DN pM G2, (7.60b)
N=0 M=0
Ncut,x
M(p) = Y (AD) N [DpP?, (7.60¢)
N=0

may be decomposed as
m
o5 = ok + Z o (7.60d)
m=0

and satisfies the properties listed below.

(i) ((rgL V2 dominates derivatives of U with suitable weights, so that
’DND,Mﬁ’ < (0 + 8iiny) 25 ATV M (M, M, 0D VT) . (7.61)

forall N < N,, M < M,.
(ii) 05' dominates derivatives of itself with suitable weights, so that

DYDMo | < (0 + 8uiny) (AD)N M (M, M; — Newi, v, V') (7.62)

for all N < N, — Ncut,x; M<M,— Ncut,t-
(iii) Let (p, p") = (3,3/2) or (00, 00). Then ag and o satisfy
43 43

los |,y < 80.prss Nlos |,y < 8005

We note also that T1(p) is (T//i)3-periodic. Furthermore, T1(G) and T1(p) have
the same size as G and p, so that for N < Ny — Neutx and M < My — Neye t,

[P pin(6) Hp <% DN M (M, My = Newe, vT, V')
H DV TI(p) Hp <L (AN, (7.63)
(iv) m dominates o;; and T1(G) and its derivatives with suitable weights, so that
—;

‘DND;MH(G)) < arg PO M (M, My — New, vT.v'T) . (7.642)
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_ -2
DN DM o3| < g I ()l r2QT)N M (M, M; — Neyer, vT, V'T)

(7.64b)
forall N < Ny — Newe,x, M < My — Neyet
(v) We have the support properties
supp (63) C supp (), supp (o5) < supp(G) . (7.65)

Part 3: Current error
There exists an upgrade current error ¢ which satisfies the following properties.

(i) We have the decomposition and equalities

mn
po= &% +) ¢ (7.66a)
~— m=0
nonlocal
local

div (q)%" (t,x) + R*(Dio)(t, x)) = D;of'(t, x) — /3 Do (t,x")dx’,
T
(7.66b)
div <¢§(t, x) — Z R*(Dyof)(t, x)) = Dok(t,x) — / Dioi(t, x')dx'.
s

m=0

(7.66¢)

(ii) Let (p, p') = (3, 3/2) or (00, 00). The current error ¢ satisfies

4 2
mo\37 0 5
[ o8] , <or2c 2 5(12)" 7 Bl M. My~ N = 197 'T)

(7.67a)
2/3 o 73
DN DM 98| < vr2erg e <—) P2l MM, My = New — 1,0T,0'T)
S\
(7.67b)
in(um, AT)\ 377
min (i, _
HDNDthpg 5 vFZCZG’pC%’3<+> PR wm)
x min(um, ADYN M (M, My — Nt — 10T, 0'T) | (7.67¢)
. 4/3
2 min(wy,, A) _
‘DND,M(,‘%’"‘ < szan /3(3%’3 <7Z ’%Mmz_ﬂim
x (min(iem, AT)N M (M, My — Nt — 1,vI,0'T) | (7.67d)

foranyl <m <m, N < Ny—9/2—Ncyt x — N, and M < My —Neyt t— 1 — Nis.
Furthermore, we have that d)% satisfies

b3

_Sug@nten (7.68)
forall N < N, and M < M.,
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(iii) We have the support properties'®

supp (¢%) C supp(G), supp (¢>’a") CsuppGNB (suppp, 2#%171) od (7.69)

forall0 <m < m.
(iv) Forall M < My — Nyt — 1, we have that the mean (D;o5) satisfies

——7 (D10%)

dt

dM
' S (AD) KoM (M, My — New(, —1,vI,0'T) . (7.70)

Proof Step 1: Constructing op and verifying the properties in Part 2.
For the moment we ignore the decomposition in (7.60d) and handle the rest of the

conclusions in Part 2. Towards a proof of (i), we first have that I[1(G) < CZG’ oo and
I(p) < C%,Oo. The proof of these is similar to (7.13a) and (7.13b), and we omit the

details. Also, using a method of proof similar to that used to obtain (7.13c) and (7.13d),
we can show that

IDM' DY G| < (T(G) + Cg o T 2Newt) 2N M (M, M;,vI,V'T) (7.71a)
AN DM ol < (TT(p) + C5 [ TNty 2(A)N2 (7.71b)
for any integers 0 < Ny, N < N,,0 < ny < Ny and M < M,. Then, (i) follows as

in the proof of (7.7).
Next, to prove (ii), we again claim that for N < N, —Ncye.x and M < M, — Neye t,

DY DMI1(G)| < (H(G) + ch,ooF—2Ncuw> ()Y M (M, My — Net1, vT, V'T)

(7.72a)
DY) 5 (T1(p) + €2 oMo} (AT (7.72b)
‘DN(H(,O) o q>)( < (n(p) 0 d + Cf)’oor*ZNcmvt) (AN . (7.72¢)

The proof of the claims is similar to, and in fact easier, than the proofs of the analogous
estimates in (7.16) and (7.22b). Indeed, instead of (7.17), we simply have from the
Leibniz rule that

Ncut,x Ncut,t
3 S e en) ‘DND,M \D”D;”GH
n=0 m=0

DND,MH(G)‘

IA

Neut,x Neut,t

Z Z Z ()»F)*z"(vr‘)*zm

n=0 m=0 0<N’<N
0<M'<M

’DN/D,M/D”D{"G’ )DN_N/DtM_M/D”D;"G ,

18 For any Q € T3, we use Q o ®(; 1) to refer to the space-time set CD(_ilk) (¢, -)S2 whose characteristic
function is annihilated by D;.
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at which point we apply (7.71a). A similar argument produces the other two bounds
listed above. Then (7.72a)—(7.72¢) imply (ii) as in the proof of Proposition 7.1.

Regarding (iii), as before, the estimate for G in (7.63) follows from (7.54a), (7.72a),
and (7.57b). The estimate for I1(p) follows similarly from (7.54c), (7.72b), and
(7.57b). Therefore, (7.63) is verified, and as a consequence Haﬁ_ p, < &3, ,,r%/ * follows
after using (7.54d). The periodicity of I1(p) is immediate from the definition and the
periodicity assumption on p. To obtain |of |, < 85.3rL, we use Lemma A3 as in
the proof of (7.36a), for example. The assumptions in the lemma can be verified using
(7.63), (7.56a), (7.55a), and (7.57¢c) and the recently observed periodicity. Therefore,
the desired estimate for og in L”? follows from (A.18). The L estimate follows
trivially from (7.63).

Next, we consider (iv). Similar to the proof of (7.72a), one can obtain

IDNDMTI(G)| S 7rg P GOV M (M, My — Ny, vT, vI) (7.73)

for any integer N < N, — Neyex and M < M, — Ny« Then we have (7.64a),
and hence (7.64b) holds. Finally, (7.65) is immediate from the definitions in (7.60),
concluding the proof of all claims in Part 2 except (7.60d).

Step 2: Constructing the current errors ¢ and verifying the properties in Part 3.
We first define o)’ in order to verify (7.60d). Using the synthetic Littlewood-Paley
decomposition from (4.31) and Definition 4.15, we write

P4oT1(p) = iy P20 (T () + (Z mel,um](mp») +(d—B,,)([T(p)).
= h\/*_d

B _ (7.74)
For convenience, we use the abbreviations Py for P, Po and P, for Py, _; 4,1 for
1 <m < m.Define o, o, ¢Z', and ¢ by

m

o5 =05+ Y ot = rAI(G)(P*TI(p)) 0 ®) + 73 Y T(G) (P (I1(p)) 0 D) ,

m=0 m=0
i
P2 = H(Do). ¢4 :=(H+Roi+ Y R*(Dod).
m=0
Assuming that everything above is well-defined, we have verified (i). We aim to apply
Proposition A.13 with Remarks A.18 and A.19 in separate cases according to which
projector is being applied above. In order to apply the inverse divergence, we may

however first treat the low-frequency assumptions from Part 1, which are the same in
all cases (irrespective of which projector is being applied). We therefore set

N*:N* - Ncut,x - N** s M*:M* - Ncut,t —-1- N** s Mt - Mt - Ncut,t -1
G = D, T1(G), 8@3/2 = vFCzGS, EG,oo = VFC%;’OO, w=u, X/ =1,

D=0, X=max(t, )T, v=1I, ¥V =VT, T=vTar,”, v=0v,
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where we have used the convention set out in Remark A.20 to rewrite the symbols
from Lemma 7.1 with bars above on the left-hand side of the equalities below, while
the right-hand side are parameters given in the assumptions of this Lemma. Then
we have that (A.39) is verified from the assumption N, > M, and (7.57a), (A.40)
follows from conclusion (7.63), and (A.59) follows from conclusion (7.64a). Next,
we see that (A.41), (A.42a), (A.42b), and (A.53) hold from (7.56a)—(7.56¢). At this
point we split into cases based on which projector is applied and address parts 2-4 of

Proposition A.13 in order to conclude the proof of this Lemma.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17
with g = 3/2, A = AT, p = P4I1(p), and « such that A% in (4.34a) is equal to
I'. Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p =3/2,00

Wl

E\‘.\;

0 =PoIl(p), ¥ as defined in (4.34a), E*J,/ = wa <%>
=/

=u, Y="=u, A=png, d=d.

=

Then (4.32) is satisfied with Cp, 3, = wa and A = AT from standard Littlewood-
Paley theory, (7.63), and the choices from Step 1 which led to that conclusion, and so
from (4.34a) we have that (A.43) is satisfied. From (7.55a), (7.57¢c), and the choice
of N, above, we have that (A.44)—(A.45) are satisfied. Continuing onto the nonlocal
assumptions from Proposition A.13, we have that (A.52)—(A.54) are satisfied from
(7.56¢) and the assumptions from Part 1 on M, and N,. We have that (A.55) is satisfied
from (7.59a). We then appeal to the conclusions (A.46)—(A.51) and (A.56)—-(A.57) to
conclude as follows. From (A.50), we obtain (7.67a). The pointwise bound in (7.67b)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.68) for the portion of
d% coming from this case m = 0 from (A.57). Finally, we obtain (7.69) from (A.48),
concluding the proof of the desired conclusions form = 0.

Step 2b: Intermediate shells. For the cases | < m < m, we appeal to
Lemma 4.18 with ¢ = 3/2 and p = P4oI1(p). Specifically, to verify the assumptions
in Part 2 of Proposition A.13, we set for p’ = 3/2, co

G =Pull(p), Cy3p=C

_ . 4 _
0,3 Cx,00 = min((tm/p) /3C%,3v C%),oo) s T =1,

T =2 =min(um, AT), ¢ asdefined in Lemma4.18, o as in the previous substep .

Then (4.36) is satisfied with Cp, 3, = 0%3 as in the last substep, and so from (4.37b) we

have that (A.43) is satisfied. From (7.552), (7.57¢), (7.58), and the choice of N, above,
we have that (A.44)—(A.45) are satisfied. Continuing onto the nonlocal assumptions
from Proposition A.13, we have that (A.52)—(A.54) are satisfied as in the last substep.
We have that (A.55) is satisfied from (7.59b). We then appeal to the conclusions
(A.46)—(A.51) and (A.56)—(A.57) to conclude as follows. From (A.50), we obtain
(7.67¢). The pointwise bound in (7.67d) holds due to (A.60), (A.49a), and (A.47).
Next, we obtain (7.68) for the portion of d)% coming from this case 1 < m < m from
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(A.57). Finally, we obtain (7.69) from (A.48) and (4.37c), concluding the proof of the
desired conclusions for 1 < m < m.

Step 2c: Highest shell. For the case m = m, we appeal to Lemma 4.17
with g = 3/2, A = AT, p = P4oI1(p), and « such that A% in (4.34a) is equal to
I'. Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p'=00

_ _ r Nyx
0 =P*PoIl(p), ¥ asdefinedin (4.34b), C, , = 02’3(1\1*)3 <__ ) ’
m
—

=Y =p, A=A, d=0.

=
I
=l

Then (4.32) is satisfied as in the previous substeps, and so from (4.34b) we have that
(A.43) is satisfied. We have that (A.44)—(A.45) are satisfied as in the first substep. The
nonlocal assumptions are satisfied as in the previous substeps, except that we now
have (A.55) from (7.59c). The only conclusion we require at this point is to produce
a bound matching (7.68), which follows from (A.57).

Step 3: Verification of (7.70) . Since the vector field v is incompress-
ible, 4 (Dyo5) = (D}*+'o5). Since T(p) is periodic in (/)% we have that for
M+1 SM*_Ncut,t_L

/T3 DY (G) (ProTl(p)) o @ dx

= /T3 DM (G) o &' AL AL (P IT(p)) dx

= /3 NEL <D,M+ll'[ (G) o qu) AL (P4oTI(p)) dx
T

N

st (DG oot At (Pame)|

Ca,3p(max(r, AVYD)Pu™Cy 3 T2 M (M + 1, M; — Ny, vI, V'T)
< (AT) ®M (M, M; = Neyee — 1,0T,0'T) .

.

A

Here, we have used Lemma A.1, (7.63), (7.56a), (7.59b), and standard Littlewood-
Paley theory. O

* Proposition 7.4 (Pressure increment and upgrade error for stress error). We
begin with preliminary assumptions, which include all of the assumptions and con-
clusions from the inverse divergence in Proposition A.13 and the pointwise bounds in
Remark A.19. We then include additional assumptions, which allow for the application
of Lemma 7.1 to the stress error and Proposition A.13 to the material derivative of the
output. We thus obtain a pressure increment which satisfies a number of properties.
Finally, the material derivative of this pressure increment produces a current error
which itself satisfies a number of properties.
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Part 1: Preliminary assumptions

(i) There exists a vector field G, constants Cg, p for p = 3/2, 00, and parameters
M;, &, v,V', Ny, My such that (A.39) and (A.40) are satisfied. There exists a
smooth, non-negative scalar function 7 such that (A.59) holds.

(ii) There exists an incompressible vector field v, associated material derivative
D, = 9, + v -V, a volume preserving diffeomorphism ®, inverse flow ®~!, and
parameter )" such that (A.41)—(A.42b) are satisfied.

(iii) There exists a zero mean scalar function o, a mean-zero tensor potential ¥,
constants Cy p for p = 3/2, 00, and parameters , Y, Y, A, Ngec, d such that
(1)—(ii) and (A.43)-(A.45) are satisfied.

(iv) The symmetric stress S = H(Go o ®) and nonlocal error E satisfy the conclu-
sions in (A.46), (i1)—(vi), as well as the conclusion (A.60) from Remark A.19.

(v) There exist integers No, Mo, K, such that (A.52)—(A.55) are satisfied, and as a
consequence conclusions (A.56)—(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer Ny and integers positive Neye x, Neut .t such
that we have the additional inequalities

N* —2d - Ncut,x - N** -3 > M* B (7.75a)
M — Newe — 1 > 2N, (7.75b)
Niw >2d 43 (7.75¢)

(ii) There exist parameters I' = A% for 0 < a < 1 and 8ny satisfying

Ncut,t = Ncut,x s (7-763)

(Coo0 1) (Cooo T 724 1) TN < Sy, C s Cop X T2,
(7.76b)
2Ngec +4 < Ny — Nyx — Newrx —3d =3, Newr < M; — 1, (7.76¢)

7 Ndec

AD)* < ( > .
( 277+/3T max (X, ')

(7.76d)

(iii) There exists a parameter m and an increasing sequence of frequencies
{MO» T MVFL} Satis.fying

U<y <- < Mi—1 <A<ATl < u, (7.77a)
max (e AT (2 i+ 17 ) < 1, (7.77b)

Ld/4]
Ci,32Cx 301" (max(A, ALY (max (M_l, Mm'u;z_l))

/7 C _ Mo
M) <1, (7.77¢)

X () (1 +—
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AT\ Ve max{v’, Cpi} \ M
C. v Cyyn (T) () Ko (hLM) <1, (1.77d)

m v
foralll <m <m.

Part 3: Pressure increment

(i) There exists a pressure increment os, where we have a decomposition
n
05=U§r—a§=a§+20§". (7.78)
m=0

(ii) 0;' dominates derivatives of S with suitable weights, so that
‘DND,MS‘ < (0 + 8uny) (ADYY M (M, M, T, v'T) | (7.79)

forall N < N, — |9/2], M < M,.
(iii) OSJF dominates derivatives of itself with suitable weights, so that

)DND[MU;‘ < (0§ + Biny) (AD)Y M (M, M; — Newr, vT, 0T (7.80)

forall N < Ny — |9/2] — New,x, M < My — Nyt
(iv) 0; and o have the same size as S, so that for p = 3/2, 0o,

losll, - los |, < CapCep' T2, (7.81)

||p’

(v) w dominates o and its derivatives with suitable weights, so that

)DND{WUS—’ < Coyp X2 m(max(h, Y)Y M (M, My — New, T, v'T)

(7.82)
for all N < N, — |_d/2J - Ncul,x, M <M, — Ncut,t~
(vi) We have the support properties
supp (o) € supp(S), supp(og) < supp(G). (7.83)

Part 4: Current error

(i) There exists a current error ¢, where we have the decomposition and equalities

p=¢5+ > o (7.84a)
m=0
divg (t,x) = Do (t,x) — / Diod'(t,x")dx’, (7.84b)
3
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divg§(t, x) = Diod(t, x) — / Diod(t, x")dx'. (7.84¢)
3

(ii) ¢ can be written as ¢ = ¢g1’l + qb'Sn’*, and for 1 < m < m, these satisfy

[ DX DM o, S V6L X T e (minGam, ATHY
M (M, M; — Newe,t — 1,0, 0'T) (7.85a)

min(um, AT\ _,
) make
x (min(um, AD)Y M (M, My — Newr,t — 1,00, 0'T) , (7.85b)

min (g, AF)>4/3 w2
- — m
uw m—1

x (min(um, AD)Y M (M, My — Newg,e — 1,00, 0'T) , (7.85¢)

| DY DM ey

< UFZCG’OOC*Q/ZT/T_Z (
o0
’DNDZM¢>?’Z’ <G5, Y T2 (

forall N < Ny —2d — Newx, M < My — Nyt — 1. For m = 0 and the
same range of N and M, ¢’ and ¢g"’l satisfy identical bounds but with ufn_ 1 Mm

replaced with T~ and min(w,,, AT') replaced with wg in all three bounds.
Furthermore, the nonlocal portions satisfy the improved estimate

oot
oo

d
< minGun, AT K max (e, 290 (max (1" ey, )) oM

(7.86)
forall N < No, M < M,, and the remainder term ¢3’5 satisfies the improved
estimate

| DY D}y
o

Ld/4]
< (AD) Ko maxh, AHD (max (17! w2 ) (ADY DY

(7.87)
in the same range of N and M.
(iii) We have the support properties'®
supp (¢?’l) CsuppGNB (suppﬁ, 2,1%1_1) od for 1 <m<m,
supp <¢2J) C suppG . (7.88)

19 For any Q € T3, we use Q o ®(; k) to refer to the space-time set CD(_ilk) (¢, -)S2 whose characteristic
function is annihilated by D;.
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(iv) Forall M < My — Neu,« — 1, we have that the mean (D;os) satisfies

M

d
——1 (Dtos)

o < (AT) Ko (max(h, A)YD)LY4 WY A (M, My — Newi, —1, 0T, V'T)
; ,

(7.89)

Proof Step 1: Defining and estimating o to verify (7.79)-(7.83). From (A.47) of
Proposition A.13, we have that S can be written as

Cn
S = ZHa(j)pﬁ(j) od,
Jj=0
where H*() and pf() satisfy the bounds in (A.49a), (A.49b). In addition, we have the
pointwise bounds on H*() in terms of 7 given by (A.60) in Remark A.19. For each
0 < j < Cy, we shall apply Lemma 7.1 with the following choices, where we have
used the convention set out in Remark A.20 to rewrite the symbols from Lemma 7.1

with bars above on the left-hand side of the equalities below, while the right-hand side
are parameters given in the assumptions of this Proposition:

=v, N+=Ny—1[d2], My=M,, M,=M,,
H= Ha(j), EG,3/2 = CG,3/2 , EG,oo =CG.,00»
p=pPD Coap=CuspY' T2, Cpoo="Cioo X' T2
A =max(A, ), A=A, T =, &=,

<|

— — — / — N
T=m, Vv=v, V=V, W=, N = Ngec,

and Ncut,x, Neut,t» and dtiny as in preliminary assumption (ii). From (A.49), (A.60),
and (A.50), we have that (7.1a)-(7.1d) are satisfied. Assumption (7.2) is satisfied from
(7.76d). All the assumptions in (iii) are satisfied from preliminary assumption (ii)
from this proposition. Finally, all assumptions in (iv) are satisfied from the additional
assumption (ii) from this Proposition.

We may then apply (7.5a)—(7.6b) from Lemma 7.1 to obtain for 0 < j < Cy the

pressure increments oé = a; - O’S_ "/ and we then collect terms to define
Cn ) Cy )
a;' ::ZU;_’J, oy ::ZUS_’J, os ::a;r—as_.
j=0 j=0

From conclusions (i)-(v) of Lemma 7.1, we have that (7.79)—(7.83) are satisfied.

Step 2: Decomposing o to verify (7.78), and defining and estimating ¢¢' to verify
(7.84)-(7.88). From (7.5a)—(7.5b), we have that

Cr
_ a()) BN o . .
og ;n@ J)(]P’;tol'[(,o f)) ® (7.90)
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Note further that IT(p#)) is (T/M)3-periodic and has derivative cost AT from (7.10),
conclusion (iii) from Lemma 7.1. So we use the sequence of frequencies 1o, .. ., i
to apply the synthetic Littlewood-Paley decomposition (a la (4.31)) to TT(p#()) and
write

() = By (M) + (Z ﬁw,,”,umnn(pﬂ(”))) +(1d=B,,) (P,
m=1
(7.91)

From now on, we shall abbreviate notation by writing [P for ﬁuo’ P, for ﬁ(ﬂm% tim]
for | <m < m, and P* for Id — P, ., so that we may use (7.91) to write

m Cy
os =o0§ + Z oy = Z I (H"‘(j)) P* (H (,oﬁ(j)>) o®
m=0

j=0
S (10 5 (1 (0) 0. 792
m=0 j=0

We aim to apply Proposition A.13 with Remarks A.18, A.19 to the material derivative
of each of the terms in (7.92), which would produce

m Cy

b= g5+ Y oY = Y (H+ R (DIHD) (PPN (0P 1)) 0 @)
m=0 j=0 ey
m Cy . )
+ 303 AR (D HY D) (BB soM(pP ) ) 0 @)
m=0 j=0

::¢m,j

= (H+R*)(D;0§) + Y (H+R*) (Do) .

m=0

Assuming that we succeed in doing so, we have at least verified (7.78) and (7.84). Now
in order to apply the inverse divergence with the pointwise bounds from Remark A.19,
we first treat the low-frequency assumptions from Part 1, which are the same in all cases
(irrespective of the projector on IT(p#())). Specifically, we shall use the convention
from Remark A.20 and in all cases set

P=32,00, V=0, N*ZN**d*Ld/ZJ*Ncm,Xv M*ZM**NCUM*I,
Mt:Mt*Ncul,l*Iv
G =D(H*Y), Cg,=vIC5,. B=pn, r=max(t,A)I, d=d, ¥ =1,

=w, V=V, &=, T=vl7, Ngec=Ngec, d=d.

<|

Then (A.39) is satisfied from the additional assumption (7.75a), and (A.40) is satisfied
from the conclusion (7.10) and the parameter choices from Step 1 which led to that
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conclusion. The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii)
from this Proposition. The pointwise bound in (A.59) holds with M, = M, — Neut,t — 1
and 7 = vI'w due to (7.11b), which was verified in Step 1. At this point we split into
cases based on which projector is applied to P_.oI1 (0P in (7.92) and address parts
2-4 of Proposition A.13.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17 with g = 3/2,
A=Al p= P#on(pﬁ(-’)), and « such that A* in (4.34a) is equal to I". Specifically,
to verify the assumptions in Part 2 of Proposition A.13, we set for p = 3/2, co

(SR

0=PoPoI1(p), ¥ as defined in (4.342), Cs p = [Cizp Y 2Y’ <@> ,
"

o

=/

m=p, T="=p, A=py, d=d.

Then (4.32) is satisfied with Cp 3, = C*,z/QT_ZT/ and A = AT from standard
Littlewood-Paley theory, (7.10), and the choices from Step 1 which led to that con-
clusion, and so from (4.34a) we have that (A.43) is satisfied. From (7.76d), (7.77a),
(7.77b), the choice of N, above, (7.10), and (7.76c¢), we have that (A.44)—(A.45) are
satisfied. Continuing onto the nonlocal assumptions from Proposition A.13, we have
that (A.52)—(A.54) are satisfied from preliminary assumption (v) and (7.75b). We have
that (A.55) is satisfied from (7.77¢c). We then appeal to the conclusions (A.46)—(A.51)
and (A.56)—(A.57) to conclude as follows. First, we set

¢ = H(Dod), ¢y =R*(Dod).

From (A.50), we obtain both (7.85a) and (7.85b), but with the appropriate modifica-
tions for m = 0 as indicated. The pointwise bound in (7.85¢c) holds due to (A.60),
(A.49a), and (A.47). Next, we obtain (7.86) for m = 0 from (A.57). Finally, we obtain
(7.88) from (A.48), concluding the proof of the desired conclusions form =0 .

Step 2b: Intermediate shells. For the cases 1 < m < m, we appeal to Lemma 4.18
with g =3/2and p = ]P’#()H(,Oﬁ (1)), Specifically, to verify the assumptions in Part 2
of Proposition A.13, we set for p = 3/2, oo

0= PPl (pPV), & =9 0L 1" 4 defined in Lemma 4.18

s Y =pm_1, Y =A=min(um, TA),
I

d=d, W=p, oasinthe previous substep.

. 4_2
E*p_c %/ZT_ZT/ (7mm(,u,m,AF)>3 "ox
P = G,

Then (4.36) is satisfied exactly as in the previous substep, and so from (4.37a)—(4.37b)
we have that (A.43) is satisfied. As before, we use (7.76d), (7.77a), (7.77b), the choice
of N, above, (7.10), and (7.76c¢) to see that (A.44)—(A.45) are satisfied. Continuing
onto the nonlocal assumptions from Proposition A.13, we have that (A.52)—(A.54)
are satisfied as in the previous substep, and (A.55) is satisfied from (7.77c). We then
appeal to the conclusions (A.46)—(A.51) and (A.56)—(A.57) to conclude as follows.
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First, we set .
¢ =H(Dog), ¢ =R*(Diof).

From (A.50), we obtain both (7.85a) and (7.85b). The pointwise bound in (7.85¢)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.86) from (A.57). Finally,
we obtain (7.88) from (A.48) and (4.37c), concluding the proof for 1 <m < m.

Step 2c: Highest shell. For the case with the highest shell, corresponding to the
projector P* from (7.92), we appeal to Lemma 4.17 with ¢ = 3/2, A = AT, p =
IP’;goH(,oﬁ (). Specifically, to verify the assumptions in Part 2 of Proposition A.13,
we set for p = 3/2, o0

0 =P*PII(pPY)), ¥ =0 asdefined in (4.34b),

- AT\ M 2nn1 3 A N
C*’p:(—> Cagp T "Y' (A)", T=7T =pu, A=TA,

m

d

0, N*:N*_Ncut,x_N**_?’-

We note that we have altered the definition of N,. compared to the previous two substeps
for convenience. But from (7.75¢), we have in fact made it smaller, so that the low-
frequency assumptions from the inverse divergence are still satisfied. Then (4.32) is
satisfied exactly as in the first substep, and so from (4.34b) we have that (A.43) is
satisfied. We use (7.76d), (7.77a), (7.77b), the altered choice of N, above, (7.10),
and (7.76c) to see that (A.44)—(A.45) are satisfied. Continuing onto the nonlocal
assumptions from Proposition A.13, we have that (A.52)—(A.54) are satisfied as in
the previous substep, and (A.55) is satisfied from (7.77d). We then appeal to the
conclusions (A.46)—(A.51) and (A.56)—(A.57) to conclude as follows. First, we set

¢s = (H+R*)(D;og) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (7.87),
which follows from (A.57).

Step 3: Verification of (7.89). Since the vector field v is incompressible, i—x (D;os) =
(DM+155). From (7.90), we have

Cr
DMHgs =3 DM (H"‘(j)) (Pﬂn(pﬂ(ﬂ)) o ®.

Jj=0

Since H(pﬁ(j)) is periodic in (T/u)z, we have that for M + 1 < My — Neyee — 1

/ DM (H“(ﬂ) (P#on(pﬂ(j))) o dx
']1'3

_ /T3 DM (Hau)) o dIALSIA-LY (Mol'l(pﬁ("))) dx
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/z ALYl (DtM—HH (Ha(j)) . q,—l) A-LY (P#on(pf’(”)) dx
T‘
< HAL%J (DIM—HH (Hau)) o ¢—1) N Pt (P#On(pﬂ(”))nl

< Cg,3p(max(h, ANYD)Pu™C, 5, T 721 M (M + 1, My — Neyr, v, 0'T)
< (AD) %o (max(x, MY "M (M, My — N — 1,00,0'T)

Here, we have used Lemma A.1, (7.10), (7.3a), (7.77¢), and standard Littlewood-Paley
theory. O

* Proposition 7.5 (Pressure increment and upgrade error from current error). We
begin with preliminary assumptions, which include all of the assumptions and con-
clusions from the inverse divergence in Proposition A.13 and the pointwise bounds in
Remark A.19. We then include additional assumptions, which allow for the application
of Lemma 7.2 to the current error and Proposition A.13 to the material derivative of
the output. We thus obtain a pressure increment which satisfies a number of prop-
erties. Finally, the material derivative of this pressure increment produces a current
error which itself satisfies a number of properties.

Part 1: Preliminary assumptions

(i) There exists a scalar field G, constants Cg, p for p = 1, 00, and parameters
M;, &, v,V', Ny, My such that (A.39) and (A.40) are satisfied. There exists a
smooth, non-negative scalar function & and a parameter rg such that (7.28b)
holds with H replaced by G.

(ii) There exists an incompressible vector field v, associated material derivative
D, = 9, + v -V, avolume preserving diffeomorphism ®, inverse flow ®~!, and
parameter )" such that (A.41)—(A.42b) are satisfied.

(iii) There exists a zero mean scalar function o, a mean-zero tensor potential ¥,
constants Cy p for p = 1, 00, and parameters p, Y, Y, A, Ngec, d such that
(1)—(ii) and (A.43)-(A.45) are satisfied.

(iv) The current error ¢ = H(Gp o ®) and nonlocal error E satisfy the conclusions
in (A.46), (ii)—(vi), as well as the conclusion (A.60) from Remark A.19 with w
replaced by 713/2r51.

(v) There exist integers No, Mo, K, such that (A.52)—(A.55) are satisfied, and as a
consequence conclusions (A.56)—(A.57) hold.

Part 2: Additional assumptions

(i) There exists a large positive integer Ny and positive integers Neyt x, Neut,t such
that we have the additional inequalities

Ny —2d — Neug,x — Nawe — 3 > M, (7.93a)
My, — Neye g — 1 > 2N, , (7.93b)
Ny >2d+3 (7.93c)
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(ii) There exist parameters I" = A% for 0 < o < 1, 8tiny, 79, and 8y, p for p = 1, 00

satisfying
O<rg<1. 8, =CopCepX T 2y,
(7.94a)
Neut,t < Neutx » (7.94b)
(CG,00 +1) (C*,OOT/T_z + 1) P Net < 84072, Co1, Cot Y/ T2,
(7.94¢)

2Ngec +4 < Ny — Ny — Newgx —3d =3, Newe < M; — 1 (7.944d)

Ndec
ADY* i > .
(Al §<2n\/§Fmax(A,k’)

(7.94¢)

(iii) There exists a parameter m and an increasing sequence of frequencies
(o, -+, i} satisfying

U< o <- < n—1 <A<ATl < up, (7.95a)

max(e 2T (2 i+ 07 ) < 1, (7.95b)

Ld/4]
(C6.1Cetrg) VT (max G, 29D (max (157 sy, )

max{v’, Cypin}

M,
x () Ko (1 + ) <1, (7.95c)

v

2 AT V= max{v', Cpi} \ M
(CaCrirp) vT <—> (i) ¥t Ke (1 + %) <1,
m
(7.95d)
foralll <m <m.
Part 3: Pressure increment
(i) There exists a pressure increment o,, where we have a decomposition
i
op =0, —o, =05+ ol (7.96)

m=0

(ii) oq')" dominates derivatives of ¢ with suitable weights, so that
DYDY | < (00715 + buny ) (ADN M (M, My, vTVT) . (7.97)
forall N < N, — |9/2], M < M,.
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(iii) O’J dominates derivatives of itself with suitable weights, so that
DYDMo | S (0 + Siny) (AT M (M, My = N, vT, 0'T) - (7.98)

fOV all N < N, — I_d/ZJ - Ncut,x; M<M,— Ncut,t~
(iv) 0(/')" and o, have size comparable 1o ¢, so that

oy Iy, S0 oyl

lo" 1, - 0 || S Sp.00 (7.99)

(v) w dominates o, and its derivatives with suitable weights, so that

N M_—
DYDMo |

~

2/3 s
< <r_¢> (C*,lT_TY‘/) (max(A, )‘/)F)NM (M, M, — Newt, VT, V/F)

rG
(7.100)
forall N < Ny — |9/2] — New,x, M < My — Nyt
(vi) We have the support properties
supp (GJ) C supp (@), supp(o,) < supp(G). (7.101)

Part 4: Current error

(i) There exists a current error ¢y, where we have the decomposition and equalities

m
b =5+ > ¢ (7.102a)
m=0
divd)g’(t, x) = D;a;"(t, x) —/ D,o(;"(t, xydx', (7.102b)
T3
divgy (1, x) = Dyo(t, x) — /1r3 Dta;‘(t,x’) dx', (7.102¢)

(ii) ¢, can be written as ¢; = ¢>$’l + ¢y* and for 1 < m < m these satisfy

2 NS .
[0 DMy, < v (ConCan ™ T 2rs) " iy o minGem. AT
M (M, My — Newg — 1,0I,0'T) (7.103a)

min(um, AD)\7 5
W M —1Hm

x (min(um, AT)N M (M, My — Newe,e — 1, vT,0'T)
(7.103b)

2/3
| DY DMy < vr? (Co e Y'Y 21 (
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_1Mm
rG 2 m=1

x (min(um, AT)N M (M, My = Newr,t — 1,00, v'T)
(7.103¢)

2/3 2 . ( r 4/3
T _ min(fy,, AT) _
DND,M¢$~" <ul2r (—"’) (C*JT/T 2) <7’” > 1

forall N < Ny —2d — Newx, M < My — Newt — 1. For m = 0 and the
same range of N and M, qb;" and qb;"*[ satisfy identical bounds but with urzn_ 1 Mm
replaced with Tu™' and min(u,,, AT') replaced with wq in all three bounds.
Furthermore, the nonlocal portions satisfy the improved estimate

[0V DM g < minun, APHN K- (max(, )01
o
_ _ Ld/4]

(max (07" sriz? ) DM, (7.104)
forall N < No, M < M,, and the remainder term d:; satisfies the improved
estimate

N M
o oe;],
—K / |d/4] -1 _2 [d/4] N M
< (AD) ™K max(, YD (max (07!, wwiy?, ) (ADY D)
(7.105)
in the same range of N and M.
(iii) We have the support properties
supp (d);"l) CsuppGNB (suppﬁ, 2#,7,1]) od forl<m<m,
supp (¢>2’1) C suppG . (7.106)
(iv) Forall M < My — Ney,« — 1, we have that the mean (D;os) satisfies
dM
Ch_M(DtU(p)
< (AD)™Fe(max (2, AT M (M, My = Newet — 1, 0T, 0'T)
(7.107)

Proof Step 1: Defining and estimating o, to verify

(7.97)-(7.101). From (A.47) of Proposition A.13, we have that ¢ can be

written as
Cn

o= HDpPD o,
j=0
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where H*() and p#(/) satisfy the bounds in (A.49a), (A.49b). In addition, we have the
pointwise bounds on H*\/) in terms of 7 rg ! given by (A.60) in Remark A.19, but
with the modifications listed in preliminary assumption (i). For each 0 < j < Cy, we
shall apply Lemma 7.2 with the following choices, where we have used the convention
set out in Remark A.20 to rewrite the symbols from Lemma 7.2 with bars above on the
left-hand side of the equalities below, while the right-hand side are parameters given
in the assumptions of this Proposition:

T=v, Ny=N,—|d2|, My=M,, M;,=M,,

H=H"Y, C61=Cs1, C6.00=Cq00,

p=pPD Coi=Cai Y 2Y, Cpioo =Cond ¥ 2, Fo=rG, To=ry
A=max(A,A), A=A, T=I, &=,

T=m, v=v, V=1, T=p, Nge =Niec,

and Neut,x» Neut,t, and 8¢iny as in preliminary assumption (ii). From (A.49), the modified
version of (A.60), which is listed in preliminary assumption (i), (A.50), and (7.94a),
we have that (7.28a)—(7.28d) are satisfied. Assumption (7.29) is satisfied from (7.94e).
All the assumptions in (iii) are satisfied from preliminary assumption (ii) from this
proposition. Finally, all assumptions in (iv) are satisfied from the additional assump-
tion (ii) from this Proposition.

We may then apply (7 32a)—(7.33b) from Lemma 7.2 to obtain for 0 < j < Cpy the
+.J

pressure increments cr(p =0, —0,° 7, and we then collect terms to define
Cn Cn
— +.J —._Z —J ot
= Z% . O, = o,”), opi=o0, —0,.
j=0 j=0

From conclusions (i)—-(v) of Lemma 7.2, we have that (7.97)—(7.101) are satisfied.

Step 2: Decomposing o, to verify (7.96), and defining and
estimating qﬁ;" to verify (7.102)-(7.106) From (7.32a)—(7.33b),
we have that

op =13’ Z m (H“(D) (P#)H(,oﬂ(f))) (7.108)
=

Note further that IT(p#)) is (T/ M)3-peri0dic and has derivative cost AT" from (7.37a),
conclusion (iii) from Lemma 7.2. So we decompose as in (7.91) to write

M(pPD) =By, (M(pP) + (Z ﬁ(#,,,_.,,ln,](n(pﬁ(”))) + (1d = By, (") .
m=1

(7.109)
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Using the same abbreviations used in (7.92), from (7.109) we may write

o, = 0] + Zm: op =r) i) m (H“(j)> p* (1‘1 (pﬂ(j))) o®
— pn
r Z Z m (H“(J)) (n (pf’U))) 0. (7.110)

m=0 j—

We aim to apply Proposition A.13 with Remarks A.18, A.19 to the material derivative
of each of the terms in (7.110), which would produce

n Cn
b =0+ 2 o =irl> Y (AR (DNHD) (PPl (0P D) ) o @)

m=0 Jj=0 -
=:p*J
UL CH . .
+r” 30 3 AR (D D) (PP oM (0PD)) o @)
m=0 j=0

=g J
m
= (H+R")Diog)+ Y (H+R*)(Droy)).

m=0

Assuming that we succeed in doing so, we have atleast verified (7.96) and (7.102). Now
in order to apply the inverse divergence with the pointwise bounds from Remark A.19,
we again first treat the low-frequency assumptions from Part 1, which are the same
in all cases (irrespective of the projector on I1(p#(/))). Specifically, we shall use the
convention from Remark A.20 and in all cases set

ﬁ=3/21001 v=v, N*ZN*_d_l_d/ZJ_Ncut,X7 M*ZM*_Ncut,t_la
M;: _Ncutt_l

G =r"DIIH"D), Coan=rvICL|. T=p, *=max(i,\)I, ®=0,
X’:A’,
V=, V=vl, =0, w=vlnr;", Noe=Ngc, d=d,

- 2
Co.oo =13 VICng

Then (A.39) is satisfied from the additional assumption (7.93a), and (A.40) is satisfied
from the conclusion (7.37a) and the parameter choices from Step 1 which led to that
conclusion. The estimates in (A.41), (A.42a) and (A.42b) hold from assumption (ii)
from this Proposition. The pointwise bound in (A.59) holds with M, =M, — Neut,t — 1
andw = anrEZ/ * due to (7.38b), which was verified in Step 1. At this point we split
into cases based on which projector is applied to P_.oI1 (,0/S ()Y in (7.110) and address
parts 2-4 of Proposition A.13.

Step 2a: Lowest shell. For the case m = 0, we appeal to Lemma 4.17
with ¢ = 3/2, A = AT, p = PT1(p#)), and « such that A* in (4.34a) is equal
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to I". Specifically, to verify the assumptions in Part 2 of Proposition A.13, we set for
p=3/2,00

Wl

2
. _ _ 2/3 Y
0 =PBoPoM (P V), T as defined in (4.34a), Cyp=T (c*,lrzr’) / <@> "
n

=~/

=u, Y=T=pu, A=py, d=d.

=

Then (4.32) is satisfied with Cp 3, = (C*,lT’ZT’ )2/ *and A = AT from standard
Littlewood-Paley theory, (7.37a), and the choices from Step 1 which led to that con-
clusion, and so from (4.34a) we have that (A.43) is satisfied. From (7.94e), (7.95a),
(7.95b), the choice of N 4 above, (7.37a) and (7.37b), and (7.94d), we have that (A.44)—
(A.45) are satisfied. Continuing onto the nonlocal assumptions from Proposition A.13,
we have that (A.52)—(A.54) are satisfied from preliminary assumption (v) and (7.93b).
We have that (A.55) is satisfied from (7.95c). We then appeal to the conclusions
(A.46)—(A.51) and (A.56)—(A.57) to conclude as follows. First, we set

¢y' =H(Dio)),  ¢* =R*(Dioy).

From (A.50), we obtain both (7.103a) and (7.103b), but with the appropriate modifi-
cations for m = 0 as indicated. The pointwise bound in (7.103c) holds due to (A.60),
(A.49a), and (A.47). Next, we obtain (7.104) for m = 0 from (A.57). Finally, we obtain
(7.106) from (A.48), concluding the proof of the desired conclusions form =0 .

Step 2b: Intermediate shells. For the cases 1 < m < m, we appeal to

Lemma 4.18 withg = 3/2and p = I[”;,gol'[(,o’3 (). Specifically, to verify the assump-
tions in Part 2 of Proposition A.13, we set for p = 3/2, co

G =PuPsol(PV), ¥ =p 4 0" 1" as defined in Lemma 4.18

4 2
_ % (min(um, AT)\3I "7 — - -
Cop = (Ccnt27) (M) S ¥ =i, T =& = min(um, TA),
m

d=d, w=pu, « as in the previous substep .

Then (4.36) is satisfied exactly as in the previous substep, and so from (4.37a)—(4.37b)
we have that (A.43) is satisfied. As before, we use (7.94e), (7.95a), (7.95b), the choice
of N, above, (7.37a) and (7.37b), and (7.94d) to see that (A.44)—(A.45) are satis-
fied. Continuing onto the nonlocal assumptions from Proposition A.13, we have that
(A.52)—(A.54) are satisfied as in the previous substep, and (A.55) is satisfied from
(7.95¢). We then appeal to the conclusions (A.46)—(A.51) and (A.56)—(A.57) to con-
clude as follows. First, we set

Pyt =HDo)),  PpF =R(Dioy)) .
From (A.50), we obtain both (7.103a) and (7.103b). The pointwise bound in (7.103c)
holds due to (A.60), (A.49a), and (A.47). Next, we obtain (7.104) from (A.57). Finally,
we obtain (7.106) from (A.48) and (4.37¢), concluding the proof for | <m < m.
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Step 2c: Highest shell. For the case with the highest shell, corresponding
to the projector P* from (7.110), we appeal to Lemma4.17 withg = 3/2,A = A", p =
]P’;s()n(pﬂ(j )). Specifically, to verify the assumptions in Part 2 of Proposition A.13,
we set for p = 3/2, 00

0 = P*P4T1(pPY)), ¥ = as defined in (4.34b),

_ AT\ Ve 2”3 — - _
Cip = </T> (C*,m—zT/) M, T=T=u, A=TA,
m

a O, N*:N*_Ncut,x_N**_g’-

We note that we have altered the definition of N, compared to the previous two substeps
for convenience. But from (7.93c), we have in fact made it smaller, so that the low-
frequency assumptions from the inverse divergence are still satisfied. Then (4.32) is
satisfied exactly as in the first substep, and so from (4.34b) we have that (A.43) is
satisfied. We use (7.94e), (7.95a), (7.95b), the altered choice of N, above, (7.37a)
and (7.37b), and (7.94d) to see that (A.44)—(A.45) are satisfied. Continuing onto the
nonlocal assumptions from Proposition A.13, we have that (A.52)—(A.54) are satisfied
as in the previous substep, and (A.55) is satisfied from (7.95d). We then appeal to the
conclusions (A.46)-(A.51) and (A.56)—(A.57) to conclude as follows. First, we set

¢, = (H+R") (Do) .

We may ignore (A.50) since d = 0. Then the only conclusion we require is (7.105),
which follows from (A.57).

Step 3: Verification of (7.107).The proofis similarto (7.89). Indeed,
we have

2/3
Y

/%30,’”“1‘1 (H"‘(j)> (P?&ol'[(pﬂ(j))) o ®dx

d . d .
< r;/.? ALzl (DIM+1H (Ha(j)) ° @71) ALzl (p#on(pﬁ(ﬁ)>
32 3
S gt max G D22 (Coy Y720 M (M + 1, My — Newg 1, vT, 'T)

< (D)Ko (v =2y B max(x, MDY YA (M, My — Newt — 10T V')

using Lemma A.1, (7.37a), (7.3a), (7.95¢c) with standard Littlewood-Paley theory.
Then, recalling ;t—A;(Dt%) = (DIMH%) and using the representation (7.108) of

D,o,, we obtain (7.107). O

8 Error Estimates
In this section, we will define and estimate a number of error terms, as well as the

pressure increments and pressure current errors. Such estimates will require repeated
application of the inverse divergence operator from Proposition A.13, and the pressure
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creation and pressure current error estimates from section 7. First, in subsection 8.1,
we add w4 to the Euler-Reynolds system and identify the remaining error terms.
These include the oscillation stress error, the transport and Nash stress errors, the
divergence corrector errors, and the mollification error. We estimate these error terms
and define and estimate the related pressure increments and current errors in sub-
sections 8.2, 8.3, 8.4, and 8.5, respectively. The reader who is only interested in the
proof of Theorem 1.2 following the strategy outlined in Remark 2.14 can ignore all
the results from these sections labeled with an asterisk. The reader who is interested
in the proof of Theorem 1.2 following the strategy of Proposition 2.13, i.e. a strategy
which includes the construction of 715 , should read the asterisked lemmas with the
subtitle “pressure increment” but can skip the lemmas with the subtitle “pressure cur-
rent,” as these estimate the current errors generated by new pressure increments. Then
in subsection 8.6, we upgrade material derivatives and check Hypothesis 2.10, while
in subsection 8.7, we collect all the pressure increments and pressure current errors
created so far in this section. Then in subsection 8.8, we estimate a number of error
terms, known as the transport-Nash current errors, which are related to the Reynolds
stress errors and which will appear in the relaxed local energy inequality; we refer
to [22, subsection 5.1] for a full derivation. Since many of these error terms require
precise knowledge of the structure of the Reynolds stress, we include the estimates in
this section. Finally, subsection 8.9 contains estimates for mollification errors which
appear in the relaxed local energy inequality.

8.1 Defining New Euler-Reynolds Error Terms

We define S, by adding W, to the Euler-Reynolds system for (uy, py, Rq, —74)
in (3.2) (recall also (2.7)) and collecting various error terms, which we shall show are
well-defined in the remainder of this section.

div(Syy1) = 8 Wyqi + (g - Vg + Wgai - VIug +div(yy s ® Wyqs + Ry — 7¢ld)
+div (R = Ry + (e — 7 ) 14)

= (O +7g - VIwg g1 +wyp - Viig +div (wf{’jr)l ® wf{’fl + Ry — ﬂgld)

=divSty =divSgp
+ div (w;ﬁzl ®s w(([a)_] + 11);‘3_1 ® 11);?_1) +div (RZ — Ry + (n( — n;{) Id) (81)
=:divSc =:divSys

+ 3 + g - VY(Wyyi — wgt1) + (g4 — wg1) - Vg +div(@g 7 @ Wyt — Wgr1 @ Wyt1) -

—=divSypn

In the second equality, we used (6.24) to exchange u, and i?,,. (Recall also (2.8).)
We note that the symmetric stresses Sp and Sc are not simply the quantities inside
parentheses and take some care to construct; see subsections 8.2, 8.4. Also, we note
that 0, w41 + (iiq “V)wgi1 + wgi - Vﬁq has mean-zero, so that it can be written in
divergence form divST v ; see subsection 8.3. This is because the second and third terms
can be written in divergence form, and wg4 is given by the curl of a vector-valued
function (see (6.7) and (6.15).) The same reasoning works for the terms in divSys».
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With the above definitions, we set

Rg+1:= Ry — R} + Sq11. (82)

We have notated the error with an overline as R, in order to be consistent with
the notation from [22], where the stress error Eq+ 1 will be adjusted slightly in [22,
Section 7] in order to produce the final Reynolds stress R, needed to complete the

proof of Theorem 1.1. We can now see that (g1, pg. Rg+1, —(g — 7)) solves the
Euler-Reynolds system (recall from (6.17) that ug 41 = ug + Wy+i)

Ougy1 + div (uq+1 ® uq+1) + Vpy = div(—(my — 7y )Id +R, g+1), divug =0.
(8.3)

We will show in the remainder of this section that the new stress error S;41 can be
decomposed into components S;f 41 as

q+n
q+1 Z
k=q+1
8.2 Oscillation Stress Error Sg
In order to define and analyze So, cf. (8.1), we first consider
: (p) ()
div ( Wyy1 @ wq—H)
= Y (a@) o(VO B, o (Pi.1) a),o (V)3 B o(q’(i,k))) ,
£,i,j.klo
(8.4)
where e denotes the unspecified components of a vector field and we have used (6.25)
from Lemma 6.2 to eliminate all cross terms. Recalling from (6.4) and (6.12) that

Be,o = 'O(S) ZI Cl QWé) o» that the Wé) o 8 are identical up to a shift, and the
notational convention for p(s) from Remark 4.14, we decompose

BOB)e),.o = (”?@)2 Z@g'o)zp#“wfs),o ®Wie) o) + (”?&))2 Pzo (;(§§'°)2>
( ©.0®Wig), <>>
e (’O?S)) <;(C§’O)2> (Wiey 0 ® Wi o) + <(p<@))2> <;(;§°)2>
<W(E> o ® Wiy, <>> :
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In particular, using (iii) and the definitions of pé) and p) = pg from Propo-

sition 4.9, (4) from Proposition 4.5, (6) from Proposition 4.6, Definition 4.12, and
(4.24), we obtain that

BOB)e) r = (B6)° Y€ Pr0Wl) r @ Wi o)+ ((Be)° ~ 1)@ +6 @8, (8.52)
1

2
BOB) ). = (Be)' Y €D PLoWl)  @Wl) )+ (Be) ri € @EP4 (Z(;é)“)
1 1
— 4\ 3 i
+ coc1Po ((p(g)) )rq E®&+cpciearg T "E®E, (8.5b)

for dimensional constants cg, c1, and ¢; which are bounded independently of ¢
and depend only on the dimensional constants in (4.23) and (4.16) and the mean

of > ,(¢ é)“. Since each vector field used to define the simple symmetric tensors

in (8.5a) and (8.5b) does not vary in the &-direction (see, (4.10), (i), and Defini-
tion 4.10), each simple symmetric tensor satisfies § - V(B ® B) ), = 0. Then using
that each vector field in (8.5a) and (8.5b) has been composed with ®; x) and the

identity 9, ((V@E}k))g(ﬁ ® B)(S)’Q o CD(,"/{)SQ) = 50(39 B® B)(g)yo) o qD(i,k) =0,
we have that (8.4) can be expanded as

. (p) » \* 2 —1 —1 e 0
div (qu ® qu) =y e (a@)’R(v<1>(l..k))g(vq>(i,k))y(g gV)) (8.6a)
Ei,j,k,l

2
X a(d v e raaar; i €e) @60

£kl
. —6

+ 2 Bl (Props)) © Pty (8.6¢)

£ jk]

2

+ X Bl (Propt) o @gicocrry (8.6d)

£ j k]

2
+co Z Bé),wnf <ﬁ?§)P¢OZ(C§)4> o®; 1y (8.6¢)
£, j k] I

2
+ 2 B ((p;g)) ;@;v%m@(g{smﬁ)o%,k) (8.6f)
£, jklo

where for convenience we set
o« . :0 2 -1 -1 \e I . 1
Ble)o 1= 67670 (“(sm(w’(:‘,k))g(V‘D(z’,k))v) C Qe =8 Wi (B7)

The first and second terms above in (8.6a) and (8.6b) cancel out — Ry +m¢Id from
(8.1) as follows:

2 —1 -T
2. RV ¥un EBH VO
Ei,j,k,l
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2] 2 2
Z Sq+iTq lﬁ,q JlekngRzkélfrg

S i,j,k, I
Ry.ik
q.i, 1
((SFZJZ) VO E®H VO
q+n’ q
6 6 6
= — 2w X Ry — mypld
(4.2),(6.8),(5.382) Z Vig f"’x”k"’< e
2] -2 =2
CF
l]+"
+ Z —4/31//1/4 j q /k/,qki‘],él,l/
g, ’V(D(z k’)é‘
K, l’
[e] d) i’ k/ q)/s/vq) ’k’)g ®§ (Vd) Tk’)))
(2.11) (5:21) 5.D meld = RZ
2j'=2 =2
Sganl CF
g+n' q 4
- ) AV X e
%‘k’/l’l’/] ‘Vq>(i/,k/)g ‘
~2 —1 / T
od>i/’k/’qyé,v<l>(i,’k/)$ ®$ (V(D( i k/))
2j'=2 =2
EY CF
_ q+il g 4 4 4 2 -1 g
(53_8b) JT(Id — Ry — —4/3¢i’,qwj’,qXl",k/,q;q,(p,i’,k’,é’ l/y&"v(b(z/ k/)%‘
. %./ l/j/ ‘V(D /k)é: ‘
K, T
o8 (voi7)
_ /3 — / =T
o eld — Ry — Z a(s) (pcoclczl" rq V(D(l, k;)f ®¢& <V¢'(l/ k’)) . (3.8)
g/ [/ J/
K.
=(8.6b)

The inverse divergence of the remaining terms (8.6¢)-(8.6f) will therefore form the
oscillation stress errors.

Lemma 8.1 (Applying inverse divergence). There exist symmetric stresses Sy, for
m=1,...,q + n such that the following hold.

q+n
(i) div( (p)l ® w(p)1 + Ry — mﬂd) Z divSy), where S}, can be split into
m=qg+1
local and non-local errors as = S'g Ly S'g’*

(ii) Form=q+1,...,q +nand N, M < Nin/10, the local parts Sm’l satis,
q q 0

H i qDNDM Sm i

’3/2 S T 8mahy M (M Ninao 7 T34, 1,119
(8.9a)
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N M om.l Coo—94 N , 1 pitl4 19
waD DM s Hoogrm WM (M,de,t, R VAl Fq).
(8.9b)

Whenm =q+2,...,q+nandq +1 < q' <m — 1, the local parts satisfy
B (supp Wy, A;qu/+1> N supp S'g’l =0. (8.10)
(iii) Form=q +1,...,q +nand N, M < 2Njyq, the non-local parts S’O"’* satisfy

<T '“d‘5q+3n ) (8.11)

N M ¢m,*
HD Dt,qSO L q+n

*Remark 8.2 (Abstract formulation of the oscillation stress error). For the purposes
of analyzing the transport and Nash current errors subsection 8.8 and streamlining the
creation of pressure increments, it will be useful to abstract the properties of these
error terms. First, there exists a g-independent constant Cy such that

m.l _ gou"» BU") , . _ _
So" = Z Z ljkgloukgloocb(z,k) it m=gq+1, q+1/2,

i j.k&1oJ=0
(8.12a)
m,l _ a(/) ﬁ(/) ) . = ~
So" = Z Z L keinoPijheine ® Pak ifq+rtl =m=q+n.
i j.kE11,0J=0
(8.12b)

For the remaining values of m, Sg’l is zero. These equalities will be proven in the
course of proving Lemma 8.1, 8.3, and 8.4. The pointwise estimate (8.13) will be
proved in Lemma 8.3 and 8.4, and the rest of the claims in this remark will be proved
in Lemma 8.1. Note that the proof of (8.15) will also require Remark A.16.

Next, the functions H and p (with subscripts and superscripts suppressed for con-
venience) defined above satisfy the following.

(i) Forall N, M < Nsn/10,
(DND%H‘ <TI0 N M (M, Nind.. r(;‘ry”,T;ng) . B.13)

where A = Ay 11> form = g+1, g+7/2while A = Ay yap form > q+7/2+1.
(i1)) We have that

supp H C supp M jkeLo if m=q+1,q+n2 (8.14a)
supp H € supp "i,j,k,gj,océ’o if g+724+1<m<qg+n (8.14b)
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(iii) For d as in (xvi), there exist a tensor potential ¢ (we suppress the indices at
the moment for convenience) such that p = Bil__,idﬁ(l"""ld). Furthermore, ¢ is
(T/xg11T;*)3-periodic in the case m = g + 1, (T/A, i) -periodic in the case

m = q + 1/2, and (’]I‘/kq+ﬁ/21"q)3-periodic in the remaining cases. Finally,
satisfies the estimates

HDNail g o id)HLp < F;Z(kq+lr‘;4)k—d—l

M(N,d—k,xq+lr;4,xq+lr;1) if m=gq+1

(8.15a)
N . . (] seees i 5,k—d—1, N . _ ~
HD 3 ”.l)ikﬁ(ll ld)HL” STohgip hgip if m=q+ij2 (8.15b)
o Agaipr1 \27HP _
DNy, ... 001 ld)H < (Latntt T2o 0 GgaipaT K8
H i ik p~ hgtiTa q q+n/2( g+i/2lq)
><M(N,d—k,kq+ﬁ/zrq,)»q+ﬁ/2+1) if m=q+n2+1
(8.15¢)
. . min(Ap, Agai 2-2p
HDN3i1 '“3ikﬂ(ll ~~~~~ ld)H < <M> Fz%)br;zl)‘m}‘ﬁl_—dl)"jx
LP Ag+iilq
if g+n24+2<m=<q+n (8.15d)

for p =3/2,00,all N < Nan/5,and 0 < k < d.
(iv) Inthecasesm = g+1, g+7/2, g+7/2+1, we claim no special support properties
for the potential . In the cases g + /2 +2 < m < g + n, we have that

supp (Hpo ®)N B (supp Wy, A;,l Fq/+1> =0 (8.16)

forall g + 1 < ¢’ < m — 1 (where m refers to the index in Sr0"’1 from (8.12a)).
Proof of Lemma 8.1 To define S¢, we recall the synthetic Littlewood-Paley decom-
position (cf. Section 4.3). Indeed, since Q{s) » depends only on the variables in the

plane £+ from (4.10) and is periodized to scale ()Lqu,;rq)_l = (Aq+ﬁ/2Fq)_1, we can
decompose P in front of (;Q(Ig),o)2 in (8.6f) into

- g+n+1 _ _
P#O = Piq+ﬁ/2+1p7&0 + Z ]P)f)\m—ly)\mj + (Id - P§q+ﬁ+l)
m=q+if242
q+n+1
=P ot Y P tW-F ). (8.17)
m=q+n/242

Assuming we can apply the inverse divergence from Proposition A.13, we define

+1 —
S?) =H+ R*) Z B(f),R (P#Oﬁg) o q>(i,k)
&)kl
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2
+ ) B gcoctrd (P;eoﬁé‘) 0 Qi ) (8.18a)
£kl
i 2
Slé"’n/z = (H + R*) Z B(E),zpCOV; (ﬁgp#o (Z(;é)4>> ° (D(i,k) (8.18b)
| &gkl 1

+i/24+1 2001, ZNS 1 2
S% = (H + R*) Z B(g),o ((Pé)) (C& <>) Pq_‘_ﬁ/z_'_lp;ﬁo(g(g),o) ) (e} (D(i,k)
L E.dnjk 1o

(8718¢)

2 2~
00| 2 (6 4 o) | 150

| £ kDT
i g+n+1 20 o2 "
qrn . _ o\ B 1 2
So "= 2 HARD | Y Bee (("?&)) (68°) Bt @fey o) >°d’<i»k)
m=q-+i £, j.k0 10

(8.18¢)

20 1.0\2 3 I 2
U DY) B@),o((p;})) (66°) @=L el 7 ) 0 P ny
&, jk 11,0

(8.18f)

form = g+7/2+42,--- ,q+n—1.Forg+1 < m < g+n, we decompose Sy, into the
local part S'g’l which involves the operator H and the nonlocal part S’g’* containing
the remaining terms. In the case of m = g + n, we set

q+n+1

g+l _ 2 (glo) 8t (6).0)
s — Z 77-( Zﬂ B),o ((Pé)) (ig ) IP’(m—l,m](Q(S),Q) > °Pip)
m=q+n Ei, ).k, 1,0

(8.19)

and absorb the R* terms in (8.18¢) and all the terms in (8.18f) into S?f”’*. For the
undefined S’g correspondingtom = g+2, --- , g +71/2— 1, we set them as identically
Zero.

The desired estimates will follow from applying Proposition A.13. While many of
the parameter choices will vary depending on the case, we fix the following choices
throughout the proof':

p=3200, v=0,, D =D,,. Ny=Nwa, M,=Nu5, (8.20a)
MN=A;, M;=Njpg, V= T;lFS . Ngec asin (xiv), (8.20b)
My =N, =2Ning, Koasin(xv), C,=A[". (8.20¢)
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Case 1: Estimates for (8.18a). Fix values of i, j, k, &, [ and consider the term which

includes B ) g, where we have abbreviated B(.E) R= B(’s kDR . We apply Propo-
sition A.13 with the low-frequency choices
2j+21

2/3
G* =Bl r- Co32 = supp(n ieir)| Sarile T Ag, Cooo= rCet30p,

A= Aq+1F; , V= rq_lI‘jfB, D=D;yp,

and the choices from (8.20). We have that (A.39) is satisfied by definition. Next,
to check (A.40), we observe that in B(S) R the differential operator on ag is

(Vo i k))e dg. Therefore G satisfies (A.40) for p = 3/2 from (6.26¢) and for p = oo
from the same inequality and (5.29). By Corollary 5.4, ®; ) satisfies (A.41) and
(A.42a) for A/ = Ay, and by (2.30) at level g, we have that (A.42b) is satisfied.

To check the high-frequency assumptions, we set

o= (Pwpf) . dasin(xvi), ? =88y igA 0, (821a)
w="=" =r ;" A=dgnl;', Cup=To1%,,, (8.21b)

where « is chosen as in (11.11). Then from Proposition 4.9 and standard Littlewood-
Paley theory, we have that (A.43) is satisfied. Next, we have that (A.44) is satisfied by
definition and from (11.21a). In addition, we have that (A.45) is satisfied from (11.18).
In order to check the nonlocal assumptions in Part 4, we first appeal to (11.21a), which
gives (A.52). We have that (A.53) is satisfied from (2.31b), and (A.54) is satisfied from
(11.12) and (2.13). Finally, we have that (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)—(vi) and the nonlocal outputs
from (A.56)—(A.57), from which we have the following. First, we note that from (iii),
we have that (8.12a) is satisfied. Next, abbreviating Go o ® as T, i jkELR We have

from (A.46) and (A.50) that for N < M — d and M < N,

2j-2

2/3
| DYDXHT, ik, S [suop O )| Saald AT

I qa+N . —1pi+13 =118
X A b re M (M N 77 T3, TS )

H DN DM M,

Coo+48 1 ya+N
l,kmﬂ STSA8A 21

4™ qg+1"q+1
, —1pit13 =118
M (M Ninago 7' T2, TS )

ST AN M (M, Ning.co 7 T3, T;‘rfj) ,
where we have used (11.7k) to achieve the last inequality. Notice that from (ii), the
support of divHT, i KELR is contained in the support of T; JKELR which itself is
contained in the support of N kELR" From this observation, we have that (8.14a) is
satisfied. Finally, we have that (8.15a) holds after defining a potential 9 as in (8.21a)
and appealing to standard Littlewood-Paley estimates and (A.49a).
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Now we may apply the aggregation Corollaries 5.18 and 5.20 with H =
HTi,j,k,gj,R and & = 6 = 2, p = 3/2 in the first case, or w = F;jfl_g in the
second case, to estimate

q+1,0l ,_ .
So "= D MTi4eir-
ijk& L

From (5.50a) and (5.50b) in the case p = 3/2, and (5.55a) in the case p = oo, we thus
have that for N, M in the same range as above,

. N M oq+1.1 _ 507 —1 ya+N . —1pni+14 p—1p8
le,qD Dt,qSO,R ”3/25844'"Aqrq )”q+l)‘q+lM(M’ de’t’ Tt] Fq ’Tl] Fl])

N M gq+1.1 Coo—94 N . —1pi+l4 —118
Ht/f,,qD DM soa Hw SIS AN M (M, Nina s 7 ' THH14, T, rq) :
and so (8.9a) and (8.9b) follow for this term from (11.7f) and (11.21a).

For the nonlocal term, we first note that the left-hand side of the equality in (i)
has zero mean, and so we may ignore the means of individual terms that get plugged

into the inverse divergence since their sum will vanish. Then from (A.56), (A.57),
Remark A.14, and Lemma 5.16, we have that for N, M < 2Njug4,

N M * . -5 32 ANindiy N _—M
D™D/, Z RT, i kelr| = Pqtabqisilorn Mqr1Tq o

ijkgl o

matching the desired estimate in (8.11).
Finally, we must estimate the terms which include B) , from (8.18a). However,

we note that from Lemma 6.5 aé) 0 differs in size relative to aé) r by afactor of r; g 3,

which is exactly balanced out by the factor of r;/ ? in (8.18a); the other differences in
size actually make the estimates for aé) , stronger than for aé) g+ We therefore may
argue exactly as above (in fact the estimates are slightly better since ﬁg < ﬁg and the
power on I'; is smaller), and we omit further details. '

Case 2: Estimates for (8.18b). As before, we fix i, j, k, &, . We apply Proposition
A.13 with the low-frequency choices

. . 5 E& 2j425
G* = B@WCOVfﬁg(q)(i,k)), CG,3 = |supp n?,j,k,é,f,w Sq+ilg’ T Ay,
Coo0 =TSN, (8.22a)
A=2gT7 v=1 TP o=y, (8.22b)

as well as the choices from (8.20). The estimates in (A.40) and the assumption in

(A.39) hold due to Proposition 4.9 and the estimates for B(gwr;/ * from Case 1.
(A.41), (A.42a), and (A.42b) are satisfied as in the previous substep.
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To check the high-frequency assumptions, we set

0 =Py (Z(;é)“) , dasin (xvii), 0 = 8,81 -0y isA 0, (8.23)
1
n="r=Y=A= Ag+iyz s C*’s/z = Cy00 = )Lg+ﬁ/2 , (8.23b)

where « is chosen as in (11.11). Then from Definition 4.10, standard Littlewood-Paley
theory, and the same inequalities involving Ngec as in Case 1, we have that (A.43)
is satisfied, as well as the other high-frequency assumptions in (i)—(iv). The nonlocal
assumptions are identical to those of Case 1, and are satisfied trivially.

We therefore may appeal to the local conclusions (i)—(vi) and (A.56)—(A.57), from
which we have the following. First, we note that from (iii), we have that (8.12a) is
satisfied. Next, abbreviating Gg o ® as T; i kgL We have from (A.46) and (A.50)

that for N < ﬁ“ —dand M < Nﬁ“

N pM 2j=2 50
|DYDYHT, 7, , < Jspp s )( Sqsaly! 2ALTS
1 N+« . —1pi+13 =178
X g Lol i M (M. Ninas 75 T2, 75T
N M Coo+60 -1 N+«
HD D, HTl]kSl(pH <F A )‘q+n/2)‘q+"/2

M (M N 7' T35, 118 )

Coo—9 . —1pi+13 —18
5 Fq+n/2 )\’q+n/2M (Mv de,tv Ty qu s Tq Fq) s

where we have used (11.7k) to achieve the last inequality. Notice that from (ii), the
support of dlvHT k&7 is contained in the support of T kel , which itself is
contained in the support of n, i ke . From this observatlon we have that (8.14a)
is satisfied. Finally, we have that (8 15b) is satisfied from (A.49a) after arguing in a
manner similar to that in Case 1.

Now we may apply the aggregation Corollaries 5.18 and 5.20 as in Case 1 to

estimate
q+ﬁ/2,l
So Z HT, ijkELe"
1,j,k,&‘,l

We find that for N, M in the same range as above,
N M ¢q+/21
i DY D 5%

3/2

604 — N+ i+14
S 0l g TS L h N M (M Ninas 77 T, TS )

) N M ¢q+7/2,1
le,qD DY sE|

<SS N

. —1pi+14 —118
~ g+l +n/2M (M7 de,t, Tq Fq ,Tq Fq) s
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and so (8.9a) and (8.9b) follow for this term from (11.7f) and (11.21a). Finally, we
must verify (8.10) for SZ,JFW 2! This however follows from (iii), which asserts that the
support of Sq0+ﬁ/2’l is contained in the support of U(g)a(g),(pp‘é) o @ x), and (i) of
Lemma 6.2. Finally, the nonlocal conclusions for Si’;’ﬁ/ 2! follow in much the same
way as in Case 1, and we omit further details.

Case 3: Estimates for (8.18c), (8.18d), and (8.18e) and ¢ = R. Fix i, j, k, &, 7, 1
and set

_ R \2,.1,R\2 _ _ _—1pi+l3
G* = B,;,i,j,k,i,R ((p(g)) &) ) o®ipy, P=PGp, v=1, T,
2/3 .
I,R 2j+38 — Cno +40
Cop = [supp @ 7 o @ERD[ 00l A 4305 Coo0 = TG0,
A= Agtifys (8.24)

as well as the choices from (8.20). We then have that (A.39) is satisfied as in the last
step. Next, we have that (A.40) is satisfied by combining the corresponding bounds
for G* from the last step with the bounds for ¢ é ‘R from Definition 4.10.2° The bounds
in (A.41)—(A.42b) hold as before without any modifications. Finally, we have that
the nonlocal assumptions in (A.52)—(A.55) are satisfied for the same reasons as the
previous cases. At this point, we split the argument into subcases based on the differing
synthetic Littlewood-Paley projectors in (8.18d)—(8.18f).

Case 3a: Estimates for (8.18c) and ¢ = R. In order to set up the high-frequency
assumptions for this case, we set

_ _ _ _ _ 7 I 2
1=2qtiplqg =rqyirg, 0 =P, in Proloe) )

¥ asin Lemma4.17, d asinitem (xvi)

i 2
C*ﬁ/z = )"Z+iz/2+1 s Cxo0 = <)Lf+n%> )‘Z+ﬁ/2+l . T = T = w, A= )Lq+ﬁ/2+l s
q+n'q

where « is chosen as in (11.11). We then have that (A.43) is satisfied by appealing to
estimate (4.34a) from Lemma 4.17 with ¢ = 1 and p = 3/2, where we note that the
assumption in (4.32) is satisfied withC,, ;, = 1 and A = A,; from Proposition 4.5. We
have in addition that (A.44) and (A.45) are satisfied by definition and by appealing
to the same parameter inequalities as the previous steps. Finally, we have that the
nonlocal assumption in (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)—(vi) of Proposition A.13 and
(A.56)—(A.57), from which we have the following. First, we note that from item (iv),
(8.12b) is satisfied. Next, abbreviating Go o ® as T; we have from (A.46)

ijkELIR
and (A.50) that for N < Nin —d and M < Nin,

N M .
HD DigRT, jreinr

1

3/2

—10

20
We have added the extra A g+

increment later.

in the Cg 3/, bound in order to facilitate the creation of a pressure
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2/3 )
LR 2j+39 ~10
S <‘supp (nf’j,kf’;ﬁ@g )2)‘ 8q4i Ty’ T Ny + ,\q+n>

2/3
Ag+i/a+1 1 ,N+a i3 18
x <m M hap bl M (M Nina g, 7 T3, 1S

N M
HD Dt,an,j,k,é,Z,I,R)‘oo

2
Ag i .
Coo+40 [ Mq+7/2+1 -1 4N+« ) —1pi+13 =118
STy (—/\W/z > AghyiphgiipiiM (M, Nindts 7, Ty, T, Fq),

Co—94 N
= Fq+fl/2 )‘q-‘r

ipp1 M (M, Nind.» 7, ' T, T(;ll‘f;) :
We have used (11.10a) to simplify the second inequality. Notice that from (ii), the

support of divHT; JKELLR is contained in the support of 7; JRELLR which itself is

contained in the support of ; ikeLRE é’R. From this observation, we have that (8.14b)
is satisfied. Finally, we have that (8.15c) is satisfied from (A.49a) and Lemma 4.17
applied with ¢ = p = 3/2, oco.

Now we may again apply the aggregation Corollaries 5.18 and 5.20 to estimate

q+i2+1,01 R
Son = Y MTaeing-
ij k€T

From (5.50b) and (5.55b), we then have that for N, M in the same range as above,
‘ Ag+if2+1

23 1
(Agairq) ™
Ag+ifa ) e

) N M oq+i/2+1,1 _ 50
VgD DigSo R “3/255q+n/\qrq (
N ) “1pit1d m—119
X)‘q+ﬁ/z+1M<M,de,t7Tq L= Ty Fq),

—10 N —1pi+14 =119
=< rq +n’/2+15q+ﬁ/2+l +ﬁ}‘q+ﬁ/2+]M (M, Nind,ts Tq FéfL s Tq Fq) s
q+i1/2+1,1

. pNpM Co—9 4N ) —1pi+14 p—119
VigD" DrgSo,R Hoo5qur’z/2+1)‘q+ﬁ/2+1M(M’deﬂ’fq L Ty Fq)’

where we have used (11.24d) to simplify the first inequality. Finally, the nonlocal
conclusions follow in much the same way as in the previous cases, and so we omit
further details.

Case 3b: Estimates for (8.18d) and (8.18e) and ¢ = R. In order to set up the
high-frequency assumptions for this case, we consider for the moment the cases when
m > q +7/2 + 2 and set

H=hgyiplq = rgtirg, 0= ﬁfmfl,m] (Q(I%_).R)2 , UasinLemma4.18, dasinitem (xvi)
min(un, Ag1i) \ 72 min(Am, Ag4i) \ >
C*,3/2 =\ v Croo=|—"T"7"—
Ag+ilq Ag+ilq
Y=kp—t. Y =hn, A=min(pn,rg47). (8.25)

o
}"q+ﬁ/2+1 ’

We then have that (A.43) is satisfied by appealing to (4.37b) withg = 1 and p =
3/2, 0o; we note that (4.36) is satisfied forg = 1and C, , = 1 and A = A, as in the
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last step. Next, we have that (A.44)—(A.45) are satisfied by definition and immediate
computation and the same inequalities as in the previous steps. Finally, we have that
the nonlocal assumption in (A.55) is satisfied from (11.20b).

In the case of m = g + /2 + 2, we have to take an extra step to minimize the gap
between Y and Y’ in order to ensure that the second inequality in (A.44) is satisfied.
Towards this end, we decompose the synthetic Littlewood-Paley operator further as

¢ _ 5
Plvinrrgripta = Bgrapirgrmnim + Pgrapiangiipia

(8.26)
where the g + /2 4 3/2 portion of the projector correponds to the frequency which is
the geometric means of Ag 411 and Ay 12. This extra division helps us minimize
the gap between Y and Y'. Then we can set

"= )Lq+;,/2Fq = )\.quhrq , 0= ﬁf (Q(IE) R)Z , ¥ asinLemma4.18, d asinitem (xvi)

Ao 2/3 2
c ¥z _< q+n/2+2> C ( q+n/2+2> 29
w3 =| T s Cxoo=\—"_—

Aq+iiTq Ag+ilq g/l

Y = Agtiija+1» Y = Ag-+iij2+3/2 if @ corresponds to the first projector,
Y = Ag+if2+3/2 5 Y = hg-tiija+2 if e corresponds to the second projector .

We then have that (A.43) is satisfied by appealing to (4.37b) withg = 1 and p = 3/2, o0
as before. Next, we have that (A.44)—(A.45) are satisfied by definition and immediate
computation (here we crucially use the extra subdivision to ensure that the second
inequality in (A.44) holds) and the same inequalities as in the previous steps. Finally,
we again have that the nonlocal assumption in (A.55) is satisfied from (11.20b).

We therefore may appeal to the local conclusions (i)—(vi) of Proposition A.13 and
(A.56)—(A.57), from which we have the following. First, we note that from item (iv),
(8.12b) is satisfied. Next, abbreviating Gg o ® as T; we have from (A.46)

and (A.50) that for N < Nin — d and M < Nin,

ok ELLR

2/3 .
N M _2j+39 —10
HD D! HTLI’M’Z,,’RH/ (‘ PP(””kng)‘ Sq4al 2T A +xq+n>

min G, Ag i) \
)Lq+ﬁrq m—1
X (min(ap, Aga)N
M (Mv Nil’ld,ta Tq_lrlq+137 Tq_ll"g) )
H < 1—-.(500+40 <min()‘m’ )Vq-l-ﬁ)) A )Lmzl
Ag+ily
x (min(, Ag4a))N

M (M Ninago 7' T35, 7108 )

N M
HD DigMT, j kein g

Coo -9
S q.l,_n/z (mln(}\m’ )Lq+n))
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M (M Ninago 7' T35, 7108 )
where we have used (11.10a) to achieve the last inequality. Notice that from (ii), the

support of divHT; JKELLR is contained in the support of 7; JKELLR which itself

is contained in the support of M jkEl LS é’R. From this observation, we have that
(8.14Db) is satisfied. Furthermore, we have that (8.15d) is satisfied from (A.49a) and
Lemma 4.17 applied with ¢ = p = 3/2, co. Finally, we have that (8.16) is satisfied
due to item (ii) and (4.37c). We note also that (8.10) follows from (8.16) and (6.24).
Now we may again apply the aggregation Corollaries 5.18 and 5.20 to estimate

m, .
So'r = Z HTi,j,k,s,z,l,R ‘
ik ,E LT

From (5.50b) and (5.55b), we then have that for N, M in the same range as above,

N M om,l
ViqD" DigSor m—1

min(Am, Ag4ii) >2/3 2

< Sqi gl
Hz/z” qtnatq Ag+iilq

x minChm, g 1)V TIM (M, Nind. 75 ' T5H14, T,;lrg)

S o 8 (min G, g 42N M (M, Nipa o 777 T4, 15100 )

where we have used (11.24d) to simplify the first inequality. Finally, the nonlocal
conclusions follow in much the same way as in the previous cases, and so we omit
further details.

N Coo—9, . _ i _
Vi DV DM, St | S T (minGun, Ag 4 M (M. Nina 7 ' T, TS 1T9)

~
o0

Case 4: Estimates for (8.18c), (8.18d), and (8.18¢e) and ¢ = ¢. Estimates for these
follow from similar arguments as in the cases when ¢ = R. Indeed, the only significant
differences are that the estimates for aé) 0 than those of aé) g are worse by a factor
of r[; & from Lemma 6.5, while the estimates for ¢ encoded in the constants Cy 3/
and Cy  are better by a factor of r;/ * from Proposition 4.6. Therefore, to compensate
; o _ pe @ \2wl.0\2 N K
such loss or gain, we define G* = Bg,i,j,k,f,q) ((p(g)) (;S ) ) o @ pyry  with the

2 .
extra factor rq/ * and define o analogous to the case © = R but with the extra factor

-2 . . . .
rq / . Then, the same choice of parameters and functions as in the case of ¢ = R will

lead to the desired estimates. We omit further details.

Case 5: Estimates for (8.18f). Here we apply Proposition A.13 with p = oo and the
following choices. The low-frequency assumptions in Part 1 are exactly the same as
the L* low-frequency assumptions in Case 3 and Case 4. For the high-frequency
assumptions, we recall the choice of N, from (xvi) and set

2 2
6 I o I 23
or = (Id =P, ;. DPxo (9@),1?) Qe =(d =P 5 DPro (%w) g

1102 dd—10d _ qijip...ig_1ig A —9/2
D =35 d-tld A=Y
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A 1q Nix
A=hgri, =0T =" =giply,, Cirooc= (xq—n> Aoy
q+n+1
Ngec as in (xiv), d=0.

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the
previous steps, (A.43) is satisfied using Propositions 4.5 and 4.6 and (4.34b) from
Lemma 4.17, (A.44) is satisfied by definition and as in the previous steps, and (A.45)
is satisfied by (11.18). For the nonlocal assumptions, we choose M,, N, = 2Njyq SO
that (A.52)—(A.54) are satisfied as in Case 1, and (A.55) is satisfied from (11.20c).
We have thus satisfied all the requisite assumptions, and we therefore obtain nonlocal
bounds very similar to those from the previous steps, which are consistent with (8.11)
at level g + n. We omit further details. O
* Lemma 8.3 (Low shells have no pressure increment). The errors S(grl and S‘(f;r"/ :
require no pressure increment as they are already dominated by intermittent pressure
from the previous step. More precisely, we have that for N, M < Njn/10,

AN pM g+l ~100_q+1, N ' it 14 18
i DY DY 57| < 000 M (M N 7y T T, ')

(8.27a)
il _ i i _
i DY DY, SET | < B AN, M (M N 77 T TS
(8:27b)

Proof We first note that the application of Proposition A.13 in Case 1 of the proof
of Lemma 8.1 can be supplemented with Remark A.19. Specifically, we may set

T=ml Ay, (8.28)

so that (A.59) follows from the definition of B g in (8.7) and (6.28a). Then from
(A.47), (A.49a), and (A.60), we have that

N nM
DN DM MT,

R 50 -1 4N . —1i+13 —18
el STTOAA AN, M (M, Ningo 7, ' T3, T, rq).

q+17q+

We pause also to note that (8.13) in this case follows from (A.47) and (A.60). Now
applying the aggregation Corollary 5.20 with H = HTi,j,k,g,f,R’ w=my FgoAq, and
p = 1 along with (2.40), (3.6), and (11.7f) gives (8.27a).

The proof of (8.27b) follows similarly from supplementing Case 2 of the proof
of Lemma 8.1 with pointwise assumptions. We omit further details. O

* Lemma 8.4 (Pressure increment). For every g +7/2+1 < m < q + n, there exists
a function ogn = o;;, — 0 gm such that the following hold.
o 0 o
(i) We have that
N N 1 _
¥i DN DM s ‘ < (G;O n aq+3,—,) (amTy)N M (M, Nindy 7y ' THH10, T, lrg)
(8.29a)
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Vi q DN DM os| < (a;IO,, + 5q+3,—,) (o) M (M, Nindg. 75 ' THH1S, T,;lrg)
(8.29b)
(1//, DYDMo 2 H < 15284 (AmTq) M(M,Nind,t,fq—lr‘;+l6,Tq—1F2)
(8.29¢)
N M _+ Coo—9 N —1pi416 m—1p9
|p¥ b o3 | = eV M (M. Nina, 74 T, 75 119)
(8.29d)
VigD" Dy q"sm ~ Fqurg/Oz A ()‘q+ﬁ/2F(1)N M (M’ Nind.t. Tz;lréer’ T;]ng)
(8.29)
forall N, M < Nsn/100.
(ii) Form > q + /2 4 2, we have that
B (suppﬁ}q/, AT]Fq/+1) ﬂsupp(a;;,) =0 Vg+1=<q <m-1
I 0 (8.30)
B (suppﬁq/, )\;,IF(IuH) N supp (chTOn) =0 Vg+1<gq <qg+7).
(iii) Define
t
Mgy (1) = /0 (Drgosy) ) ds. (8.31)

Then we have that

‘ dM+1

< (max(1, )62 5 M (M. N 7, Ty ) (832)

diM+1 m"sg q+1

for0 < M < 2Njpg.

Proof of Lemma 8.4 We follow the case numbering from Lemma 8.1. Since we have
shown in Lemma 8.3 that the low shells have no pressure increment, we only need to
analyze Cases 3 and 4. Since the only difference between Case 3 and Case 4
is the rebalancing of r;/ *, we shall only hint at the proofs in Case 4 and focus on the
case © = R. We divide into subcases 3a and 3b and apply Proposition 7.4.

Case 3a: pressure increment for (8.18c) and ¢ = R. Recall that Part 1 of Proposi-
tion 7.4 requires preliminary assumptions which are the same as those from the inverse
divergence, along with pointwise bounds corresponding to Remark A.19. Since we
have already chosen parameters corresponding to the inverse divergence, we simply
set T = 7y FgoAq, which verifies (8.13) in this case. Then the assumption in (A.59)
follows from the pointwise estimates for Bg) g used in Lemma 8.3 along with Propo-
sition 4.9, Lemma 5.15, and Corollary 5.4 to estimate ((pg))z(gé’Rﬂ) oD ).

In order to check the additional assumptions from Part 2, we set

. . . 1
Ny asin (xvi), Newx.Newreasin (0, T'=Ty%, Siny =82,3;.  (8.33)

m=1, up= ?»q+ﬁ/z+1Fq_1 s M = (= )»q+ﬁ/z+1F§.
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Then (7.75a)—(7.75b) hold from (11.21a), (7.75¢) holds from (11.20a), (7.76a) holds
from (11.14a), (7.76b) holds from (11.14b), (7.76c) holds from (11.21a), (7.76d) holds
from (11.18), (7.77a) holds by definition, (7.77b) holds by definition and immediate
computation, (7.77¢) holds due to (11.20b), and (7.77d) holds due to (11.20c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure
increment and delineate its properties. First, from (7.78)—(7.79) and (11.21a), we have
that there exists a pressure increment o, patintl = ot i -0~ i such

ij.k&LIR ijkELIR ijkELIR

that for N, M < Ne/7,

N oM q+1/2+1 2 ) N
DDyt ,k,if,z,l,R‘ S ( et +5q+3ﬁ> Agtipt1ly)
i,j,kELIR

M (M, Nind.c, rq’ll“;““,T;‘Fg) : (8.34)

From (A.48) and (7.83), we have that

Hiifr41
o (07:#’*"/2“ ) = SuPP <H ?J,k/;,lyl,R) < supp (a@”R (pfé)cé) ° CD(’V")) ’

ij.kELLR
(8.35)

Now define

+ — +
USq+ﬁ/2+1 - E UHTq+ﬁ/2+] . (8.36)
ok i k,E ijk&ELLR
i,j.k.&,L1 JkELL

Then (6.22) gives that (8.30) is satisfied for m = g + 7/2 + 1. From (8.34), (5.47),
(2.11), and Corollary 5.20 with

q+n/2+1 _ + 2 =
H=HT eeiins @~ |:U It +8q+3ﬁi| Luppag nofyets P =1
ij.kETLIR
we have that for N, M < Nn/7,
. N M q+"/2+1
Vi D Dt,q Z HT i",j k& L1,R S (0 q+n/2+1 +8q+3n>
i kgL
% (hginp1Ty) M(M Ning.co 7 T3, T, 10 ) (8.37)

We therefore have that (8.29a) is satisfied for m = g +7/2+ 1. From (7.80), (11.21a),
and (11.15), we have that for N, M < Nn/7,

N yM _+
D Df,qGH q+71/2+1
ij.kEILIR

+ 2 _ N
S (GHTq+n/2+1 + 8q+3ﬁ) (gtif+10g)

ijk&ELLR
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M (M, Nina. 7, 'T5 1, Tq‘ll“2> . (8.38)
From (8.38), (5.47), (2.11), and Corollary 5.20 with

ot _
"= GHTHZ/;T: . [H * 5[”3,,] Luppac rofyet P =1
L,].K.8,0, 1,

we have that (8.29b) is satisfied for m = g + /2 4 1.
Next, from (7.81), we have that

+
l O+ /2+41

ik ELLR |32

= 2/3
2 2/+%s 10 [ *q+i/2+1 o
< (‘supp(ni,j.k’g’l-’R(Cg ) )‘ Sg+al Ag +Aq+ﬁ)< py— ) A +’l/2+1xq+n/2
Now from (8.36), (11.24d), and Corollary 5.18 with & = 2,60, = 0,6, = 2, H =
iT,,Jrﬁ/zt] ,and p = 3/2, we have that
i,j.k.E 110

—10
S Sq-rii+ifo+1 Fq+ﬁ/2+1 :

+

O.R 32
Combined with (8.29b), this verifies (8.29¢) at level ¢ + 7/2 4+ 1. Arguing now for
p = oo from (7.81), we have that

+
q+1/2+41
ij.k&ELLR | 0o

)\‘ -
Coot+40 q+7/2+1 o
S Iﬁq AQ< )\q+ﬁrq ) A +n/2+1)‘q+n/2

Now from (8.36), (11.10a), and Corollary 5.20 with H = ot , W =

q+"/2+1
HT, t,/.k,&[,LR

lsuppa(g) Rp(E)Qé and p = 1, we have that

)\' -
Coo+40 q+/2+1 Coo—100
STy Aq <—) )‘a+n/2+1)‘q+n/z = v B

H Vi g0 .q0 q+n/2+| )Lq+r_qu q+7/2+1

o0

Combined again with (8.29b), this verifies (8.29d) at level g + 7/2 + 1.
Finally, from (7.82), (11.15), (11.21a), (11.24¢), (3.6), and (2.40), we have that for
N, M <Nz,

N yM _—
D Dt,qa Tq+ﬁ/2+1
ij k&R

)‘q+ﬁ/2+1 7 50
S(W by it Mg el Ag

x (hgripTg) M (M, Nind,t. f,{lF;+15, T;IF(?)
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< T 0 gy )N MO M N, 7 T3, T, 10,

Applying (8.36), Corollary 5.20 with H = 07; gripgl 0 @ FZI_IOOnZ+ﬁ/2
i,j.k&LIR
lsuppa(g)vaé)g'é and p = 1, and (3.6), we have tha,1t (8.29¢) is verified at level

m = q + /2 + 1. The estimate for my, in item (iii) in these cases follows from
]

(7.89), (xv), and a large choice of a, in item (xviii) to ensure that we can gain the
advantageous prefactor of max(1, 7).

Case 3b: pressure increment for (8.18d) and (8.18¢) and ¢ = R. We set T =
b1 FSOAq as in the previous case since the low-frequency portion of the error term is
identical. Since all the preliminary assumptions in Part 1 are now satisfied, we need
to check the additional assumptions from Part 2. In order to do so, we set

. . . 12 2
Nay asin (xvi), Neutx. New a5 in (), T =Tg", Sny = 62 35, 1 = hgiaply

2
MO = Agyiprl, M1 = Agtips3ply,
M = A +ﬁ/2+mIF§ if 2 < m/ < ﬁ/z

m =1 for the first projector in (8.26)if m =qg +7/2+2,
m = 2 for the second projector in (8.26) ift m =q +7/2+2,
m=m—q—"12 if m>qg+12+2. (8.39)

Then (7.75a)—(7.76a) hold as in the previous case, (7.76b) holds from (11.14b),
(7.76¢)—(7.76d) hold as in the previous case, (7.77a) holds by definition, (7.77b) holds
by definition and immediate computation, (7.77c) holds due to (11.20b), and (7.77d)
holds due to (11.20c).

At this point, we appeal to the conclusions from Part 3 to construct a pressure
increment and delineate its properties. First, from (7.78)—(7.79) and (11.21a), we
have that for ¢ + 242 < m < g+ n+ 1, there exists a pressure increment

[ef m ™ — 0, m SuCh that for N M < Nfin/7
HT’v%"f-lvl-R H ijkELIR HTi,j,k.S.l,l.R /7,
N M m < + 2 : _ N
DYDUHTY, oy S (i 5 (minGan Ayl
M (M Ning,i. 7, ' T, T;lrg) . (8.40)

From (A.48), (7.83), and (4.37¢c), we have that

supp ( Opm ) C supp (HT’,”j’k’éyl’I’R) C supp (a(g),R (pé)gé) o CD(,-,k))

t.J,k.E,l.I,R
NnB (suppgé))R, )»;,1,1) . (8.41)
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Now define
+ + . _
Oam = O m if m +n, 8.42a
SO.R Za HTi,_j,k,s,l',/,R ;é i ( )
i jkET
q+n+1
+ + . _ _
O = ~Z > T if m=q+a. (8.42b)

m=q+n; ; kgl 1
Then (6.22) and (6.24) give that (8.30) is satisfied for g +7/24+2 < m < g + n. From
(8.40), (5.47), (2.11), and Corollary 5.20 with

_ _ +
H=HT" o = |:O'HT.,;,

2
e + 65 4- 11 R 41 =1
ijk&ELILR’ N eing | a3 | swpag refylc P

we have that for N, M < Nfn/7,
. N M m + 2
1/’z,qD Dt,q ZA HTin,k,gj,l,R 5 (UngR +8q+3ﬁ)
i’ j.k,E T
¢ (Min(h, g ) Tg) Y M (M, Nind., rq—lr;+15,T;1F3) . (843)

We therefore have that (8.29a) is satisfied for g +7/2+ 2 < m < g 4+ n. From (7.80),
(11.21a), and (11.15), we have that for N, M < Nsn/7,

<|o* m
~ < HTi,j,k,é,i,l,R

DN D%IJ;_ZT," )
i,j.kELIR

+ 8§+3ﬁ) (min(Ap, Ag4i) )"
M (M. Ninago 7' T35, 7,109 ) (8.44)
From (8.44), (5.47), (2.11), and Corollary 5.20 with

H = O”;’[_T_m N w = I:H + 8§+3ﬁ:| 1

R oI, p=1,
ijkELIR Suppa(f),Rﬂ(g)i&-

we have that (8.29b) is satisfied forg +7/24+2 <m < g + n.
Next, from (7.81), we have that
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+
O rm

ijk&ELILR

312
[

. 23
2j+38 -10 min(Ap, Ag4i) )
b4l A 40 ) <7 32

< 2 _(pLR2
S (‘supp(’?ih/’kYU’R((g ) -~ e

Now from (8.42), (11.24d), and Corollary 5.18 with 6§ = 2,0; = 0,0, = 2, H =

H m ,and p = 3/2, we have that
l,j,k,E.l,[.o

-1
S il

~

|45,

SOR

Combined with (8.29b), this verifies (8.29c¢) at level m. Arguing now for p = oo from
(7.81), we have that

ok < [Coot40 5 (min()‘m’)‘ﬁn)) A2
"o ~q q _ m”™m—1
i kELLR || oo Ag+iitq
Now from (8.42), (11.10a), and Corollary 5.20 with H = U;Tm L, m =
i,j,k,&LIR
lsuppa(g) Rp(g)ié and p = 1, we have that
- < Coo+40 min(lm’kﬁﬁ) a,—1 Coo—100
Com r ANg| ——— ) Ao A 0, <T .
Jonacy, | < rreong (PRt ) gt <

Combined again with (8.29b), this verifies (8.29d) at level m.
Finally, from (7.82), (11.15), (11.21a), (11.24¢), (3.6), and (2.40), we have that for
N, M < Nin/7,

N
DY DYoo

: _ 2/3
< <mm()‘m7 )\q+n) /
ijkELILR

) 50
A7 ATV A
Aq-!—ﬁ"q > m—1 q q

¢ Min (s hg17)Tg) N M (M, Nind, 7, T35, T;lrg)

—100_q+71/2 N —1 i+l —1+9
< T O7d 0 40T M(M,Nind,l,rq rits, T, rq).

Applying (8.42), Corollary 520 with H = oy, Lo = 0t
t,/.k,S,I.LR

1supp ae.rpR ¢l and p = 1, and (3.6), we have that (8.29¢) is verified at levels
q+12+4+2 < m < g+ n. The bounds in item (iii) follow much as in the previ-
ous case, and we omit further details.

Case 4: pressureincrement for ¢ = ¢. As we noted in the beginning of the proof,
the only differences between ¢ = ¢ and ¢ = R arise from the redistribution of r;/ %
We may therefore define osn, forg +7/2+1<m < g+ n and set

+ + +
GS)}I = asm + o‘Sm B
0 O.R 0.9
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from which (8.29a)—(8.32) follow. m]

*Lemma 8.5 (Pressure current). Foreverym € {q+7/2+1, ..., q+n}, there exists
a current error ¢S;’; associated to the pressure increment osn defined by Lemma 8.4
which satisfies the following properties.

(i) We have the decompositions and equalities

m
4 ’ /,l /‘
sy =0+ D O By =g+’ (8.452)
m'=q+1/241
diV(i)Srg = Dt,qasg — (Dt’qug) . (8.45b)

(ii) Forg +7i/2+1<m’' <mand N, M < 2Nipq,

’ 3/2
1 - 4 -
(i DY D gl | < 10 () ot G T2

q q
M (M, Ning. 7, ' T4, T;lrg) (8.462)
N M m', N M 2Ning, ¢3/2 2\N_—-M
| DY Dl gl _+ | DY D 6% ST L G N M
(8.46b)
(iii) Forallg +n2+1<m' <mandallg+1<q <m' —1,
I _ "1
B (supp Wy, 1/2)\q,1Fq/+1) N supp (d)?,g ) =0. (8.47)

Proof We utilize the case numbering from Lemma 8.4. Note that the only cases which
require a pressure increments were Cases 3a and 3b, which correspond to the
analysis of (8.18¢c)—(8.18¢) and © = R, and Case 4, which corresponds to the same
terms but with ¢ = ¢. We combine the analysis for ¢ = R and ¢ = ¢ into a single
argument, since as explained in the previous lemmas, the estimates are essentially the
same.

Case 3a/4a: pressure current error from (8.18c) and ¢ = R, ¢. In this case, we
recall from (8.33) that we have chosen m = 1 in item (iii), uo = hgtifp+11y I and

Wi = 1 = )\.q+ﬁ/2+1F§. We therefore have from (7.78) that

_ R o
Opratizet =0 qvips O gt
i,jk§ 110 ijkEdIo ijkELLo

% 0 1
= O et to i/l +UHTq+ﬁ/2+1

ijkELLo ijkELTo ik ETLTo
We then define
* o * q+nf2+1 | .
e 2: Ogarinst > O cqripin "= E: Ot
¢ ijkELLo  DIRELLe ¢ kg Lo - BIRELLS
o=0,1

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page 1370f271 19

so that then using (7.84), we may define the current errors

* . . * *
¢Sq+ﬁ/2+1 = Z ¢ NS M Z (H+R%) DtquHTﬁﬁ/zﬂ )
¢ kLo WRSTLS il PIkELLe
q+r/2+1 o * .
¢Sq+ﬁ/2+1 '_ Z ¢ gaH2HL T Z (H+RY Dfsq"HTqM/ztl
¢ kETLe HEELLS el BkELLe
o=0,1 =0, 1

’

g+i/2+1,1 g+i/2+1,x
= ¢5 + ¢5

h\/—’ b\/—’
all the H terms  all the R* terms

which satisfy

* / /
divg® q+'1/2+1 = D; qasq+'1/2+1 - / Dtsqasq+ﬁ/2+1 (t,x)dx’",
T3 0

divg? ™t — p, o4 —/ D,,qaq+n-/2+1(t,x/) dx' .
el

q+n/2+1 tq a2+ a2+
0 0

+ii/2+1 ¢q+n/2+1 1 ¢q+ﬂ/2+1 x

G241 SEHH S+ using
So

We decompose the current error further into ¢q

item ii.

In order to check (8.46a), we recall the parameter choices from Case 3a of
Lemma 8.1 and the choice of T = mFSOAq from Lemma 8.4 apply Part 4 of
Proposition 7.4, specifically (7.85c). We then have from (11.21a) that for each
i,j,k,§&, Z, 1,0, and M, N < 2Njyq (after appending a superscript / to refer to
the local portion),

. hgtii 2
DN DM 4 - Tl;lréﬂowA(]( q+"/2+1) Sl

rpn |2 Aoai q+if2
Sl,/.k,é.l.l.o q+n’q
X (g +ifa+1 Fq)NM (M, Nind,t — Neut,t — 1, fq_lri]"'m, T;lf‘g) .

(8.49)

Next, from (7.88), we have that

ol q+i/2+41 ) 1
Supp d)Squﬁ/thl g B (HT; ] & %_ 111’ 2)\.q+n/2+1rq )
i,j.kE 1o

CB (supp (a(g),o(Q(ogﬁé) o q’(i,k)) . 2)‘q+ﬁ/2+‘rq_l> :
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Then applying (6.22), we have that (8.47) is verified for m = m’ = q + /2 + 1.
Returning to the proof of (8.46a), we can now apply Corollary 5.21 with

2
)\‘ _

— 4%l _ 70 g+i/2+1 1

i= ¢S"+ﬁ/2ﬁ1 ’ @ =Ty meh, <k—r Mgt -
ijkELLo q+ilq

From (5.58b), (11.15), (3.6), (2.40), (11.7h), and (11.24b), we have that

Vig Z H (Dfaqa;{twﬁ/ﬂ—l )

i".jk&LIR. hiRELLR
2
_ 12 _ Agtif+1T _
~ rql)‘q (715)/ e A‘I)‘q-il-ﬁ/z F;6 < qX”/JT (1) )‘q-il-ﬁ/z
(5-58b) doE:a/tes — = Ay —
cost of Dy 4 low-freq. coeft’s freq. gain lower order intermittency losses inv. div. gain
N —1pit+15 =119
X Gugbap 1 T M (M Nina = Near = 1,75 T35, 7,17
_ 32 _ 2
< 1100 (_g+ip+l_ Sq+i 2 (Pq+ip+1lg )" o
S Iy Fq g 5 - A — )‘q+ﬁ/z
(3.6),(2.40) q+7/2+14i71 q+7/2
N —1pi+15 =119
X Gug et D)V MM Ninag = Near = 1,777 TH 15,1719 )
_ 3/2
—150,.—1 q+1/2+1 ) N
= L int (”q (Ag+ip+1T¢)
(11.15),(11.24b),(11.7h)
M (M, Ning.co 7 ' TEF1C, T;lrg) (8.50)

for N, M < 2Njpq from (11.21a), which verifies (8.46a) at level ¢ + /2 4+ 1. In order
to achieve (8.46b), we appeal to (7.86)—(7.87), the choice of K, in item (xv), (11.21a),
and an aggregation quite similar to previous nonlocal aggregations.

Case 3b/4b: pressure current error from (8.18d) and (8.18e) and ¢ = R, ¢.
In this case we consider the higher shells from the oscillation error. The general
principle is that the estimate will only be sharp in the m = m’ = ¢ + i double
endpoint case, for which the intermittency loss is most severe. We now explain why
this is the case by parsing estimates (8.49) and (8.50). We incur a material derivative
cost of 7~ 11"("]”0, which is converted into r; Uhg ()" using (2.21) and the rough
3/2

definition of 7, 1= 5(11/ qurq_ 1/3, or equivalently Corollary 5.21. The L7* size of the

high-frequency coefficients from the oscillation error is ()Lmk;]rﬁ /2)2/ 3; this encodes
the intermittency loss from L' to LY? of a squared, < A, frequency projected, L>
normalized pipe flow with minimum frequency A/, — see also the choices of Cy 3,
from Lemma 8.1. This accounts for 2/3 of the squared power in the intermittency losses.
The low-frequency coefficient function from a quadratic oscillation error incurs a
derivative cost of A, (which we have grouped with “frequency gain”) and is dominated
by m¢. The negative power in the frequency gain will be A,, and is determined by which
shell (indexed by m) of the oscillation error is being considered. The lower order terms
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may be ignored. Next, we have an L> — L intermittency loss of ()\m/)»q_}rﬁ TR

which accounts for 4/3 of the power in the intermittency losses and is used to pointwise
dominate the high-frequency portion (at frequency A,,’ due to the frequency projector)
of the pressure increment using the L”?> norm. By simply pointwise dominating the
high-frequency portion of the pressure increment, using this to compute the L' norm
of the resulting current error, and showing that the result is dominated by existing
pressure, we prevent a loop of new current error and new pressure creation. Finally,
we have an inverse divergence gain depending on which synthetic Littlewood-Paley
shell of the pressure increment we are considering. The net effect is that the A, from

. — . . . 3 ’
“frequency gain” and the Am,l from “inv. div. gain” upgrade the 71/ ’to (71(’{“ Y72, and
the remaining A, A,;l from the D; , cost and the frequency gain is strong enough to
absorb the intermittency loss since m’ < m, with a perfect balance in the case

2
)\' -
m=m=q+n = (”")Aqx‘mL
)uq+ﬁ/2

In order to fill in the details, we now recall the choices of m and w,, from (8.39).
For the sake of brevity we ignore the slight variation in the case of the first projector
for m = g + /2 + 2 and focus on the second projector for m = g + /2 + 2 and the
other cases ¢ + /2 + 2 < m < g + n + 1. We have from (7.78) that

m—q—"n/2
oHT™ = = U;{Tm - O’z}ITm = O—’:[Tm - + Z O—';‘le - .
i,JkE 110 ijkELLo ijkETLIo i, kE Lo et ijkELLo
We then define the frequency-projected pressure increments by
* * q+7/2+1 0
= X o= T ol
5o ‘ HTi,_/,k,g./‘,l.o ' 5o ‘ HTf,j,k,s,T.l,o ’
i,j.k& 11,0 i,j.k§110
/242
Ugr:— /2+ = Z Gr’L_lTn1 R ’
o - i,j.kE Lo
i,j.k&1,1,0
=1,2
g+if24+m’ ' . _ ; _ _
Os’g = Z Oyrm ifg+124+m=qg+12+1<m<qg+n-1,
- i,j.k&E L1
i,j.kE 110
=m’
(8.51)
O‘grj_n: Z ifim=q+n,qg+n+1.
o
i,j.kE 1o
1=

Using (7.84), we may define the current errors

= > (H+RY (D,’qa;_}rm. ) )
i,j.kELIo

ij k& 1,R
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+1/2+1 0
4’?% = Z (H+R") (Dt,qGHT.’”. ) ) )
i,jk& 1o Bk
EVELL-FIPY

/242
i = Y, (H+RY (Dt»qavtﬂ.’”. . ) ;
. i,j.kELT0
ijk,E L TLo
=1,2
¢§:n/z+m = Z (H+ R (thqaﬁﬂ.’”. , )
. i,j.k.ELI0
i,j.k&L10
=m'
ifg+ie+m =g+i2+1<m,
i
Pl = > (H+R") (D,,qa;ﬂm ) ) :
0 ‘ ijkE Lo
i,j.kE 1o

(=m—q—1/2,m—q—n/2+1

Asin the previous case, we may append superscripts of / and * forg+1/2+1 <m < g+
7 corresponding to the H and R* portions, respectively. We have thus verified item (i)
immediately from these definitions and from (7.84) and item (ii). In order to check
(8.46a), we define the temporary notation m’(t) to make a correspondence between
the value of ¢ above and the superscript on the left-hand side, which determines which
bin the current errors go into. Specifically, we set m’(0) = 1, m'(1) = m’'(2) = 2,
m' (1) = tifg+1/24+1 < myandm'(m—q —ii/2) = m'(m—q —if2+1) = m—q —i/2.
Then from Part 4 qf Proposition 7.4, specifically (7.85c), and (11.21a), we have that
foreachi, j,k,&1,1,0,cand M, N < 2Njyq,

DYDY (H+R*) (Dt,qa;n_m ] )
i,j.k&ELLo

—1pi+70 A min(Ap, Ag+i) B A2 min(Agif2+m'()s rq+i) g v
q 7.[( q )\' _ m—17m )\’ -
q+i/2 q+1/2

<
=7

_2 . N
X g im0 1 2q+im @ (I3 m @) 2n) g )

M (M, Ning = New = 1, 7 ' T4, T, 109

Next, from (7.88) and the fact that ¢ + /2 + m’(¢) < m, we have that

supp <H <Dt’qG7L{T'm'ksz‘z >>
i,j.k,&E 110

-2

g B (HT‘I'l:’tl/',k,E,Z,I,O’ 2)\,q+ﬁ/2+ml(t)_1rq )
1 —

cB (SHPP (fl(s),o(Qé)Cé) ° q)(i,k)p(lg),0> s A1+ 2hgaipam -11 2)

€ B (supp (a(é),o(Qé)Cé) o CP(i,k)p(I,g),Q) 72)‘-q+ﬁ/2+m/(t)71) .
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Then applying (6.22), we have that (8.47) is verified form’ = g+7i/2+m'(). Returning
to the proof of (8.46a), we can now apply Corollary 5.21 with

H=H <Dz,q07l,{7.m.kéi1 <>) s

ij

min(Ay, Ag4i) & _2

— A2 1 Am
q+if2

<min()“1+ﬁ/2+m/(t) s Ag+i) Ty )4/3 -2

o = F(ZomAq <

n () — A +i/24+m’ (1) -
Ag+i2 q+if24m' (1) =17 g+ 24m’

From (11.7h), (5.58b), (3.6), (2.40), and (11.23), we have that

e L (ot )
i,j.k,EL 1,0

L]

il jkELLS
. 2 . _ 4/3
< T30 g (nf )l/ 7y (7mm(k'"’ A"“L’_‘)) P2 ,,, (mm(’\q+ﬁ/2+m/o)»'\q+n>rq) /
5 11 ! Ag+if m-l hg+i2

N
) .
XA i ()17 q+/24m () (mm(’\q+ﬁ/2+m’(t)’ Am)Tq )

—1 i+l —1
M (M. Nina 77 ' TEH0,T5119)

; Sqiii i in(hms Agi) \ 72
< 6=y | gatiam’© q+it A (mm( m q+n)>
~ q

Godn 17 / Sqepi/2m ()4 hgtif2

. _ 4/3
2 minChg im0 2q+i) T \ 7 12 W
X hyyZyhm Ag+if2 g+i/2+m' (O —1"q+7/24+m' ()

- N —1pi+16 m—1720
x (MinGhg-ir/pm s 2 )Tq ) M (M Ning o 77 T, TS

< IS0 <ﬂq+ﬁ/2+m’(t))3/2(
— ’ ’
(11.23),(11.7n) ™ ™ q

M (M Nipa 7 ' THF16, 7,109

. N
minChy gm0+ xm)rq>

for N, M < 2Njnq from (11.21a), which verifies (8.46a) at level m’. In order to achieve
(8.46b), we appeal to (7.86)—(7.87), the choice of K, in item xv, and (11.21a). m]

8.3 Transport and Nash Stress Errors Sty

Lemma 8.6 (Applying inverse divergence). There exist symmetric stresses Sty =
SIT ~ + S}y which satisfy the following.

(i) Forall N,M < Nu/10, the local part SITN satisfies

N M ol —100 N —1pi+15 =119
Hw,-,qD D! STN”3/2<F g2y iM (M Ninag 77 ' THF15, T, ')

q ~ *g+n q+n
(8.52a)
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i DYDY SE | S TS AN M (M Ny, 7 T, TS T

q+n q+n
(8.52b)
Furthermore, we have that
B (supp Wy, Aq_,IFq/+1) N supp Sk =0 (8.53a)
forallg+1<q <qg+n—1
(ii) For N, M < 2Ning the nonlocal part satisfies
DYDY Siy| < THnsig2 AN M (8.54)
t,g°TN q+n “q+3n"q+n q : .

*Remark 8.7 (Abstract formulation of the transport and Nash stress errors). For
the purposes of analyzing the transport and Nash current errors in subsection 8.8 and
streamlining the creation of pressure increments, it will again be useful to abstract the
properties of these error terms. We will prove every one of the following claims in the
course of of proving Lemma 8.6. First, there exists a g-independent constant C such
that

=Y. 2 Ak _
STN B t,/,k,&,l,],o l»J;kf,l,I,o (D(l,k) . (8.55)
ijk €110 =0

Next, the functions H and p (with subscripts and superscripts suppressed for conve-
nience) defined above satisfy the following.

(1) H satisfies
’DNDMH’ S A M (M Ning., 7, ' THH4 T, 118 ) (8.56)

for all N, M < Nsn/10.
(ii)) We have that

I,
supp H C supp (ni,,/,k,g,i,ogs <>) . (8.57)

(iii) For d as in (xvi), there exist a tensor potential ¢ (we suppress the indices at
the moment for convenience) such that p = 9;,._; dz?(”""*’d). Furthermore, ¢ is
(T/Ag+ipl q)3-peri0dic and satisfies the estimates

z/,, A—1+N+k -d (8.58)

N
| DY o, a0 O rd

for p =3/2, 00, all N < Nin/5,and 0 < k < d.
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(iv) We have that
~ -1 0
supp (Hpo ®)N B (supp Wy, Xq, Fq/+1> =0 (8.59)

forallg+1<q¢' <g+n-1.

Proof of Lemma 8.6 We start by considering either a Reynolds or current corrector
defined in subsection 6.1 and expanding

I,
D[,qwq_‘_l!<> = Dt,q( Z curl (a(é)!o(p%)gé <>) o q)(i,k)v(bg.k)U(IE),o o (b(i,k)))

i k&L
—1 RS 1
= > Dig (“(E),ovq’(i,k)) Py 8 ") 0 P Wig) o © Piik)
ijkELT
I,

+ Y DV ((pé);g BE <I>(i,k>a(.§),<>> x (V<I>(i,k)[U(Ig),<> o q’(i,k))

ijkELI

I,

+ Z v ((p?é.)gé <>) o q)(i,k)a(f),o) X (D,_qvq,»‘k)lU(Ig),o o q>(i,k)> (860)

i k&L

and

Wytl,0° Vﬁq = Z curl (a(g),o(pé)fé’o) o d>(i,k)Vd>5’k)UfS)’0 o q)(i,k)) . Vﬁq

i jkEdT
1 1,0 1 D
= > <a($),<>vq)(i,k)(p(o$);§ )0 W) o 0 (D(i’k)) Vit
i jkEdT
1,
C T (vt ownn)
i jkET
x (V‘I’(WU{S),O ° q’("’“)) Vg - ®oD

We shall only consider the worst terms, which are the ones containing W €).0 . Since
Dy qWq+1,0 and wy41,o - Vi, are mean-zero (see the argument below the display in
(8.1)), we can apply H and R* from Proposition A.13 to each term in (8.60) while
ignoring the last term in (A.56).

We now fix values of i, j, k, &, [, I, and ¢ so that we are simply considering

. -1 1, I
T jkelre =Dig (“(s),ovq’(,’,k» (P?s)fg o QWi oo @ik  (8.62)

" -1 I,
+ Vg - (a(é),ovq)(i,k)) (078 %o q’(i,k)w(ls),o 0 Qi -

We apply Proposition A.13 along with Remark A.19 with the following choices. Let
p € {3/2,00}. We set v =y, and D; = D; g = 9; + Uy - V. In order to verify the
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low-frequency assumptions from Part 1 of Proposition A.13 and Remark A.19, we set

-1 R IR
Gijreir R ="Ta [Dt,q (“(S),RV¢(i,k)) (P& 8s ) o Piiié
~ - IR
+Vig - (a(s),RV(b(i,lk)) (b8 ™) o CD(i,k)E] ,
4/3 —1 (72 7]
Gijkeire =" [Dt,q (a(S),quD(i,k)) (Pe)8e") ° Qi i

~ _ 1,
+Vig - (a(S),qu)(i,lk)) (P8 0 cD(i,k)";:] ,
Ny =Nfin/4, M, = Nsn/5

2/3 1/2 it
Jj+20_—1
8q+ﬁFq T + rgA

-10
q+n >

I,
CG 3, = rq |Supp (771.,J.’k’§j701;g °y
M, = Nind,ts V= T;IFS ’

UZﬁq, D =G, Di=Dy, )»/ZAq, T =meAg. (8.63)

Then we have that (A.39) is satisfied by definition, and (A.41)—(A.42b) are satisfied as
in the proof of Lemma 8.1. In order to check (A.40), we appeal to Lemma 6.5, estimate
(5.13b) for (VCID(i,k))’l, estimate (5.42) from Lemma 5.15 to estimate ;é’o o @G i),
Proposition 4.9, and (2.30). Specifically, we have that for all N, M < 9Njuq,

N M - N . _ —1pi+13 +—118
HD Dt,qGi,j,k,s,l,l,o 3/2560,3/2)‘q+Lﬁ/2JM<M’ Ningt — 1.7, T Ty rq)
S CG Y iy M (M Nina 7 T TS (8.64)
N M . 50 _1/2_—1pi, N . —1i+13 =118
‘D DG, peirol STaTm T, rqqumJM(M, Nind¢ — L7, ' T3, T, rq)

-1 100 N . —1pi+13 —11-8
Srgralily ngAq/\quWZJM(M,de,t—1,1,, ritB T, rq)

N —1ri+14 =118
SﬂgAq}uq+L;l/2JM(M, Nind. 75 'THH4 T, rq), (8.65)

where we have used (11.15) to upgrade the sharp derivatives to Nj,q ¢ in both inequal-
ities, (2.21), (11.7b), and (3.6) to convert rq’l l"fl into né/ZFSOAqr;_lﬁ in the pointwise
bounds, and (11.7h) to absorb the I (}OO. In order to obtain an L* bound, we can appeal
to (8.65) and (3.17b). Thus we have that (A.40) and (A.59) are satisfied in all cases.

In order to verify the high-frequency assumptions from Part 2 of Proposition A.13,
we set

T4OR = Q(Ié)!R , T4Ug as defined in item (1) from Proposition 4.5

r(j/ 3Q¢ = Q(IE), 0 r;/ 319¢ defined similarly but adjusted to fit Proposition 4.6

2/3

Ngec as in (xiv), dasin (xvi), Ci3p =715 ", Cioo =T 2

q 9
M= Agtilq = rg+iply, T = Y =A= Ag+ii - (8.66)
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Then we have that (i) is satisfied from (4.9), (ii) is satisfied by the construction of w41
in subsection 6.1, and (A.43) is satisfied from Proposition 4.5 or the corresponding
estimates in Proposition 4.6. Finally, we have that (A.44) follows by definition and
from (11.21a), while (A.45) is satisfied from (11.18).

We therefore may appeal to the local conclusions (i)—(vi) and (A.56)—(A.57), from
which we have the following. First, we note that from (iii), we have that (8.55) is
satisfied. Next, we have from (A.46), (A.50), and (A.60) that for N < Nﬁ“ —d and

Nfin
M S 5 t
Y . Y3 §V2_VApiti+2s 71 -10
”D Diq (H<Ti,j,k.s,1,1,<>>)”3/2 (‘ “Pp(’h.,,k,s,l,l,o 8gtitd Tq +kq+ﬁ>
—1+N _ _
x g it M(M,Nind[,r lr;]““,qurg), (8.67)
N M . 2, 14N pidld 18
‘D Diy (H(Ti,j,k,é,l,l,o))‘<nel\‘1 Tq rgvii M(M Nindt- Ty Tg' > Ty Fq). (8.68)

Notice that from (ii), the support of divHT; . JKELLR is contained in the support of

T, ; JkELLR which itself is contained in the support of kel RI; . From this
observation, we have that (8.57) is satisfied. Furthermore, we have that (8.58) is satis-
fied from (A.49a) and the estimates from Proposition 4.5 and 4.6. Next, we have that
(8.56) is satisfied from (A.60). Finally, we have that (8.59) holds due to item (ii) and
item (7) from Proposition 4.5. We note also that (8.53a) follows from (8.57), (8.59),
and (6.24).

In order to aggregate L2 estimates, we appeal to Corollary 5.18 with 6 = 6, = 1,
H=H (Tl JKELI <>), (2.11) at level g, and (11.71) to write that

N M
vig ., DVDY (H(Ti/,j,k,s,i,l,o))

i kgL ¥
50+Cp g/2 M35 —14N 1 —1pi+15 T—11-8
S T8 g N e M (M N, 7' TS, T, T8 )
ST 25000 M (M, Ning.c 7 ' TEF15, T;‘rf;) . (8.69)

In order to aggregate pointwise estimates, we appeal to Corollary 5.20 with the same
choice of H and ¢ = ngAqrq_zl 1.®,. Then from (5.55b), (5.47), (3.3b),

supp (ni‘j,k’gJ,R;g )
and (11.10a), we have that

: N M i
1//1,61 Z D Dt’q (H <Y},,j,k,f,l,l,o>>
ik £
—24 —14+N —1pi+15 =118
SmeNgry A M (M Nina.t, 7, Ty™, T, [‘q)
Coo—200, N _ —1pitl5 m—1p8
= Fq+n )‘q—i-nM (M, de,t, Ty Fq s Tq Fq) .
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To conclude the proof for the leading order term from D, ,w 41, we must still
estimate the nonlocal R* portion of the inverse divergence. In order to check the
nonlocal assummptions, we again set

M, = Ny = 2Njna, Ko, asin (xv).

Then from (11.20b) and Remark A.14, we have that (A.52)—(A.55) are satisfied. We
note that D; qwg41 + wy41 - Vilg has zero mean, and so we may ignore the means
of individual terms that get plugged into the inverse divergence since their sum will
vanish. Then from (A.56), (A.57), and Remark A.14, we have that for N, M < 2Njugq,

N M *T 2det N -M
D D Z R'T i,j,k,E, l o 8q+3n q+n )‘q+n q ’
t,],k,é,l 0
matching the desired estimate in (8.54). m]

At this point, we can construct the pressure increment and associated current error
coming from the Nash and transport errors. Since the proofs of both lemmas are com-
pletely analogous to the proofs of the corresponding lemmas for the highest frequency
shell from (8.18e) of the oscillation error, we omit the majority of the details and
merely note the minor differences required in a combined proof.

*Lemma 8.8 (Pressure increment). There exists a function os,, = CT;; M GS; N
such that the following hold.

(i) We have that

N
Vi DV DYy st | < (0, +8g431) g ale) M (M Ning, 7 T 15T

(8.70a)

N — i —

Vi ¢ DV D] qoSTN‘ < (aSTN +aq+3n) (hg1iTq)N M (M,Nind,t,zq ri+l7. T, lr?,)
(8.70b)
M -9 _ _ N . —1ri+17 =119

‘ YigD D GSTN H%/z Fq+;,8q+2n ()\q+nrq) M (M, Nind,t, Ty F(li s Tq Fq>

(8.70¢)
Coo—9 N i _

‘wi DYDMot H <1557 (hguiTg) ¥ M (M,de,t, VA 1F3) (8.70d)

- —100 _gq+7n/2 _ N X —1lpi+17 =119
Uiy D DtyqosTN‘qu_H/znq (rg4i2Tg) M(M,de,t,rq ri+ T, rq)
(8.70e)

forall N, M < Nsn/100.
(ii) Forallg+1<q' <qg+7il2andq+1<q” <q+n—1, wehave that
q q q q q q

~ -1 - ~ ]
B (SMppwq/, Aq, Fq’+1) N suppog = B (suppwqu, Aq,, Fq//+1) N suppJ;'TN =0.
(8.71)
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(iii) Define
t
Masyy (1) = /0 (DtquSTN> (s)ds. (8.72)

Then we have that for 0 < M < 2Njpg,

< (max(1, )83 M (M N 77 Ty, ) - (873)

q+1

dM+1
’dtM'H Mog,y

*Lemma 8.9 (Pressure current). There exists a current error g, associated to the
pressure increment o, defined by Lemma 8.8 which satisfies the following properties.

(i) We have the decomposition and equalities

q+n
! ! /’l /’
Bsoy = By + D UL e =gl el (8.74a)
m'=q+n/2+1
divgs,y = Dy q0sry — (Dr.g0syy) - (8.74b)

(ii) Forall N, M < 2Njpq,

N2 N
—100,.—1 k 2
< Fk/ rk/ (nq ) ()\.k/rm/)

N M K.l
"ﬁi D" Diybs;,

M (M Ninaio 7 T, 719 (8.75)
N M K, 2Nind 1 3/2 2\N_—M
HD DA < T L Gt Y M (8.76)

(iii) Forallm’,q' withg+1<q' <m'—landq+1/2+1 <m’' < q + n, we have
that

B <supp Wy, 1/2)\;,1Fq/+1) N supp(])g’i’ =0. (8.77)

Proofs of Lemmas 8.8 and 8.9 As in Lemmas 8.4 and 8.5 in the case m = ¢g + n, the
proofs of Lemmas 8.8 and 8.9 use Proposition 7.4 to estimate a single error term
indexed by i, j, k,&,1, I, ¢, and then aggregate estimates according to Corollar-
ies 5.18-5.21. We now identify the minor differences between the applications of
these various tools to the transport/Nash error and the oscillation error.

We first check the preliminary assumptions from Part 1 of Proposition 7.4. Let us
first compare the low-frequency parameter choices for the transport error in (8.63)
to the low-frequency parameter choices for the error terms in (8.18e), which was
analyzed in Case 3b from Lemma 8.1. First, we have that the vector field G in
(8.63) is different than the vector field in (8.24), but it retains the exact same support
properties due to the presence of pg_?;g in both. Next, we claim that Cg_ , is effectively
smaller in (8.63) than in (8.24). In the case p = oo, this is immediate, so we focus on
the case 3/2. We use (11.7b), (11.7h), and (11.7g) to write that
1 —1 1
/213, < 572 Aqu_50.

-1 50
Ty Tq STy Ahg8q T, 5rq < 8,45
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The difference between F;ﬂ in (8.63) and F;l in (8.24) only matters in the application
of Corollaries 5.18-5.21. Indeed, trading a j for an i simply necessitates a difference
choice of 81 and 6;, and the only difference in the output is the factor of Fg‘cl’ which
must be absorbed in the latter case. The reader is invited to check inequalities (11.23),
(11.24b), (11.10a), (11.24d), and (11.24e), each of which has a FSC” on the left-hand
side that can therefore absorb this extra insignificant factor. Next, we have that the
choices of M;, My, Ny, A, v, v are the same, and the choice of w = n@FgoAq from
the beginning of Lemma 8.4 is larger than the choice of & from (8.63) for the transport
error. Finally, the vector field v and associated material derivative D; from item (ii)
are identical in both cases.

Next, we compare the high-frequency parameter choices from item (iii) in the case
of the oscillation error in (8.25) to the choices for the transport error in (8.66). The
potential ¥ in (8.66) is supported in a A’;—"l-l’_l neighborhood of Q(IS)’ »» While for the
oscillation error, the support is larger due to the presence of the synthetic Littlewood-
Paley projector Py, ; | q+i] applied to (Qé)’ <>)2. Thus the potential for transport error
has more advantageous support properties than that of the oscillation error. Next, the
choices of i and A are identical, while the choices of Y and Y’ are more advantageous
for the transport error than they are for the oscillation error in the case m = g + n.
Indeed, this is because the inverse divergence gain in the transport error is a full A4
from (4.9), while the highest shell of the oscillation error only gains A447—1 due to
the presence of the synthetic Littlewood-Paley projector. Next, the choices of Cy. ,, are
identical due to our choice of rescaling in the transport error, and the choices of Ngec
and d are identical as well. Therefore, all assumptions from item (iii) are stronger
for the transport error than the oscillation error. Finally, we note that the nonlocal
assumptions in item (v) are not changed in any significant way, and so we may treat
the nonlocal transport error terms in the same way as the nonlocal oscillation error
terms.

Moving to the additional assumptions from Part 2 of Proposition 7.4, we have
that all inequalities in (7.75), (7.76a), (7.76c), (7.76d) are identical. The inequality in
(7.76b) follows in the same was as in the oscillation error; indeed, all nonlocal error
bounds can be treated in the same way via a large choice of d or N,,. The inequalities
in item (iii) are the same for the transport error as for the highest shell of the oscillation
error, since these inequalities relate to the synthetic Littlewood-Paley projection of a
function which oscillates at frequency ~ A = A,4j.

Now that we have highlighted the unimportant differences in the set-up, we merely
note that the sharp material derivative cost in Lemmas 8.6-8.9 is worse by a factor of
", than the corresponding estimates in Lemmas 8.1-8.5. This is due to the fact that the
transport error loses a material derivative. This concludes the proofs of Lemmas 8.8
and 8.9. O
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8.4 Divergence Corrector Error S¢

We will write the divergence corrector error as

Sc = Sc1+ Sc2, for divScy = div (w;{?l ®s w;ﬁ)r]> , Sca= wé‘il ® wl(lc_il ,

(8.78)
and estimate them in the following lemma.

Lemma 8.10 (Basic estimates and applying inverse divergence). There exist sym-
metric stresses S form € {q + |7/2] + 1, ..., q + n} such that the following hold.

0. +i .
(i) div (wél_’:l ®y w(gl + w((;_i)rl ® w{(IC_ll) = Zi:ﬁ;ﬂﬁ/zﬁl divSy, where Sl can

be split into local and non-local errors as Si: = Szf’l + SZ”*.
(ii) For the same range of m and for all N, M < Ns/10, the local parts Sg’l satisfy

| Wi,qDND%]S?’IHW S T 8maaky M (M. Ninao 75 T35, T, T8)
(8.79a)
[wia DYDY SE!| S TROANM (M Ninags 7 TS, T TE) L (8.790)
(iii) Forg +i2+1<m <qg+nandq+1 <q' <m — 1, the local parts satisfy
supp S?’l NB (supp Wy, )»;/lr‘qurl) =0. (8.80)
(iv) For the same range of m and N, M < 2Ninq4, the nonlocal parts S'C"’* satisfy
H DV D} s¢*

4Ning, _
q+;‘5q+3ﬁ,\,’,{rq M (8.81)

<T
oo

*Remark 8.11 (Abstract formulation of the divergence corrector errors). For the
purposes of analyzing the transport and Nash current errors in subsection 8.8 and
streamlining the creation of pressure increments, it is useful again to abstract the
properties of these error terms. As we shall see in the course of the proof in Lemma 8.10,
however, these error terms may be decomposed and analyzed in exactly the same way
as the oscillation errors. This is not surprising, since both error terms are quadratic in
wgy+1, and morally speaking, one expects the estimates for terms involving divergence
correctors to be slightly better. Therefore we refer the reader to Remark 8.2 rather than
reproduce it in entirety here.

Proof of Lemma 8.10 The analysis in the proof generally follows that of the diver-
gence corrector errors in [32], and we shall occasionally refer to algebraic identities
from those arguments. The main difference is that we have to incorporate the
synthetic Littlewood-Paley projector in certain terms before applying the inverse diver-
gence operator in order to upgrade the material derivatives later. However, synthetic
Littlewood-Paley projectors have already been applied to terms which are quadratic
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in high frequency objects in Lemma 8.1, and so we may pirate a significant portion of
the analysis from there as well.

Step 1. We first consider div(wf[’jr) | ®s w;‘il). We write that

. . 1, .
le(w‘(]'i)l ®S w;i)]) = Z 8m<a(§),o (p?E)CE OQ(IE)’O>Oq)(i7k)§l(A2n€opr+A£€mpr)
o j ik ELT
9 o el o )88 (UL ) odg
X p (a0 \Py8e ) 0 Pk ) 8r Py 1y Uie) )" © Py | »
(8.82)

where we have used Lemma 6.2, the definition of W{%_) » 10 (4.9) (and the correspond-

ing version for L3 normalized pipes), €;,i,i; i the Levi-Civita alternating tensor, we
implicitly contract the repeated indices ¢, m, p, r, s, and the e refers to the indices of
the vectors on either side of the above display. Using that {&, &', §”} is an orthonormal
basis associated with the direction vector § with & x & = &” and decomposing as
in [32, (7.50)], we have that

op (a0 ()86 0 @i y) = 0p @0 08" A0; (age) 0 (931 61) 0 @ik ) (8.83)

_. P-good
&)

+0p0l 1 "€ 4]0 (a0 (0% 58°) 0 @i ty) +p Pl 1) €€ 4]0 (a(e).o (6% 68°) 0 Pty

_. p.bad
GRS

where we have also set A = A ) = (VQJ(l-,k))_l. Indeed, the good differential

operator appearing in a é’)gZOd only costs A,I" (}3 (see Lemma 6.5), so that we will leave

a("s’)gi()d inside the divergence and dump the symmetric stress inside of the divergence

into ng". On the other hand, a(pg’)b’ 1(1 contains an expensive derivative at A4 |is), but

XA} 9,y only costs Ay}, which will be crucially used below.

Splitting the terms involved with a(’;’)b’ id from (8.82) as in [32, (7.52)], we further

analyze

Lo 1, . ,bad
> m (“(EM (”?&)fs oé’(s;}) 0 @i & (A7 copr + ATempr)all)s r @ 1y (Ule) o)°
oi jkELT
Oq)(i’k)) = VT + VE (884)

where V| contains A}'€,p,, and V contains Aje;,,,. To analyze Vi, we use that 9,
and SKAZ1 commute, so that

ECAT Oy <(Q{s),<>(Ufs),<>)S) ° q’(i,k)) =0.
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Furthermore, the differential operator éeAZ” o, landing anywhere else costs only
A T [1[3 from (6.26). Then we have in total that

. 1,0 L p,bad I I
Vi= ) m (“@),0 (”?&)‘;é ) 0 @ pE A €apragg) 3f‘pfi,k>> (9(@,0(“(5),0)5)
o, jkELT
o (D(i,k) (885)
. LI es ( I 1 s .
=X (€ (0fe) Ve )°) © Pty
o, 0,7, k,ELT

is a product of a high-frequency, mean-zero potential which has gained one factor of
Ag+ii» and a low-frequency object which has lost one costly derivative at frequency
Ag+i2)» and one cheap derivative at frequency A, I’ (}3. To analyze V;, we follow [32,
7.56] to get

p 1,0 1,0 ¢ p,bad 1,0
VE = Z R Om (a(g),o (Pé)(s Q(g)) ° cb(i,k)é.‘_ Azfmpra@)’0 ar(bii,k)(U(g))s o (D(i,k))
oi,j ko E LT
= Z (3 (SEA'E 3. 05 )a (0°, ;1’0)0':[)» ap,bad
. m £EmprOr = y)4E),0 p(é) £ 0.4 ¢) 0
o,i,j k&L T
m,good . ¢ p.bad, ¢
tag)e & Ajemprag) o 0P g
! .good IR
—a(),0(0(5) 85 %) 0 D g Afemprim (e W’fi,k)) (QGT(U({)})S) ° Qi k)
Vi p,bad 1,0 0,0
X aw.oE Afempraly s 0l gy (el WED") 0 @ik - (8.86)
o0, j k& LT
_. Z (CZ,I)s(l (Ul )s>o¢'
- B G R GG R GRS @i,k
o0, j k& LT
In the second equality above we have used the identities Empﬁm(dé’)bid) —
p,good m,bad _p,bad

—emj,,ram(a@),O ), which follows from (8.83), and Empra) o ) o = 0. Further-
more, we recall from [32, pgs. 42-43] that the last term on the right-hand side of the
second equality vanishes. As before, the slow function C (25)1 » contains two spatial
derivatives, one cheap and one expensive.

Step 2.We now define the stress error Si% from the divergence corrector. From (5) of
Proposition 4.5 and (5) of Proposition 4.6, we know that Q(IE) o (U{é‘) ,)° has zero mean.
As in the oscillation stress error, we decompose Qé) Q(Ué)’ )’ applying the synthetic
Littlewood-Paley decomposition suggested in (4.31), and setforg + 72+ 1 <m <
q+n,

SEFPH = (H 4+ RY)
1,1 2,1 \esTD 1 1 S
Y. €t C )" it (Q@),Q(U(s),o)Y) ° @i )

o, j k£
(8.87a)
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SE=HARY | 3 (€t Cy "Bt (0.0 Wl )") © @it

o, jkELT
(8.87b)
q+n . (c) (o)

SET = wel ®w, (8.87¢)

I, . good

+ Z ae),o (P?S)Cg <>Q(Ig),<>> 0 D E (AT €apr + Aeem,,,)aéfzo

o, j k&
0, D 1y (Ul 0)* © Piipy (8.87d)
gt
+ Y HARY| Y (€l Cl ) Bt +1d = Byrign)
m=q+n O,i,j,k,é,f,l

(Qf@,o(Ufs),o)S) 0@k | - (8.87¢)

Here, the terms involved with the operators R* or Id — ﬁq +ii4+1 will go into the nonlocal
part and all the remaining terms will be included in the local parts.

The conclusions of Lemma 8.10 for the terms (8.87a), (8.87b), and the terms involv-
ing Pu—1,m in (8.87¢) follow similarly to Case 3 from the proof of Lemma 8.1.
Indeed, we fix indices i, j, k, &, Z, 1,s, ¢ = R, and apply Proposition A.13 to

Gy =1,!

1,1 2,1 X
a1iCorr +Ce 0"

~

hgiilByriptt (g(’g)’ r (UL, R)S) for (8.87a)

OrR = ~
Ag41Pon-1.m1 (0le) # (Ul )*) for (8.87b), (8.870),
with the same choice of the rest of parameters asin Case 3.Inthecaseof ¢ = ¢, asin

Case 3,Gyandg, will have extra r;/ *and rq & , respectively, with the replacement of

R with ¢ in c(‘é)” & Clé) g-and 0l x (Ul p)°. The assumptions in (A.40) and (A.43)
of Proposition A.13 can be verified using Lemma 6.5, Lemma 4.17, Lemma 4.18,
item (6) from Proposition 4.5 and item (6) from Proposition 4.6.2! The rest of the
assumptions follow exactly as in Case 3 from the proof of Lemma 8.1. We note
now that the support of the low-frequency function G is the same as in the oscillation

error due to the presence of p%);“g and their derivatives. In addition, the support of

the high-frequency potentials is the same as in the oscillation error since U&) o and

21 Note that we have traded Ag+ii between G;e and ppg so that the parameter choices are the same as the
oscillation error. We also note that thanks to the extra gain 4;17i/2/3q4; in the estimate of Gg and Gy
compared with Case 3, all the error terms are actually small enough in amplitude to absorbed into the
highest shell. The only reason to use the synthetic Littlewood-Paley decomposition here is to ensure that
we can upgrade material derivatives via dodging later.
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Q(IS) are both supported in a 2k s neighborhood of the pipe potential from (4.9)
and item (7). Finally, to deal with the remaining term in (8.87¢), we may use the same
type of arguments as in Case 4 in the proof of Lemma 8.1. For the sake of both the
readers and authors, we omit these details.

Lastly, we consider (8.87c) and (8.87d), which are absorbed into SCH"I From
Lemma 6.2, we have that

(C)l ® w((;_‘)_l = Z (V (ll(g),o(P&)Cé’o) o q)(i,k)) X (V(I)(T;Yk)U(IE),O o q>(i,k)>)
0,iy j k& LT
® (V (a(g),o(p?s);é’o) o CD([’/{)) X (V':D(T,j,k)wé),o o d)(i.k))) .
(8.88)

It follows immediately from estimate (6.34) with r = 3, oo, (2.11) at level ¢, and
Lemma 5.17 with r; = co, r, = 1 that for N, M < Nan/10,

i N M (c) (c) Coot9, N . —1pi+15 =118
‘WLQD Dt,q( q+]®wq+l)H <F OC )”q+nM (M,de’[,‘[q Ffl ’Tq F‘])

N pM (o () © |7 < 2 L R10)| §32 342138/
‘quD Duq( Wyt @ q+1>H3/25’q > i ‘Supp (”i,j,k,s,l.ofs )‘Sq+ﬁrf1 Mg vi
o,1,7,k,E.1,1

—1pi — 3

X (M (M, Niay 7 T3, 15118 )2
2¢3/2 ~30,3N/2 ) —1pi+15 p—118Y),3/2
S 28 aTa g A (M Niga 7 T3 T TS )2,

The estimate for the L norm matches (8.79b) for m = g + n after using (11.10a).
For the L”? estimate, taking cube roots and using the parameter inequality (11.7g)
matches (8.79a) for m = g + n. Finally, we have that the support of this error term
is contained in w4 1; then (8.80) is immediate from Lemma 6.2. On the other hand,
one can observe that (8.87d) enjoys the exact same properties as wq + 1 ® w[(;)rl, and
hence we get the desired conclusion in a similar way. O

*Lemma 8.12 (Pressure increment). For every g +71/2+1 < m < q + n, there exists
a function o = a;,, — 0 gm such that the following hold.
C C

(i) We have that for all N, M < Ng, /100 and g +7/2+1<m <q+n—1,

N M N N —1pi+16 +—11+9
Vi gDV DY SE <(05+'c” +8q+3ﬁ) (*mTq) M(M,Nind_l,fq ritte T, rq),
(8.89a)

X N M q+itl
Vi g D" Dt S

N
< <qu+n + G + 5q+3n> ()‘q+ﬁrq+r‘z)
C

M (M. Nipags 77 TG, T 0T] ) (8.89b)
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where o, is defined as in (10.18). Furthermore, for any integer q + /2 < m <
q +n and for all N, M < N, /100,

AN M+
Vi gD D,’qos,cn

5 N —1pit+16 =119
<(“sgﬂ+54+3ﬁ> (AmTyq) M(M’Nind,tsfq rytie, T, Fq)

(8.90a)
‘ i gDV D,’Yﬂ]a;,cn . < 052844 (O Tg)N M (M, Nind.(. r,;‘rg“"’,T;lr‘;) (8.90b)
H DND%IU;%, = 152 ™ (nTg)Y M (M, Nind;. 75 'TH1O, T;lrg) (8.90¢)
w[’qDND%]oS_Z, < T 190 7d ™2 (g i)V M (M, Nindgo 75 T30, T;lrg) .
(8.90d)
(ii) Forq +1/2+1 <m < q + n, we have that
B (suppff;q/, Aq_,qu/+1) ﬂsupp(U;,Cn) =0 Vg+1<qg' <m-—1 8o
B (supp@q/, )L;,IF,]/) ﬂsupp(agcn) =0 Vg+1<q <q+7). .
(iii) Define .
Moy (1) = /0 (Drgosn) ) ds. (8.92)

Then we have that for 0 < M < 2Njpg,

dM—H
‘ q+1

i s

< (max(1, 7)™ Sg43M (M, N 7 TyL ) - (8.93)

*Lemma 8.13 (Pressure current). For every g + /2 < m < q + n, there exists a
current error ¢gm associated to the pressure increment osm defined by Lemma 8.12
which satisfies the following properties.

(i) We have the decompositions and equalities

m
k.l k,
bsp =5+ ) Wn. dn = by + by (8.942)
k=q+1/2+1
divggn = Dy g05n — (Dyq0sp) - (8.94b)

(ii) Forq+n24+1 <k <mand N, M < 2Njyq,

3/2
N M k|l —100,.—1 k N
’Wi,qD Dilg®sn| < Tk 1 (”q) (ATq)

q
M (M. Nipais 7 T30, 7,79 (8.952)
N M Lk, 32 2Nindty N_—M
| DYDMo = el (8.95b)

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page 1550f271 19

(iii) Forallg +7/2+1 <k <mandallg+1<q <k—1,
B (supp Wy, 1/2)\;11"(1/“) N supp (q&f;,c,{) =0. (8.96)

Proofs of Lemmas 8.12-8.13 Case 0: pressure for (8.87a),(8.87b), and (8.87¢). The
pressure increment and the current error associated to each piece in the local part of
(8.87a), (8.87b), and (8.87e) can be constructed in the same way as in Lemma 8.4-
8.5. Indeed, the proof relies on Proposition 7.4, and (GR, ¢r), (Gy, 04) given in the
proof of Lemma 8.10 have the exact same properties required in the proposition as
the one given in Case 3 of the proof of Lemma 8.1. In particular, the preliminary
assumptions (iv) holds with & given as in (8.28) due to (6.28). Therefore, we get
the same conclusions by repeating the same arguments. In particular, all conclusions
from Lemma 8.12-8.13 are obtained in the cases m < ¢ + n. Furthermore, when
m = g + n, we denote the pressure increment and the current error associated to
(8.87¢) by 0(8.87¢) = U(nge) 0. 87e) and ¢>(8 §7¢) = ¢(8 87¢) T qb(g 87¢) respectively.
Since these error terms are defined using the same parameter choices as the oscillation
error, we obtain estimates consistent with (8.90a)—(8.96) for these error terms. We
note also that we obtain a version of (8.89b) which does not require the introduction

of o,/ on the right-hand side; later error terms will require o'

Case 1: (8.87c)needs no new pressure increment. From (10.23b), we have that

N
Vi DV DY, (3.870)| ST, 20 +8g430) (g 4aTyia)

M (M Ninag, 7' T30, 7,15

for N, M < Nsn/100. This estimate is consistent with (8.89b), and since no pressure
increment is created here, we need not check any of the conclusion in (8.90a)—(8.91).
Case 2: pressure for (8.87d). The general idea for this error term is that since it is
given as a product of two slightly altered velocity increments, we can apply Propo-
sition 7.3 (which was used to construct pressure increments for velocity increments
already in subsection 10.1) to construct pressure increments cr(% g74) and current errors

¢(8 87d)° So we fix the indices i, j, k, &, l I, ¢ and apply Proposition 7.3 to the func-
tions vp o = sz JkELLS defined by Up o = Gpoppo © Dy, b =1,2, where

5 1/3,1/3, =173 I
Ulo i=7¢ A hg a0 (P?éﬁs ). o) ° (b

~ —1/3. — 1

Do i=rg I n/u/% a6 (A7 €apr + Abempr)alyrs Y90 b Ul o) 0 @ik

. / / ) s
GIR =2g My 730&)R (P(E)L’g )0 Qi k), PIR =714 Q(g)_R

1/3,1/3, -1/3 (73 ) ]
Gy =1 43 a0 (05 88%) 0 @i p10 1= 0l

R Ty Y V- | 13
Gar =14 g )‘q+n)‘q+n5 (A} €apr + Abempr)a; (E)R Y90 ik P2R=Tq q+n(U<s) ®)’

R VL -
Gap 1= rg g PR a8 (Y capr + Aempr a0 ¥y, o2 =AU )
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We then set the following choices for the application of Proposition 7.3:

Ny = My = Nn/10, M; = Nind,h Mo = No = 2Njpq, Ko asin (xv),

- _ 12 1/10
®=0gy, v=ig, D=Dig »N=Ap V=T,'Ts, C =47 r=r/"

1/3 . C700,20 2
I, ~20,1 -10 3
Co3 = ’SUPP (ﬂ,-yj,k,gj_yoig O) Gge2iT i) " Tg + 3155 Cooo =Tyia g,

— 30,—2/3 /3, =23
b4 —qu rq Mg Aq+ﬁ,

—23 i
Co3=1, Cpoo=r14 s, A=XAgqip AN =Agiqs v=rq1Ff]+l3, rg =r5=1,

H=Ag4iilq
Stiny = 8g437, m=m+1—(q+12), 1o =2Argyipp+1, K1 = Ag4i/2+3/2,
M = hgyifo+k »
Neut,x,Ncut,t asin (x), Ngec asin (xiv), d, Ny asin (xvi).

First, the verification of the assumptions from part 1 of Proposition 7.3 can be done in
a similar manner as in the proofs of Lemmas 10.4 and 10.6. We omit further details,
but note that in this case, the intermittency parameters are chosen as 1 and G has
extra factor )\]q/ Skq_ﬁ instead. From the definitions, the support properties of the low
frequency functions G and the high frequency functions o, are essentially the same
as those of the corresponding functions in Lemmas 10.4 and 10.6.

As a consequence of (7.61), we have pressure increments associated to Up o, b =

1, 2, which satisfies

N M =~
’D D[’qvb,o Up,o q

S @3+ 84430 Oqral )V M (M Nina g, 7' 15715, 115 )
for any N, M < Nan/10. This implies that

N M ~ o~
‘D D;,q (U1,<>U2,o)

S (@3, + 05, + 30 (Rgaal) ™

M (M Ninago 7' T35, 719

for any N, M < Nan/10. Then appealing to the same conclusions used in (10.30a)—
(10.30f), we have that

N M _+
‘D DM ok

S @3 + 810 Gl )V M (M, Ningy, 77 T3, 17117

N M _+
| P Dot

< IR R 2/38 2002 s
3n ™ Supp ni»j,kyésl,océ g+2nt g1pt g + 0g+3i
X (Aq+ﬁrq)NM (M, Nind,t, TLI_IF;_FM, T;lrg)

N M _+
HD DM ot

Coo—40 _ i _
<r (hgail )N M (M, Ning. 7 T4, T, lrg)

0o T qtn

N yM _—
‘D DM o>

41413, —1/3 N —1pi+14 p—1
S meCE gl M(M, Nina, 7, ' THH4 T, rg)
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for all N, M < Nan/100. We reintroduce the indices i, j, k, &, I , I and define the pres-
sure increment associated to (8.87d) by

+ +
o = E o3 )
(8.87d) Ui j kb0 00

i,j. k&0 1,b,o

The estimates (8.89a) and (8.90a) associated to (8.87d) follow using an aggregation
procedure identical to that used in the proofs of Lemmas 10.4 and 10.6, and so we
omit further details.

Lastly, we define ¢2‘8’{87d) and ¢£(§§.>§§7d) as in the proofs of Lemmas 10.4 and 10.6 and
obtain (8.95a), (8.95b), and (8.96) as in the cited Lemmas. Setting

£ . * + koL gk k
Tgari *= 98.87¢) + 0(8.870)° 4’52%1 = P3.870) T P(8.870)

and collecting the properties of these objects obtained above, we conclude (8.90a)—
(8.96) and (8.89b). O

8.5 Mollification Error Sy

Recalling from subsection 8.1 that divSys» has mean-zero, we use Proposition A.13,
Remark A.15 to first define the mollification error Sy; = Spy1 + Sy2 by

Sw1 = RY — Ry + (g — nd) 1d =: sS4 (8.97)
Su2 :=R* [(8t +ﬁq : V)({Dquﬁ — Wg+1) + ({U\q+ﬁ - wq+1) ®ﬁq]

-~ -~ . qtn.x
+ Wytis @ Wytin — Wyl @ W1 =: Sy, .

For the undefined mollification stress errors S];/}l, vaf, we set them as zero.

Lemma 8.14 (Basic estimates and applying inverse divergence). The mollification
error Sq L and SZ,;L"’* satisfy

N M ¢q+1.*
| DY Dl sty

9 _2Ning ¢ N
0 = 1—‘q+15(1+3an—&-1 ()“1+1F11+1)

M (M’ Ni]’]d,[’ Tq_l, T(;1> . (8.9821)

N q+i,% 9 _2Nind ¢ ~ \N
HD D} S o = Fq+r’zaq+3an+ﬁ ()‘tI-Hqu-F")

t,g+n—1
M (M Nindg, T, T 8.98b
> Nind,t» Tq+ﬁ—l’ g+in—1 . ( . )

forall N + M < 2Niyq.

Proof of Lemma 8.14 From (3.9), we have

Ny,
HDN SMH Fy Torss2 aalN M (M Ninaso 7, ' T ' T, )
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for all N + M < 2Njyg, which immediately leads to (8.98a).
To deal with Sy;o, we recall from (6.39) that

3 25Nind,t ~ ~ N
. S 84430 Ty (Aq+aTq+i-1)

_ —1 —1
M (M N Tl Ty ) -

H DND%I+ﬁ—1 (wq+1 - wq+ﬁ)

forall N + M < Nen/4. Using Lemma 6.2, we note that D; 4 1wg+1 = D; qwg41
and Dy g j—1Wg+i = Dy qWqyi. Then, writing Wy4i @ Wytin — Wg+1 @ Wy+1 =
(Wytii — Wyt1) @ Wyt + Wyt1 @ (Wy+i — Wy41) and using (6.38) and (6.42), we
have

N ~M ~ ~
” lﬁi,q+ﬁ—1D Dt’q+ﬁ71[wq+ﬁ ® wq+ﬁ - wq+1 ® wq-i—]]Hoo

2Nip, N — —
< yaa TN (g ) ¥ M (M, Ninds 7o 1o T LH) . (8.99)

forall N + M < 2Njnq.

As for the remaining term, we first upgrade the material derivative in the estimate
for u,. Applying Lemma A.23 to Fl =0, F* = Ug, k = g +n, N, = 3Nw/4 with
(2.31a), we get

<T- LN T M

N M -~
”D Dt,q-i—ﬁ—luq‘oom q Mg+ntg+n—1

Here, we used (11.12). Then, we use Remark A.15 with (11.12), setting

G = Dy gri—1(Wgti — Wgt1) (0r G = Wy — Wgr1) @ Uy), V= Ugti—1

3 20Nind,¢ / ’ —1
CG,oo = 5q+ﬁTq+,-l , A=A = )‘q+ﬁrq+fz—ls Mt = Nind,ts V=V = Tq+ﬁ’
1/2
C" = Aq+ﬁ—l

Ny = Nﬁn/9, M, = Nﬁn/l(), No = My, = 2Njyq .
As a result, with a suitable choice of positive integer K, to have

63 T20Nind,t

q+n = qg+n A

5 2Nind —Ko _+1ONing ¢
q+ﬁ2 n S )\'(1“1’7_! S 5q+3an+,-1 )

we get

H DND?,/Iquﬁ—lR*(Dt,q (Wytii — Wg+1)) HOO

= | DYDY a R D11 By = g (8.100)
10N, _

S 8grai Ty Ogual i)V T 1 (8.101)
2Nip, _ _

< 8g+3i Ty pn Ogwilg i)V M (M, Nindt Ty Tqiﬁ) : (8.102)
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for all N + M < 2Njpg. This completes the proof of (8.98b). O

8.6 Upgrading Material Derivatives and Hypothesis 2.10

Definition 8.15 (Definition of Fﬁ 1 and S;”Jr 1)- Recalling Lemma 8.1, Lemma 8.6,
Lemma 8.10, and Lemma 8.14, we define §”_ = §"™! + S;"ﬂ forallg +1 <m <

N g+1 "= Yg+1
q +n by
m, . om,l m,l m,l m,l
srl = Spt+ Sy + S¢Sy (8.103a)
S = S ST A SE Sy (8.103b)

Here, any undefined terms are taken to be 0. We then define the primitive stress error
Ryy1 atg + 1 step by

q+n
Rypii= > Ry, Ry, =Ry+580,. (8.104)
m=q+1

The local part RZ’J’rII and the non-local part E;"fl are defined by

R =RV S Ry = RIS (8.105)

We note that by the above definition, we have that
—m | —m,*
Ry =R+ Ry (8.106)
. . —=m,l m,l
We sometimes also use the notation R g+1 to denote R g+1°

. —m,l . .
that the local portion of R;n 1 remains unchanged throughout the rest of the analysis.

since it will be shown later

Lemma8.16 (Upgrading material derivatives and verifying Hypothesis 2.10). The
new stress errors S;”+ 1= SZ’_;_II + Sqm_’i satisfy the following.

(i) R;"J’rll satisfies Hypothesis 2.10 with q replaced by q + 1.

(ii) Forq + 2 < m < g + 1/2, the symmetric stresses S;"_;ll obey the estimates

1 < 5 1 oo
Yim DYDY, s | < T, 00 AN M (M, Ninges T0 001 T, 1r3)
(8.107)

for N, M < Ngn/10. For the same range of N, M, the symmetric stress S;’L] !
obeys the estimates
. pNpM ¢q+1L.l —50_q+1 A N : i+19_—1 m—119
Vi g DV DM STH | < TS0t AN M (M, Nings D971 TT9)
(8.108)
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(iii) Forq+1/2+1<m <q+nand N, M < Nu/100, the symmetric stresses S;”;Lll
obey the estimates

vflm lD Dlm ]SZ+11’ <Sm ‘I’U;:n[‘l‘l{m q+n}(O'STN+U )+8q+3n>

X ()\mFm)NM (M’ Nind’t’ 1ﬂm 51 Tn— - I T;1F3> ’
(8.109a)

(iv) Forallg +1 <m <qg+nand N + M < 2Ninq, the symmetric stresses S;"ﬁl

N
HD Dtm 1S:;n+*l

2Ny _
<12, N2 AN g (M Ninago 7,1 T L ) .
(8.110)

Lo

Proofof Lemma 8.16 In order to prove the claim in item (i), note that for the portion of
R q +l | coming from R (c f. (8.104)), the claim follows by the inductive hypothesis

itself. For the portion coming from Squl , we may appeal to (8.103) and (8.10), (8.53a),
and (8.80).

Next, we may prove (8.108) directly from (8.27a), since from Lemma 8.6 and
Lemma 8.10, the transport, Nash, and divergence corrector errors do not contribute

SZII In order to prove (8.107), we note that from Lemma 8.6 and Lemma 8.10,

the transport, Nash, and divergence corrector errors do not contribute to S;”fl for
q+2 <m < q+n/2. Then from Lemmas 8.1 and 8.3, we need only consider the case
m = g + /2, for which we have that for N, M < Nsn/10,

ml [ N M m,l
1//1111 lD D;m 1 q+1 (211) wzm IZW D D;m 1Sq+1

8<10 Vi qD qusq+1
( )/lﬂ \z’tm 19&0
< r; 100 m)\NM (M Nindtr T, Fin Sl’T 1“9)

(8.27b),(2.17)
(8.111)

In order to prove (8.109a), we utilize a very similar argument to the one used to
produce (8.111). The only difference is that instead of appealing to (8.27b), we appeal
to (8.29a), (8.70a), (8.89a), and (8.89b). We omit further details.

Lastly, the proof of (8.110) is very similar to (3.9), and so we omit further details.

O

8.7 * Total Pressure Increment and Current from Stress Errors

We collect the pressure increments generated by new stress errors and new velocity
increment potentials. Recall that Lemmas 8.4, 8.8, and 8.12 defined pressure incre-
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ments (osrg, ospy»and osm, respectively) associated to various stress errors. Fixing m
such thatg +7/24+ 1 <m < g + n, we define

ogm 1= ogn + osn + Y=g +a\OSyy - (8.112)

Recalling that every pressure increment referenced above has a decomposition g, =
+ _ g + - : :
o, — o, ,wedefine o, g+ and o, g+1 10 the obvious way.

Next, associated to each pressure increment o, listed above is a function of time
m,, which satisfies m;. = (Dy 40,.) (see Lemmas 8.4, 8.8, 8.12), and so we define

Moy = masg + masrcn + 1{m:q+ﬁ}m0sTN . (8.113)

Furthermore, recall that Lemmas 8.5, 8.9, and 8.13 defined current errors associated
to various stress error pressure increments. Then fixing m, m’ such that g +7/2 4+ 1 <
m' <m < q + n, we define

"l "1 "1 "1

B = B’ + O’ + Lm=g 05, (8.114a)

Gon™ 1= Vg™ + Dgn”™ + Lm=g+in sy
+ Lpw—m) <¢§g + g5 + 1{m:q+ﬁ}¢§m> . (8.114b)

Now we set
" ’ ’
Gsmi= Y e P (8.115)
m'=q+i/2+1

so that the aforementioned lemmas give the equality
divgpgm = Dy go5m — m’Sm = Dy qo5m — (Dy 4q05m) . (8.116)

By appealing to the lemmas mentioned above, we have that the ogn’s satisfy the
properties listed in the following lemma.

Lemma 8.17 (Collected properties of stress error terms and pressure increments).
For each g +1/2+ 1 <m < q + n, osm satisfies the following properties.

(i) Forany 0 < k < d, we have that

1 i - —
Wi,qDNDt,MqS;n_i_l ’ S (U;;n + 6q+3ﬁ> ()“mrm)NM <M7 Nind,t, réI-HSTq 1, Tq 11—2)
(8.1172)

where the bound holds for N + M < 2Njyg.
(ii) For N, M < Njn/200, we have that

N M
Vig D" DLl

.- T8 o Do)V M (M, Nind, Ti 1821, T;lrg) (8.118a)
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N M
Wi,qD Dr,qgg;n

~

5™ G T) N M (M Ning. T8¢ T r9) (8.118b)

Vi DV DMyt | S (odn +8g438) Gon o)V M (M, Nina g, T 827 T71T7)

(8.118c)
¥i qD Dy qosm‘ ~ rq__:_g?z qun/ ()‘q+ﬁ/2rq+ﬁ/2)NM (M, Nind,t» Fél]Jrlgf(;l, Tl;lr:;) .
(8.118d)

(iii) ogm and a;;,, have the support properties

Blsupp @y, 7' Tyi) Nogn =8 Vg +1<q <q+if,  (8.119)
B(supp i, xqiqu,ﬂ) Nogn =0 Yg+1<qg <m—1. (8.119b)

(iv) The function of time Wy, defined in (8.113) satisfies

dM+l
‘ mﬂsm

T Magn | S max (L 7)1, 5 M (M Ninae 7, ' TUL ) L (8.120)

for0 < M < 2Njpg.

*Lemma 8.18 (Total pressure current from stress errors). For every m € {q +
/2 +1,...,q + n}, the current error ¢psn defined in (8.115) satisfies the following
properties.

(i) We have the decompositions and equalities

m
Gn =G5+ D Bgn, P =05 T (8121a)
m'=q+1/241
diV¢Sm = Dl’qo’sm — (Dt’qo’sm> . (8]21b)

(ii) Forg +7i/2+1<m’' <mand N, M < 2Njyq,

_ v I
Ui g DN DM 9! | < 100 () 02 )M M (M Nina o 7T, T, 1)
(8.122a)
N N 2Nindt (3/2 ) No-M
| oY Do | | DY DM | < T8 TV (8.122b)

(iii) Forallg+n2+1<m' <mandallg+1<q <m' —1,
B (supp Wy, l/zk;l Fq/+1) N supp (d:?,,:[) =0. (8.123)
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8.8 * Transport/Nash Current Error

Recall the definitions of the stress error terms R,41 and S;41 from (8.1) and (8.2).
Since div ((Rq — nqld)fiq) appears in the relaxation (2.34) of the local energy inequal-

ity, the new Reynolds stresses Eqﬂ and S, 11 will create current error terms. For this
reason, we must estimate the Nash current error, which is given by

divgy + mly := Vit : (W41 ® wyt1 + Rg—m1d — Ryq1) . (8.124)

The function of time my is defined by

1
my (1) i= /O (Vity : (w41 ® wgs1 + Ry — Ryy1)) (5) ds (8.125)

and ensures that the error can be put in divergence form. In addition, we must estimate
a similar error term called the transport current error, which is given by

. — ~ 1 1
le¢T + m/T = (Bt + Ug - V) (§|wq+1|2 + Kg - 5tr(5q+1)> . (8126)

As before, we set

t 1 1
mr(f) :=/O <(a, +iy, V) (§|wq+1|2 + ke — Etr(Sq+1))>(s)ds (8.127)

to ensure that the error can be put in divergence form. For a detailed derivation of how
these error terms arise by adding W, to the relaxed local energy inequality, we refer
to [22, subsection 5.1].

We now carefully decompose these error terms. Recall that from (8.6) and (8.8),
we have

(w;”ﬁl ® w(<1p+>1>w,- —mld+ Ry = Yy A‘("é)'.R(P#opg)(dy,»,k)) (8.128a)
£kl
2
+ D AW PR (k)0 (8.128b)
£,k
2
oo DL AG L <p§HD¢OZ(§§)4>°‘I’<i,k> (8.128¢)
£ jkI 1
+Y AR, (p§° Z(;{?)“P#o(gg,oﬂ) (1)
£,0,j.k o 1
(8.128d)
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where A(é’)"<> = gy <a(2§)’<>(VCI>(_i’1k))g‘ (Vfb(_i’lk));) To shorten notation, we define
the operator

~ 1 ~
Lry = (0 +uy - V)Etr + (Vuy) : . (8.129)

Using (8.2), we then write

@+, - V) (%mq“'z il - tr(S§+1)>
+ (Vitg) : (wgt1 ® wgy1 + Ry — wJ1d — Ry41)
= Lyn () @ wl)y + Re — 7 1d) (8.130)
+ Lyw (wih)) @ wld,) (8.131)

+ Lyw (RY =71 = Re+ meld = Sy + w0 @w))) . (8.132)

From (8.128), we have that (8.130) is actually equal to

(8.130) = LTN((8.128a) + (8.128b) + (8.128c) + (8.128d)) . (8.133)
Since Dy 4 can never land on the high-frequency object in these terms, we will estimate
them directly using the inverse divergence. We will estimate (8.131) directly using the
inverse divergence, and the fact that the high-frequency part of a product of principal

and corrector parts has zero mean from Proposition 4.5, item 5 and Proposition 4.6,
item 5. The last term, on the other hand, can be written as

(8.132) = —L7n (So + STn + Sc1 + Sm2) (8.134)

using (8.97) and (8.78). We now split the analysis of these error terms into several
lemmas.

8.8.1 * Transport/Nash Current Error from Principal Part of the Velocity Increment

*Lemma 8.19 (Current error and pressure increment from (8.130)). There exists
a vector field ¢ yw and a function mryw of time such that

Ly (w;’_’gl ®w + Ry — ng]d) = L7/((8.128a) + (8.128b) + (8.128¢) + (8.128d))

s ’
divgrnw + My N

dTNw = Z PTNW -
m=qg+1
—-m —m,l —m,* — . .
where ryw = dryw + Pryw form € {q + 1, ..., q + n} satisfy the following.
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. —q+1 —q+|n/2 . . .
(i) The errors ¢?~ Nw and ¢{§ NLW/ ! require no pressure increment. More precisely,

we have that for N, M < Njin/100,

3/2
) N M 7q+1.1 —100 (_gq+1 -1 4N
)sz,qD Dy brnw <Fq+1 g rq+1)‘q+l

M (M N 7 T, TITS) . (8.1350)

N M 7a+1i/21.1 100 (_q+i\? 1w
‘%’qD Drgdraw ’<Fq+ﬁ/2 (nq ) Fgtifra+1i/2)

M (M,Nind,t,r;‘rg“S,T;‘rg) . (8.135b)

+

(ii) Forq +1/2+4+1 < m < n, there exists functions oxm =02, —o0_n Ssuch
braw drnw drNw
that
N M Zm,l + 32,.—1 2 N
VigD Dt,q‘i’TNW‘ S ((UE"T’NW)/rm +5q+3ﬁ>()‘mF4)
M (M, Ninay. 7' T516, 7,179 (8.136a)
CUNAM 4 n i N , 1 pi+17 1720
Vi gD Dt’qaa,;,NW‘§<J$?NW+8q+3n>(}»qu) M(M,de,t,rq ri+7 T, rq>
(8.136b)
. DN DM 5+ < Spai T (T NM(M,N ,r_lFi+17,T_1F9)
‘wl,q t,q ¢#NW 3/2~ m+nl m (m q) ind,t> Tg q q ‘q
(8.136¢)
Coo—9 N i _
'x/;i,qDNDt"f{Iagm H ST (T M(M,Nind’t,rqII‘;"'”,quI‘g) (8.136d)
TNW lloo
N M rq 7 N
vi ,DVN DM o5 ‘5( )n/\—zr
iq LaCgm W gt 17)2) q ( q+1n/2] q)
M (M, Nina,o 75 T, 7109 ) (8.136¢)

forall N, M < Ng/100. Furthermore, we have that forqg +1 <m’ <m — 1 and
g+1=<q"<qg+7p,

= 0B (suppigr g Ty
SUpp o supp W, A n Ty
=suppot, NB (supp Doy A7) Fm/+1) =0. (8.137)
drnw mn
(iii) Whenm =q +2,...,q+nandq + 1 < q' <m — 1, the local parts satisfy
~ — —m,l
B (supp Wy, )»q/qu/+1) N supp¢'}1NW =0. (8.138)
(iv) Form=q+1,...,qg+nand N, M < 2Ninq, the non-local parts 5”01* satisfy

< qMinde g N M (8.139)

N M_m,*
”D Dt,qd)TNWHLOO— g+n “q+3n""m “q
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(v) For M < 2Nipng, the time function mr yw satisfies

M+1

S mraw| < (max(1, 7)” AT

(8.140)

t
mTNW(t)=/O ((8.130)(s)) ds

Proof The analysis of this error is similar to that of the oscillation stress error dealt with
in subsection 8.2, Lemmas 8.1-8.5. We will invert the divergence on this error term
using Proposition A.13 and apply Proposition 7.5 to construct the pressure increment.
Let us define

—q+1 .
Brnw = H+RY | Y Lrw (A% &) Propd (@ k)

£,0,jk, 0

2
+HARY | Y Lrn (A%, Prost (@ ieociry | (8.141a)
£, kI
2
¢%L;//2J =(H+R% Z LTy <A‘("§’;‘(p) corg (ng#OZ(;é)“)oCD(iyk)
£, j.k] 1
(8.141b)

¢?&L;//2J+1 (H+R*)

Ly (A%),) (s @DPFE 4 Proel ) (@ py)
E,], k l 1,0
(8.141¢)

-m

¢TNW (H-FR*)

> Low (A%,) (e CHPE, ko) @)
&, j. k1,0
(8.141d)
q+n+1
FNw = > (MR
m=q+n

S Lon (4iL) (e CHPE, el ?) @)
£, jk 1,0
(8.141e)
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+(H+RY

> Lo (AG) (e @b (4= ) @h o)) @)
Ed,j.k 11,0
(8.141f)

form = g+7/242, - - , g+ii—1. We decompose ¢y into the nonlocal part g7 vy

5o
q+n+

remaining terms. For the undefined 5’; yw correspondingtom = g+2, - -+, g+7/2—1,
we set them as identically zero.

The construction of the pressure increment and the desired estimates will follow
from applying Propositions A.13 and 7.5. While many of the parameter choices will
vary depending on the case, we fix the following choices throughout the proof:

which involves the operator R* or Id — P | and the local part 5’}11\11“, containing the

v=1ig, Di=Dig. Nyo=Nifa, M,=Nw/s5, (8.142a)
N=Ag. M;=Nipae, vV =T,'T5. N asin (xiv). (8.142b)

Case 1: Estimates for (8.141a) . Fix valuesof i, j,k,é,fand consider
the term which includes LryA) r. We apply Proposition A.13 with the low-
frequency choices

i 2j+8
G=LrnAg,r. Cc3n= Supp(nij,k’s’;’,e) T, lr(l1+138q+ﬁrq] )

— Coot14_—1mimax+13
CG.00 = Fq T Fq ,

_ S50 —1yi . _ -5 _ _—1pi+l14 _ ,
JT—Fq T Fqlﬁ,,qﬂg, )‘—)‘q-i-qu s V=1, Fq s qJ—Cb(,’k),

and the choices from (8.142). By Corollary 5.4, ®; i) satisfies (A.41) and (A.42a), and
by (2.30) at level ¢ and (11.7b), we have that (A.42b) is satisfied. To check (A.40),
we observe that L7y involves a material derivative and a multiplication by Vii,.
Therefore, by (2.30), G satisfies (A.40) for p = 3/2 from (6.26¢) and for p = oo from
the same inequality and (5.29). Also, (A.59) is satisfied by (6.28). To check the high-
frequency assumptions, we set (exactly as in the analogous case for the oscillation
stress error - see Lemmas 8.1-8.5)

—d/p

0= (P#oﬁg) s dasin (XVi) , v = 8,‘1,‘25,'3,'4 .. 'Sid—lidA 4 o,
p="=" =xnl;* A=l Co=To,.

Since the choice of parameters is exactly the same as in the oscillation stress error,
we see that the other high frequency assumptions are satisfied. In order to check the
nonlocal assumptions, we set

M, =N, =2Nipg, Koasin(xv), C,=A[". (8.144)
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Then from (11.20b) and Remark A.14, we have that (A.52)—(A.55) are satisfied.
We can therefore apply Remark A.19. Note that (A.59) follows from the definition
of LTyAg),r in (8.7) and (6.28a). Then, abbreviating Go o ® as b i kELR from

(A47), (A.49a), and (A.60), we have that for all N < Mo — d and M < Nin
N nM
D Dt,thi,j,k,g,f,R

< =lpi. 60, —1 3 N+« . —1pi+14 —118
< 1y T e DA L AN M (M Ning g, 77 TEF, T TS )

Notice that from (ii), we have
supp (diVHti,j,k,g,f,R) S Suppt; i peir SSUPPY; kg lR (8.145)

As for the terms which include A((MS). o from (8.141a), we note that from Lemma 6.5

aé) o differs in size relative to aé) z by a factor of r, Y *, which is exactly balanced

out by the factor of r;/ ¥ in (8.141a). We therefore may argue exactly as above (in fact
the estimates are slightly better since ﬁg < ﬁg), and we omit further details. In this
case, we use the abbreviation 4. JkELe instead of L JKELR? which will satisfy an
analogous support property to (8.145).

We now set

—q+11 R
Sraw = D, M jiefo-
i,j.k&o

Using (8.145) and applying the aggregation Corollary 5.21 with H = Hz, g and

m =m0 1% A=A=i, T=10," T=T,"

to get an estimate from (5.58a),

N ~M q+1.1
VigD" Dy b1 Nw

Sy g ) P rS s A M (M, Ning. 7, ' THH1S, Tq—lrg) .
for N, M in the same range as above. Then, (8.135a) follows from this term using
(3.6), (2.40b) and (11.21a).
For the non-local term, from (A.57), and Remark A.14, we have that for N, M <
2Nind,

N M * . 3/2 2Nindty N _—M
D7D, Z R reir| =0g3ala  Aqr1Ty s

ijkEd o
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matching the desired estimate in (8.139). The estimate in (8.140) follows using
Remark A.17 and a large choice of a,, and we omit further details. The version of
these estimates in the later cases will again be similar, and so we do not address them
again.

Case 2: Estimates for (8.141b) . Asbefore,wefixi, j, k,§, I We apply
Proposition A.13 with Remark A.19 with the low-frequency choices
Tyl

2
G = LrnAg).pcord PE(®@in). Cospn = supp 1’ kel

CGr00 = TGt 207 1D imax (8.146a)

p _l—~50 —IF wl qne’ k:kq+1F;1’ v:T‘I_IF;+13’ (I):q)(i,k)v
(8.146b)

as well as the choices from (8.142). As in the previous substep, (A.41), (A.42a), and
(A.42b) are satisfied. The estimates in (A.40) hold due to Proposition 4.9 and the
estimates for Ly A(g),o from Case 1.

To check the high-frequency assumptions, we set the parameters and functions

exactly as in Case 2 in the proof of Lemma 8.1. Since we work with p = 1
instead of p = %, the only difference is that Cy1 = Cx o0 = AZ A instead of

Cs3/2- Then, as before, high-frequency assumptions in (i)-(iv) can be verified. The
nonlocal assumptions are identical to those of Case 1, and are satisfied trivially.
The non-local parameters are set to be the same as in the previous case.

We therefore may appeal to the local conclusions (i)—(vi) and (A.56)—(A.57), from
which we have the following. First, abbreviating Go o ® as L ikeLg We have from

(A.46) and (A.50) that for N < Min —dand M < Nin,

‘DNDMHtt/kélw‘
~1 -1 N+ . Apitld 18
SRS VAL o S A Y (M, Ning.o 7 T 14, T rq),

Notice that from (ii), the support of divHs; JkELe is contained in supp?, jkeLe C

supp (ni’ JKEL ¢>. Thus as before we may apply the aggregation Corollary 5.21 with
H = Hti,j,k,s,f,R and

m =m0 L A=A=kgup T=1,0," T=T,®

g+
to estimate
q+"/2 I
brvw = Z HE kel
ijkE L
From (5.58a), we thus have that for N, M in the same range as above,

N pM Za+2.1
VigD" Dy ybrnw
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S 1y g e P T L M (M Ninas 7 T 19, 7,18

and so we can conclude (8.135b) as before. we must verify (8.138) for d)?{vxl This

however follows from (iii), which asserts that the support of @7 N‘/)V is contained in

Ue)supp (ae).p 0%, &) © Pk, and (i) of Lemma 6.2. The non-local conclusions also
follow in much the same way as in Case 1, and we omit further details.

Case 3: Estimates of the local po;ﬁions of (8.141c),
(8.141d), and (8.141le). Fix &,1i, j, k, [, I, and ¢. In order to check the
low-frequency, preliminary assumptions in Part 1 of Proposition 7.5, we set
P = 1, oo, GR = LTN ( (5) Q) ( O(;é)20> (cb(i’k)) s
G(p =LrNn (Aaé) Q) ( (C§)20> (@, k))rq s
—1i+2j+20 L oWl
Iy ‘supp (Ui,jyk,g,l,ofg )
CG.0 = 8ty ' Ty 0.

A= Agyipp, V= Tq ]F;JFM , ©=d;, = Fgoﬂgk% , TG =T1yg.
(8.147)

—-10
)Lq+n ’

CG,1 = 8(1+n'r

Then we have that (A.39) is satisfied by definition, (A.40) is satisfied by (6.26b),
(6.26d), Corollary 5.4, (4.23), and Definition 4.10, (A.41)—(A.42b) hold from Corol-
lary 5.4 and (2.30) at level ¢, and (7.28b) holds from (6.28), Remark 2.4, and (3.6).

In order to check the high-frequency, preliminary assumptions in Part 1 of Proposi-
tion 7.5, we choose parameters and functions exactly same as in Case 3 and Case
4 of Lemma 8.1. The only difference is that we use Cy 1 instead of Cy 3/,. Indeed, we
choose Cy1 = Ag+ﬁ/2+l in both cases Case 3aand Case 3b. Then, itis enough to
check (A.43), which holds true due to Propositions 4.5 and 4.6 and estimate (4.34a)
from Lemma 4.17 or 4.18 with ¢ = 1. In order to check the additional assumptions
in Part 2 of Proposition 7.5, we again choose the same parameters and functions as in
asin Case 3 and Case 4 of Lemma 8.4, and set the extra parameters as dy , and
re are

3
¢/2p = CGO pC* pT T rmin(m,quﬁ) »  T'¢ = Fmin(m,q+n) -

Compared to Proposition 7.4, we only need to check (7.94c), (7.95c), and (7.95d),
which can be verified by (11.14b), (11.20b), and (11.20c).

Using the abbreviation ti’”j kEq Lo for Goo ® atthelevelof g +7/2+2 <m <

q + n + 1, as a consequence of (7.96)—(7.98), (11.21a), (11.15), (3.6), and (11.7h),

there exists a pressure increment U+tm _such that for N, M < Nan/7,
ijkELLo

3
2
-1 2
& (< A 1.) Tonasn ”M")

N M m
D D th]kéllo

@ Springer



A Wavelet-Inspired L3-Based Convex Integration. ..

Page 1710f271 19

X (min(Ap, Ag+7)Tg)Y

M (M, Ninds, 7 T5F", Tq‘lrg) : (8.148)
‘DN DM ot < (a;;tm o+ +3ﬁ> (min (s Ag1i) D)
z,j,k,é,l,l.o i,j.k&E Lo
M (M, Nind,¢» tflr"“ﬁ,T;ng) . (8.149)
. _\ 3 2
T /3
‘DNDt 4 S <—mm(m’q+n)> Fzgn Az/g (Miq%?)
l,j,k,é,l,l,o rq

x (hgaip )N M (M, Ningg, 7, ' THHIS, T;lrg)

A 7
<" <—q ) g OogrinT )V
Ag+if2

M (M, Nin, 7, ' THHIS, T;‘rg) .

From (A.48), (7.101), and (4.37¢), we have that

supp ( Opgm "y ) C supp (Ht ,],k,g,l,l,o)
C supp (a(g),o (péﬁé) o CD(,-,k))

—1
NB (suppgé.)yo, )Lmq) oD 1y,

supp ( Oy ) C supp (a(g))<> (pé)l;é) ) <I>(,-‘k))

t‘j,k,é',l,l.o

Then, we can obtain the desired estimates for

; ; qg+n+1
. _ m _Q+"
Prvw = Z Hti,j,k,g,f,l,o’ drw = Z Z
i,j.k,&11,0 m=q+n i j kel I
q+n+1
:l: Z +
O—m = O3, m + Z Z
dTNw ‘ Hti,j,k,é,f,[,o ¢(§an
i,j.k.E 110 m=q+n; j kgl1.0

" N
i jk &S

(8.150)

(8.151)

Uitm
ijkELLo

forg +7/2+ 1 <m < g + n by applying Corollary 5.20 with p = 1 and

m _ m
H =Hi i kELTS’ =Hrt l,],k,é,l,1‘<>ISUPPU(E),O(P%);EI)O‘D(i,k)’
— ot
B = o i’ [H * 54+3"] Suppa(e) o ({5 8P (i)’
A \7
H=0_ , w = el I ,
M el Ag-+if2 € suppa) o (07 £ Do

for (8.136a)

for (8.136b)

for (8.136¢) .
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Also, (6.22)—(6.24), (8.150), and (8.151) give that (8.138) and (8.137) are satisfied for
gt+i+1<m <q+n.
Next, from (7.99), we have that

2/3
+
O m

ijkEdLo

Y323 23(i42,j+24) RS
§5q+ﬁfq Iy supp (’h,j,k,g,z,o@'g )

3/2
_2/3
2 -1 /3
(Am—l)‘m ) rmin(m,q+f1) ’

. 4

+ < 2 —23nait2jv2d) (WD, Agti) /3

Ogyym N(Sq_H-qu Iy _
i k&S )Lq+ﬁ/2rq

e @]

72/3
(ﬂ 1)\—1) P

min(m,q+n)

2(C
§(T°°+18) 23 23 F%(40+C°°)
~ tg—n rq—ﬁrmin(m,q+ﬁ) q

minQu, Agei) N7 2 1\
('”—‘”) AL (32t (8.152)
Ag+iply

Coo—11
= Iﬂq+ﬁ/2+1 :

The last two inequalities follow from (2.13), (5.29) and (11.10a). Then, we apply

Corollary 5.18to 6 = 2,0; = 2/3,0, = 4/3, H = aﬁtm _,and p = 3/2, which
ijkELTo
gives
_2/3
+ 23 _—23~20+2/3C 2 -1 2/3 _—10
|0, o SOt T () g < sl

from (11.24c). Combined with (8.136b), this verifies (8.136¢) for g + /2 4+ 2 <
m’ < q + 7. On the other hand, from Corollary 5.20 with H = a;tm LT =
i,j.k,E 110
Coo—11
Ft]+ﬁ/2+1lsuppa@’opfé);é and p = 1, we have that

Coo—10
<I < .
o q+1/2+1

. +
|07

Combined again with (8.136b), this verifies (8.136d) atlevel g +ii/2+1 < m’ < g+n.
Lastly, we have that (8.139) at level m’ for g + /2 + 1 < m’ < g + 1 and for the
nonlocal part of (8.141e) are satisfied by an argument essentially identical to that of
the previous case.

Case 4: Estimate of (8.141f) . Hereweapply Proposition A.13 with p =
oo and the following choices. The low-frequency assumptions in Part 1 are exactly
the same as the L* low-frequency assumptions in the previous two steps. For the
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high-frequency assumptions, we recall the choice of N, from (xvi) and set

2 2
™ 1 ™ 1 —2/3
or = (1d =B o 0P (0l z) + 0= 1d =T 0P (0fs) 7"
(8.153)
921 = gitiadaig AT, A =gy, d =0, (8.154)

Ag+ii

Nise
n=r="= Agtiplq, Cioo = (A ) )%4_,-1 ,  Ngec asin (xiv).

q+i+1

Then we have that item (i) is satisfied by definition, item (ii) is satisfied as in the
previous steps, (A.43) is satisfied using Propositions 4.5 and 4.6 and (4.34b) from
Lemma 4.17, (A.44) is satisfied by definition and as in the previous steps, and (A.45)
is satisfied by (11.18). For the non-local assumptions, we choose M,, N, = 2Njpq SO
that (A.52)—(A.54) are satisfied as in Case 1, and (A.55) is satisfied from (11.20c).
We have thus satisfied all the requisite assumptions, and we therefore obtain non-local
bounds very similar to those from the previous steps, which are consistent with (8.139)
at level g + n. We omit further details. O

8.8.2 * Transport/Nash Current Error from the Divergence Corrector Part of the
Velocity Increment

*Lemma 8.20 (Current error and pressure increment from divergence correc-
tors). There exist vector fields ¢y c and a function mr ¢ of time such that

q+n
Ly ( (p)l Qs w ;21) =div(frnc) + Wy, Srve= Y, divdryc,
m=q+n/2+1
(8.155)

where E?Nc = ar;]flc + q_ﬁr;]\jc forq +1/2+1 <m < g+ n satisfy the following.

i) Forg +1/2+1 < m < g + n, there exist functions ozm = A — 05,
(i) q+7/ =m=q fi P e T TE
such that

Vi,g DV D] ¢TN<:) S (@, NC)*/Z ! +aq+3n> (omTg)™
M (M, Ning 7 'TiF16, 7,15 (8.156a)

N M
Vi gDV DM o,
i " prnc

< (o +o0) Gnr)”
$rne
M (M, Nina g 7 17,7515 (8.156b)

N M +
wi, D Dl O—m
a 4 drnc

|

< i T (D)™ M(M, de,[,rq—lr;Jf”,Tq—lrg)
(8.156¢)

3/2
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NpM  + Coo—9 N ) —1pi+l7 =119
Vi gD Dt’qaﬂ”NcH < TS () M(M,de,t,rq VAR rq)

o0
(8.156d)
2
vigDNDM oo, | < (e ' 28 (g Ta)
i,q t,q ar;Nc ~ )”q+Lr_z/2j q \Mq+|n/2]1 q
M (M, Nina g 7 17,7105 (8.156¢)

forall N, M < Ngn/100. Furthermore, we have that forq +1 <m’ <m — 1 and
g+1=<q"<q+7p,

ot
érNnC

nB (supp B, x,;}rm/ﬂ) —9. (8.157)

- mB( D AT ):
SUpp O supp Wy, Ay Tgry1 ) = supp

(ii) Forallg+i/2+1<m <g+nandq+1 < q' <m—1, the local parts satisfy
B (supp Wy, )L;,lf‘qq_l) N suppar;}\l,c =0. (8.158)

(iii) Forallg+7/2+1 <m <q+nand N, M < 2Nipq, the non-local parts q_br;]\jc
satisfy

N pyM —Zm.* 2Nindt 032y N_—M
HD Dt,qdﬁmc‘ oo = Tgdi Sy aahmTy - (8.159)

(iv) For M < 2Ning, the time function mr yc satisfies

t M+1
mTNC(t)Z/O((8~131)(S))d57 ‘WmTNC

< (max(1, 7)) " 62, 3;M (M,Nind,t, fq—l,T;il) . (8.160)

Proof The proof is similar to Step 2 of the proof of Lemma 8.10. In fact, it is much
simpler since the D; 4 in Lty is always a “good” derivative. We provide a few details

below.
First note that

Lrn (wc(zljr)l Qs w;?—l)

1,
= Z Lrn [a(s),o (P?g)é'g OQ(Ig),o) 0 D iE (A €apr + Abempr)
oivj k€ LT

I,
x 8 (a@),o (Pé)ﬁg °> o q’(i,k)) 0 1y (Ul )" 0 q’(i,k)}

Z Lty [a(s),o (pfg)fé’o) ° (D(i,k)ée(Azneopr + Alempr)
o j k,ET T
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1, K K
<y (a0 (0581 o i) 8r<1>2f,k>]<@é>,oU<’s>,J °Pip

. R 1 1 .
= D Goiireir(©soUfs ) o i
osivj k80T

We note that (Q(IS)’ OU{S), )" has mean 0 (by property (5) of Proposition 4.5 and (5) of

Proposition 4.6) and is =" T T -periodic. So just as in the divergence corrector stress
q

error, we apply the synthetlc Littlewood-Paley decomposition suggested in (4.31) and
define the current errors as follows:

—q+n/2+1  _ * . 1 I s )
brnc = Z ) (H+R )(Go.i,j,k,g,z,IPM,+ﬁ/2+1(Q(é),oU(é),o) °q>(l~k>) ’
ISRATAN
-m = I 1
drve= Dy, (H+RY) (Go,i,j,k,é,[q.lp()wnflvlm](g(é),oU(S),o)s ° q’(:‘,k)) ,
o jkELT
q+n+1

q+n ) 53 1 1 s
$rne = Y. (H+RY) (Go,i,j,k,g,f,lﬂm()»m—lq)wn](g(é),oU(é),o)‘ ° q’(z',k)) ,
m=q+i ¢ i JJk.E, 1 1

+ - (H+RY) (Go,i,j,k,s,i.I (Id_ﬁ*qwﬂ)(Q{E),OU{@,Q)S OCD("-")) :
o, j,k.E11

We shall apply the inverse divergence operator to each term in the sum separately
with the following choices. In all cases, we set
2/3

Gr=2)1G Gyp=h!

g+ T Ri,jkELT" g+i'a G

@i j kgL

We choose the high-frequency potentials as in Step 2 of the proof of Lemma 8.10,
and choose the rest of parameters and functions required in Proposition 7.5 the same
as in Case 3 of the proof of Lemma 8.19. In fact, the size of G,,1 and G o is
smaller than the one in Case 3. By the same argument as in Case 3, we then get
the same conclusion as in Lemma 8.19 for $'; ~yc- We omit further details. O

8.8.3 * Transport/Nash Current Error from Oscillation, Transport, Nash, Divergence
Corrector, and Mollification Stress Errors

* Lemma 8.2_1 (Current error and pressure increment from (8.132)). There exist
vector field ¢ s and a function mrys of time such that

(8.132) = —L7n (So + St + Sci + Su2) = divrys + Wy,
q+n

brns = Z Prns

m=q+1

where ¢ NS = 1 s+ 5?,:; s+ bry s satisfies the following properties.
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(i) Form = q + 1, g + 1/2, the local part 5’;NS satisfies

N ~M —m,l —~12 3/ —14 N —1pi+14 =118
Ui DY DY S| < Ty 26 Vory AN M (M, N, 7y T T, 1)

(8.161)
for M, N < Ngn/100.
i) Form=q+i2+1,..., i, th st functions ozn = o,  — o0,
(ii) orhmh qg+n/2+ q + n, there exist func ions ogn 0¢TNS 0¢r1vs
sucn tnat
N M —7m.l 3 —1 2 N
‘Vfi,qD Dr,qd’nvs‘ S ((G%;NS) Pr o +3q+3ﬁ) (AmTyq)
M (M Nipaio 7 T3, 7,119 (8.162a)
N M+ + 2 N
‘wi,qD Dt,qag'T"NS < (Ug'T"NS +8q+3ﬁ> ()‘mFQ)
M (M Ninais 7 T3, 75T (8.162b)
_ N — i —
[ vi.g DV DYyt p < il (nly) " M (M. Ninao 7, 515,719
(8.162¢)
N M+ Coo—9 N , 1 pitl8 19
[vigD Dl | <ol () M (M Ninao 7 T8, 7,19
(8.162d)
2
iy DV DM oz, | < 2 ) a8 g Ty)Y
i.q La g gt i) q \Mg+1n/2]t g
M (M, Ning,, 7 ' TiH1S, T;lrj) (8.162¢)

for M, N < Nn/200.
(iii) Forq+2+1<m<q+nqg+1<m <m—-1,qg+1=<q" <q+7
g+1<k<gqg+nandqg+1<k <k—1, wehave that

Sl/tppO':m N B (supp &)\q//, Xj,l Fq//+1) = suppo‘jm
brns 4

TN
nB (supp B )»;l,lrmq_l) —¢.  (8.163a)
B (supp Wy, )\IEIFk/_H) N suppq_bl;’fvs =0. (8.163b)

(iv) Form =q + 1, ..., q + n, the non-local parts satisfy

N M 7m,* 2Nindt ¢3/2 N_—-M
HD Dt,q¢TNSHOO = Tq+ﬁ l8q+3ﬁ)‘m Tq s (8.164a)
3
N nM o 2 N
HD Dt,q+ﬁ—1¢TNSHOO < 8,137 (Ag+ilgvi-1)

M (M, Nindo 7371 Ty ey rw_l) (8.164b)
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forall N, M < Ning/4,
(v) For M < 2Ning, the time function mr s satisfies

M+1
dt M+1mTNS

t
mTNs(t)=/0 ((8.132)(s)) ds

< (max(1, 7))~} qun

M (M Ningo 77 T ) (8.165)
Proof Recall from (8.134) that (8.132) consists of — L7y (Sa) where A represents O,
TN, C1, or M2. We first consider the terms involving the local part of Sa, and then
deal with the terms with the non-local parts.

Case 1. Currenterrorfromthe terms — L7y (SZ”I) withm = g+1lorm = g+7/2.In

this case, we first note that S "is non-trivial only when A = O. Recall the expression
of §¢ ! from (8.12a) of Remark 8.2, which gives

ml Un By .
LrnSy" = Zﬁ Z(LTNH i kg o)pi,,/,k,g,i,o ° Pk -
ij.kEloJ'=0

In order to get the associated current error, we fix indices j’, ¢, 1, j, k, &, [ and apply
the inverse divergence Proposition A.13 and Remark A.19 with the following choice
of parameters and functions. Set

)\' F4'B(1)

G=—0gnl,H 'Ly H(” g1, ,o]kélo m=gq+1

kél e=

Byt _
G = q+n/2LTNH (/ ) 0 = )\.q+n/2p m=gq + 11/2 .

i,j.k,&, o’ i,j, k £, l o’
We choose the rest of parameters and functions the same as in Case 1 and Case
2 in the proof of Lemma 8.19, except for N, = Nin/50 and M, = Nin/100. 2> With
this change, (A.39) and (A.44) still hold from (11.21a). The rest of assumptions are
satisfied as in Case 1, 2. Asaresult, in the case of m =g + 1 orm = g + 1/2, we

obtain the associated current error ¢ y §s= 5’}11\17 s+t 51;; s which satisfy
divgyys = —LrnSa' 4+ (Lrn S (8.166)

and the same properties as a’; yw have, except that the range of N and M in the
estimates are restricted to N, M < Nan/100. In particular, (8.161), (8.163b) for k =
q+1,q+71/2,and (8.164) withm = g + 1, g +7/2 hold. Finally, (8.165) holds due to
similar arguments as in previous lemmas, and we omit further details throughout this
proof.

Case 2. Current error and pressure increment from the terms —L7 N(SZ"I) with
q+71"24+1 < m < g+ n. Since Sy» only have the non-local parts, we consider

22 In fact, the actual size of G is smaller than the one in Case 1 and Case 2.
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only when A = O, TN, C1. Recall from Remarks 8.2, 8.7 and 8.11 that for A =
O,TN, C1, we have

mil g By .
LrnSy™ = Z Z(LTN Ay kgL o)’oA,i,j,k,gj,I,o ° Q. (8.167)
1,],k,é,l,1,0] =

With this representation (8.167), we fix indices A, j/, o, i, j, k, &, Iand apply Propo-
sition 7.5 to construct desired current errors and pressure increments.

G B
Case 2-1.ConsiderA = O, C1. ObservethatH i kELL QandpAl RELLS
A = 0O, C1, have the same properties in Remark 8. 2 '8.11. Set the parameters and
functions in the proposition the same as in Case 3 in the proof of Lemma 8.19,

except for N, = Niin/50, M, = Niin/100,

G =—(grinTe) \LyyH'Y 0=hgyinlap 0
a+1/2% q INTN G kel o’ a2 AP ;o e TS

whenm =¢q +n/2+ 1

2 . —1—1 ajn -1 ﬂ(;) :
G=—(A A LyryH - , =22 A , otherwise .
Gn1tm) LT A jkELLe €T tm=1rm Ppiip T 1o

Then, (A.39), (A.44), (7.93a), (7.93b), (7.94d) still hold from (11.21a) and (11.21a).
The rest of assumptions are all satisfied as we see in Case 3. Therefore, as before,

. . . —m —m, —n, %
in each case of m, we obtain the associated current error ¢ yp = @rya + @7y and

. o . + _ —_ . .
pressure increment o; s = UE;NA GWNA’ which satisfy
~LrwSE +(LonSE) = div@7 . (8.168)

and share the same properties as 5’}1 yw and Og have in the restricted range of

N, M. In particular, (8.162), (8.163), and (8.164) holds with the replacement of Er}ll\l,s

.ol
and o5,  with q‘)? N and agf,,

TNS TNA
Case 2-2. Consider A = T N. Comparing the properties of HA(’ ) kELLo and
ij,
,oi(j,/), KED Lo in Remark 8.2 when m = ¢g + n with those in Remark 8.11, one can
gk gL
see that
G= 3! LovH 3 pﬂm
g+t TN e i @ T AP ke T T

satisfies the same estimates as G and @ defined in Case 2-1 when m = g + n,
except that G when A = T N has more expensive sharp material derivative cost by
Iy. Thereefore repeating the same argument, we can obtain the associated current

+n,l +i1, %
error ¢TNA = ¢%NA + ¢>(§NA and pressure increment o g+i = J_:+n —0_44i >
PTNA LEIN LEIN
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which satisfy
—LrySTT <LTng+ ﬁ) = divg? (8.169)

and share the same properties as 5%,'_",[, and O g have in the restricted range of N, M
TNW

expect that the sharp material derivative have extra I'y cost. In particular, (8.162),

(8.163), and (8.164) holds with the replacement of $-vs' and o= ,; with g%+ and

—q+i

N PTNS
0y -
PTNA

Lastly, we define
-m —-m —-m -m
brns = Prno T Prner T Prarn. Ogy =0 togn | Fogn

and the local and nonlocal parts of ¢7 s and the superscript & part of TG

analogously. Here, we set undefined current errors @7, and pressure increments
oG = 0 as zero. Then, combining the analysis in Case 2-1, 2-2, (8.162),
(8.163), and (8.164) for 5;’;5 can be verified.

Case 3. Currenterror from the terms —L7y(SK™™) withg +1 < m < g+n. Lastly,

-k . .
we construct ¢ ¢ satisfying

q+n
divgrys =— D ProLrn (S5 + STy + SEi™ + Siys)
m=q+1

and (8.164). The terms on the right-hand side are not be intermittent, so there is no
pressure increment generated from them. We fix A and m, and apply Remark A.15
of Proposition A.13. We first consider when A # M2. Set Ny = M, = Njpg — 1,
M, = N, = Nind/4,

_ m,* _ _—14Nings . _ B VA |
G—_LTNSA > CG,oo—Tq Tq+ﬁ 5q+3n’ A=hgti, V=V —Tq s

v=1,, Di=Diy, X =1T,, Cr=A[,

and choose a natural number K, such that

3/2

2Nind,t ¢3/2 -K, 2Nind,t+1
T 1) <A <T g+

qg+n “qg+n — “q+n — “q+n 8

Then, all the assumptions are satisfied by (8.11), (8.54), (8.81), (2.30), Corollary 5.4.
In particular, (A.55) can be verified by the choice of sufficiently large a. As a result
of Remark A.15, summing over m, we have ¢; N Which satisfies

g+i
. —x m,*
divgrya=— Y ProLrnSp™,
m=qg+1

N M 7* 2Nind+1 ¢3/2 N M
‘D Dt,quTNAHOO STq+ﬁ 8q+3r’z)‘q+r‘qu
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for N, M < Nina/4. Lastly, we apply Lemma A.23 to 5; N> We have

N M ok Nindt+1¢32 o N _ M
HD Dt,q+ﬁ71¢TNAHOO =T, Ss3itgra(Tgra—1Tg+i-1)

3/2 N —1 —1
= Tq+fz84+3ﬁ)‘q+r'zM (M’ Tg—i—1 Tq-i—r'z—l)

for N, M < Nind/4.
Next, we consider A = M2. As we see from (8.97), S;(,llz* is non-trivial only when
m = g + n. We first note that when g + 1 <k < g +n,

~ o~ Coo/2+18 — _
[p¥ D o= |p¥pfa| < e oo o me ™

for N+M < 3Nan/2+1, from Hypothesis 2.6, (2.32), (2.13), and (2.2b). Also, applying
Lemma A.23 to (2.30), we have

N npM -~ -1 Coo/2418 —1 _ _ ANl _\M
HD Dz,q+r‘z—1V”qu5Tq+ﬁ)‘qu Ty (Agta-1Tg4i-1) (Tq+ﬁ—1rq+n—l)

Combining these with (8.98b), we have from (6.38b) that

N nM q+n,*
HD Dt,q+ﬁ—1LTNSM2

N yM+1 q-+i,*
00 = HD Dt,q+ﬁ71SM2

+ ‘ DNDIA,/Iquﬁfl[((@qM—l — Wy) - V)tr + Vi :]S;{;;”’* 00

2Nind,t—2 N p—1 M
ST Sq3iChgealgri)™ (T 5 Do)

for N + M < 2Njpq — 1. Therefore, we apply Remark A.15 of Proposition A.13 by
setting Ny, = My = Nijpg — 1, Mo = N, = Nina/4,

m,* 2Nind t—2
G=—-LrnSy" . Cooo =T, 5" "8g43i: A =Agtilgtis
/ -1
v=v = Tq+ﬁ_1rq+ﬁ71 )
~ ’ 12
V=lgti-1, Di=Digyi-1, ¥ =Xrpi1Tgri1, Co=A 5 4,

and choosing a natural number K, so that

32 Nind _ N—Ko 32 Ning+1
8gq3i Tgtn = (Agwalgn) 7 = 8,05 Tl

Then all required assumptions are satisfied as before. As a result of the remark, we
obtain ¢y, such that divgyyy, = — ZZ:;H P.oL7n S}y, . and for N, M <
Nind/4,

N ~M —k Ning,t+1 ¢3/2 _ \N p—1 _ M
HD Dt,q+ﬁ—1¢’TNM2Hooqu+ﬁ 8431 Mg lgri) ™ (T, 71 Tgvi1)

3/2 N
< Ty i) 3O 1alg 1)
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-1 _
M <Ma Nind,t» Tgtii—1 Tq+” 1Fq+ﬁ—l) .

Lastly, we set 5; NS ‘= q_b; NO +$; NC1 +<]_5; NTN +$; ~m2 and collect the properties
of 7y A to conclude (8.164). o

*Remark 8.22 (Collecting pressure and current errors from transport-Nash). We
now collect all current errors and pressure increments generated by (8.130)—(8.132)
and set

—-m —-m —-m -m

¢TN = ¢TNW —+ ¢TNC —+ ¢TNS s OZ’}IN = O'ar;LNW + UaVTHNC + UaV;NS . (8170)
where the quantities on the right-hand side are constructed in Lemmas 8.19, 8.20, and
8.21. We use a similar notation for the various functions of time m, so that recalling
(8.125) and (8.127), we have thatmy +my = myryw+mryc+mrys. Then summing
over m, we have the transport and Nash current error ¢, . We similarly collect the

local and nonlocal parts of 5’}1  and the = part of the pressure increments o

Lastly, we define and analyze the current error associated to the pressure increments

¢’7’3N.
*Lemma 8.23 (Pressure current). For everym’ € {q + )2+ 1,...,q + i}, there

exists a current error ¢_,, associated to the pressure increments O’am/ and a function
TN TN
m,_ , of time that satisfy the following properties.
TN

(i) We have the decompositions and equalities
dlv¢, r o+ m = D[,qagm/ , (8.171a)

drN o TN

/

¢7,,, _¢,m, + Z ", ¢7m — ™ L™ (8.171b)

bry m=g4ij41 PN brNn TN TN

(ii) Forqg+7i/2+1<m <m' and N, M < 2Njyq,

3/2
‘wiqDNDqum <100 (ng’) ol D2)M
M <MaNindta rq‘ll“j,“g,T;lF?,) , (8.172a)
N M 2Nind,t ¢3/2 2 \N_—-M
HD D} ”’m* T, 28, 3 o To) Ve M, (8.172b)
o0
N M 2Nin, 32 N M
'D D} ¢> <Tq+nd‘8q+3n(kq+n q+n) ) (8.172¢)
o0
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(iii) Forallq +7/2+1<m <m'andallg+1<q <m—1,

B (supp Dy, l/zx;qu/ﬂ) N supp <¢¢':i;ll, ) —9. (8.173)

TN

(iv) For M < 2Njyq, the mean part my_ satisfies
TN

aM+1 » P
‘dtM—Hmada’}’;v < (max(1, T))™ 8443z M (M, Nind,t, 7 ,T +1> . (8.174)
Proof From (8.170), the pressure increment o, consists of o_,y ,0_,v , 0_,

o
) TN T™Nw _ PTnC  PTNS
Consider the pressure current for the pressure increment o_,,  defined in Case
TNW
3 of the proof of Lemma 8.19. As a result of the application of Proposition 7.5 to
’

m - from Part 4 of the pr ition in a pr I rent ¢, ., .7
ti,j,k,g,l,],o’ om Part 4 of the proposition, we obtain a pressure curre t¢z,/,k,§,l,1,<>

which has a decomposition

i
N _ =% - —-m N _ *
bijkelto=®ijrelrot Z Giinelso=H+R)Digoymw .

m=0 ij.kE LT

Noticing that the estimates for the pressure increment o_,,  are similar to those of
the pressure increments for the Reynolds stress errors, fo;NeV;(ample those defined in
Lemma 8.4, we can obtain pointwise estimates for ET,;I/ analogous to those contained
in Lemma 8.5. The properties in (8.171a)—(8.174) f(T)Ilvlv(‘;w from similar arguments as

before. We refer also to [22], in which a number of error terms are estimate and
analyzed using Proposition 7.5. O

8.9 * Mollification Current Error

Similar to the case of the stress mollification errors, we will have to consider various
mollification errors that go into the new unresolved current. These are listed below
and are estimated in an analogous way to the mollification stress errors.

We recall the operators R* from (A.56) and L7y from (8.129) and regroup the
terms by setting

—l]+1 . q

by = Pg — e

—q+n 1 ~ 2~ 2

Birs =3 (1Dl Dysi — oy Py

—q+n ~ ~
dys = R* [LTN (wq+ﬁ Q Wyti — Wg+1 @ wq+1)

+(aq+ﬁ — Wg+1) - Qg + (ug - VIug + qu)] .
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We also define
g =L e (8.175)

and we set

t
mp4(t) == / (LTn (Wgtii ® Wytit — Wys1 @ Wgt1)
0

+ (Wi — Wy1) - Brug + (ug - Vyug + qu)) (s)ds. (8.176)

For details on how these error terms appear in the relaxed local energy inequality, we
refer to [22, subsection 5.1].

* Lemma 8.24 (Basic estimates and applylng inverse divergence). Forall N+ M <
Nina/4, the mollification errors ¢ M "and qb M sansfy

HDN ‘1“” <5 2 +1M(M Ninas 7, ' T, ' T, ) (8.1772)

q+3ntq
N —q+n 9 32 2Nind, B \N
HD Dt q+in— 1¢ < Fq+n8q+3an+n ' ()“H‘nrfﬁ‘")
M (M,Nind,t, N qu+,—,_1) . (8.177b)

In addition, the mean portion myy4 satisfies

< (max(1, T)) "8, 433M (M Ninds 7, 1,Tq+1) for M < Nug/s.
(8.178)

dM—H
‘ — M4

dtM+l

Proof of Lemma 8.24 We have that (8.177a) follows immediately from (3.15). Next,
in order to handle 5(,{;3”, we recall from (6.39) that

25de[ N
ST (Ag+algri-1)

B T
M (M, Ninda 70 a1 Ty 1) .

HDN t,q+n—1 (wq+1 - wCI‘H—l)

for all N + M < Nin/4. Using Lemma 6.2, we note that D; 47— 1wgt1 = D; qwgt1
and D; g4ji—1Wy+i = Dy qWy+ii. Then writing

—~ 2~ 2 —~ ~ 2 —~
[Wytal Wyta — [Wgt11"Wg+1 = Wyt — We+ )| Wytal” + Wy+1(Wy+i — Wg+1)
'wq-%ﬁ + Wy 1Wg1 - (wq+ﬁ — Wg+t1)

and using (6.38), (6.39), and (6.42), we have that for all N + M < 2Njpq,
)‘DND%+ﬁ_1[|@q+ﬁ|2a}\q+ﬁ - |wq+1|2wq+1]Hoo
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2Nind,t N -1 -1
= 8q+3ﬁTq+ﬁ (Aq+ﬁrq+ﬁ) M (M» Nind,t» Tg+i—1° Tq+ﬁ_1rq+r'l—l .

(8.179)

As for the remaining term 57‘,17, we first upgrade the material derivative in the estimate
for i,. Applying Lemma A.23 to F! = 0, F* = iy, k = q + i, N, = 3Nw/4 with
(2.31a) and using (11.12), we have that

N nM ~
HD Dy g i—1lq

<T LN T-M
’oo ~ Tq )‘q+an+nfl .

We can now tackle the part of the error term that involves L7 y. To estimate this, we
use Remark A.15 with (11.12), setting

G=Lry (wq+ﬁ Q Wyt — Wy+1 ® wq+1) y UV =Ugta—1

2Nin _
Co.00 =8413i T2, h=x=2gpilgri My =Nipay, v=0v =T,
1/2
CU = Aq+ﬁ—1
Ny = Nin/9, M, = Nin/10, No = My = 2Njpq .
As a result, with a suitable choice of positive integer K, so that
2Nind,t 4 5 2Nin —-K, _Nind,
Sq+3i Ty Agan2™ ™ < Ay in < 8q43aT 5
we find that for all N + M < 2Njpgq,
|2 D2y R (L (Bt @ B = wg @)
Nin ) Np—M
S 5q+3ﬁTq+c,1-,I Agtal'g+a)" Ty
< 84431 (gl gri) N M (M, Nind.6: T, 11> T;Lﬁ) : (8.180)

The estimate for the mean portion follows in the usual way from Remark A.17.
Now we deal with the other part of the error term. Recall from (2.7) that

Oy + (g - Vug + Vpg = div(Ry — myld) .
We apply Lemma A.22 with the following choices:

G=div(R; —my1d)*, 0=0 = Wysi — Wg11)*, V=Tg4i 1,
A = Agyi—1Dgtiat
—1 2 A
v=v'=T 5 Topag. Ne=Nnj2,
M, = Nind/Z, d=0, A= Aq+ﬁrq+ﬁ s

25Nind ¢
q+n

/

7' =Croo =8 3;T , Q=T>xR,
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7 =Tyqri1mgNg4i—1, M; = Ningy,
T =A=Agtillg+a-1, Mo = No = Nind/4,

1Odet <AK° <T 10N1nd,t_1‘

K, such that T g+ g+

The analysis here is similar to the analysis for the nonlocal transport-Nash current
errors, and so we omit the details but note that one can easily check that (A.97a),
(A.97b), and (A.98) are satisfied. Since d = 0, we move straight to the non-local
assumptions and output, which again can be easily checked by direct computation or
using similar arguments as for other nonlocal error terms. We therefore have from
(A.104) that for N + M < Nina/4,

H DD tq+n 1R (div (Ry — mg1d)" (g5 — qu).)HOO
3Nin _
S To 83 3 G D) M (M, Ninai Tl Ty (D) (8181)

Promotion of the material derivatives again follows standard arguments and
Lemma A.23, and we omit further details. O

9 Inductive Cutoffs

In this section, we define the new partition of unity {; 417} and verify the inductive
properties from subsection 2.3. At the same time, we verify the inductive velocity
bounds from subsection 2.6. The strategy for these proofs follows quite closely the
strategy from [3, subsections 6.1, 6.2]. However, the proofs now use L3 inductive
information, rather than L2 inductive information. Thus for the sake of completeness
and for the accuracy of the constants chosen in subsection 2.1 and 11.1, which do
depend on the computations in this section, we have included full details of all the
proofs.

9.1 New Mollified Velocity Increment and Definition of the Velocity Cutoff
Functions

We first recall the deﬁnition of @qﬂ in (6.17). We have that for a mollifier 75q+ﬁ, Xt

at spatial scale A q +n r q +/,f | and temporal scale T + 1» we have
wq—i—fl = Pq+ﬁ,x,twq+l . 9.1

Before defining the velocity cutoff functions, we need the following translations
between Iy 1 and I'y.

Definition 9.1 (Translating I"’s between ¢’ — 1 and ¢’). Given i, j, g’ > 0, we define

ix = ix(j,¢) = ix(j) =min{i = 0: T}, > T)_}
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Je(i.q") = max{j : ix(j) <i}.
A consequence of this definition is the inequality
i—1 Jx(i,q) i
I‘;/ < Fqul < F;, . 9.3)

We also note that for j = 0, we have that i, (j) = 0. Finally, a simple computation
shows that i,.(j) has an upper bound which depends on j but not g.

We may now define the velocity cutoff functions using the cutoff functions presented
in Lemma 5.5, although I';, will be replaced with Iy, 5 throughout.

Definition 9.2 (Intermediate cutoff functions). For stage ¢ 4 1 of the iteration where
qg+n>1,m <N, and j,, > 0, we define

2 _ p—2ix(jm) o— 2/3 -1 ix(Jm)+2 —2N
hm,jm,quﬁ(x’ 1= Fq+n 8q+n q (Tqur'zlequﬁ ) Z g+l CI+"
N 2
DY D;" - | Wy 9.4)
We then define ¥y, i, j,,.q+7 Y
—2(im—ix(m +1

I/fm’im’jmﬂ"‘ﬁ(x’ t) = }/m,q+ﬁ <Fq+l(‘tl fa im)) o )h,?n gt (X, t)) (95)

for i, > ix(jm), while for i, = ix(jm),
wm’i*(jm)ajm’q‘i'ﬁ(x’ t) = )7m,q+ﬁ (hl?n,jm,q-Ffl('x’ t)) . (96)

The intermediate cutoff functions V¥, j,, , j,,.q+7 are equal to zero for iy, < ix(jm).

The idea of the intermediary cutoffs ¥, ;,, , j,,.q+i and iy, and jy, is as follows. First,
we use the subscript m to emphasize that v, Mim s jm g + is using non-negative integers
im and j, to quantify the size of D" i | Wq+ii» i.e. m material derivatives applied
to Wy+;. Second, all proofs will have to be written using information from the old
velocity cutoffs ¥, ;+7—1, which we index with j,, (see Definition 9.3). Finally, the
new velocity cutoffs will be defined in Definition 9.4 using the integer i, which is
equal to the supremum over 0 < m < Ny of the integer i, being used to quantify
the cost of D™ Later, i, which will be shown to take values no larger than 7.

t,g+n—1-
With these definitions and using (5.14) and (5.15), it follows that

6 _ 6 — =
Z ‘(/fmvims./'qu""’_l - Z mem,jm,q-Fﬁ - Z ‘(//m dmsJm.q+n = 1

in>0 im>ix(jm) ;oL im Jm
" m=telm {im Fquanqun l}

.7
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for any m, and for |i,, —i},| > 2,
Yt jmrg+1 Ym.il, jmog+i = 0 9.8)

Definition 9.3 (m™ Velocity Cutoff Function). At stage ¢ + 1 and for i,, > 0, we
inductively define the m™ velocity cutoff function

6 6 6
Viim.q+i = Z Vg tii=1 Y i g+ - 9.9)
{le : imzi*(jm)}
We shall employ the notation

e . N . . N 1
= {im)h ™ = (i0s o iNey) € Np™F (9.10)

to signify a tuple of non-negative integers of length Ny ¢ + 1.

Definition 9.4 (Velocity cutoff function). At stage g + 1 and for 0 < i < ipgax, We
define

Ncul.l
6 6
Vig+a = > [T Vmingea- ©.11)
. m=0
li: max im:i]
0=m=Necut,t
For i as in the sum of (9.11), we shall denote
Ncut,t Ncut‘t
supp | [ [ Wmimgsi | = () SUPP Wmsipgti) = supp (W7, ) - (9.12)
m=0 m=0

This implies that (x, ) € supp (¥ 4+4) if and only if there exists i€ N(';‘““”H such

that maxo<m <Ny, im = i, and (x, 1) € supp (Y7 . 5)-

9.2 Partitions of Unity, Dodging, and Simple Bounds on Velocity Increments

Lemma 9.5 (Y,i,.q+i - Partition of unity). For all m, we have that
Y Vst =1 YmingriaVmiyqri =0 for lim —ipl =2, (9.13)
in=0

Proof of Lemma 9.5 The proof proceeds inductively in a manner very similar to the
proof of [3, Lemma 6.7]. To show the first part of (9.13), we may use (9.7) and (9.9)
and reorder the summation to obtain

6 _ 6 6
Z ]/fmvim,l] - Z Z 1pjqu—l1'/fmvinujqu (o, 1)

im=0 im=0 {jm: ix () Zim}
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_ 6
- Z wjm,qfl Z mtm,qu Z w}m,q 1

Jm=0 {im i =ix(Gm)} Jm=0

I
—_

=1 by (9.7)

where the last ineqaulity follows from the inductive assumption (2.11).
The proof of the second claim is more involved and will be split into cases. Using
the definition in (9.9), we have that

1ﬂm,im,q+ﬁwm,i,’n,q—ﬁ—ﬁ

= Z Z Tﬂ,m q+n— lw] ,q+n— ]wm imsJms q+"‘¢/m lm ]m q+n -

{m:im =15 (m)} {/y,n :i;n > (ly/n)}

Recalling the inductive assumption (2.11), we have that the above sum only includes
pairs of indices j,, and j;, such that | j,, — j,| < 1. So we may assume that

(x, 1) € SUPP Yin.ipy. jim.g N SUPP Yim,it, it > 9.14)

where | j, — j,,| < 1. The first and simplest case is the case j,, = j,,. We then appeal
to (9.8) to deduce that it must be the case that |i,, — i},| < 1 in order for (9.14) to be
true.

Before moving to the second and third cases, we recall from the proof of [3,
Lemma 6.7] that by symmetry it will suffice to prove that ¥, ;,, g+ ¥m, il gt = 0
when i}, < i, — 2. We then consider the second case in (9.14), in which j,, = j, + 1.
When i,, = ix(jm), we use that iy (j;) < ix(j + 1) to obtain

i,/,1 Sim—2=00m) =2 <i(m+ 1= l*(];/n) )
and so by Definition 9.2, we have that ¥, ;1 i 447 = 0. Thus we need only now
consider i; > i.(jy) in order to finish the proof of the second case from (9.14). From
(9.14), items (1)—(2) from Lemma 5.5, and Definition 9.2, we have that

L) =i Gin) o (me4 D) g 1)
i, jy i (X, 1) € |:2F;”jm Y(im—is(jm) Fc(;jlrn Y(im+1—ix(j ’ (9.15a)

(m+1) (i, +1=ix( m+1))
B, g (6, 1) < T 7Y (9.15b)
Note that from the definition of y, j,, ¢4+ in (9.4), we have that

(m+1D) U (m+1D) —ix(m))
Fq+n o wm hm Jm+Lg+n = hma.imv4+’i .

Then, since i,’,1 < i, — 2, from (9.15b) we have that

—(mA-1) (i —ix (m)) (m+1) Gim —ix(jm))
Fq_;,_’,’: e hm JJmsq+n = F[H_’Z s B JJmt1l,q+n

F(m+1)(l*(]n1+1) ix(Jm))
q+n
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—(m+1)(im—ix (]m)) (m+l)(i;/n+l_i* (m+1))
= Fq+r’t Fq+fl

[ D G+ D =i Gin)
g+

DG =im)
_Fqur’t

—(m+1)
5Fq+ﬁ .

Since m > 0, the above estimate contradicts the lower bound on &, j,, 4+4 in (9.152)
because l"q_i,-l <« 1/2 for a sufficiently large.

We move to the third and final case, j,, = j,, — 1. As before, if i\, = ix(jin), then
since iy (jm) < ix(jm — 1) + 1, we have that

l,/n <ip—2= l*(]m) -2< l*(]m -DH-1< Lx(m — 1) = l*(];n)v

which by Definition 9.2 implies that ¥, ;» j» 4+i = 0, and there is nothing to prove.
Thus, we only must consider the case i, > i4(j,;). Using the definition (9.4) we have
that

_ m+1) (s G — 1D =1 (jm)) _
M jq+in = FfHﬁ P jm—1.q+7 -

On the other hand, for i), < i, — 2 we have from (9.15b) that

~ (m+1) (i), +1=isx(jm—1)) (m~+1) (= 1—isx(jm—1))
P ju—1,g+7 = Uyl =T i :

Therefore, combining the above two displays and the inequality —iy(jn,) > —ix(jim —
1) — 1, we obtain the bound

—(m+1)(im—ix(jm)) _ —(mA+1)(im—ix(Gm)) (m+1) G G — 1) =i (im))
1—‘q+ﬁ hm’jqu'f‘n = Fq—i—ﬁ 1—‘q+ﬁ

(m+1D) (G —1=1x(jm—1))
Fq+ﬁ

_ p—(m+1)
- Fquﬁ ’

As before, since m > 0 this produces a contradiction with the lower bound on

hm, j,.q+n givenin (9.15a), since Fq_lﬁ K 1)2. O

Lemma 9.6 (Y 44 - Partition of unity). We have that

Y Vla=1. Vigriviga=0 for |i—i'|>2. 9.16)

i>0

Proof of Lemma 9.6 To prove the first claim for ¢ +7 > 1, let us introduce the notation

Ai={?=(i0, vy iNg ) MAxX imzi.} (9.17)

0<m=Ncyt,t
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Then
Ncut,t
6 _ 6
I/fi,q+ﬁ - Z l_[ I/’m,im,q+ﬁ’
?EAI' m=0
and thus

i>0 i>0 feA,- m=0 ITEN(’;ICULI"'] m=

Neut,t
= 1_[ Z w”?' Jimsq

m=0 \i,;;>0

NCut.t NCult
S0 =Y Y T v 3 )
Neus
U

after using (9.13).
To prove the second claim, assume towards a contradiction that there exists |i —i’| >
2 such that ; ;¥ 4 > 0. Then

NCLII t

6
0 75 wi,q-{-n i',q+n — Z Z 1_[ wm Jm, q+n m Jdpgn (918)

zeA, i ‘e, M= 0

In order for (9.18) to be non-vanishing, by (9.13), there must existi = ({05 «oey INgyet) €
A and i’ = (ig, ..., i,’\lcu“) € Ay such that |i,, —i/,| < 1forall 0 < m < Ny, By
the definition of i and i/, there exist m, and m/, such that

. _ . o ./ _ o/ e/
im, = MaXiy =1, by, = Maxi, =i
But then
.. ./ ./ e e . . —
l—lm*flm*—i-lflm;—i—l—l +1, i —lm;flm;—i—lflm*—l-l—l—l-l,
implying that |i — i’| < 1, a contradiction. O

Lemma9.7 (Lower order derivative boundson w ;). If (x, 1) € supp (Ym iy, j.q+ii)
then

+1 m+1 *Um
hm g < F;’Z—n )@@ ix(Ji )) (919)
Moreover, if iy, > ix(jm) we have

hm g = > (1/2)F(m"l‘l)(lm_l*(]m)) (920)
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on the support of Y i, im.q+i- AS a consequence, we have that for all 0 < m, M <
Neut,t and 0 < N < Neye x,

N ym -~ 12 —1/35im+1 _ AN, —1 im+3\m

HD Dy g ri—1Wg+i L (5upp Y iy 47 <8.4i"q " Tghi Cavilari)” (T i1 Uglyi™)
(9.21a)

N M ~ 12 —1/3i+1 _ AN, —1 i+3\M

HD Dy g ii—1Wq+i <845 T TyhaCqralarm)” (T ia T ™

L (supp Vi g+i) ~

(9.21b)

Proof of Lemma 9.7 Estimates (9.19) and (9.20) follow directly from the definitions of
77m,q+,-, and ;444 in Lemma 5.5 and the definition of 4y, j,, 4+ in (9.4). In order to
prove (9.21a), we note that for (x, t) € supp (Vm,i,,,q+i), by (9.9) there mustexista jy,
with i (jim) < i such that (x, 1) € Supp (Vim,i,, jm,q+i)- Using (9.19), we conclude
that

~ 12 =13 it N
pYD" % H <8 it po
t, —1%g+n = g+nl g+n
H qatn LOO(SUPP Y i jm g i) AT T atn ( )

. m
(Tc;rlﬁ—l F;T;) (9.22)

which completes the proof of (9.21a). The proof of (9.21b) follows from the fact that
we have employed the maximum over m of iy, to define ¥; 47 in (9.4). O

Corollary 9.8 (Higher order derivative bounds on w, ;). For N + M < 2Ng, and
i > 0, we have the bound

M o~
DN D = Wyt H
t, —1%g+n
H a+n L (supp i g+7)

i+1gl2 =1/ T N ) i+3 -1 —1 .
< Fq+ﬁ8q+ﬁrq ()\q+nrq+n) M M, Nlnd,t, Fq+ﬁ‘cq+ﬁ—l’ Tq+’71_lr‘q+n_1 .

(9.23)

Proof of Corollary 9.8 When 0 < N < Ngyrx and 0 < M < Ngye,t < Nindy, the desired
bound was already established in (9.21b). For the remaining cases in which either
N > Neye,x or M > Ny g, note that if 0 < m < Ny and (x, 1) € Supp ¥ i, g-+iis
there exists j,; > 0 with i,(j,) < iy such that (x, ) € supp¥;, g+i—1. Thus, we
may appeal to (6.38b), which gives that for N + M < 2Ngy,

N M ~
D7Dy y i1 Wg+a(x, t)‘

Coo/2+16_—1 _ _ \N . Jm=1 _—1 -1 i
S, Fq I"q ()"q+nrq+n—1) M (Ma Nlﬂd,ta Fq+ﬁ,1Tq+,—1,1a Tq+ﬁ,1Fq+n—1 .

Since ix(jm) < i, implies Fj’” < im

ati—1 = Ugys. we deduce that for N + M < 2Ngy,

N nM -
D" DY - Wgin H
t, —1%q+n
H q+n Lo (Supp wm.im,q+ﬁ)

Coof2+16 1 N i -1 -1
N Ly Ty ()"q+ﬁrq+ﬁ—1) M (Ma Nind,t» Fq";;qu+ﬁ,] , Tq+ﬁ,1Fq+ﬁ—1)
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im+1 1/2 _1/3 im+3 -1 — _
= Fq+;, 8q+n q O‘q-&—n q+n) M (M, Ningy, Fq+ﬁ fq+ﬁ_1»Tq+n 1Fq+n—l

after using that either N > Ncye x or M > Neyt t, the parameter inequality (11.14b),
and a large choice of a to absorb the implicit constant in the spare factor of I'y 5.
The desired estimate in (9.23) then follows from taking the maximum over m from
Definition 9.4. O

9.3 Pure Spatial uerivatives

In this section we prove that the cutoff functions ;41 satisfy sharp spatial derivative
estimates which are consistent with (2.14) for ¢’ = g + 7.

Lemma 9.9 (Spatial derivatives for the cutoffs). Fixg+n > 1,0 < m < Ngy(, and
im > 0. Forall j,, > 0 such that iy, > isx(jm), alli > 0, and all N < Ng,, we have

IDN Wi i jmsq-tiil

Lsupp (4 j g-7-1) =N /N < Oogaalga)™ (9.24a)
myimvjm;q+;l
IDV i g1l
1—1\11/q/vﬁ,,n_ S (hg+i Fq+ﬁ)N . (9.24b)
wi,q+ﬁ '

Proof of Lemma 9.9 Step 1: proof of (9.24a). We distinguish two cases. The first case
is when ¥ = ¥, 4, Or ¥ = 4 and we have the lower bound

B2 =20 =ixCn) D) o 12+

m, jm,q+n" q+n =4 q+n ) (925)

so that (5.18) applies. The goal is then to apply [3, Lemma A.5] to the function

VY = Ymg OF ¥ = Y4 with the choices Ty = F;"_,J_rnl, r = F;’_ﬁl)(l”’ BUm) - and
h = hﬁl gt The assumption in [3, equation (A.24)] holds by (5.16) or (5.18) for all
N < Ngjp, and so we need to obtain bounds on the derivatives of h2 g4 which are

consistent with assumption in [3, equation (A.25)] of [3, Lemma A. 5] For B < Ngp,
the Leibniz rule gives

B2
b hm JJm.q+in
B Ncut,x ) i) 42
< —ix jm ix(Jm)+2y—m
()‘ﬂﬁ'n ﬁ1+n) Z Z Fq+ll q+n qu-‘rn )
=0 n=0
—n—B'—1/2 1/3 B’
Ggiilgea) "8 s 2r 1D B DI g )
—ix(jm) l*(Jm)+2 —m n—B+B’ 1/2 /3 yn+B—B'
XFqur_l (fq+n 1 q+n Cg+ilg+i)~ 8q+n |D Dt q+i— lqurnl

(9.26)
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For the terms with L € {n + B’,n + B — B’} < Ncy.x, We may appeal to appeal
to estimate (9.19), which gives

—ix(jm) 1*(])71)+2 m —L 1/2 1/3 L
(= )M oy i Torn) LS HD o H
T4 q+n 1Fgta g+t g i) Oq4a'q Lq+i-10q+n L (SUPP Vi i, jon 1 q+i)
(m+1) (i +1—ix(jm))
<rims . 9.27)

On the other hand, for Newx < L € {n + B',n+ B — B’} < Newx + B <
2Nfin — Nind,r, we may appeal to appeal to (6.38b), and since m < Ncyi,t < Ning,r, We
deduce that

fgii—1 Wg-ti

is(jm) l*(Jm)+2 m L l/2 1/3
e (Tq+n Lo 7" Ogralari) ™ 8, 57g HD Dy’

L (supp¥jy, g+ii—1)
—ix(m)(m+1)—2m Lg=1/2,1/3Coo/2+16 . 71
s Fq+t1 " ,[;n+n 1()‘q+n q+n) 8q+n q rq ()‘q+n q+n— l)
- L
-1 Jm—=1 \m —ix(jm)(m+1)=2m ¢—1/2 1/3.Coo/2+16 —1 Tgti-1 m(jm—1)
(T "< % 8 =r/°T r | L
q+n 1" g+n—1 ~ " g+n q+n"9q q rq+r’z g+n—1

im+1—ix(j +1
Sr;:jrn; i Gm )41 (9.28)

m(jm—1)

g+n—1
into I‘m”’,il and (11.14c), which is applicable by the assumption that L > Ny x.
Summarlzmg the bounds (9.26)—(9.28), since n < Ncyt,x and Ningr < Nfin, we arrive
at

In the last inequality we have used that i,, > i.(j,) in order to convert I

B2 _ B 2m+1)Em+1=ix(jm))
ISUPP(ij,q+r’z—l‘//m,im.jm,q+ft) D hm,jm,q+ﬁ 5()\q+nrq+n) g+

whenever B < Ngp. Thus, the assumption in [3, A.25] holds with C;, =

P20+t 1=iGn)) 5 % Z 3 p N = 0o, N = Ngu. M = 0. Note that
g+t g+t g+

with these choices of parameters, we have Cj, F;zf"2 = 1. We may thus apply [3,
Lemma A.5] and conclude that

|DNwmvimsjn1»q+ﬁ| < N
Lsupp (V4441 ™ T=N Npy S (gwil'g i)
1pm»imvjmv‘I""ﬁ
for all N < Ngy, proving (9.24a) in the first case.

Recalling the inequality (9.25), the second case is when ¥ = y,, 4, and

2 ~2im—ix Gu)n+1) _ 1 20m+1)
M g i gt < T - (9.29)

However, since yy, 4 is uniformly equal to 1 when the left hand side of the above

1-‘2(m+1):|

display takes values in | 1, 1 from item (2) in Lemma 5.5, (9.244) is trivially
play 74
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satisfied in this range of values of the left-hand side. Thus the analysis of the second
case reduces to analyzing the subcase when

hy2n i q+ﬁrqi,(:m ix(Jm))(m+1) < 1. (930)
As in the first case, we aim to apply [3, Lemma A.5] with & = h,zn ima’ but now with

[y =1landT = F;ﬁ;l)(i’”_i*u’”)). From (5.17), the assumption in [3, (A.24)] holds.
Towards estimating derivatives of A, for the terms with L € {n + B, n+ B — B’} <
Neut. x> (9.30) gives immediately that

—ix(Jm) l*(]m)+2 —m —L 1/2 1/3
q+n (q+n 17 g+n ) ()”‘1""" q+n) 8q+n q

Dip" - W, +H
H tLatn—17qTn L2 (supp Yim,ipy . jm q+i1)

Conversely, when N¢y x > L, we may argue as in the estimates which gave (9.28),

F(”H‘l)(lm ix(jm))

except we achieve the slightly improved bound of as above. We then

. q+n
arrive at
2 2(m+1)(lm—l*(]m)) _ \B
lsupp(Ilfjm.quﬁ—l‘//m,im,jm.quﬁ) D hm Jmqi ,S Fq+n ()\q+nrq+n)

whenever B < Ngp. Thus, the assumption in [3 (A 25)] now holds with the same
q+n -

that with these new choices of parameters, we still have Ch szF 2 = 1. We may thus
apply [3, Lemma A.5] and conclude that

choices as before, except now C;, = I g+il g+i- Note

N S _
1 |D '(pm,l,,,,‘/m,q—i-n| < Ou TN
SUpp (¥ iy .q-+i—1) 1—N/Nfin N( q+n q+n)
wm,im,jm,qﬂ%

for all N < Ngy, proving (9.24a) in the second case.

Step 2: differentiating 1/, ;, ,. From the definition (9.9) and the bound (9.24a), we
next estimate derivatives of the m' velocity cutoff function v, ;, , and claim that

|DN Wi gt
1—mzvl/rxlzn = < Ogealge)™ (9.32)

I//m,im,q—t-ﬁ
forall i, > 0andall N < Ng,. We prove (9.32) by induction on N. When N = 0 the

bound trivially holds, which gives the induction base. For the induction step, assume
that (9.32) holds forall N’ < N — 1. By the Leibniz rule from Lemma A.5 with p = 6,
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we obtain
DV (46 — U’ DNy L N
Wiy g+i) = Wi i g+ D™ Vi g+ + > o o
a: Y8 a=N, ' '
aj<NVi
6
[ 2% Vminqia (9.33)
i=1
and thus

N 6
DNmiiy i _ P Wiy gqii) 1 Z < " )
1—N /Nfin - 6—N /Nfn -z
I/Imaim’/lI':jﬁ 61//. / § 6 a1, ...,06

M im,q+n a:Y " ai=N,
ai<NVi
6 o
HD I/fm,im,q+ﬁ
I—a;/Nfin ~°

i=1 wm,im,q—i-ﬁ

Since o; < N — 1, by the induction assumption (9.32) we obtain

DN igsi| 1DV WS 0 i) N
1—N/Nfin 5 6—N /Niin + ()\q+r_l Fq+ﬁ) . (9.34)
‘(mevimsq‘F;l wm,im,q—}-ﬁ

Thus establishing (9.32) for the Nth derivative reduces to bounding the first term on
the right side of the above. For this purpose we recall (9.9) and (A.21a) and compute

DY Wi g+ N
dm g | 1 N\ k,.6 N—K, 6
6—N /N ~  6—N/Ng, Z Z (K)D ('/’jm,q+r'z—l)D (‘pm,im,jm,q+ﬁ)
Vi, im g7 Vi i g+it Ut ix Gm)<im) K=0
6—K /Ngin , 6—(N—K)/Nfn N
~ Vg Vi jm g+ 3 3 N
= w6—N/Nﬁn L K
m,im,q+n {Jm: ix(m)<im} K=0
6 .
x 3 K I DYt qti—1
A, ..., 06) 1pl_"li/'i‘ﬁn
a:2?=| ;=K i=1 Jm-q+n—1
6 )
« Z N-K l_[ D'Bl l//m,im,jm,q+ft
6 Brs--- B/ i} l,,‘*/31‘/’\‘r‘m '
B:y)_ Bi=N-K =

m,im, jm,q~+n

Since K, N — K < N, and lﬁjm,q_,_ﬁ_] s v,bm,,-”hj”hq_g, < 1, we have by (9.9) that

KN 6=(N—K)Nay  6=N/Niw | 6=N /Ny
Jmsq+tn—=1"m,im, jm,q+n < Jmsq+n—=1"m,im, jm,q+n <1
6—N/Nfin - 6—N/Nfin -
wmviqu"’;’ wmaimﬂ‘i’ﬁ

Then the estimate (9.24a) and the inductive assumption (2.14) conclude the proof of (9.32). In particular,
note that this bound is independent of the value of i,.
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Step 3: proof of (9.24b) In order to conclude the proof of the Lemma, we must argue that (9.32) implies
(9.24b). Recalling (9.11), we have that 1// 1q is given as a sum of products of 1// g for which
suitable derivative bounds are available due to (9.32). Thus, the proof of (9.24b) is agaln done by induction
on N, mutatis mutandi to the proof of (9.32). Indeed, we note that 1// Lq Was also given as a sum of
squares of cutoff functions for which derivative bounds were available. The proof of the induction step is
thus again based on the application of the Leibniz rule for 1//[ g+t ; in order to avoid redundancy we omit

these details. O

9.4 Maximal Index Appearing in the Cutoff

Lemma9.10 (Maximal ; index in the definition of v; ;7). There exists imax =
imax(q + 1) > 0, determined by (9.38) below, such that if g is sufficiently large, then

Vigra =0 forall i > imay . (9.352)
Fime < 0™ 8 20 (9.35b)
Coo + 12
; <=t < 9.35
lmax(Q) = (b — 1)8[‘ ( C)

Proofof Lemma 9.10 Assume i > 0 is such that supp (¥; 447) 7# 9. We will prove

that

Coo/2+18 o —1/2 —~2/3

DS P (9.36)

q+n

From (9.11) it follows that for any (x, ¢) € supp (¥ 4+7), there must exist at least

one i = (ig, ..., INy,) Such that max i, =17 and ¥y, ;, ¢+a(x,1) # O for all
’ 0<m=Ncy,t

0 < m < Nyt Therefore, in light of (9.9), for each such m there exists a maximal
Jm such that ix(jm) < im, with (x, 1) € supp (¥, g+i—1) N SUPP (Vim,iyy, jim.q+7)- IN
particular, this holds for any of the indices m such that i,, = i. For the remainder of
the proof, we fix such an index 0 < m < Ny .

If we have i = i), = ix(jm) = ix(jm, q), then using that (x, #) € supp (¥}, g+i—1)
and the inductive assumption (2.13), we have that j,, < imax(q + 71 — 1). Now using
(2.13), (11.7j), and the inequalities Fq+ <m | < thaX(qr" b , we deduce that

n q+n— qg+n
imax (g+n—1) Coo/24+18 o—1/2 —2/3 Coof2+18 o—1/2 —2/3
Fq+fz = F4+nrq+n 1 = F lﬂq—l 5q+n i g—1 = F 8q+n q >

Thus, in this case (9.36) holds.
On the other hand, if i = i;,;, > i,(j;») + 1, then from (9.20) we have that

+1) (i =i Gim
1m, g+ (X, )] = (1/2)1'*(’" ) (Em—ix (i ))
Now from the pigeonhole principle, there exists 0 < n < Nyt x such that
|D" D} i Wi (x, 1)
> ;F(m"rl)(lm l*(]m))l—wl*(Jm)(Sl/z l*(Jm)+2)m

P )'(z
~ 2Neut x qg+n qg+n “q+n Tq ‘I+” q+n q+n—1 q+n
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im 172 _1/3 lm+2 m
> mrq_,_n%_,_n g (Ag+i Lyvi)" (T, q+n 1 q+n )
cut,x

and we also know that (x,7) € supp (¥}, q+ia—1). By (6.38b) and the inequality
Neut,t < Ning,¢ from (11.15), we know that

Coo/217 71

m—

|D" lmq+n 1wq+n(x )l <F Fi— 1)m

()\q+n g+n— D" (Tq—i-n 1F;

’m )m

Coof2+17 1
=Ty rg (gtial'q4i)" (Tq+n 14 g+

where in the last inequality we used the assumption that i, > i«(jm) and converted the

FJ’” \7_1 into F -. The proof is now completed, since the previous two inequalities
and im =1 1mply that
_I 2 _2/3

Coo/2+17 1/2 —2/3 Coo/2+18

T e (9.37)

< 2Neut.x8,, ¢ =4é

q+n —

where in the last inequality we used (11.9) and a large choice of a to ensure that
l—‘0 = 2Ncu’[,x~
In view of the above inequality, the value of iy ax is chosen as

. . Coo 8 -2 1
imax(q) = sup{i’ « T8 o < T8 s oy (9.38)

With this definition, if i > imax (g +7), then supp (¥; 4+4) = ¥. To show that iyax (g +
n) is bounded independently of ¢, simple (and brutal) computations give that

Coof2+18 —1f2 2
og(Cy S ) et 12

log(Ty+7) ~ (b—Der’

verifying that (9.35c) holds. O

9.5 Mixed Derivative Estimates

We will use the notation D45 = Wy -V for the directional derivative in the direction
of @,M. With this notation we have D; 417 = Dy g17i—1 + Dgyi. Next, we recall
from [3, equations (6.54)-(6.55)] that

Dk = Z fix D7, (9.39)
where
K
fix = > ciky || D Dgra- (9.40)
{yeNK: y|=K—j) t=1
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The cj k., ’s are explicitly computable coefficients that depend only on K, j, and y.
With the notation in (9.40) we have the following bounds.

Lemma 9.11 (Bounds for D;ﬂr”) Forq+ii > 1and1 < K < 2Ny, the functions

{fj,K}f-;] defined in (9.40) obey the estimate

i+1¢1/2 _ —13\K +K—
”D f] K”L°°(.Suppl//, qi) ™~ (Ftl]+n8q+n q ) (gl 11+n)a / (9:41)

foranya <2Nj, — K + j, and any 0 < i < imax(g + 7).

Proof of Lemma 9.11 Note that no material derivative appears in (9.40), and thus to
establish (9.41) we appeal to Corollary 9.8 with M = 0 and (6.38b). From the product
rule we obtain that

” Dafj ||LOO(SUPP‘//i,q+ﬁ) ~ Z Z l_[ ” DY, Wy +ii HLoo(suppxljl q+ii)
{yeNK: y|=K—j} (aeNk: |a|=a} (=1
S S DI | (e R
~ q+n q+n q+n q+n

{yeNK: |y|=K—j} {aeNF: Ja|=a} (=1

< (rl+1 1/2 I/?)K()L

)+K J
q+n q+n Tq

q+n q+n
since |y| = K — j. O

Lemma9.12 (Mixed derivatives for @q+ﬁ). Forg+n > 1and 0 < i < imax, we
have that

D¥DK _.pM % H
t, —1 +n
” q+n q+n a L (supp 1!fi,q-%—ﬁ)

1 —1/3
S (T8 arg D Ogaalgen) N

. i+3 _—1 — _
M (Ms Nlndt1 Fq+n g+n—1° Tq+n qu-l—rz—l)

1 —1 _
S e e Ol (T )k

M (M’ Nina.c, qun q_+1n 1’T;+n 1Fq+ﬁ—1)
holds for 0 < K + N + M < 2N,

Proof of Lemma 9.12 The second estimate in the Lemma follows from the parameter
inequality (11.7b). In order to prove the first estimate, welet) <a < Nand1 < j <
K. From estimate (9.23), we obtain that

N—a+j M ~ i+1 o1/2 71/3 ~ \N—a+j
D D S W H < ) (A r )

t, —1%g+n q+nt g+n

H atn LOO(SUPP‘/G‘ m) g+ q+i'q

. +3 - a
x M (M’ Nind,t, rt q+n q+n 1’ T +n IF(IJF”*])
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for N —a+ j + M < Ng,, which may be combined with (9.39)—(9.41) to obtain that

NpK _pM &
HD Dq+ﬁDz,q+ﬁ—1wq+nH

Lo (supp ¥ii g+ii)

N K
< ”Daf, ” ‘DN—a+jDM B _H
~ J. K| Lo S ath t,q+in—1Wq+n
;; (suppl[f,q.;.) qgrn Lo (supp Wi g+7)
i+1 ¢1/2  —13VK+1 N+K
S(F;+ﬁ8q+ﬁr‘q ) (Ag+alg+i)

M (Ma Nind,t» F;—_i?ﬁ ‘Cq__:ﬁ_] , T;_;,l_ﬁ_1 Fq+ﬁ—l)
holds for N + M + K < 2Ngp, concluding the proof of the lemma. |

Lemma9.13 (More mixed derivatives for @q+ﬁ and derivatives for iiq+ﬁ). For
g+n>1Lk>1ap e N¥ wirh lal = K, |Bl =M, and K + M < 3Na/2 + 1, we
have

k
i pbi o
(1_[ D* Dt,q+ﬁ71)w¢1+n

i=1

L (supp i q+ii)
<riths'? V_]/S()\,q+ﬁrq+fl)KM (M, Ning,c, T30 F‘]“‘ﬁ_lT;-‘:l-r_l—l) .

qg+n-qg+n" 4 q+n“q+n—1°
(9.42)
Next, we have that
k
N @ Bi ~
D (l_[DquﬁDt,quﬁfl)qur”
i=1 L (supp Y q+7)
i+1 gl/2  —1/3\K+1
S (F;_l_;_ﬁ(sq/+;,rq / )K+ (Aq+ﬁrq+ﬁ)N+K
i+3 _—1 -1
M (M, Ninag. T30 L rq+ﬁ_1Tq+ﬁ_1) (9.43a)
i+1 gl/2  —1/3 AN pi=5 _—1 K
§F;+ﬁ5q+ﬁrq Ag+al'g+i) (F;+ﬁrq+ﬁ)
i+3 _—1 el
M (M, Ninggs T30 rq+,,_1Tq+ﬁ71) (9.43b)

holds for all0 < K + M + N < 3N/2 4 1. Lastly, we have the estimate

l

k
i phi -
(T1p% DLk, ) Dty
i=1

-1 i—5 K i—5 _—1 —1
S Tl Gl M (M N T3t T Tyl ) 044)

L (supp Vi g-+ii)
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forall K + M < 3Nin/2, the estimate

k

i B T -
(l—[Da Dt,q+r‘z>”q+n

i=1

L (supp Vi g-+ii)
i 1 —1 | — — —
ST ary i Ol ) MM N T3t T Ty )

q+n-q+n" 4 q+n +i1°
(9.45)
forall K + M < 3Nu/2 + 1, and the estimate
~ 1 _
[D%0Ma,0] = 3250l T, (9.46)

forall K + M < 2Ngy,.

Proof of Lemma 9.13 We note that (9.43b) follows directly from (9.43a) by appealing
to (11.7b). We first show that (9.42) holds, then establish (9.43a), and lastly, prove the
bounds (9.44)—(9.46).

Proof of (9.42). The statement is proven by induction on k. For kK = 1 the estimate
holds for K + M < 2Ng, from Corollary 9.8. For the induction step, assume that
(9.42) holds for any k’ < k — 1. We denote

kK

pe = (T10%DF, oy ) g (9.47)
i=1

and write

k

i b =~
(l_[ D Dz,q+ﬁ—1)wq+n
i=1

= (DD i D™D P

t,q+n— t,g+n—1°

— (Dak+akf1Dl3k+ﬂk—i)Pk_2 + D% [Dﬁk e

D""‘*I]Dﬂk" Pes. (9.48)
The first term in (9.48) already obeys the correct bound, since we know that (9.42)
holds for k' = k — 1. In order to treat the second term on the right side of (9.48), we
use [3, Lemma A.12] to write the commutator as>3

B _ Br—
D% [Dt,l;—i-r'z—l’ D% 1] Dt,q-il-ﬁ—lPk_z
B! il Br+Bi_1—ly!
! +Bk—1—1y
=p* Y T (H(ade,moW(D)) Diyva1 P2
I<lyl<p ©° C =l

(9.49)

23 Following [3, subsection A.7], we are using the following notation for iterated commutators. First,
(ad Dt)O(D) = D denotes a spatial derivative, i.e. a zeroth order commutator of D; and D. Then fork > 1,
we inductively set (ad D;)¥(D) = [D;, (ad D)~ 1(D)].
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From [3, Lemma A.13] and the Leibniz rule we claim that one may expand

Q] Of—1 .
[[@dDigia)" (D)= g;D/ (9.50)
=1 j=1

for some explicit functions g; which obey the estimate

.
H Dag./ HLDC(SUppwi,q) S ()‘q+ﬁ—qu+ﬁ—l)a k=1
) i+1 _—1 -1 1
M1y 1 N Tl Tl Tl y) @D

for all a such that a + ax_; — j + |y| < 3Nan/2. The claim (9.51) requires a proof,
which we sketch next. Using the definition (9.9) and the inductive estimate (2.30) at
level ¢ = g + 71 — 1 and with k = 1, we have that

05 08|

t,q+i—
qgtn Loo(suppwm,im.quﬁ)
< > HD“Db - Dl i H
~ t, -1 g+n—1
. Jm im o Lo (supp '/]]m Wq+n—1 )
U T =T )
-1 Jm+1 ~ ~ a
< > T T g1 Tgi1)
{m: F;V«nm—lfryjrﬁ}

. Jm+1 _—1 -1 —1
M (b* Nind.t, Ig4 51 T4t Fq+ﬁ—1Tq+ﬁ—1>

— - a . im+1_—1 —1 —1
N ()‘q+n—1Fq+n—l) M (b + 1, Nind,t, Fqu;, Tgtii—1 Fq+;,,1Tq+;,,1>

forany O < m < Ngy,¢ and for all @ + b < 3Nan/2. Thus, from the definition (9.11) we
deduce that

DD’ . Du, —,1H
H A e e T T

o
S Gugrimt =DM (b 1 Nina, Tl el ol Tl ) 0.52)

forall a+b < 3Nsin/2. When combined with the formula in [3, equation (A.49)], which
allows us to write

@d Dy g47-1)" (D) = fygri1 -V (9.53)

for an explicit function f,, 4471 which is defined in terms of iZq+,-,_ 1, estimate (9.52)
and the Leibniz rule gives the estimate

1D fy.q+iit ||Lw(supp¢w) S gra—1Dgya—D*
M (7/, Ninae, D0t ol 1!

q+n-g+n—1> " g+n—1 q+ﬁ71> 9-54)
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for all @ + y < 3Nan/2. In order to conclude the proof of (9.50)-(9.51), we use (9.53)
to write

Qf—1 Ok—1 k-1

[T@dDigra1)(D) = [T (Fregri—1-V) =Y g; D7,
j=1

(=1 =1

and now the claimed estimate for g; follows from the previously established bound
(9.54) for the f), 4—1’s and their derivatives and the Leibniz rule.

With (9.50)—(9.51) and (9.42) with ¥’ = k — 1 in hand, we return to (9.49) and
obtain

ay [ Pk @1 pPk-1 H

‘ D [Dt g+n—1° D ] t,g+n—1 k 2 Lo (supp ; q+n)
=) B+t 1y

< Dak< - pipPk _k—lfypi)H

~ Z Z H 8j t.q+i—1 k=2 )l oo (supp vy )
J=11=|y1<Bx '

D +1fok+/3k l1 \J/I _2H
a+n Lo (Supp ¥ g+71)

og—] o ,
=DID MM il

Jj=1 1=y a’=0

i+l g1/2 =173 o —a'+oyp_1—j
< Z Z Z Fq+n8q+n g Ogvialgtin)

LOO(supp ¥ g+72)

. i+l _—1 1 -
M(Iyl,det Pyt Tqao1 Tyta- 1)

X(}"q+n q+n) +]+K o1 —o
. i+3 _—1 _ —1
M ( — 1y, Nind,¢» Fq+ﬁrq+ﬁfl’ Fq+n71Tq+;l,1)
i+1gl2 =173 i+3 _—1 _ -1
SThiadgtiara  Cqtialq+i) M(M Nind,t» rq+ﬁ‘[q+fz—1’F‘I+’1—1Tq+ﬁ—l) (9.55)

for K + M < 3Nmn/2 + 1. The +1 in the range of derivatives is simply a consequence
of the fact that the summand in the third line of the above display starts with j > 1
and with |y| > 1, so that only 3Nsn/2 derivatives may fall on g;, which is the extent of
the bounds from (9.51). This concludes the proof of the inductive step for (9.42).

Proof of (9.43a). This estimate follows from Lemma A.6. Indeed, letting v = f =
1’17,]+n, B = Dy 4yi—1, = supp Vi g+i» p = 00, the previously established bound
(9.42) allows us to verify conditions (A.22)—(A. 23) of Lemma A.6 with N, = 3Nfn/2+

-~ —1
1,6, =Cs = F’qfnaq/jnrq Bode =Ap =y = g = Dypirgir Ny = 00,
Uy = [f = F;ﬁl q+1n Py =Mf = Fq+r’t—qu+;1_1’ and Ny = Nipq,. The bound

(9.43a) now is a direct consequence of (A.24).

Proof of (9.44). First we consider the bound (9.44), inductively on k. For the case
k = 1 we appeal to estimate (A.26) in Lemma A.6 with the operators A = D47, B =
Dy 4+ii—1 and the functions v = Wy47 and f = Ditg4j, so that D"(A + B)" f =
D" Dt P Diiy ;. As before, the assumption (A.22) holds due to (9.42) with the same
parameter choices. Verifying condition (A.23) is this time more involved, and follows
by rewriting f = Dy, = Dwy+ Diiy—1.By using (9.42), and the parameter inequality
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(11.7b), we conveniently obtain

for all || + |B] = K + M < 3N:n/2 (note that the maximal number of derivatives is
not 3Ndn/2 + 1 anymore, but instead it is just 3Nn/2; the reason is that we are estimating
Dw, and not wy). On the other hand, from the inductive assumption (2.30) with
q' = g + 1 — 1 we obtain that

k
i Bi o _
(T10%Df, s 1) D
= L% (supp i g47)

5 5_—1
S T tta Gl M (M Niags T3 7 Ty Ty ) (9:56)

k
i ﬂl T -
(l_[ D* D, .q+il— 1)D”q+n—1

-1
S q+n 1Fq+n 1()\q+n IFq+n 1)

) —1 — _
M(M, Nlnd,ta q+n 1q+n 17Tq+n qu+")

L (supp ¥/ g+ii—1)

for K + M < 3Nin/2. Recalling the definitions (9.9)—(9.11) and the notation (9.12),
we have that (x, 1) € supp (¥ 4+7) if and only if (x,?) € supp (lﬁ;‘ q+ﬁ) and so

for every m € {0, ..., Neut,¢}, there exists j, with F/’f‘m | = 1";”;" < Fl+ﬁ and

(x, 1) € supp (¥}, .q+i—1)- Thus, the above stated estimate and (11.7b) 1mp1y that

l

k
i /3' 7 _
(HDa th+n I)DuqJF”*l
= L (supp Vi g-+ii)

S T TR O i g D5 M (M Ny, T 07 T Ty
(9.57)

whenever K +M < 3Nn/2. Combining (9.56) and (9.57), we may now verlfy cond1t10n
(A 23) for f = Diiy4j, with p = 00, Q = supp(tﬁ, g+i), Cp = Fq+n q+n, Af =

f = )\q+nrq+n’ Ny = oo, ny = Fq+n q+n’ H«f = Fq+n qu+n 1’ Nt = Nindyts
and N, = 3Nsn/2. We may thus appeal to (A.26) and obtain that

oot
L”(SUPP Vi g+i)

i—5 i -1
~ Fq+n q+n()”q+n q+n) M (M Nlndts Fq+n q+n’ Fq+ﬁ_]Tq+ﬁ_1)

whenever K + M < 3Nmn/2, concluding the proof of (9.44) for k = 1.
In order to prove (9.44) for a general k, we proceed by induction. Assume the
estimate holds for every k€’ < k — 1. Proving (9.44) at level k is done in the same way
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as we have established the induction step (in k) for (9.42). We let

> i Bi T
Pk/ = l_[ DO[ D[ q+n Duq_l,_n

and decompose

k
i A~ +
(1107t 15 = o0l 7

B B
+ D% [Dtkq+w D%~ 1] Dt’zﬁinPk_z.
Note that the first term is directly bounded using the induction assumption at level
k — 1. To bound the commutator term, similarly to (9.49)—(9.51), we obtain that

Br Br—1
D™ I:th+n’Dak 1i|th+nPk 2
k1

B!
=" L G Z&D’ D P,
I=lyl<pr

where one may use the previously established bound (9.44) with k = 1 (instead of

(9.52)) to estimate H Dg; H Lo (supp i g11) The estimate

N B o ﬂk Y
HD ‘ [Dt g+i D ‘ 1] Dt gvi P 2HLOC(supWqurﬁ)

1 5 i—5 _—1 -1
S q+nrlq+n (}‘Cﬁ-ﬁrq-i-ﬁ)KM (Ma Nind,t, F;+ﬁfq+ﬁ, Fq+ﬁ—1Tq+ﬁ71) (9.58)

follows similarly to (9.55), from the estimate for §j and the bound (9.44) with k — 1
terms in the product. This concludes the proof of estimate (9.44).

Proof of (9.45). The proof of this bound is nearly identical to that of (9.44), as is
readily seen for k = 1: we just need to replace Dy estimates with W, 5 estimates,
and Dty 471 bounds with i, 451 bounds. For instance, instead of (9.56), we appeal
to (9.43b) and obtain a bound for DX Dl g+ wﬁ,, which is better than (9.56) by
a factor of Ay47I';+4, and which holds for K + M < 3Nﬁn/2 + 1. This estimate
is sharper than required by (9.45). The estimate for DK Dz q +nuqun 1 is obtained
similarly to (9.57), except that instead of appealing to the induction assumption (2.30)
atlevel ¢’ = g +7n — 1, we use (2.31a) with ¢’ = g +7n — 1. The estimates hold
for K + M < 3Nfn/2 + 1. These arguments establish (9.45) with k = 1. The case of
general k > 2 is treated inductively exactly as before, because the commutator term
is bounded in the same way as (9.58), except that K 4 1 is replaced by K. To avoid
redundancy, we omit these details.

Proof of (9.46). The proof of this bound is immediate from (6.38b), the definition of
Wy+i in Lemma 6.7, the inductive assumption (2.31b), and the triangle inequality. O

@ Springer



A Wavelet-Inspired [3-Based Convex Integration... Page 2050f271 19

9.6 Material Derivatives
Remark 9.14 (Rewriting v/; ;7). In order to take material derivatives of ¥; 447, we

need to take advantage of certain cancellations. For this purpose, we introduce the
summed cutoff function

m i,g+n — Z wm Jim,q+n (959)

im=0
for any given 0 < m < Ngyt,¢ and note via Lemma 9.5 that
6
D(\pm i q+n) = D(wm,i,q+ﬁ)13UPp(Wm,i+1.q+ﬁ) . (960)

With the notation (9.59) we return to the definition (9.11) and note that

Neut,t Neut, t
1q+n_zwm1q+n l_[ llJm Jd.g+n 1—[ (\I}m iq+n_wm tq+n)
=m+1
cull Ncut,l
_ 6
Z wm i,q+n l_[ \Ijm J,q+n l—[ lIjm”,i—l,q+ﬁ . 9.61)
m"=m+1

Inspecting (9.61) and using identity (9.60) and the definitions (9.12), (9.59), we see
that

NNcut t+1

(x, 1) € supp (Dy gyi— 1V} g i) = and 30 < m < Neu

withi, € {i — 1,i}and max i, =i
0<m’<Ncyr,

such that (x, 1) € supp (V5 ., ;)

N supp (Dy g+ii—1Ym,ip.q+i1)
and i, < i, wheneverm < m’ < Ngyy .
(9.62)

The generalization of characterization (9.62) to higher order material derlvatlves
D%I Aol is direct: (x,t) € supp (Dl - lw ) implies that there exists ie

Ncut,t+
Ny

i,q+n
with maximal index equal to i, such that for every 0 < m < Ny, for which
(x,1) € supp (¢;’q+ﬁ) N supp (D g+ii—1VYm,i,q+i)» W€ have i,y < iy € {i — 1,1}
whenever m < m’. Using this characterization, we may prove the following.

Lemma 9.15 (Mixed derivatives for intermediate velocity cutoff functions). Let
g+n>1,0<i <imax(g+n), andﬁx; € Ng”““ such that maxo<m <N, im = I,
as in the right side of (9.62). Fix 0 < m < Ny such that iy, € {i — 1,i} and such
that iy < iy forallm < m’ < Ney, again as in the right hand side of (9.62). Lastly,
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Jix jm such that iy(j) < im. For N, K, M,k >0, a, 8 € N* such that l¢| = K and
|Bl = M, we have

Lsupp (w;‘ﬁﬁ)lsupp W q+i—1)
1—(K+M) /N,

k
(o7} Bi P 7
<1_[ D Dt,q+n—1) Wm‘lnn]m,!ﬂr"
Yo i jmg =1

S Gl MM Mg = Newts TS T Dgvai Tyl ) 9:63)

forall K such that0 < K + M < Ng,. Moreover,

Lupp (IV,-,,,M)ISMPP W jm g+i—1)
I=(N+K+M)/Ng,

k
N a b o _
D (1_[ Dq+fl Dl’q+n—]) wmylm»]ma(I+n
=1

memajmJ["’ﬁ
N, —1 i—5\K
S (Aq+ﬁrq+ﬁ) (fq+flrlq+ﬁ)
i3 _—1 -1
M (Ma Nind,t — Neut,x» F;+ﬁfq+;l,1 , Fq+ﬁ—1Tq+ﬁ,1) (9.64)

holds whenever 0 < N + K + M < Ng,.

Proof of Lemma 9.15 Note that for M = 0 estimate (9.63) was already established in
(9.24). The bound (9.64) with M = 0, i.e., an estimate for the DV DX,z ¥ iy, g+
holds by appealing to the expansion (9.39)—(9.40), the bound (9.41) (which is appli-
cable since in the context of estimate (9.64) we work on the support of w; i) to the
bound (9.63) with M = 0, and to (11.7b). The rest of the proof is dedicated to the case
M > 1. The proofs are very similar to the proof of Lemma 9.9, but we additionally

need to appeal to bounds and arguments from the proof of Lemma 9.13.

Proof of (9.63). We start with the case k = 1 and estimate DX D;E’Iq i A Y i i+
for K+M < Nfinand M > 1. Wenote that the operator D; 471 is ascalar differential
operator, and thus the Faa di Bruno argument which was used to bound (9.24a) may be
repeated. As was done there, we recall the definitions (9.5)—(9.6) and split the analysis
in two cases, according to whether (9.25) or (9.30) holds.

Let us first consider the case (9.25). Our goal is to apply [3, Lemma A.5] to the
function ¥ = Ym.g+i OF ¥ = Yim.g+i» With Ty = FZT;, I = F;’i;l)(i”l_i*(jm)),
hx,t) = hﬁl’jm,ﬁﬁ(x, t), and D; = Dy 447—1. The estimate in [3, (A.24)] again
holds by (5.16) and (5.18), and so it remains to obtain a bound on the derivatives
of (hm, j,q+ia(x, £))? on the set supp (xp;’q) O supp (¥, . g—1¥m,ip, jm,q) in Order to
satisfy [3, (A.25)]. Similarly to (9.26), for K’ + M’ < Ng, the Leibniz rule and
definition (9.4) gives

K' nM’ 2
‘D Dt,q+ﬁ71hm,jm,q+ﬁ
_ NK 1 2 \M' —2m+1)ix(jm)
S (g4il'g+ii) (i Tga)” Uyt
K’ M’ Neut,x
-1 2 —m—M" _ —n—K" =12 1/3
X 2D T (g+al'g+n) 8y1iq

K"=0 M"=0 n=0
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n+K" pm+M" =~
|D Dy g yii—1Wq+il

m—M'+M" _ \—n—K'+K" —1/2 1/3
X (‘Cq-q—n 1 q+n) ()“H‘"F‘H‘”) 8q+n q
+K' —K" M =M ~
|D" DM iy 1 al (9.65)

By the characterization (9.62), for every (x, #) in the support described on the left
side of (9.63) we have that for every m < R < N¢y,, there exists i < i, and jg
with i, (jr) < ig, such that (x, 1) € supp ¥, g+i—1¥R.iz, jr.q+i- AS a consequence,
for the terms in the sum (9.65) with L € {n + K”,n + K’ — K"} < Ncy.x and
Re{m+M',m+M —M"} < Ny i, Wwe may appeal to estimate (9.19) which gives
abound on &g jp 447, and thus obtain

R —Lg=1/2,.1/3
(7, +n 1 q+n) (g+ilg+i) ™ 8,574

L
DLDR % H
t,q—1Wq+n
4= L (suppVRr,ip,jg.q+i)

(R+1)ix(R) p (RED (ig+1-ix(jRr))
= 1—‘q+n l—‘q+n

(R+1)(ijp+1)
= Fquﬁ .

On the other hand, if L > Ny x, or if R > N¢yt,¢, then by (6.38b), we have that

-1 - Lg='2, 13| pL
(z ) Rhgsalgei) L8 D*Df | Wyt
q+n 1 q+n q q q+n (1 t,q+n— q L”(Sﬂpp*/f_/m,ﬁﬁ_])

Co<>/2+16 —1+—L L
= Fq 1—‘q+n]—‘q—i-n qu+n

. jm _ —
M (R’ de,t’ Fq+ﬁ_17 Tq+n—qu+ﬁ_1)

< M (R Ninaos T 21 Tyl ) - (9.66)

since Neye,x and Ney,¢ were taken sufficiently large to obey (11.14) and iy, > isc(jim)-
Combining (9.65)—(9.66), we have that

M/
pX'p} g1

1SUPP(¢7 q+;,)1SUPP(ij,q+ﬁ—1) m, jm,q+n

2(m~+1) (i —ix(jm)+1) K’ / . —1 i+3 —
< Fq—i—n ()\q+ﬁ Fq+r_z) M (M s de,t - Ncut,tv q+n— 1qu+n’ Tq-i—n 1)
(9.67)

forall K’ + M’ < Ngp. The upshot of (9.67) is that the condition in [3, (A.25)] is now

. . 2(m~41) (i —is () +1 —1 3
verified, Wlth Ch = Fqﬁ Wi =tUm D “and p =% = Cytidgviis b =Ty 5 lr:l;n’
nw="T

B +n 1> and N; = Nindt — Neut,c. We obtain from [3, (A.26)] and the fact that
Ty~ 2¢, = 1that (9.63) holds when k = 1 for those (x, ¢) such that R, j gt (X, 1)
satisfies (9.25). The case when A, j, 4+i(x, ) satisfies the bound (9.30) is nearly
identical, as was the case in the proof of Lemma 9.9. The only changes are that now

I'y = 1 (according to (5.17)), and that the constant C;, which we read from the right
2(m—+1) (i —isx(m))

side of (9.67) is now improved to I’ g+

. These two changes offset each
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other, resulting in the same exact bound. Thus, we have shown that (9.63) holds when
k=1.

The general case k > 11in (9.63) is obtained via induction on k, in precisely the same
fashion as the proof of estimate (9.42) in Lemma 9.13. At the heart of the matter lies
a commutator bound similar to (9.55), which is proven in precisely the same way by
appealing to the fact that we work on supp (v i +i) C supp (¥i g+i), and thus bound
(9.51) is available; in turn, this bound prov1des sharper space and material estimates
than required in (9.63), completing the proof. In order to avoid redundancy we omit
further details.

Proof of (9.64). This estimate follows from Lemma A.6 in a manner identical to the
proof of [3, (6.77)], and we omit the details. O

Lemma 9.16 (Mixed spatial and material derivatives for velocity cutoffs). Ler g +

n>1,0<i<imax(g+n), N,K,M,k>0,andleta, B € N be such that ] = K
and |B| = M. Then we have

- (K+M) /Njin

(]_[ DU Df . 1) Vi gti
i,q+n

S Gugal g MM, N = Newts TH3 Tl 1 Dgann Tyla ) (9.68)

for K + M < Ng,, and

1

1—(N-+K+M) /Ny,
1pi ,q+n

k
N 1 B
D (l_[ DqlJrnDthJrn 1) wi,q+ﬁ

=1

< Ol gV (Ot Dk

M (M Ny = Newos T3 e o Tgran Tyl ) (969)

holds for N + K + M < Ng,.

Proof of Lemma 9.16 Note that for M = 0 estimate (9.68) holds by (9.24b). The bound
(9.69) holds for M = 0, due to the expansion (9.39)—(9.40), the bound (9.41) on the
support of ¥; 415, the bound (9.68) with M = 0, and to the parameter inequality
(11.7b). The rest of the proof is dedicated to the cases M > 1 for both bounds.

The argument is very similar to the proof of Lemma 9.9 and so we only emphasize
the main differences. We start with the proof of (9.68). We claim that in a the same way
that (9.24a) was shown to imply (9.32), one may show that estimate (9.63) implies
that for any i and 0 < m < N¢y,¢ as on the right side of (9.62) (in particular, as in
Lemma 9.13), we have that

Lsupp (v 1)

1p]*(KJrM)/Nﬁn
m,im,q+n

<1_[ D D[ .q+in— 1) wm,im,q—kﬁ
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< ()\.q+ﬁrq+ﬁ)KM (M, Nind,t — Ncut,x, Fq-fn 17(]_.:” 1 Fq+nT;+n 1) :
(9.70)

The proof of the above estimate is done by induction on k. For k = 1, the
first step in establishing (9.70) is to use the Leibniz rule and induction on

the number of material derivatives to reduce the problem to an estimate for
—6+(K+M)/Niin K M 6

wm im g+ D Dt ,q+in— I(meimsq+ﬁ

that (9.34) was proven. The derivatives of

); this is achieved in precisely the same way

6 . .
wm’im’q 4 are now bounded via the Leib-

niz rule and the definition (9.9). Indeed, when DK/Dt q/ Aol derivatives fall on

1//,?,’1."1 g the required bound is obtained from (9.63), which gives the same upper

bound as the one required by (9.70). On the other hand, if DX~ K'pM-M"_qerivatives

t q+n—1

fall on /¢ JugHi—10 the required estimate is provided by (2.33) withg’ = ¢ + i—1and
replaced by Jm; theresulting estimates are strictly better than what is required by (9.70).
This shows that estimate (9.70) holds for k = 1. We then proceed inductively ink > 1,
in the same fashion as the proof of estimate (9.42) in Lemma 9.13; the corresponding
commutator bound is applicable because we work on supp (Vi i,,,,g-+72)SUpp (Vi g+4)-
In order to avoid redundancy we omit these details, and conclude the proof of (9.70).

As in the proof of Lemma 9.9, we are now able to show that (9.68) is
a consequence of (9.70). As before, by induction on the number of mate-

rial derivatives and the Leibniz rule we reduce the problem to an estimate for

Yy o KN T parplt l(lpl ' 4); see the proof of (9.34) for details. In

order to estimate derivatives of 1// g+i> We use identities (9.60) and (9.61), which
imply upon applying a differential operator, say Dy 4+q—1, that

6
Dt,q+ﬁ—l (W,-,ﬁﬁ)

Neut,t m—1 Neu.t
=D gii-1 Z 1_[ \Ifm gt m i,q+n " l_[ q’m” i—l,q+n
m=0 m'=0 m"=m+1
Neut,t m—1
6
= Z Z Drgri1 (W i) l_[ v, gt Vm i gt
m=0 ' =0 0<m’'<m-—1
m/#r’_’l,
Neut,t
6
[T Yoo
m'’=m+1

Neut,t  Neutt  m—1

+Z Z H\Ilmqurn' m,i,q+n

m=0 m"=m+1m’'=0

6
- Dy q+n— 1(\Ilm”i 1 q+n) 1_[ \Ilm”,ifl,qﬂ_l

m+1 Sm//SNcut,t
m" £
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Neut,t m—1 Neut,t
1530 | CAPRIPRITIRER | IR
m’,i,q+i t.q+n—1\WYm i g+n m”i—1,q+n
m=0 m’'=0 m'’'=m+1

9.71)

Higher order material derivatives of wié g+ and mixtures of space and material deriva-

tives are obtained similarly, by an application of the Leibniz rule. Equality (9.71) in
particular justifies why we have only proven (9.70) fori and 0 < m < Ny, as on the
right side of (9.62)! With (9.70) and (9.71) in hand, we now repeat the argument from
the proof of Lemma 9.9 (see the two displays below (9.34)) and conclude that (9.68)
holds.

In order to conclude the proof of the Lemma, it remains to establish (9.69). This
bound follows now directly from (9.68) and an application of Lemma A.6 (to be more
precise, we need to use the proof of this Lemma), in precisely the same way that
(9.63) was shown earlier to imply (9.64). As there are no changes to be made to this
argument, we omit these details. O

9.7 L' Size of the Velocity Cutoffs

The purpose of this section is to show that the inductive estimate (2.16) holds with
q =q+n.

Lemma 9.17 (Support estimate). For all 0 < i < imax(q + 1) and 1 < r < oo, we
have that

—3i+Cp

[¥ig+il, STy 9.72)

where Cp, is defined in (2.16) and thus depends only on b.

Proof of Lemma 9.17 First, note that the cases 1 < r < oo follow from the case r = 1
and interpolation. Next, observe that if i < 1/3Cp, then (9.72) trivially holds because
0 < ¥ g4a < 1forallg +n > 1 once a is chosen to be sufficiently large. Thus, we
only consider i such that 1/3C;, < i < ipax(q + 717).

First, we note that Lemma 9.5 implies that the functions W, ;7 ,+; defined in (9.59)
satisfy 0 < \Iern,i’,q < 1, and thus (9.61) implies that

Ncul.l

[Vigsaly = 22 Vgl - (973)

m=0

Next, we let j.(i) = j«(i, g + n) be the maximal index of j,, appearing in (9.9). In
particular, recalling also (9.3), we have that

<O+ 9.74)

i—1 Jx (@) i
Lopin <T < Ty < T

q+i g+i—1=
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Using (9.9), in which we simply write j instead of j,, the fact that 0 <

1/sz,tﬂrﬁ—lv I/f,i,,',j,qﬂ—l < 1, and the inductive assumption (2.16) atlevel ¢ +n — 1, we

may deduce that

Jx(@)—2
| ¥m.ig+i ||15 ||1/fj*(i),q+ﬁ—1||1+ ||1/fj*(i)—1,q+ﬁ—1||1+ Z [ g1 Vm.i, g+ ”1
=0
3j,()+C 3/, ()434C RO
=< Fq__‘_f‘:fll)—’_ b + F(i_+,]5>k_(ll)+ o + Z |supp (I/fj,q+ﬁ—ll/fm,i,j,q+ﬁ)| .
=0

(9.75)

The second term on the right side of (9.75) is estimated using the last inequality in
(9.74) as

=3js()+3+Cp —3i ~6+Cp —3i+Cp—1 ~6+C,—b(Cp—1) —3i+Cp—1
Fqur’;l = Fq+ﬁrq+r’171 = Fq+ft Fq+fl71 = gt (9.76)

where in the last equality we have used the definition of Cj, in (2.16). Clearly, the first
term on the right side of (9.75) is also bounded by the right side of (9.76). We are left
to estimate the terms appearing in the sum on the right side of (9.75). The key fact is
that for any j < j.(i) —2 we have thati > i, (j) + 1; this can be seen to hold because
b < 2. Recalling (9.20), for j < j.(i) — 2 we have that

1 3m+1)(i—in(
SUpP (¥ g+i—1 ¥m.ij.g+i) S {(m) € Supp (Vjgaii—): by i g1 = grqi”; ) ’*“”}

. ..6 3 3(m+1)(i—ix()))
g{<x,z>.I/fji,ﬁ,f,_lhm,mﬁzg 3ot 1)—ied } 9.77)

j+1
Here, ¥+ 4471 denotes Ip?i’q%_l = Z 1///(?,’q+ﬁ_1. In the second inclusion
Jj'=j-1
of (9.77) we have appealed to (2.11) at level ¢ + n — 1. By Chebyshev’s inequality
and the definition of 4, j 447 in (9.4) we deduce that

|supp (W q+ii—1¥m.i,j.q+i) |
Ncut,x

o i )
< (N )3T, o0 D) N 3D ey g o) ™"
n=0

.. —3m 3
-1 ix(j)+2 ) _ nym ~
x (rﬁﬁ_lrm Viabiot D" Dy i By

Since in the above display we have that m < Ncyr,t < Nipg from (11.15), we may
combine the above estimate with (6.38a) to deduce that

i
[SUPD (W gt 1 Wi g )| < 8NEy (g PN p 30
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. . . 3m
60 (-1 —ix(j)—2
Fq (Fq+ﬁ—qu+ﬁ )

4 60 ~—3i
= 8Ncut,xrq Fq+ﬁ

—3i+Cp—1
S VA 9.78)
We have used here that F(5+ﬁ—1 < 1";*_8-[), that m > 0, and that C;, > 62 since b < 25/24
from (2.2).

Combining (9.73), (9.75), (9.76), and (9.78) we deduce that

“ ¢i,q+r‘z “1 < Ncut,t Jx (@) Fq—_iil-i-ch—l .

In order to conclude the proof of the Lemma, we use that N¢ ¢ 1S a constant independent
of ¢, and that by (9.75) and (2.12) we have

. logy 17 _ Coo +12
N o< oglgtn  _ . b < et
Jx(@) < llOg Tyrit — imax(q + 7 )b < & — Der
Thus j, (i) is also bounded from above by a constant independent of ¢, and upon taking
a sufficiently large we conclude the proof. O
9.8 Verifying Eqn. (2.17)

The following lemma verifies the inductive assumption (2.17) at level ¢’ = g + 7.

Lemma 9.18 (Overlapping and timescales). Let ¢” € {g + 1, ..., q + i}. Assume
that i g+qVin v % 0. Then it must be the case that Ty l"q__'M < 1y I"q_,/' -2,
Proof of Lemma 9.18 We split the proof into two steps. In the first step, we prove the
claim for ¢” = g +n— 1, while in the second step we prove the claim for the remaining
cases.

Step 1: We must prove thatif v; ;1 7¥i7 g47—1 # 0, thcin Tytii quﬁ < tq+ﬁ_1r‘;i,%__215.
By (9.11), if ¥; 44a(t,x) # O, then there exists i = (ip,...,IiNy,) such that
maxy, iy =i, and ¥y, i, g+7 7 0forall0 < i < Ny . By (9.9) and Definition (9.1),
for each i, there exists a corresponding j,, such that ¥, ,4+7-1(t, x) # Oand F;’fw-l >

F;'iﬁfl' From (2.11) and (11.7b), it then follows that if ¥, ;,, g+7 ¥ j7 g+7—1 7 O, then

pein <o i 40
Tg+il g4n = Tg+i—11 4471 -

Then (9.11) gives that if ¥; g7 g1i—1 # 0,

o <go - 30
g+nt gyn = tg+n—11 g1 -
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Step 2: Suppose that g” < g+ —2 and that ; 417 (t, X)¥ir 4 (f, x) # 0. Then from
(2.11), there exists j such that ¥; 417 (t, )V g+a—1(, X)¥ir 47 (2, x) # 0. Applying
the result of Step 1 in combination with the inductive assumption (2.17) concludes the
proof. O

10 * Velocity Increment Potential

In order to analyze certain current errors (see for example [22, Lemma 6.13]), it will be
necessary to write the mollified velocity increment W, as the iterated Laplacian of
a potential. We first carry out this construction for w41 in the first subsection, as well
as construct a pressure increment which dominates the resulting velocity increment
potential and analyze its associated pressure current error. Then in subsection 10.2,
we analyze the mollified velocity increment potential, which completes the bulk of
the work required to verify the inductive assumptions in subsubsection 2.7.6. Finally,
in subsection 10.3 we prove a lemma which allows us to verify (2.21) at level ¢ + n
in [22, Lemma 6.8].

10.1 * Defining the Velocity Increment Potential

In this section, we define a potential for w4 along with an error term, construct its
pressure increment and the associated current errors, and investigate their properties.
(@)

q+1
1 such that the following hold.

*Lemma 10.1 (Velocity increment potential). For a given w

(6.16), there exists a tensor 11(4_)1 and an error e( )

1= p,c asin

(i) Let d be as in (xvi). Then w )] can be written in terms ofv 1 and e 1 as

q+
w? = givd, @ (»)
q+l = divivu q+1 + eq+1 (10.1)
w© = dif T 10 ) 4 16 '
q+1_ g q q+l 9" q q+1’
or equivalently notated component-wise as (w(p) )* =0 ...0; ;fr’l"i"""id) +

.
q+1
(ii) qu and eq+1 have the support property*

supp (v ), supp (€q+1)

1,
c U supp (xtk,qéq,o,i,k,gj (pfg)é'; <>) o <I><i,k>>
£d,j.k 11,0

nB (suppg(lg)’o, 2xq—+1,.,) o Bk . (10.2)

24 For any smooth set Q C T3, we use Qo ®(; k) to denote the set <I> ) () C T3 xR, i.e. the space-time
set whose characteristic function is annihilated by D,,q
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(iii) For 0 < k < d, (U;i)l,k). = Aglé " ~-~8,-kv;i_’f’”’""ld),25 satisfies the esti-
mates

1 1
1 373 i+14,~ -
H‘ﬁi,qDND%zU;Jr)l,k H3 = Féo‘sgmrq 3)‘2V+EM <M’ Nind.t. F;+14Tq g FqSTq 1)
(10.3a)

<F%’°+10 “UN g (M. Ny, Titl4g=1 p8p-1
=1gq rq » Nind,t» q ‘Cq »lgtq

(1)
‘)wi’qDNDM v g+
(10.3b)

t,q“q+1,k Hoo

for N < Npn/4 — 2d% and M < Ng/s.
. 1 .
(iv) eflﬁl satisfies

20Nina s . — _ _
“DND%e;QI HOO < 833 Topi 103N M (M, Nina.o 7, roq‘) .

q+n q+n"q+n
(10.4)

for N < Njn/a — 2d% and M < Nj/5.

*Remark 10.2 (Notation for cumulative velocity increment potential). We let
. (») -1, . d—k
Vgl = Uy + quq Uyt and U(;Jrlyk = A, -0 -

(,i1,.
q+n -9 l
lary of Lemma 10.1, we have that

) )
ik Vg1 . As a corol-

-d
Wg+1 =divivg41 +eg41,

Where. Ugtl gnd Cq+1 share. the propefties .(1.0.2)—(10.4) with v;i)l and e;{g | after
adjusting the inequalities to include an implicit constant.
Proof Recall from subsection 6.1 that w41 = Wy+1,R + W41, Where
- 1
Worlo= Y a@.oVP; ek sE) 0 ®arnWi , o Dik (10.5)
ij kg LT
1
+ Z v ((pé);g’o) o <I>(,~,k)a(§),o) X <Vd>(i’k)U{§)’o o qD(i,k))
ij kg LT
(10.6)

for ¢ = R, ¢. To construct v, 11 and e, 1, we will apply Corollary A.21 to the right
hand side terms. We shall adhere to the convention set out in Remark A.18 and treat
each component separately, so that the resulting tensor potential does not have any
special symmetry properties. _

Fix values for all indexes i, j, k, &,1, I, set © = R, and consider one component,
indexed by e, of the vector field in (10.5). Set

p=3,00, Nyu=Ninf4, My =Nin/5, M; = Nipgy,

B Ifk=0,we adopt the convention that d;, - - - 9;, is the identity operator.
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— I,R o —1
G =ag), RVCD(LI;()(P@)C& )o@ inE'ry Po =,

= mgF3O, rGg =ry

_ . #L.R 3 J+7 — _
Ce.p= )supp (771..’1.,,“5’1’1{;})t )‘ Spvila A= Agqip,

/_
A =2,Ty,

_ o —1pi+13 /18
v=rt, 7 v =TTy
o=rl0 r

T qH"/ZJ 4

S)Lquny q+n

U= Ty

q+V’/2J
& hgtiis T R

—2/3

Cos=1, Covo=rs ", w=hgpiplyy T =0 =A=hgs,

where ¥ is constructed from Proposition 4.5 with D = d?. Then, all assumptions of
Corollary A.21 hold by (11.21a), (6.26d), (6.28a), (2.30), Corollary 5.4, (5.11), and

it ; _. ., _.
I;lroposmon 4.5. Then from (A.89), there exist R =: V)R and £ =: ). 1.R such
that

»
a@) kYD (06188 ™) 0 B Wiy g 0 By = divivd) x+ell) ) &

From (A.92), we have that

R T R L EQIRH
M (M,M,,r—lri+13,Tq— rq) , (10.7a)
[0Vl vl ], = [PV Y P ) k]

< 2_J+7—]ld N+a
8q+nr )‘q+n)‘q+n

M (M,M,,flr'+13,T 1“3)

(Coo+20)/2 —14,/—d y N+a —1 i3 -1
<y Aq_m}\q_mM(M,M[,tq ri T, ) (10.7b)

for0 <! <d, N+ <Nmja—d? and M < Nin/5, where we used (5.29) in the last
inequality. From (A.93), we have that

N M (p)
| 0" DYl x|
1
bl i+7 —
Szt ', U (rasinfigsn)® hoy e
M (M, My, 7T T F) (10.8)
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for N < Nfin/4 — d?,and M < Nfin/5. Furthermore, from (A.90) and (7) from Proposi-
tion 4.5, we have that the supports of U((g)), ;g and eg))’ ;. are contained in the set on
the right-hand side of (10.2). .

We now sum over indexes i, j, k, &, [, I and set

(p) _ P (p) _ (p)
Yg+1,R = Z VeLnr:  Cq+1,R = Z €@),1.R" (10.9)
i jkEdT i jkEdI

which verifies the first equality in (10.1) and (10.2). Using (5.47) to obtain an L™
bound for the sum and Corollary 5.18 with H; JKELR = U((g)),LR’ 0hb=60=1,p=

L,

1
3,Cyg = S;M Fgrq_l, Ny = Ny = Nin/4 — d?, the obvious choices for the other

parameters, (10.7a), (10.7b), (10.8), and (11.20b), we have that u;’f]’ . and e;{?], R
satisfy

[i.q DY D3y 8y 7 ) )

3

1

< pl0s2 =13, k—dy N+a —1pi+14 p—1p8
ST082 arg Ak N M (M, My, 7 T T TS

[i.q DY D3y 8y, ) ) )

o0
Coo
=2+10 _1,k—d, N+ —1pi+14 p—118
< 2 d o i+
ST e (M M1 T TS
NnM (p)
”D Digeqv1,r

’ e ¢]

—104 N —1pi+14 —118
Ay ritqriM (M,Mt,rq r,m T, Fq)

2Nind ¢

3
5 § Tq+ﬁ

q+3n

for N < Nin/4 — d?, and M < Nin/5. The first inequality follows from Lemma (5.17)

and Remark 5.18, and the second and the last inequalities use the support property
noted earlier.

In a similar way, we work on (10.5) with ¢ and (10.6) with R, ¢ and generate

(U;’flyw,e;‘?lg({)), (UC(,CJZLR’ e;‘il’R), and (Uﬁl,w’ eéﬁl)(p), respectively. Indeed, for

(10.5) with ¢, we set

— -1 ¢ 1 —
G = a(é),qu)(i,k)(p(g);g )o q)(i,k)ss 0= Q%' . hgy1i2) e §07
shg+ns )‘q+ﬁ 5
_1/35

v =ry by gy Ta

g’)“qﬂ'u R+

where ¥ is constructed from Proposition 4.6 with D = d?, and choose the rest of
parameters and functions as in the case ¢ = R. The rest of the conclusions follow
analogously to the case ¢ = R, and we omit further details. In the case of (10.6), we
write

Y. ] ° _
W) =rgTy ' Goloo 0 @),
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where G, and g, are defined by

—1 R .I.R )
Gr = )»q-i-ﬁ/zecprap (Cl(g),R (,O(g)é'g ) o cD(i,k)) 8’q>?i,k)’
or =rgi (U p)'. @ =P

P31 Il
Gy =rq dqiap€eprdp (a(é),w (P((pg)fg w) o q’(i,k)) O P 1y

—1/3 S
Qp =Tq /z)“q+ﬁ(U{§),¢)Y’ D= DGy .

Due to the rescaling by r, T’ 1 » we may apply Corollary A.21 to (ryT", ~1y~1 (wg:i)o
with the same choice of parameters as in the case 1 = p. As a consequence we

obtain (vq o ;CJ)F] o), defined as in (10.9), which enjoy the same properties as

(U;ﬁ_)l R ;’21’ »)- Note that from the construction, the velocity increment potential

associated to the correctors satisfies

(c) _a.d (c) -1 (C)
Wot+1,0 = div (rql" Ugt1.0) Tralg egin o

We may now set

— (p) © _.. ® (0
Ug+1 = Z vq+1<>+rq q q+l<>_'Uq+l+r‘]Fq Vgt

o=R,¢p
(p) -1 () (02) 1,0
€q+1 = Z eq[-)|—1<>_i_rq qc+l<> = q[-)H +rqr qL:H
O=R,¢p
which leads to (10.2), (10.3a), (10.3b), and (10.4). m]

*Remark 10.3 (Decompositions of potentials into pieces to facilitate pressure cre-
ation). From the proof of Lemma 10.1, the velocity increment potentials vV

q+1,k>
1=p,c,k=0,---,d, have the additional properties listed below.
(i) Using Corollary A.21, (ii), we have that U;l Aq+n q+1 can be decomposed
as
nH  _,d a()) ﬁG) _
Vptid =t D Z Hgy 10,10 © Piib)
t,],k,é,l,l,o j=0
=1 Y Hg)1.00@).1.0 0 Pk (10.10)
é).1,0

where we abuse notation slightly by using (§) to include the indices 7, j, k, &, I J
as well as the indices in «(j) or B(j) in the final expression, which take a finite

number of values independent of ¢g.
(ii) Let p = 3 or oo. H), 1o satisfies

supp ), 1,0 < supp ((p?s)Céo) ° ‘1>(i,1<)) , (10.11a)
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k
B Yp 1 ,+7 _1/3
[10% D/ Heey 1.0 8gvila

i=1

1,0
S lsupp (n,-,j,k,gj,oig )
P

la|
)"q+11/2

(181 Nina o 75 T2, 7, 118) - (10.11b)

k
l_[ DY Dﬂt H(é) I

12 —1/3
S (n@F3O) /2 / )Ll;in/z

M (181, Nina.o 7' T3, 1718 (10.11¢)

for all integer k > 1 and multi-indices «, B € NF with || < Nein/4 — d? and

|B] < Nin/s.

(iil) peg), 1,0 18 (T/Aﬁ,;/qu)?’-periodic and satisfies

~

SUpP O(¢).1,0 < SUpPp 19“ arin” (10.12a)
et q+n ©
v =3y
”D PELo|,, STd g (10.12b)

for all N < Nan/4 — d? and ((£), I, ©).

These properties of Hg) 1. and p(g),1,o follow from items (i)—(iv).
From the above properties, we may derive similar formulae and properties for all
of the various velocity increment potentials U;i)l A defined in item (iii) for0 < h < d.

Specifically, we have that U;i_)l ;, can be decomposed using (10.10) and the Leibniz
rule”®
(L,e,int1,sid) _ L d—h L (Leif,eniq)
Uq+l,h " )"q+nall e 8lh Uq—i—l

_ ,d—h B a(j) B ,
=g 2. Cad D ZaahH@),l,o B (p(sm,ooq’(l»k))

Gn.bn i,j,k,gj,l,o 7=0
= Y HE P e Pk
&),1,0,10
. hh
— Z L¢P (10.13)
&),1,0,10
26 We use the notation
SO (= DT Cay iy Biay iy f Oy 0, 8= ) Co 9, FOp, 8
ap=(ay,....aq), ap,bp,
bp=(by,..., bp)

where dy,, Eh are multi-indices with A, respectively B distinct components for which the union of all indices
belonging to either aj, or by, is {i1, ..., ip}.
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where Hé)h/] o pé)h /1, +»and T(hs)h /I o satisfy the following, and we again abuse notation
slightly by letting (£) denote all indices i, j, k, &, [, 7, as well as those indices needed
for the application of the Faa di Bruno formula from (A.9) to th (pé()J )1 o 0P, k)>.

We again have that (£) includes i, j, k, &, I , €, as well as the a finite, g-independent
number of indices.

(i) Let p = 3 or co. H(S) 1o satisfies
suppH(g) 1.0 S supp ((,o(é);‘g )o &y, k)) (10.14a)
; ﬂi RS VKR J+T =13
l_[Da Dy, (g) lof| S ’SUPP (”i,j,k,g,l,ofs ) Sqvila Tq
P
x ML, M (181 Ninao 7, T3, T, T8

(10.14b)

1_[ Da' DIBZ (E) 1,0 ~ (ner30)l/2klai’l/2 ('/3" Nind,t’ T(;lr(i1+137 Tglr(?) )

(10.14c)

for all integer k > 1 and multi-indices «, § € NF with || < Niin/4 — 2d? and
|B] < Nin/s.
(i) p(hs’)hl o i8 (T/x,.7,T¢)3-periodic and satisfies

hb ~
SUPP A(¢) 1 o < SUPP (19S o i <>> (10.15a)
shg+ns )\q+;l s
N _hi 22 N
HD PEv1o|,, STd  Pqri (10.15b)

forall N < Nan/4 — 2d? and ((£), I, ©).
(iii) For p = 3, oo, we have that

Y
Yo AL L (10.16)

h,h'
HT q+n

@10,

1,
< ‘supp (ﬁi’j,k,g,i,ogé o)

The proofs of these properties follows from backwards induction on the index 4.
Indeed, the case 7 = d has already been shown in the beginning of the remark. The
subsequent cases follow from application of the Faa di Bruno formula to (10.10) to
derive (10.13), (10.11a)—(10.12b), Corollary 5.4, and Lemma A.3.

. 1 .
¥ Lemma 10.4 (Pressure increment). Define v; +)1 p 0 =<k= d 1= p,casin
Lemma 10.1. Then there exists a pressure increment o, = J:ID — 0, associ-

ated to the sum Zgzo U;i)l ¢ of velocity increment potentials such that the following
properties hold.
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(i) We have that forallk =0,1,...,d,

1

t,q q+1 k
/10 \N —1pi+16 =119
(‘7 ) +3 +3n) V ()\q+n q/+,,) M (M Ninay, T F;Jr ,Tq Fq>
(10.17)
forany0 <k <dand N, M < Njn/5.
(ii) Set
+ + + _
v = Tm + Oy > Ov = UJ— — Oy - (10.18)
Then we have that
0
Wi g DV DM ot | S 0 + 843 gl )™
M(M Nind,i. 7 D516, T r9) (10.19a)
— 1/10
‘wi,qDNDtA?qUJ— 3 = quﬁaq+2h()~q+hrq/+ﬁ)
M (M, Nig 75 ' T, T 1)) (10.19b)
Coo—9 1/10
‘wi,qDND[’MqUJ— o =< qufl ()‘q+n q/+n)N
M (M Nind,i. 7 1516, T r9) (10.19¢)
‘Wi,q DN Doy 3 = F;£ﬁ8q+zﬁ (gL
M (M Nind,e. 7 ' D516, T r9) (10.194)
_ Coo—
‘ Vig DND[,M[,UU o= I ()‘q+r’l/2rq+ﬁ/2)
M (M Nipag 7 TG0, 1,109 ) (10.19%)
_ 4
1/fi.qDNDzﬂ,/lq% q rq/z()“q+ﬁ/zrq+ﬁ/2)N
M(M Nind,. 7 ' T5H16, T 1r9) (10.19f)

forall N < Npn/s and M < Nfin/5 — Neye 1.
(iii) We have that

supp (o) N B(igr, hyi Tgri1) s supp (0,) N B(igr, Ay Tyry1) =0
(10.20)

forq+1<q’'<g+n—1landq+1=<q <qg+i)
(iv) Define
t
g, (1) = / (Dy.gov) (s)ds . (10.21)
0
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Then we have that

dM+l

m“u q+1

g1 Moy | = (max(1, 7))~ 18733 M (M, Nina 7, ' T, ) (10.22)

for0 < M < 2Njpg.

*Remark 10.5 (Pointwise bounds for principal and corrector parts). From (10.1)—
(10.4), (10.17), and (11.21a), we have that

1
)W: 4DV Di rq%W t(zljr)l‘ S (Uu(l’) + 8g+3i) Pry ()‘q+" q/Jern)N
M (M, Nind,t: r_ll“’“é,T_ng) , (10.23a)
1
Wiy DY DML | S (0 +8g430) T g i)Y
M (M, Nina. 7, ' T;H10, T, rg) (10.23b)

for N, M < Nin/5. Note that thanks to the factor 7, I" ’1 in (10.1), the bound in (10.23b)

has extra gain of r, I’ 1 compared to (10.23a). ThlS gain will be useful when we deal

with the divergence corrector stress errors in subsection 8.4 and divergence corrector
current errors in [22, subsection 5.5]. We also record an upgraded version of (10.23),
which states that in the same range of N and M, we have that

N M (p) —1 1/10 N
‘wi,q—&-ﬁ—lD D;,q_:,.;,_lwq_;_l‘N(UU(,,)+5q+3n) Ty (Ag+i q+n)

, —1 i—5 . —1
></\/1(1\/1,de,t,r[M TS LT qu+n),

(10.24a)
— 1
[Wigai 1 DYDY, )| S @7 + 80430 T, Ggral )Y
—1 5 _ _
x M (M’ Nind.t, Tq+ii— IF;+n l’Tq+n qu—i-n) :
(10.24b)

The proof of (10.24) is immediate from Hypothesis 2.17 at level ¢ and Remark 6.3,
which asserts that Hypothesis 2.6 is verified at level ¢ + 1 with ¢ = ¢ + 7.

Before giving the proof of Lemma 10.4, we record the following lemma, which
investigates the current error generated by the pressure increment o,,. The proof of

both lemmas will proceed using Proposition 7.3.

*Lemma 10.6 (Current error from the pressure increment). There exists a current
error ¢y, generated by o, such that the following hold.
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(i) We have the decomposition and equalities

q+n
o= 5 + Y. ¢ (10.25a)
N , <
nonlocal ~ ™M'=4+7/2+1
local

diV¢U = Dt’qo’v — Mg,

where my, is defined as in (10.21).
(ii) Forall N < Nw/5sand M < Nin/5 — Newy — land g+ 712+ 1 <m’ < g+,

i g DN DM o1

S T gy P G )

M (M, Ningss 7, ' T+, T;‘Fg) : (10.26)

(iii) Forall N < 3Njyg and M < 3Njpg,

N M 3/2 2Nind, N
HD D Ul oo S 8q+3ﬁTq+n l)‘q+n+2()”t1+ﬁFq+fl)
M (M Ninass 7, ' T, 'T ) (10.27)

(iv) Forallg+1<q' < q+1/2,q+i24+2 <m <g+n,andq+1<q”" <m-—1,
we have the support properties

supp (¢Z+ﬁ/2+l) N B(@q/, q+1 r2 ) =0, supp (¢Z’) N supp {Dq” =0.
(10.28)

Proofs of Lemma 10.4 and Lemma 10.6 Step 1: Setup and Assumptions
from Proposition 7.3. In order to create a pressure increment which domi-
nates all of the various velocity increment potentials v + 1. defined in item (iii), we
shall create pressure increments which dominate each separate piece, and then sum
at the end. We fix all indices (£), I, ¢, h, h’ from the formula in (10.13) and apply
Proposition 7.3 with the following choices:

Ny = Nin/4 — 2d%, My =Nan/5, M; =Ningy, No = Mo = 3Njpg,,

-~

_ el _ _hW _ 30 :
U—T(s)’l’o, G = H(S)Io’ '0_'0(5)10’ m=ml']7, Koasin

Yp L j+7 ~10 -
CG,p = ‘supp (ni,j,k,g,lﬂ,ocs’o)‘ J 52+n 4 /3 + A g+i K, as in item (xv)
2 2

_ 3 _ _ /_ _ _—1pi+13 / _ =18 _ _
Cop= rqp s A=hgqap, M =Ag v=14 I‘; s V=TT A =gy,
1/10 ~ 12
rgG=rg=rqg, H=>Argyiply, F=Fq/ , =Dy, v=1g, CU—A/

KO = Agtija+ls M1 = Agtijntdn,  Mm = Agtifotms  Min = Ag+i+1s  Otiny = Sg+37 »
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where (;,;, = Ag4ip+m above is defined for 2 < m < m. Then we have that (7.54a)—
(7.544) are verified from (10.14a)—(10.16), (7.55a) holds by definition and by (11.18),
(7.56a)—(7.56¢) hold from (2.30), Corollary 5.4, (2.31b), and (11.12), (7.57a) holds
from (11.14a), (7.57b) holds due to (11.14b), (7.57¢) holds due to (11.21a), (7.58)
holds from direct computation, and (7.59a)—(7.59¢) hold due to (xvi).

Step 2: Part 2 from Proposition 7.3 and proof ofLemma 10.4.
We now apply the conclusions from Part 2 of Proposition 7.3. We first have from (7.60)

and (7.61) the existence of a pressure increment o sy = U*h’ w —O_,n Such
©re T ©.1.0
that
hh " rV
N M + ~ -1 10 \N
D™D, T(S) 10 N (Uuh.h’ + 6q+3n) Tq (Ag+al q+n)
®.10
M (M, Ninae 75 T4, T;lrg) (10.29)

for all N < Nin/4a — 2d? and M < Nsn/5. Then using items (ii)—(iii) and (11.15), we
have that

N M ot + _ /10N
‘D Do’ v | S (a.rh,h/ +8q+3n> gl 1)
€).1.0 é).1.0
M (M, Nina.» 7, ' T, T;‘FS) : (10.302)
2/3 .
N M ot 1,0 2j+14 4/3
'D Dy g0 S ‘SUPP (Ui’j,k,gjyo;g ) I'y 8q+iilq
@.1.0 03
X (Ag+i ;/-:-On)NM (M Nindt, T 1Fl+15 T r? )
(10.30b)
1 —
HDNDM oL | STE 0 /N m (M Ninae 7, Ty, T, r9)
&),1.0 1o
(10.30¢)
2/3 .
N M _— I, 2j+14 43
‘D Dt,qo b S ’SUPP (n[,.j,k,gj,o§g <>) Fq/ Sq+iilyq
®).1,0113/
X (Aq+ﬁ/zrq+ﬁ/z)N./\/l <M, Nind,t’ 'L'q_ll_‘;+15, T;ll"g) ,
(10.30d)
HDND,%U_W < F§°°+2°(/\q+a/qu+a/z)NM (M, Nind,c, Tq_ll“ﬁfw, T;1F2> ,
&) 1.0 llo
(10.30e)
4 — [ —
‘DNDM o | STl G D)™ M (M, Ninat 7, T2, T, 1r2) ,
€).1.0

(10.30f)
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forall N < Nfin/4 — 2d? — Neut,x and M < Niin/5 — Ny ¢. In (10.30c) and (10.30e), we
used (5.29). Finally, from (7.65), (10.14a), (10.15a), (10.2), and Lemma 6.2, we get
the support properties

b
supp (G;rh,w > C supp (T@“&)
.10

I,
< supp (Xi,k,q;“q’o’i’k,ﬂ (ﬂfg)fg 0) ° cb(i,k))

-1
N B (suppgé)yo, 2)"q+ﬁ) 0 Pk,

_ ~ -1 1,0 -~ —1 _
supp (UT(‘“J,},) N B(@, .4, Ty)  supp (ni,j,k,g,f,ocs ) N By, 3y Ty) =9,

forg+1<gq <q+np.
We now sum over h, k', (§),i,¢ (while_rez:alling from (10.13) that summation

over (£) includes summation over i, j, k, &€, [, j as well as any indices needed for the
application of the Faa di Bruno formula) and set

+ . +
o, = E Y.

T,
@), 1o h  ©lo

From (10.29), (10.13), (5.47), and Corollary 5.20 with H = T(hg)h/l o and @ =
+ ,
OT(”é)h/z ) + 1supp Tflg')h,/;_oaqﬂn’ we have that (10.17) holds. We have (10.18) from the for-

mula above. In order to verify (10.19a)—(10.19f), we appeal to (10.30a)—(10.30f) and
Corollaries 5.18 and 5.20. Specifically, the L¥? estimates in (10.19b) and (10.19d) use

(11.7g) and Corollary 5.18 with 6 = 6 = 2, H = aj ,and Cyy = 8447y T

hh!

)10
The L estimates in (10.19¢) and (10.19¢) follow from (5.47), (11.10a), and Corol-

lary 5.20 and with the same choice of H and o = F,§°°+2015uppTh,h/ . Finally, the
©.1.0

pointwise estimates in (10.19a) and (10.19f) follow from Corollary 5.20 in much the
same manner as the L estimates just derived, and we omit further details.

Step 3: Part 3 from Proposition 7.3 and proof of

Lemma 10.6. We now apply the conclusions from Part 3 of Propsition 7.3. From
item (i), there exist current errors ¢_,,» such that we have the decompositions and

. (NS
equalities
q+n
’
St = D (10.31a)
.10 AL - o
&),1,0 m’=q+n/2+1 é).1,0

local
nonloca loval

q+n
=H+TRY (Dﬂ;h,h/ ) + Z R* (Dza;n;;.h’ )

). 1.0 m’:q+ﬁ/2+l é).1.0

nonlocal
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q+n
+ Y H(D,a%,, )

m'=qg+1/2+1 Lo

local

div <¢¢h,h/ (t,x) +R* (DzU’Tnth/ ) (t, x))

©).1.0 ©).1.0

’ /
= D", (t,x)— / Do, (t,x")dx',
Té).ro T Yé)ro

div | ¥, (. x)—ZR* (Dtaw, )(t,x)

Te.ro 0 @0

:DtU;h’h, (t,x)—/ Dto;h’h, (t,x")dx.
(GRR T3 @).1.0

Next, from (ii) in Proposition 7.3, (11.15), and (11.21a), we have that for (p, p’) =
(3,3/2) or (0o, 00) and 2 < m < m,

N M ,0 —1pi+l4 —2/3-2j+14
pVpMg?, S, it <5q+ﬁrq e

2/p
1,0 —-20
supp (”i,j,k,g,l’,ofs ) +)‘q+ﬁ>

~Tq
@10l pr
% 2
q+n/2+l> ' 2
X\ H——— ahgrin N
< q+n/2 q+n/2 q+n/2+
—1itl5 =119
M (M. Ning o 75 ' THH3,T,117) (10.32a)
N M 40 o —tpitso_ 45 (g \VP
DUD7 ¢ ,w | STq T g BV g+ii/2
). 1.0 q+i/2
X Org i )N M (M, Nipa 7 TS, 119 (10.32b)
N pM gm —1pi+l16 —2/3.2j+14 Lo\ [P .20
DEDT O St Ty <8q+n rg Ty ‘Supp (ni,j.k,é,l,ogg ) +ag
IGNRY P
. 4_2
o (in Casipim Agii) \ P o o hgifotm)
)Lq+ﬁ/2 q Mg +i/2+m—17q+1/2+m

x (min(hg /2 ms dg+ilgaa)™
M (M Nipa 7 ' T, 77109 (10.32¢)

DNDE]W¢mh,h’
@10

—1pi+s0, 43 (MiNCgiy2em, Ag-+i)
Sty Ty mery (

AT Agii
~ hgviaTq ) Gaaptm—1raaztm)

X (Min(Ag47ip4ms bg+i Fq+ﬁ))N
M (M Nipa 7 ' T, 77109 (10.32d)

for N < Nm/s and M < Nmn/5 — N¢ye x — 1. In the case m = 1, we have bounds
which match the bounds for m = 2 above except that the inverse divergence gain of

A2 g-+ij2+m 18 replaced with A - g-+i/2+1. Furthermore, we have from

q+1/24+-m— 1 q+"/2+3/2
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(7.68) and item (xv) that

N M *
oo,
©&).1,0

3 2Nipd.t~ — _
ssq/i3an+n“‘Aq$2(xq+n )N (@ THHM(10.33)

for N, M < 3Njyq. Finally, (iii) from Proposition 7.3, (10.15a), (10.14a), and Lemma
6.2 give that foreach ] <m <mandanyq+1<¢q' <g+#/2andg+1<q” <
q+n2+m—1

supp <¢ é)h/z ) N B(wy ,Aq+1F )=0, supp (¢ (hg)h/l ) N supp Wy ,

supp <¢ i ) , supp <¢ i ) & supp (”i,j,k,siocéo) '
(s) 1,0 (é) Lo
(10.34)

We now sum over h, k', (§),i,¢ (whileqrez:alling from (10.13) that summation
over (£) includes summation over i, j, k, &, [, j as well as any indices needed for the
application of the Faa di Bruno formula) and set

¢g+;’/2+1 = Z d) h oo ¢g+ﬁ/2+2 = Z Z ¢ h W (1035)

(&),1,0,1',h Yoo (g)loh/hml Tenro
q+n/2+m . _ m g+ ._ m
¢! =) W o eiT= ) thu
&),1,0.0 \h Yo &), 1,00 ,h m=m—1 Yo
® .
¢y = Z ¢hh’
(E)Ioh/ (5)10

for3<m<m-—2.

We can now conclude the proof of Lemma 10.6. First, we have that item (i) follows
from the definitions in (10.35) and (10.31a). Next, we have that (10.28) follows from
the same definitions, (10.34), and Lemma 6.2. We can achieve the nonlocal bounds
in (10.27) from (10.33) and summation over all indices (£), I, ¢, #/, h, which from
Lemma 5.16, (2.12), Lemma 5.10, and the discussion following (10.13) is bounded
by )f; i The bound for m,, in item (iv) follows similarly from (7.70) (11.19), and a

large choice of a, in (xviii) to ensure that we can put the prefactor of max(1, )~ Lin

the amplitude. Finally, we may conclude (10.26) from an application of Corollary 5.21

with H = ¢°,,  (with the value of e according to the divisions in (10.35)) and
©).1,0

_ o0, 3 ((MinGy g/, rgri) " )L_z ]
@ =t Tty g g/2-tm—1Rq /2 m -
q
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Indeed appealing to (5.58b), (3.6), (2.40), (11.24c), and the fact that

ys (minQvgrijpim: Agri) |V <0
rq Aorn -9
q+i/2
from the definition of r,, we conclude the proof. O

10.2 * Estimates for the Velocity Increment Potentials

We will now verify the inductive assumptions of subsubsection 2.7.6 in the following
proposition. We first recall the definitions of vy and €41 from Remark 10.2 and
the mollifier P, x ; from Definition 6.1 and define

aq+ﬁ = Pq+ﬁ,x,tvq+la /e\q+r_l = Pq+ﬁ,x,teq+l . (10.36)

* Proposition 10.7 (Verifying (2.44), (2.45), and (2.47) and setting up (2.46) at level
q + 1). The velocity increment and velocity increment potentials satisfy the following.

(i) Wyti can be decomposed as

~ . d~ ~
Wyt = div- Vgt + et » (10.37)
. . . . ~o _a. ...19. ~(@,i1,,iq) ~o
which written component-wise gives Woys = 0y - -+ Oy Vgt e

(ii) Forallq +1 < q' < q+n — 1, the supports of Ugyi and ey satisfy
1 ~ ~
B (supp (wy), ZMT;) N (supp (Ug+i) U supp (€q+ﬁ)) =0. (10.38)

) . d—k ~(®,i1,...,0g)
(iii) For N +M < 3Niu/2, we have fhaﬁ)\;g,,k 1= A i -~-8ikvq+ﬁl dOo<k<

d, satisfies the estimates

‘wi,q+ﬁ—lDNDtA,/lq+ﬁflﬁq+ﬁ,k
1/2
-1 N
<Tg+a (Gj(p) +ojo+ 25q+3ﬁ> rq (g+ilg+i)
1 -1 —1 2
x M (M, Ninga: T 173 Tq+ﬁ_qu+ﬁ_l) . (10.39)

(iv) For N + M < 3Nw/2, e, satisfies

N M -~ 3 10Nind,t , —10 _ \N
HD Dy iio1€q+i -~ <8 3iTggn AqinPqrilgrin)
: —1 -1 2
x M (M’ Nind,t, Tgta—1> Tq+ﬁ—qu+ﬁ—l) :
(10.40)
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Proof of Proposition 10.7 We first note that (10.37) follows immediately from the def-
inition of Uy4j and e, 4 in (10.36) and the identity in Remark 10.2.
Next, an immediate consequence of (10.2) and (6.23) is that

B (supp(@q/), 2T, 2T ) (supp (vg+1) U supp (eq+1)) = @

forallg +1 < ¢’ < g +n — 1. Now notice that by properties of the mollification, we
have that

~ I L
supp (Vg+i) S B (supp (Vg+1), (A'q-H’_qu/j_ﬁ_]) ) Tq_|l_1> )

and similarly

~ 1 -1
supp (€,+7) € B (supp (eg+1)s (Aq+ﬁrq/iﬁ_l) ,TqL) .

With this we now see that (10.38) is satisfied.
Note that from (10.38) and an application of Lemma A.23, we see that (10.17)
implies that for all N, M < Nin/5,0 <k <dand 1 = p,c,

~(1)
wl qg+n— lD Dt ,q+n— luq+n k

- —1 j—4
S @) +8g4am) Pry Ol i)Y M (M, Nind.t» T4 1 g ia1s Ty lr)
(10.41)

Now we apply Proposition A.24 with the parameter choices

p=3,00, Ng,Ncasin(xii), M; = Nijndt, Nx=N/5,
Ny =2Nfin, Q=suppy; g4i—1, V=Ugppa—1, i=i, c=-—1,
-2
A= Aq-i—ﬁ s, A= )\q+rirq+ﬁ—l , I'= Fq+ﬁ—lv T= Tq+ri—qu+ﬁ 1 T= Tq+ﬁ—l ,
. 2012 =173 Coo/2+16 7] A lp
F=vhu Cra=Tg8 5" Croo= Cr= s Co=Ag -

In a similar way to the proof of Lemma 6.7, we see that all the assumptions of the
proposition are satisfied. Therefore, conclusion (A.119) implies that N, M < Ne/s,
0<k<dand! = p,c,

N pM =0 o
HD Dyig4i- 1( Ug+iik = Vg+l, k) ”
25det -1 1 _
S 0 s T Ougeal -0V M (M. Ninas Tyl Ty b Tt )

Combining this estimate with the pointwise estimate (10.41) implies (10.39) for
N, M < Nfin/5. The case when Nin/5 < N + M < 3Nsn/2 follows from first noticing
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that conclusion (A.118) implies that for all N, M < 2Ngp, 0 <k <dand 1l = p,c,
we have

~()
H‘m g+i—1 DV DM q+i—1Y q+nk”

Coo/2416_—1 /103N -1 i—4
SF({ rq ()\q-i-n q+n) M<M Nlndts q_;,_;l lr +a—1°

T_+n 1Fq+ﬁ—l) :
Then combining this estimate with (11.17b) implies estimate (10.39) in this case.

Finally, to prove (10.40), we must upgrade the nonlocal derivative bound in (10.4).
20Nind,¢

g+ and so we omit the details. |

This is trivial using the extra prefactors of T

10.3 * New Inductive Cutoffs are Dominated by the Pressure Increment

We conclude this section with a lemma which shows that a rescaled combination of
the intermittent pressure and the velocity pressure increment can be used to dominate
a weighted sum of the velocity cutoff functions.

*Lemma 10.8 The new velocity cutoff functions v; 45 satisfy

imax

-2
S R adgrarg TE G S ( Lot 3q+3n) (10.42)
i=0

for a g-independent implicit constant.

Proof From (9.11) and the fact that all cutoff functions are bounded in between 0 and
1, we have that

imax 9 y imax Neut,t
320 3
Z Wz q+i%a q+ilq Fq+n S 8q+iirq qu+n Z H ‘/fm gL
=0
:i: max im=i]
0=m=Ncyr,¢
u.l[[
—2/3 2lm
= Z 81]+nrq Z wm Jim,q+n q+n : (10.43)
im=>0

Therefore it will suffice to show that the right-hand side of (10.42) dominates the
double sum above. We will in fact fix m, take the sum over i;, > 0, multiply by I'y 17,
and show that this is dominated by the right-hand side of (10.42). Using that m is
bounded by N¢y¢.+ and choosing a large enough will then conclude the proof.

From the definition of v, ;,, ¢+ in (9.9), we have that

2im 2 < 2[,,, Z 2 2
Lo diVmima+a S Tqta Va1 Vm iy a7
{miseCGim) <im}

i (jm) 2
q+ﬁ ij,q+ﬁ—lwm,i*(jm),jmﬂ+’_l
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2im 2 2
+T5 Do Vit Vi g (10.44)
{m i Gim) <im }

From (9.3), we know that the first term above is dominated by

2jm+4
Fq+r‘z—ll/fjm,q+fl—1 .

Since m and i, only take finitely many values, we may bound the contribution to the
right-hand sides of (10.43) and (10.44) from the terms with j,, such that i, (j,;) = in
by an implicit constant multiplied by
—2
8q-+ilq "

2jm+4 2 =23 2 _g+n—15
Z Fq+ﬁ—11//jm,q+ﬁ—lsq+”rq =r, 7 Fq+ﬁ—1—8 -y
Jm=0 q+n lr 1

Here we have used the inductive assumption (2.21) to achieve the first inequality above
and the inequalities (11.7¢) and (2.40) to achieve the second inequality. We have thus
concluded that the lowest terms with i,,, = i, (jy,) from (10.44), summed over i,, and
appropriately weighted, are indeed dominated by the right-hand side of (10.42).

We now must consider the rest of the terms in (10.44), for which i, (j,) < in-
Assume that (,x) € supp (wjm g+ lwlfl s qun) By (9.4) and Lemma 5.5,
item (2), and there exists n < N¢yg,x such that

1 i
m(m+1) 1 2/3
4N = 1—‘q+n 8q+n q ()WH'" f1+”) ", +n 1 q+n
cut,x

-2 ~ 2
)~ | D" tqurr’h]wq-i‘ﬁ' :
Note that due to Definition 9.1, the fact that we consider (f,x) € supp

(w]m g+ lwm s q+n) and (9.7), which gives i,, > ix(j,), we have that

rqi';;r":;n 1 < 1. Now using (11.15) and that we are on the support of ¥; 4171

by assumption so that we may appeal to (10.24), we have that

2im —2/3
U {abq+arq

[2+in 7
< ()Vq—i-n q+n) n ( +n 1 qi;) 2m( J+3q+3r‘1) ry z(kq+r‘zrq+ﬁ)2n
Jm=5 2
(74 +n D)™
< (o) +84430) > (10.45)

Thus, (10.42) follows from summing (10.45) over i, > 0, from which we find that

2 2im W2 gty + _
Z Z Vi qtii— llﬁm imosjms q+nFq+n8q4‘"’q < Ty <7Tq o, +8443i ) -

im>0 {Jm:ix () <im}

Now summing over 0 < m < Ngy,; concludes the proof of (10.42). O
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11 Parameters
11.1 Definitions and Inequalities

In this section, we choose the values of the parameters and list important consequences.
The choices in items (i)—(vii) are rather delicate, while all the choices in items (viii)—
(xviii) follow the plan of “choosing a giant parameter which dwarfs all the preceding
parameters.” It is imperative that each inequality below depends only on parameters
which have already been chosen, and that none depend on g. We point out that in
item (iii), we define two parameters A, and §, in terms of an undetermined large
natural number a. This is merely for ease of notation and computation. Indeed one can
check that none of the inequalities below require a precise choice of a, nor depend on g;
rather, any sufficiently large choice of @ which may be used to absorb implicit constants
will do. Therefore the precise choice of a is made at the very end in item (xviii).

(i) Choose B € [1/7,1/3) and n a large positive multiple of 6 as in (2.1).
(i) Choose b € (1,25/24) as in (2.2).
(iii) For an undetermined natural number a, define A, and §, as in (2.3). Note that
with this definition of A, we have that

I
a? <hg =2a®and 200 < Agin = 2. (11.1)

As a consequence of these definitions, we shall deduce a number of inequalities,
each of which is independent of the choice of a and of g once a is sufficiently
large. At the end we will thus choose a sufficiently large to absorb a number of
implicit constants, including those in (11.1). Therefore, in many of the following
computations, we may make the slightly incorrect assumption that A, is actually
equal to a®®) in order to streamline the arithmetic.

(a) Animmediate consequence of these definitions and of the first inequality in

(2.2a) is that
4,4
2/3 Agh’ . -
- 4 —4_ta%qti
Sqvi (Padglip) Fgsien gti 58 < dqraia
q-+7/2

_ 2 2 _ _ _ _
= 286" gt < S0P - DA a8 4

_ _ 2 _
= 2 b= DA+ 4B < T DA bt 40P
— 4B (b — 1) —4(1 + - + b2 (b — 1)2
1 1+b+--+ b 2
30 14+b4---+ b 14 b 4 pAH]
200 — 1)1 + - - + b2 1)2
(L +b+ -+ b/3t1)p

— B <

s

where we have written out the quantity at the beginninginterms of A, ~ a &)
and then compared exponents on both sides. It is easy to generalize the above
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to
s 5454
1 —4 g™+ )
Sqsi (A AM) M b b T S e VR =L (112)
q+if2

(b) A consequence of the second inequality in (2.2a) is that

) 473 )
8q-+n ( Mg/ A i >/ _ dqton

Sg+ii—1 \Pq+ip—1/rg+i-1 Sg+2ii—1

_ _ _ _ 4 _ _

= —28b" + 28" 4 B — b — Dy < —28b>" 4 28p*" 1
il (it i i ap 4

— 28b (b —b—b +1)<(b —")b -5

2 144 b1
3pY2 1 4. pn—1 7

—= B <

(c) A consequence of the definition of A is that for ¢’ > g — /241,

Ag'+ifrhq+if2

< 1. (11.3)
Mghg'+i

Indeed when g’ = g—7/2+1, the inequality reduces to A4 4 1Ay )\q+n/2)¥ q +n i1
< 1, which is an immediate consequence of the super—exponent1al growth;
larger ¢’ are similar.

(d) We have that §, )Lz/ P < Sq/kz/,3 forall ¢’ > g. A stronger inequality is that for
allk > 1, 8q+ﬁkf]/3 < 8q+k+fl)\.z/ik, which is in fact equivalent to § < 1/3»7,

which is implied by the first inequality in (2.2). A final consequence of both
inequalities is

v A
1 1
8q+n 23 < (Sq+2n — Sq/iﬁgq/z)\ q_ < 8q+2;l
q+n q+n
/3 —-1/3
A L i
— o2 5P 24 ARG s n (114)

g+n-d 5 1/3 —1/3
4+ g i1 hg gt

(e) From the second inequality in (2.2a), we have that

2 14...xp"1 N 4
372 14 bl = Oqikgipn < Og42ndgy -

B <

(iv) Choose C,, = ﬂ
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(v) Define 'y, ry, 74, and A, by?’

+1 er
r, = 2”81‘ logz( Zgtl )—‘ ~ (kq_Jrl) ~ )\’;b—l)&‘r‘ ’ rg = q+n/zrq (11.5)
)‘q q+n

_ 1 113
o =80 g TR Ay =2TL0, (11.6)

where we choose 0 < e <« (b — 1)2 < 1 such that

(Sg-id, 5 TR <1, (11.72)
25 1/2 —1/3 50 1/2 =173 300 _—1 -1
F)\S Sq F)‘aq q—n’ l—‘q+nq+nlSq-§-n’
(11.7b)
Sqi B g
ngnq_*" <r_‘1> < lat2n (11.7¢)
Sq+ii—1 \Tg—1 8g42i-1
A2 Mnhgiip T, forqg+i2+3<n<q+i+2,
(11.7d)
)\. '4n )\. n
r3+ﬁr‘qzﬂ <1 forallg’suchthatg +i24+1—-n<q <gq,
Aghq i
(11.7¢)
A\ 7 8, \ !
(-‘4) 2000+10G, (—‘1) (11.7f)
hgr q+n 8y
q q
rd 804iTS% < 8g005 = r)'T808, < 5,45 (11.7g)
(rq+1> [1000+10C, _ | (11.7h)
r qg+n
q
1 1 — _ — .
F5Cb+3005q/in 4/3)‘q—|1—n T, < Fq-ll-n8‘1+2'_l’ (11.71)
1/2 2/3 _1/2 _2/3 .
Cgtidy i1 = 8,457q " (11.7))
1000 12 1 =V10,1/10 /10 —1/10
Fq+n<m1n<k kq+nq A Aq+1,8q 5q+1)
(11.7%)
O 4+ b+ 1)? ;
’7 =7 —‘ > 20, 2000erd"™ < 1. (11.71)
er(" 4+ b+ 1)

Indeed we have that the first inequality in (11.7b) is immediate, the second is
possible since 7! is increasing in ¢, (11.7¢) is possible due to item (iiib), (11.7d)
and (11.71) are possible from immediate computation, (11.7e) is possible due to
item (iiic), (11.7f), (11.7g), and (11.71) are possible due to item (iiid), (11.7h),
(11.7j), and (11.7a) are possible since r, and §, are decreasing in g, and (11.7k)
is pos51ble due to (11.5) and the super-exponential growth, which shows that

-1 45— 2 -2
gy it g iyt s Mrgrahggy > 1.

27 The same type of comparability that we have in (11.1) holds for I'; as defined in (11.5).
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(vi) Choose C, as

- + = + ; -
b=1D2er @1+ 4b+1) B2 =1 (b—Der(1+---+b"2"1)

A2 _ 132 i i1
S ( b i 20006 4b
(11.8)

As a consequence of this definition and (11.71), we have that
10 < Coo. (11.9)

We furthermore have that for all 7/2 < k < n,

Coo

Coo1294 -4 2 ,—4
Lyorgr k)‘q+ﬁ/2)“q+k)”q+k—l < Fq+ﬁ/2

q7q+
= 2 (120" 4+ 5 4255 = 24 71) < Coob — Der (0~ 1)
= 2 (120" 4 bk 26" =207 < Coulb — Der ™ — 1)

2 _ _
= 2 (bk/2 - 1) +4b" N b — 1) < Coo(b — 1)2er(1 +--- + 5771

2 (b — 1) .\ api-1
b —12er(+ -+ 672 " (b— Der(1+ -+ bA—1)

Coo s

which is implied by (11.8). As a consequence of the above inequality, (11.71),
(11.7k), and (11.8), we have that for all 7/2 < k < n,

3 2
Coo Coo  —2000 Coo+500 q+k -2 Coo —200
Fg™ =Tgfplavn > Ta™ Ay (m) Agrk—thark =TT 05
(11.10a)
(vii) Choose o = a(gq) € (0, 1) such that
1/10
’\ZM =, . (11.11)
(viii) Choose T, according to the formula
1 R _
STk =7 T, Vg et 1006 2 TS (11.12)
(ix) Choose Ny such that
Ty iN Ag i < DgiNpt1 - (11.13)
(x) Choose Ncy,¢ and Neye,x such that
Neut,t < Neut,x » (11.14a)
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Neut,t
}Lﬁ)ﬁ <F11171> 5 < min (A;iﬁagﬁﬁ’ Fq_+czo_l7_Ch5§+3ﬁ’q> ’
' (11.14b)
12 1 Coof2+16+C, ( Vg+ii—1 Neutx 1
Yan’s Tain (W) =Tyt (11.14c)

(xi) Choose Njng, such that
Nind,t > Ncut,tv F;Nind,t(Tq—lré+40)—Ncul,l_l(T;qu)Ncu[,[+1 <1. (11.15)
(xii) Choose Ny, N, so that

_Ng 2 SONing o3
I Mr2 < Ty T

q+1  Oq+3ii >
(11.16a)
—1 10 5Nind, 712Co0+Cp+100  —2 n—Ne/2 —Ng o3 50Ning,¢
Z(Tqur_tlequﬁfl) " Fq+ft Tq qul Srq+ﬁ6q+3ﬁ7‘—q+ﬁ71 ’
(11.16b)

N.
Ng < N < 4‘—8‘1 25 (11.16¢)

(xiii) Choose Ninq such that (11.16c) is satisfied and

Nind,t < Nind, (11.17a)
Nind r—Ning 70 _ §3  1+—2Coo—3
(Fq_qu ) =< 5(1+5,—lr‘q g . (11.17b)
(xiv) Choose Ngec such that
1/10 Ndec

OgriraT) < (== . Nind < Nec - (11.18)

4

(xv) Choose K, large enough so that
A'_Ko < 83 TSNindA—IOO (1119)

q q+3n *q+n “q+n+2

(xvi) Choose d and N, such that

(11.20a)

28 This inequality is independent from the first two, and can be ensured by a large choice of Nj,q in the
next step. Since all the inequalities in (11.16) are used together, we break the order slightly and include
(11.16¢) in this bullet point.
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20N;p
5,100 p—d/20 ) S+K, (4 max(hg Ty LA Agi) d < T200Nina
qg+n- 4 q+n+2 + ‘L'q_l = Lyt s
(11.20b)
2 1 Al 20Ning
100 ~—Nwk/20  54+K, max(kq-i'ﬁT‘I ’ Aq Aq+ﬁ) 20Nind,t
Kq+ﬁrq Aq+ﬁ+2 (1+ ‘l,'q_l STq+ﬁ
(11.20c¢)

(xvii) Choose Ngy, such that

2Ngec 4 4 4 10N;pg < Nan/40000 — d* — 10Neyr.x — 10Ncy(c — Naw — 300.

(11.21a)

(xviii) Having chosen all the parameters mentioned in items (i)—(xvii) except for a,
- -2 |

there exists a sufficiently large parameter a, such that aib Dert™ is at least

fives times larger than all the implicit constants throughout the paper, as well as
those which have been suppressed in the computations in this section. Choose a
to be any natural number larger than a.

11.2 A Few More Inequalities

Forall ¢ +7/2—1 <m <m’ < g + @1, we have that

q m'—17m’

8o \ 7 23 /min(un, hgoi)To \ 73
FSOOHCMQ( q+n> NG (A—z N ) ( A Ag+ii) q) A;2_1)”115%—250’

P Ag+if2
(11.22)
and
500+5C, min(Ay', Aqi) 7 8q+i & 2
Iy Ay Agh i
Ag+ifa Smtii
min(A s A AT 4/3
(’"—‘1*")‘1 ,\;2_1)% <250, .
Ag-tif2 q

We claim the first inequality is morally equivalent to

Sg+i \ 72 -
Aq ( qﬂi) ’\(21/3 (min (A, )‘q+r‘l))2/3 )‘qu/;/z)‘;l =<1.
m-+n

This equivalence is due to (11.2) (used to absorb a feq meaningless losses of Az, _1 D
and (11.7f) (used to absorb F;?g? +10Cb, which itself can be absorbed in on meaningless

loss of AkX,:_ll from (11.7k)). Checking the simplified inequality then boils down to
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applying (11.2). We leave further details to the reader. The second inequality is morally

equivalent to
A NP [ 8g0i \ 7 A 3
alim) Gon) e () =1
)‘q+ﬁ/2 Sm+ii )‘q+ﬁ/z

which can be checked by again using similar reasoning.

At this point, we list a number of additional inequalities, each of which can be
checked by similar reasoning as the two inequalities above. We leave further details
to the reader.

2/3 4/3
AqF§50A2/3 (rq+"/2+l>/ )»_2/3 (Aq+n/2+qu)/ 51 53/2 < 83/2

re q+if2 )\.q+ﬁ/2 q+i1/2%q+n — “q+n+i/2+1
(11.24a)
250+5C; -1 Agtifr+1Tg ? =1 &2 s
Mgl Aqhgtip VT q+1/20g+i = Ogiitifr+1
q+7/2
(11.24b)
500 23 (12 -1\ 7 . -
Sq+aly Ng (Am7]Am> <éuti for g+12-5<m<qg+n+5,
(11.24¢)
400+5C A 23 2 9
m - —
Sq+iAgTy % <m) A 1Am < T 8t »
(11.24d)
Sqtii 200456, ((MInCum, Agr)\ 7 Ly ~100
—7T b —7m8m8——— AgA min(Ay, Ag+7) < T 5.
Smaii q )\q+r_zrq 4" m—1 Am q+n) = L g+i2
(11.24e)
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A Appendix and Toolkit

The appendix serves a number of purposes. First, we prove general L? decoupling
lemmas in subsection A.1. Then in subsection A.2, we recall a number of lemmas
from [3, 32] which handle sums, iterates, and commutators of different differential
operators. Then in subsection A.3, we construct and prove estimates for the various
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inverse divergence operators used throughout the proofs of Theorems 1.1 and 1.2. Sub-
section A.4 contains a general lemma which allows us to upgrade material derivative
estimates from Dy 4 to D; ; for k > ¢. Finally, subsection A.5 contains a general mol-
lification lemma which we apply whenever we need to estimate a mollified function
and its difference with the original function.

A.1 Decoupling Lemmas and Consequences of the Faa di Bruno Formula

We begin with an L? decoupling lemma in the spirit of that from [3]. Some adjustments
to the proof are required to treat the cases p # 1,2, oo and d # 3, as well as the slight
adjustment to the assumption (A.3) on the high-frequency function, which provides
a slight increase in generality. Note that the first inequality in (A.1) is implied by the
second and the assumption that A > 2, and so in practice we shall only check the
second inequality.

LemmaA.1 (L? decoupling). Let Ngec, k, A > 1 be such that

Néec
(2 ) 277.'\/3) - < %, )\’Ndec+d+l . (2 . 27'[\/3) < 1. (Al)

K K

Let p € [1,00), and for d > 1, let f be a T-periodic function such that there exists
Cy such that for all 0 < j < Ngec +d + 1,

H foHLp <Cpul (A2)

Let g be a T¢-periodic function and C, > 0 a constant such that for any cube T of
side-length 27 /i,

k" gl Loy < Cq.- (A.3)

Then there exists a dimensional constant C = C(p, d) which is independent of f and
g such that

18l oemey < C(p, d)CCy . (A4)

Proof of Lemma A.1 Let {T;}; be disjoint cubes of side-length 27/« such that
=17
J
For any Lebesgue integrable function 4, let

ﬁj :=][ h(x)dx .

T;
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Note that from Jensen’s inequality, we have that

p
|hj|P = |f h(x)dx
Tj

For any x € T}, we have that

< f Ineor ax =Tar;. (AS5)
T;

(fil+ 1) = Fi)7
<22 (If;1P + 1 f(x) = fiI7)

p
< ( |”+<Su¥|f(x) fj|)>

|f(0l”

<
(s (o))
<22 (11 + sup | D |
T;
< 27T, + (hf) sup | Df |7, (A6)

T;

where in the last line we have used (A.5). Iterating, we obtain

p p
|f<x>|1’szf’W,-+2f’<2’T,:/3> (2I’|Df|1),-+zﬁ<2”f) sup|D2f|1’>

Tj
Ngec—1 mp Ndecp
< Z 2 (m=+1)p (27‘[«/3) D" FIP + (2. ZHﬁ) HDNdecpr )
- K J K L=
m=0
Multiplying by g, integrating over T}, and using (A.3), we obtain®’
£l = Z/T_ Tl
. J
Ndec— mp
2/d
< r 2(m+1)[7 it e D" f|P.
Z / gl L)
Ndecp
2w /d p
' (2- ”f) o]z
K oo

Ndec*1
2r/d
—Z][ g1 Z 2('”“)”( ) 10" £ 170 cr

29 Note that in the third line, we move the average from |D™ f|P to |g|”. In the fourth line, we used the
assumption (A.3) on g. In the second to last line, we used the assumption (A.1).
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(=) sl

Ndec—1 mp
2w+/d
< C@yre; 3o 2 (”—I> v

m=0
Ndecp
+ (2- e ) (c@cpaNeivic,)

< (C@)PCg2r -3¢+ (C'@yrehey
=: (C(p, d)PChCy . (A7)

Taking p' roots on both sides concludes the proof. O

We now recall the multivariable Faa di Bruno formula (see for example the appendix
in [3]). Let g = g(xq,...,x9) = f(h(x1,...,xq)), where f: R™" — R, and
h:RY — R™ are C" functions. Let « € Ng be such that |a| = n, and let 8 € Nj' be
such that 1 < |8| < n. We then define

pla, B) = {(kl ..... kni €1y ..ty n) € (NGO x (N Y': s with 1 <s <ns.t.

kil 1€6j1 >0 & 1<j<s5,0<6 <...<L, ij =8 Z|kj|zj =a}. (A.8)
j=1 j=1
The multivariable Faa di Bruno formula states that
(0% h(x))"
3%g(x) = a! Z @ ) > ]_[ P (A.9)
1Bl=1 pla.p) j=1

Throughout this manuscript, we must estimate only finitely many derivatives.
Therefore we ignore the factorials in (A.9) and absorb them into the implicit con-
stant of the symbol “<.” We now recall the following lemma from [3], which gives a

useful consequence of the Faa di Bruno formula.

LemmaA.2 (Compositions with flow maps). Given a smooth function f: R xR —
R, suppose that for A > 1 the vector field ®: R? x R — R satisfies the estimate

HDN“@H <N (A.10)
L (supp f)

for0 < N < N,. Then forany 1 < N < N, we have

N
‘DN(foap)(x,t)’SZAN—M(D'"f)ocp(x,t)y (A1)
m=1
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and thus trivially we obtain
N
DY (f o ®) (.0 S DAV (D" fyo o (.1
m=0

forany ) < N < N,.

Many estimates will require estimates for derivatives of products of functions which
decouple and which are composed with a diffeomorphism. The proof is a minor vari-
ation on [3, Lemma A.7].

Lemma A.3 (Decoupling with flow maps). Let p € [1, oo], and fix integers N, >
My > Ngee > 1. Fixd zZandf:Rd xR —> R, andlet ®: R x R — RY be a
vector field satisfying D;® = (8; + v - V)® = 0. Denote by ®~! the inverse of the
flow ®, which is the identity at a time slice which intersects the support of f. Assume
that for some ., =1, T~ > 1 and C > 0 the function f satisfies the estimates

HDND,MfHLP <CaN M (M, N, Tl T—l) (A.12)

forall N < Ny and M < M,, and that ® and o1 are bounded for all N < N, by

”DN+1<I>H <N (A.13)
L®@upp f) ™
H DN+l ! H <AV, (A.14)

L®(supp f) ™

Lastly, suppose that there exist o : T¢ — R and parameters A > Y > p and Co>0

such that for any cube T of side length u=',

1
wile

DNQ‘

S CoM (N, Ny, Y, A) (A.15)

~

|>

LP(T) Q‘ LP(Td)

forall 0 < N < N,. If the parameters

ASu<YT=<A

satisfy
d+1 po e
A = (m) , (A.16)
and we have
2Ngec +d + 1 < Ny, (A.17)
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then for N < N, and M < M, we have the bound

”DND,M (f 00 ®) Hm < CpCuM (N, Ny, T, A) M (M, N, Tl T_1> .
(A.18)

Remark A.4 We note that if estimate (A.12) is known to hold for N+M < N, for some
No > 2Ngec+d+1 (insteadof N < N,and M < M,), andif the bounds (A.13)—(A.14)
hold for all N < N,, then it follows from the method of proof that the bound (A.18)
holds for N+ M < N,and M < N,—2Ngec —d — 1. The only modification required is
that instead of considering the cases N/ < Ny—Ngec—d—1and N’ > Ny—Ngec—d —1,
we now splitinto N' + M < N, — Ngec —d —land N’ + M > Ny — Ngec —d — 1.
In the second case we use that N — N” > Ny — M — Ngec —d — 1 > Ngec, Where the
last inequality holds precisely because M < N, — 2Ngec —d — 1.

Proof of Lemma A.3 Since D;® = 0 we have DZM (0 o ®) = 0. Furthermore, since
divv = 0, we have that ® and ! preserve volume. Then using Lemma A.2, which
we may apply due to (A.13), we have

N
N M N M N—N’
o raso], < 35 [0V 0 0o

N N-N'

< Z Z JN=N'=N"

N'=0 N"=0
N N-N’

5 Z Z )LN—N’—N”
N

'=0 N"=0

DN f (DY 00 0| |

|,

(A.19)

(DN’D{”f) o @~ pV

In (A.19) let us first consider the case N’ < Ny — Ngec — d — 1. Due to assumption
(A.14), we may apply Lemma A.2, and appealing to (A.12) we have that

(D" N DM £y o o~

n
n N M -1 < n—n'
HD ((D Dif)yo (@ ’t))HLpNZ)L Lp
n'=0
n
5 Cf Z A an +N M (M, N,, 'C_l, T—l)

n'=0

< (Cf/\N’M (M, Nyt T_1)> AT (A20)

for all » < Ngec + d + 1. This bound matches (A.2), with C; replaced by
Cf)»N,./\/l (M, Ny, L T_l). Since the function DY g satisfies (A.15), we may apply
(A.20), the fact that . < Y < A, assumption (A.16), and Lemma A.l to conclude
that

H (DN/Dth) o cb—lDN"QHLp <cN' M (M, N, r_l,T_l)CQ/\/l (N", Nx, T, A) .
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Inserting this bound back into (A.19) concludes the proof of (A.18) for N’
Ngec — d — 1 as considered in this case.

Next, let us consider the case N’ > Ny — Ngec —d — 1. Since 0 < N’ < N, in
particular this implies that N > N, —Ngec —d — 1. Using furthermore that N < N—N’
and (A.17), we also obtain that N — N” > N’ > Ny, — Ngec — d — 1 > Ngec. Then
Holder’s inequality, the fact that ®~! is volume preserving, the Sobolev embedding
Wd+Ll « 1% the ordering A > Y > p > 1, and assumption (A.16) implies that

IA

Ny —

NN
ANNN

(DN’D,Mf) o qr‘DN"QH

< )\N*N’*NN N//
~

)DN Dth‘

P

SANTN N C AN M (M Nt T ) CuM(NT +d + 1, N2, T A)

)\’ N_N//
"g CfCQM (N, Ny, v, A) M (M, Ny, ‘[71’ T*1> Ad+1 <?>

A Ndec
S CrCM (N, Ny, T, A) M (M, Ny, Tl T_1> AdH! <—>
‘ ®
< CCuM (N, Ny, Y, A) M (M, N, r_l,T_1> .

Combining the above estimate with (A.19), we deduce that the bound (A.18) holds
also for N/ > Ny — Ngec — d — 1, concluding the proof of the lemma. m]

A.2 Sums and Iterates of Operators and Commutators with Material Derivatives

We first record the following identity for material and spatial derivatives applied to
functions raised to a positive integer power.

Lemma A.5 (Leibniz rule with material and spatial derivatives). Let d > 2 be
given, g : T¢ — R be a smooth function, v : T¢ x R — R¥ a divergence-free vector
field, and set D; = 0,+v-V,andp e N.Fix M, N € N, andusea = (a1, az, ..., ap)
and B = (B1, B2, ..., Bp) to denote multi-indices with |a| = N, |B| = M. Then we
have the identities

DVDMgP = 3 <a1 N ><ﬂl )l_[Dot,D.Bt

{aﬂ Z,]az }
X =M
(A21a)
N M
pg 08 ré Z at,...,0p) \B1,...,Bp

a,B: Z,p:l a;j=N,
,P=1 B,’:M,
0[,'-‘1-/3,'<N+M\'/i
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P
[1p“pfs. (A.21b)

i=1

We recall [3, Lemma A.10]. We have generalized the statement slightly so that it
applies in T¢ rather than just T>; in fact the statement and proof have nothing to do
with the dimension.

LemmaA.6 Fix Ny, N, N, e N, Q €e T x Ra space-time domain, and let v be
a vector field and B a differential operator. For k > 1 and o, 8 € NF such that
la| 4+ |B] < Ny, we assume that we have the bounds

()

i=1
for some C, > 0,1 < Ay < Xv, and 1 < puy < iy. With the same notation and
restrictions on |«|, |B|, let f be a function which for some p € [1, co] obeys

)

i=1
forsomeCy > 0,1 <Ay 51’,», and 1 < puy < ﬁf. Denote

< CoM (lal, Ny, hy, dp) MBI, Ny o, ) (A22)
L>(Q)

SCrM (lel, Ney g dop) M(IBI Ney g, Bip)  (A23)
LP(Q)

h=max{hp, A}, A =max{hp, K), po=max{uy, wo}, T =max{fis, i}.
Then, for
A=v-V
we have the bounds

k
D" (1_[ A% Bﬁi) f

i=1

LP(S)
S CrCYNM (n+ lal, Ny, 2y %) MBI, Ny, 1, 1) (A.24)
SCrM (n, Ny, 2, %) (CoM)™ M (IBI, Ny, . T2

< CrM (n, N,k 2) M (lee] + 18], Ny, max{p, Cur}, max{fi, CyA})  (A.25)

as long as n + |a| + |B| < N As a consequence, if k = m then (A.25) and an
expansion of the operator (A + BYM imply that for all n +m < N,,

HD”(A + B)mf”Lp(Q) SCyM (n, Ny, AX) M (m, N;, max{u, CyA}, max{f, CUX}) .
(A.26)

A corollary of the previous lemma is the commutator lemma [3, Lemma A.14],
which we now record along with several useful remarks.
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LemmaA.7 Let p € [1,00]. Fix Ny, N;, Ny, M, € N, let v be a vector field, let
D; = 9; + v - V be the associated material derivative, and let Q be a space-time
domain. Assume that the vector field v obeys

[DYDY DV | S CMN A1 N2 T) MM Ny, L) (A2T)

L®(Q
for N < N, and M < M. Moreover, let f be a function which obeys

| DY D ¢ SCAM (N, N Ap i) M (M. N g, ip)  (A28)

LP(R)
forall N < N, and M < M,. Denote
)“ Zmax{)\,f’ )‘«U}v szaX{Xf,Xv}, n :max{/'l/fv MU}’ /:Z Zmax{ﬁfv ﬁv}

Let m,n, £ > 0 be such that n + £ < Ny, and m < M,. Then, we have that the
commutator [DT", D] is bounded as

| [y, D" 1]

LP(Q)
S CrCokyM (€+n, Ny, 2, 2) M (m — 1, Ny, max{, Cyhy}, max{fL, Cyiy})
(A.29)

SCyM (Z +n, Ny, A, I) M (m, Ny, max{u, CU'XU}, max{[t, CU’XU}) . (A30)

Moreover, we have that for k > 2, and any o, B € NF with || < Ny and |B| < M,,
the estimate

k
‘ (l—[ Dai Dtﬁl) f
i=l LP(Q)

< CrM (leel, Ny 2y X) MBI, Ni, max{ps, Coky}, max{R, Coiv})  (A.31)
holds.

Remark A.8 If instead of (A.27) and (A.28) holding for N < N, and M < M,, we
know that both of these inequalities hold for all N + M < N, for some N, > 1, then
the conclusions of the Lemma hold as follows: the bounds (A.29) and (A.30) hold for
£+ n+m < N,, while (A.31) holds for |a| + |8] < N,. We refer to [3] for further
discussion.

Remark A.9 1f the assumption (A.28) is replaced by

[DYDYM | S CMN =1 N g Ry MM N ) L (A32)

LP(S)
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whenever 1 < N < N,, then the conclusion (A.31) instead becomes

k
‘ (l—[ Dai Dtﬁl) f
i=l LP(RQ)

SCrM (lol = 1, N, & %) M (181 Ny max{pe, CyRy}, max{fl, Cuky}) (A.33)
whenever || > 1. We again refer to [3] for further discussion.

Remark A.10 Fix p € [1, co], Ny, Ny, Ny € N, and a space-time domain 2 € T x R.
Define D; = 9; + (v - V) as in Lemma A.7. Suppose that for k > 1 and «, 8 € Nk
such that |«| 4+ || < N4, we have the bounds

([1707)

< CoM (], Ny, Ay ) MBI, Ni,y o, ) (A34)
L>°(2)

for some Cy, > 0,1 < Ay < Xw, and 1 < py < fLy. Then, under the assumption
(A.27) and (A.28) in Lemma A.7 with M, = N,, we have that forall N, M < N,,

H DN(D; + (w - V))Mf‘ SCrM (n, Ny 2y 2) M(m, Ny i, i) (A35)

LP ()

where

A= max{va Avs Aw}, = max{xf, 'va xw}v n = max{/Jvfs Mv, Hw, CU’XIM Cw’xw}v

Py
= max{fiz, iy, ﬁw,CUXU,waw}.

If (A.27) and (A.28) hold for N + M < N,, as in Remark A.8, then (A.35) holds also
for N+ M < N,.

A.3 Inversion of the Divergence
Proposition A.11 (Inverse divergence iteration step). Let n > 2 be given. Fix a
zero-mean T"-periodic function @ and a zero-mean T"-periodic symmetric tensor field
@) which are related by o = 9; 14 .1 Let ® be avolume preserving diffeomorphism
of T". Define the matrix A = (V®)~!. Given a vector field G*, we have

G*(o o @) = 9, R + EF (A.36)

where the symmetric stress R is given by

R = G*A{ (3,97 0 @) + G A} (0,9 0 ®) — G"9, @™ AF AL (9 0 D),
(A37)
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and the error term E¥ is given by

E* = —3,(G A% (9,009 0 @) — (9,G*) AL (9,91 o D)
+ 0, (G AT 0, ™) A% (3,9 0 ®) . (A.38)
Remark A.12 (Linearity with respect to G). From (A.37) and (A.38), it is clear that
the symmetric stress and error term are linear in G; more precisely, each term of the
symmetric stress and error may be written as a product of flow maps, high frequency

functions, and a single component of either G or VG. This will be a useful observation
when determining the support properties of the symmetric stresses and error terms.

Proof of Proposition A.11 By the definition of A, we have Ajd ®f = §,;, and the
volume-preserving property of @ gives the Piola identity 9, A” = 0. These then imply
a useful identity (3¢¢) o ® = 9, (A} (¢ o ®)). Using this, we first get

G*(0 0 @) = GX(3;0;977 0 ®) = G¥a, (AL (3,007 o D))
= 3(GFAL 391D o )
— (3 GFYAL@;9D o )
= 9 (G*AL @91 o @) + GLA¥ (3,00 o D))
— G A¥ 30" (8,0,97) 0 @
— 3(G* AN (@90 0 @) — (8,G*)AL (B9 0 @).

In the last equality,the first two terms match the first two terms in 9, R*t while the last
two terms will go into the error term EX. To deal with the remaining term, we use

G AF 0 @™ (3,09 ) 0 & = GEAF 3 0™ 0, (A" (3,7 0 D))
= 0,(G 0, @™ Af A" (0,0 ") 0 D))
— 8,,(GlAf.‘agd>’”)A;f(8mﬁ(i’j) o ®).

Indeed, plugging this identity into the second term, we obtain the symmetric stress
R¥t and error term E¥. Note that the first term above is symmetric due to the assumed
symmetry of ¢ (¢+/). O

With the iterative step in hand, we can now state the proposition which contains our
main inverse divergence algorithm. The spirit of the statement and proof is similar to
the corresponding statements and proofs in [3, 32], modulo minor adjustments. After
stating the main proposition, we record a number of useful remarks which follow from
the proof.

Proposition A.13 (Main inverse divergence operator). Let dimension n > 2 and
Lebesgue exponent p € [1, 0o] be free parameters. The remainder of the proposition
is composed first of low and high-frequency assumptions, which then produce a local-
ized output satisfying a number of properties. Finally, the proposition concludes with
nonlocal assumptions and output.
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Part 1: Low-frequency assumptions

(i) Let G beavectorfieldand assume there existaconstantCg,, > 0and parameters
N> M, >1, (A.39)

M;, and ), v,v' > 1 such that
|DYDYG| | S Co N M (M, My, v,v) (A.40)

forall N < Nyand M < M,.
(ii) Fix anincompressible vector field v(t, x) : RxT" — R”" and denote its material
derivative by Dy = 9; + v - V. Let ® be a volume preserving diffeomorphism of

T" such that

Dtcb =0 and ||Vq) — Id”LOO(suppG) < l/2 . (A41)
Denote by ®~! the inverse of the flow ®, which is the identity at a time slice

which intersects the support of G. Assume that the velocity field v and the flow
functions ® and ®~" satisfy the bounds

H DNt H + H pN+1 ! H <N (A.422)
L (supp G) L (supp G)
HDNDtMDvH SN M (M, M v, V)
L (supp G)

(A.42b)

forall N < Ny, M < M,, and some A" > 0.

Part 2: High-frequency assumptions
(i) Let o: T" — R be a zero mean scalar function such that there exists a large
positive even integer d > 1 and a smooth, mean-zero, adjacent-pairwise
o d
symmetric tensor potential®® §@-id) T R<ﬂ ) such that o(x) =
By - . i 0 i) (),
(ii) There exists a parameter . > 1 such that ¢ and ¥ are (T/u)"-periodic.
(iii) There exist parameters 1 K T <Y’ < A, Cs,p > O such that for all 0 < N <
N.andall0 <k <d,

HD’Va,-1 By 0 1) H“ SC,YOM(N A=k T A) . (A43)

(iv) There exists Ngec such that the above parameters satisfy

MAL< <Y<Y <A, max(A, )Y 2Y' <1, Ny—d>2Ngec +n+1,
(A.44)

30 We use i j for I < j < d to denote any number in the set {1, ..., n}. We refer to Lemma 4.17 for the
meaning of adjacent-pairwise symmetric.
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where by in the first inequality in (A.44) we mean that

*Ndec
AT (+> <1. (A.45)
27+/3max(x, \)

Part 3: Localized output

(i) There exists a symmetric tensor R and a vector field E such that
Good=divR+E =div(H(Goo®))+ E. (A.46)

We use the notation R = H(Go o ®) for the symmetric stress.

(ii) The support of R is a subset of supp G N supp 9.

(iii) There exists an explicitly computable positive integer Cy, an explicitly com-
putable function r(j) : {0, 1, ..., Cx} = N and explicitly computable tensors

PP BGY =B, Bas s Bry) € 4L, ) D)
H*D | a(j) = (@1, 02, .., ap(jy, ko £) € {1, ..., n} D2

of rank r(j) and r(j) + 2, respectively, all of which depend only on G, o, ®,
n, d, such that the following holds. The symmetric, localized stress R can be
decomposed into a sum of symmetric, localized stresses as’!

Cn
H(Goo®) =R =) H*VpPl oo, (A.47)
j=0
Furthermore, we have that
supp H*D) C suppG,  supp pPU) ¢ supp v . (A.48)

(iv) Forall N < N,—d/2, M < M,, and j < Cy, we have the subsidiary estimates’?

HDNpﬂ(” H” SCp Y 2YM (N, 1,Y, A) (A.492)

| DYDY HAD| S o (max(h 20) Y M (M My v, V) L (A49b)

31 The contraction is on the first r( J) indices, and the resulting rank two tensor is symmetric.

32 In fact it is clear from the algorithm that as j increases, the estimates become much stronger. For
simplicity’s sake we simply record identical estimates for each term which are sufficient for our aims.
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(v) Forall N < Ny, —d/2and M < M,, we have the main estimate

” DNDMR H” S C6.pCap T T2M (N, 1, Y A) M (M, My, v, V')
(A.50)

(vi) For N < N, —d/2and M < M, the error term E in (A.46) satisfies

d/z
HDND,MEH | SC6.pCopmax (i, )% (T/T’2> AV M (M, M, v,V

(A51)
Part 4: Nonlocal assumptions and output
(i) Let No, M, be integers such that
1 <M, < N, < M2, (A.52)

and let K, be a positive integer.>> Assume that in addition to the bound (A.42b)
we have the following global lossy estimates

H DN oMy H L S G (A.53)
forall M < M,and N + M < N, + M,, where
Cod SV (A.54)
(i) Assume that d is large enough so that
CG,pCu.p max(h, M) V(Y'Y 72 Y AT Ke <1 + —maX{v;’ C”A}>MO <1.
(A.55)
Then we may write

E = divRonlocal + ][ Go o ®dx =:div(R*(Gg o ®)) + ][ Goo ®dx,
T3 T3
(A.56)

where Ryonlocal = R*(Go o ®) is a traceless symmetric stress which satisfies

1
—— max(A, )Y HPAAN M (A.57)

NyMp
HD Dt Rnonloca] Lo = AKe

for N < Noand M < M.

33 K, serves as an extra amplitude gain which will be used later to eat some material derivative losses.
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Remark A.14 (Lossy derivatives on v and estimates for Ronlocal)- Let us specify the
estimates we expect to obtain from (A.57) for the nonlocal error term Ryonlocal- For
our applications, we need to choose parameters so that the estimate reads

< )\._1052 T4Nind,t)\’N .L,fM (ASS)

N M7
HD D; Ruonlocal 100 q+nq+3i L g+n Mg+iilq

for N, M < 2Njpq. We therefore choose N, = M, = 2Njnq, and since in applications
M, will be at least Nfin/10000, we have from (11.21a) that M, < N, < M:/2. Next,
we choose K, large enough so that A, Ko < 82 +3,-1T3T2d")\;}r%0, which follows from
(11.19). The lossy estimates in (A.53) follow from the inductive assumption (2.31b)
with C, = A;/ *: note that (A.54) is precisely (11.12). Finally, the inequality in (A.55)
will be a consequence of our choices of A, A/, Y, Y, which from (11.7d) give a gain

of at least Ty “/**)  and (11.20b).

Remark A.15 (Special case for negligible error terms). The inverse divergence oper-
ator defined in the proposition can be applied to an input without the structure of low
and high frequency parts when ¢ = 1 and Cg, , are sufficiently small. More precisely,
we keep the low-frequency assumption (Part 1), replace the high-frequency assump-
tions (Part 2) with o = I, andset Y = Y/ = A = max(A,A), Cy, = 1,d = 0.3
Then, as long as Cg, ,, is small enough to satisfy (A.55), the conclusions in Part 4 hold.
In particular, we have that

G =diVR*G+][ Gdx.
3

T

Note that R*G = RG in the special case, where R is the usual inverse divergence
operator defined in (A.80).

Remark A.16 (High frequency part of the output as a potential). In order to obtain
the conclusions in Remarks 8.2, 8.7, and 8.11, we need to write p#(/) as a potential.
This can be done if the potentials ©#1->/d) used in the application of the inverse
divergence in Section 8 can be written as 91> id) = 3 0 ld+12d) where 0
satisfies

id+1+I2d

| DYaivtotn | s e, XM (N 2d = £ Y, A)

for 0 < k < 2d and N < N,. This is easily ensured by initially choosing ¢ as
0 = Bjy.ing® 124 where we save half of the divergences for later to enable the
application of the inverse divergence algorithm a second time, as will be done in for
the transport/Nash current errors in 8.8. Since the inverse divergence algorithm shows
that p#() consists of spatial derivatives and divergences of 9, it is clear that p#(/) can

g(id+| )

be written in potential form as p#) = PO for some potential

i1 Tdtk

34 Since we do not need decoupling, i does not need to be specified.
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gla+ Pl gurdermore, we have

HDNB 5([d+1,~--,id+kvﬂ(j)) HLP g C*’p(rY\—2rY\/)Tk—dM (N, d—k 4 1’ T/, A)

Id1° " Id+k

forO <k <dand N < N, —d/2.

Remark A.17 (Mean of the error term). We claim that the mean (G (¢ o ®)) satisfies
dM

’— (G(oo®))

o < A Komax(n, )Y HIIM (M, My, v, V')

for M < M,. To see this, first note that since v is incompressible, i—};(G(g o d)) =

((DMG)(0 o ®)). Then using Lemma A.1 with (A.45), (A.40), (A.42a), (A.43), and
(A.55), we have the desired estimate

‘/ (DMG)(0 o ®)dx
T3

- /(DtMG)odfldivdﬁdx
T3

/3 ¥iy iy (DM G) 0 @1yl id) g x
T

N

}a(il,'“,id)((DtﬁlG) o cb—l)ul Hﬁ(il,'“,id)

1
< Ca, pCx, p(max (2, ANer—9m (M, M;, v, v/)

< A~ Ko (max(r, )\’)T_l)%d/\/l (M, M;, v, v/) )

Inn particular, under the same choice of parameters suggested in Remark A.14, we
have

§A_1082 T4Nind,t -M

dM
‘ g+i%3itg+in g

T3 (Gleo @)

for M < 2Nijpg.-

Remark A.18 (Inverse divergence for scalar fields). Adjusting the above proposition
so that G is a scalar field and the output is a vector field is simple; one can make

the substitution G — | G, 0, ..., 0 |, apply the Proposition to the newly constructed
——
n—10's
vector field, and take the first row or column of the symmetric stress as the output.

Remark A.19 (Inverse divergence with pointwise bounds). Let us consider the set-
ting in which all the inductive assumptions from the proposition hold, or are adjusted
according to Remark A.18, but we know in addition that there exists a smooth, non-
negative function 7 such that

‘DND,MG‘ <N M (M, M, v, ) (A.59)
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for N < N, and M < M,. Then it is clear from the algorithm utilized in the proof
that we may additionally conclude that

DVNDMHD| < 7 (max(h, 1)) M (M, M,, v, V) (A.60)

for N < N, — |d/2] and M < M,.

Remark A.20 (Avoiding abuses of notations). Proposition A.13, and indeed many of
the other “abstract nonsense” lemmas and propositions in the manuscript, are written
using generic notations such as A, Cg 3, etc. Application of the lemma or proposition
then requires specification of values for these various inputs. Occasionally several
such lemmas or propositions will be applied in succession; for example, repeated
applications of the inverse divergence as in Corollary A.21. In such situations, we shall
add bars above all symbols in the statements of the “abstract nonsense” lemmas, and
then specify an input for the “bar variable.” For example, applying Proposition A.13
to a term from the sum in (A.47) (which has the same form as the input of the inverse
divergence, just with different parameters!) would be done using the parameter choices
EG,p =Cq,p» A = max(X, A), E*,p = C*,pT_zT’, and N, = N, — |d/2], which are
all valid choices due to (A.49).

Proof of Proposition A.13 We divide the proof into four steps. First, we collect some
simple preliminary bounds. Next, we apply Proposition A.11 the first time and show
that an error term is produced which obeys the estimates required in (A.50). After-
wards we indicate how to apply the algorithm [d/2| — 1 more times to produce R and
E obeying (A.50) and (A.51), respectively. By construction, both R and E will be
supported in supp G N supp ¥ o ®. The support property for R and the conclusions in
(A47), (A.49), (A.50), and (A.51) will be proven along the way. Finally, we outline
how to obtain the bounds in (A.57) for the nonlocal portion of the inverse divergence.
The entire proof follows closely the method of proof of [3, Proposition A.18], the
main differences being the slight adjustment to the iteration step due to the difference
between Proposition A.11 and [3, Proposition A.17], and the slightly more general
assumption in (A.43) compared to [3, A.69]. The only significant difference to the
conclusion is that the amplitude gain is Y'Y 2, cf. (A.50) compared to [3, A.73].

Step 1: An application of Lemma A.7, or more precisely Remark A.9, yields

”DN”D,MDN’D@” SANIN M (M, My, v, V) (A.61)
L(supp G)

whenever N’ + N” < N, and M < M,. We similarly obtain

[ oY DY D' (Do) | SANEN M (M, M v, V) (AG2)
Lo (supp G)

from the Fa’a di Bruno formula (A.9), the formula for matrix inversion in B, (1d),
the Liebniz rule, and (A.61). Another application of Lemma A.7 yields

|DY'DMDVG| 5 Coph N M (M, My, v, ) (A63)

@ Springer



19 Page 254 of 271 V.Girietal.

whenever N’ + N” < N, and M < M,. These preliminary bounds are similar to
those from the beginning of the proof of [3, Proposition A.18], and we refer there for
further details.

Step 2: For notatlonal purposes, let o) = ¢ and Q(d) """ i) 9 it-id) “and for

l<k<dleto d>k+' =9 ..., 0 Then op—1) = divo) (assuming
contraction along the proper index, which we omit in a slight abuse of notation), and
for any “pairwise pelrmutatlon”35 oc:{d—-k+1,...,d} > {d—k+1,...,d},

Q’(%k“ """ fd _ QZZS" EHole@ oo that gy is pairwise symmetric. We also define

Gy = G. Since py = divdiv,o(z) where p(2) is pairwise symmetric, we deduce from
Proposition A.11, identities (A.36)—(A.38) that

ijk
Gl o ® = 8RS + G\ dmoly 0 @ (A.64)

The symmetric stress Ry is given by

R = ( )ALy + Gl ALS ) — G"ancb'"A{fAf.)(amQE;)f)) od,  (A65)

ijktm
=S

and the error terms are given by

GZ])"" = —00(Gloy AN jm — 0GRy ALS jun + 84(Gly AFD,@™AT, (A66)

where as before we denote (V@)™ I = A. We first show that the symmetric stress Rke
defined in (A. 65) satisfies the estimate (A.50). First, we note that from (i) and (ii), the

function Bmg(z)’ ) has zero mean, is (T/i)? periodic, and satisfies
[DYonels |, S Copr X M(NL 1Y ) (A.67)

for N < N, — 1, in view of (A.43). Second, we note that since D,® = 0, material
derivatives may only land on the components of the 5-tensor S(gy. Third, the compo-
nents of the 5-tensor S(g) are sums of terms which are linear in G gy and multilinear in
A and D®. In particular, due to our assumption (A.40) and the previously established
bounds in (A.61) and (A.62), upon applying the Leibniz rule, we obtain that

H DY DM 5, H | S Copmax(u, V)V M (M, My v, V) (A.68)

for N < N, and M < M,. Having collected these estimates, the L” norm of the
space-material derivatives of Ry is obtained from Lemma A.3. As dictated by (A.65)
we apply this lemma with ' = Sy and ¢ = 9,,0 (2)] ) Due to (A.68), the bound (A.12)
holds with Cy = C¢ and a spatial derivative cost of max(2, 1'). Due to (A.42a), the

35 We refer again to Lemma 4.17 for the meaning of this.
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assumptions (A.13) and (A.14) are verified. Next, due to (A.67), the assumption (A.15)
is verified, with Ny = 1 and Cy = Cs, pT’ZT’A"‘. Lastly, assumption (A.45) verifies
the condition (A.16) of Lemma A.3. Thus, applying estimate (A.18) we deduce that

| DY DY Rg) HLP < C6.pCep YT 2X M (N, 1Y, A) M (M, My, v,0) (A.69)

forall N < N, — 1 and M < M,, which is precisely the bound stated in (A.50). Here
we have used that Ny > 2Ngec + 7 + 1, which gives that (A.17) is satisfied.

Step 3: To continue the iteration, we first analyze the second term in (A.64).
The point is that this term has the same structure as what we started with; for every
fixed i, j, m, we may replace G’(‘O) by G'(‘il)(m, and we replace o(o) with am,gg'z’)" ). the
only difference is that the bounds for this term are better. Indeed, from (A.66) we see
that the 4-tensor Gy is the sum of various entries from the tensors DG ) ® A and
DGy ® A® A ® D®. Recalling (A.61), (A.62), and (A.63) and using the Leibniz
rule, we deduce that

HDN”DIMDN/GUM < Co.pmax(h, YN TN TN (M, My, v, V) (AT70)

@™ ” Ly
for NN+ N” < N, — 1 and M < M,. The only caveat is that the bounds hold
for one fewer spatial derivative. In order to iterate Proposition A.11, for simplicity we
ignore the i, j, k, m indices, since the argument works in exactly the same way in each
case. Specifically, we write Gl(Jll;m simply as G](‘l), and for the sake of convenience we
suppress indices on the tensors Do) and use D as a stand-in for d,,,. We first note that
Do) = divdiv (Do), where Do 4) is a symmetric 2-tensor once both indices have
been specified on the left-hand side of the equality for Do(»). Thus, using identities
(A.36)—(A.38) and (in a slight abuse of notation) reusing the indices we previously
tossed away, we obtain that the second term in (A.64) may be written as

. y
Gl1 (Do) o @ = 3R + G (9w Doly;) o @ (A1)

where the symmetric stress R(j) is given by

R = (G’gl)Afsmj + Gl AfSyy — G'gl)anqﬂA{?Aﬁ.)(angf;;”) od, (A72)

_ . gijkém
_'S(l)

the error terms are computed as

ijk
GH" = —=00(G()ADSjm — 3Gy Af8jm + 02(G () A0 @™ AT (AT3)

We emphasize that by combining (A.65) and (A.66) with (A.72) and (A.73), we may
compute the tensors Sy and G (o) explicitly in terms of just space derivatives of G,
D®, and A. Using a similar argument to the one which was used to prove (A.68),
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but by appealing to (A.70) instead of (A.63), we deduce that for N < N, — 1 and
M S M*’

H D¥DMs, Hm < Co.pmax(h, VYNTIM (M, My, v,0) (A74)
Using the bound (A.74) and the estimate
“DN(amDQ(4))“LP S Cp Y4 T2M (N, 2, A)
which is a consequence of (A.43), we may deduce from Lemma A.3 that

N pM
[P o Ro],,

< C6.pCop max(h, )Y (Y 2Y)2M (N, 2, Y/, A) M (M, My, v, V) (AT5)

for N < N, — 2 and M < M,, which is an estimate that is even better than (A.69),
aside from the fact that we have lost a spatial derivative. This shows that the first term
in (A.71) satisfies the expected bound. The low-frequency portion of the second term
in (A.71) may in turn be shown to satisfy

pVN' DM DN G| < g max(h, )N EN M (M, My, v, v) (AT76)
t @ | ~TOr

for N+ N'"<N,—2and M < M,.
At this point there is a clear roadmap for iterating this procedure |d/2] times, where
the limit on the number of steps comes from that fact that o) is only defined for

0 < k < d, and each step in the iteration increases the value of £ by 2. Without
spelling out these details, the iteration procedure described above produces

Ld/2]—1
Goowp o® = Z divRy) + Gap)) - (DLd/zJQ(zLd/2J)> od (A.77)
k=0

=E

where each of the |d/2] symmetric stresses satisfies

k+1
HDND,MR(;() HM < Cg.pCy.p max(h, 1)k (T_2T/> AV M (M, M, v,
(A.78)

for N < N,—k—1and M < M,. Furthermore, the formulae in (A.47) and (A.48) can
be computed explicitly from the algorithm already detailed above by keeping track of
the high-low product structure of each termin each R ) and Remark A.12, although we
forego the details. The subsidiary estimates are precisely those from (A.67) and (A.68),
which are immediate for the terms from the first step of the parametrix expansion, and
which follow for the higher order terms by transferring the amplitude gains from
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the high-frequency function onto the low-frequency function, and using (A.44). Each
component of the the error tensor G4z} in (A.77) is recursively computable solely
in terms of G, D®, and A and their spatial derivatives and satisfies

H DN DYDY Gy | < Copmax(h, )YV M (M, My, v, ) (AT9)

’L"

for N' + N” < N, — |9/2] and M < M,. Lastly, a final application of Lemma A.3,
which is valid due to with (A.79) and the assumption N, —d > 2Ngec + 7 + 1, shows
that estimate (A.51) holds.

Step 4: Finally, we turn to the proof of (A.56) and (A.57). Recall that E is defined
by the second term in (A.77), and thus f, Go o ®dx = f, Edx. Using the standard
nonlocal inverse-divergence operator

. 1 1
(RAT = =5 8720000 f* — S AT 0x8i f* + A7 080 f* + 871083 f¢
(A.80)
we may define

Enonlocal =RE.

By the definition of R we have that Ruonlocal is traceless, symmetric, and satisfies
divRpontocal = E — fpu Edx, i.e. (A.56) holds.

Using the formulas in (A.114a), (A.114b), the assumption (A.53), and the fact that
D and 9; commute with R, we deduce that for every N < N, and M < M, we have

M-M
M5 K N—N'+K —(M—M'—K N oM’
HDNDt Rnonlocal 100 S Z Z Cy ) K y=( )HD 0z REHLoo
M <M K=0
N'+M'<N+M
N—-N' 1—(M-M') | pN' gM’
S Y NNy [pNMTE| (A.81)

M <M
N'+M'<N+M

where in the last inequality we have used that by assumption C,A’ < v'~!, and that
R: LP(T") — LP(T") is a bounded operator.

Our goal is to appeal to estimate (A.26) in Lemma A.6, withA = —v -V, B = D,
and f = E in order to estimate the L norm of DN’ BtM/E = DN/(A + B)M/E. First,
we claim that v satisfies the lossy estimate

H DN DMy H LS ey (A.82)

for M < M,and N +M < N,+ M,. This estimate does not follow immediately from
either (A.42b) or (A.53). For this purpose, we apply Lemma A.6 with f = v, B = 0,
A =v-V,and p = oo. Using (A.53), and the fact that B = 9; and D commute, we
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obtain that bounds (A.22) and (A.23) hold with Cy = Cy, Ay = hy = Ap = Ay = A/,
and py =y = Py =y = v'~1. Since A + B = D,, we obtain from the bound
(A.26) and the assumption C, A’ < v~ that (A.82) holds.

Second, we claim that for any & > 1 we have

([1707)-

whenever |8| < M, and |«| + |8] < N, + M,. To see this, we use Lemma A.7 with
f =v, p=o00,and Q = suppG. From (A.42b) we have that (A.27) holds with
Co=v/N, Ay = % = A, wy = v, and I, = v'. On the other hand, from (A.82) we
have that (A.28) holds withCy = Cy, Af = If =M, andus=pyr= v~ We then
deduce from (A.31) that (A.83) holds.

Third, we claim that

k
i=1 L (supp G)

< CG, pCa. p max(h, YLV (Y'Y ") LA AL (18], My, v, V) (A84)

< Cyn/lely/IBl (A.83)
L (supp G)

holds whenever |y| < N, — |9/2] —n — 1 and | 8] < M,. This estimate again follows
from Lemma A.7, this time with f = E, by appealing to the previously established
bound (A.51) and the Sobolev embedding W"+1-1(T") < L°(T").

At last, we are in the position to apply Lemma A.6. The bound (A.83) implies
that assumption (A.22) holds with B = Dy, A, = dw =M, and py = iy = V.
The bound (A.84) implies that assumption (A.23) of Lemma A.6 holds with Cy =
Cg.pCa,p max(h, W)Y (XY= VIAMTY 0 =3 = A, py = v, and iy = V.
We may now use estimate (A.26), and the assumption that A > A, A’ to deduce that

H Do E HLOO < €, pCr, p max(h, M) YH (Y HVHAN T (max(c, A, v M
(A.85)

holds whenever M’ < M, and N' + M’ < N, + M,. Combining (A.81) and (A.85)
we deduce that

H D N D tM Enonlocal

x T NN MO AN (oo, A o Y

M' <M
N'+M'<N+M

< Cg. pCx. p max(h, MYV (YY) LI ANTH (max(C, A VDY (A86)

L < Cg, pCx, p max(a, AL (p 2y L At

whenever N < N,and M < M,. Estimate (A.57) follows by appealing to the assump-
tion (A.55). m]
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Observe that in the proof of Proposition A.13, pPU)  consists of
VQ(z), VZQ(4), ,Vl-d/zjgzld/ﬂ; recall that o) = 0 = divd® and Ok—1) =
divogy = divd=*=Dy. Keeping this in mind, when g is given as div?®*®, we can
apply the proposition iteratively to get

G(po®) =diviR + E.

The details are described in the following corollary. Since this operator will be applied
to velocity increments, some of the adjustments are specified for this particular appli-
cation.

Corollary A.21 (Iterated inverse divergence for scalar fields). We suppose that the
same assumptions hold as in Proposition A.13 together with Remark A.18 except for
the following substitutions.

(i) Fix Ngec, Ny, Myd > 1 such that d is even and Ny — d* > 2Ngee +n + 1 + M,
(replacing (A.39) and the last inequality in (A.44)).
(ii) o is given as an iterated divergence 9 = div@®3 (replacing (1)).
(iii) There exist parameters | < ¥ < Y = A and Cs,p > 0 such that for all
0<N <N,andall0 <k <d? (A.43) is replaced with

HDNB,'I o aikE(il """ ig2)

<C TR E N (A.87)
LP
Additionally, we assume that there exists a smooth, non-negative function w such that
_1
DYDY G| S whrg AN M (M, My, v,v) (A.88)
for N < N, and M < M,. Then, we have that
Goo®) =div'R+E (A.89)

for a rank dpot tensor R and error E satisfying the following properties.

(i) The support of R is a subset of supp G N supp (5 o ®), and hence so is the support

of E.
(ii) There exists an explicitly computable positive integer Cu, an explicitly com-
putable function r(j) : {0, 1, ..., Cy} and explicitly computable tensors

PP BGY =B, Bas - Br) €41, YD

HYD | a(j) = (@1, @2, .., a) € (1, ..., n) DFI,

of rank r(j) and r (j)+d, respectively, all of which depend only on G, o, @, n, d
such that the following holds. The localized stress R can be decomposed into a
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sum of localized stresses as

Cr
R = Z Hﬂt(j)(pﬁ(j) 0 ®).
Jj=0
Furthermore, we have that
supp H*D) ¢ suppG,  supp pPD) < suppg. (A.90)

(iii) We have the subsidiary estimates
H DN ppD H |, SCp(X2)IAN (A91a)

forall N < N, —d? and j < Cy, and

k
1_[ D% Dlﬂi HeW
i=1

< Co.p (max(, 1)) M (181, My, v,V')  (A91b)
LP

k
l_[ DY Df}i HYW)
i=1

1 1

< w273 (max(h, )M (8], My, v, 7). (A9lc)

Jorallinteger k > 1, multi-indices o, B € NK with || < Ny —d? and |B] < M.,
and j < Cy.
(iv) We have the main estimate

k
[1p DP'R
i=1

< C6.pCo p (X T IY A (18], My v, 0)  (A92)

LP

Jorall integer k > 1, multi-indices o, B € N with |a| < Ny —d?>and |B| < M,
and j < Cx.
(v) For N < N, —d? and M < M, the error term E in (A.89) satisfies>°

d/z
HDND,MEH” < Cg.pCr.p max(h, V)% (T’T’z) AN

d—1

2k
M (M, My, v, Z( ) (A.93)
k=0

36 n our applications, Y = Y’, so the sum of loss factors is irrelevant. If one wanted to be more precise,
this loss could be eliminated using a more careful algorithm and a few more conditions on the relative sizes
of all the frequencies.
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Proof The proof is based on applying Proposition A.13 d times. In the first iteration,
we get

Cn
Gloo®) = div (H“Ul)(pf‘(f'l) o cb)) +Eq
Jj1=0

where H2UD satisﬁes (A.49b) and (A.53). From (A.47) and Remark A.18, we have
that the rank of H*U!) is one larger than the rank of p#U1). Also, replacing by
7'2r="3 in Remark A.19, we get

. 1 1 ~
IDN DM g* V| < p2pm3 AN M (M, My, v, 7)

for N < N,—d/2and M < M,.Inaddition, E (1) satisfies (A.93). Since we use the same
@, all assumptions on G and @ in the proposition holds for Ny replaced with N, —d/2.
From the proof of Proposition A.13 we note that ,05 () consists of V¥ 0@k, 1 <k <d,

which can be written as V¥div®’ =23 = divd (VK divd2*2k’d5). Then, V¥ o1 and its
potential V¥ div®’—2k—d3 satisfy (i), (ii) in the assumption of Proposition A.13 and

H DVs;, S g, (deivd2—2k—d5) H < C*’pT—Zk—d+k’T/N+k

forany N < N, — k and 0 < k’ < d. In particular, we have

H DN pPUD

L, SCs R et ek (A.94)

for N < Ny —9d/2and ji < Cy. This implies that (A.43) holds for C, ) replaced
with Cy , Y’ Y2 and N, with N, —d/2 and 9 with the potential of p#(/), respectively.
Furthermore, from the construction it is easy to see that

supp (pﬁ(”> C supp (F) .

Iterating this process d times, we get

Cn
Gloo®) =Y div (H“<f'>(pﬂ</1> ° qn)) +Eg
J1=0
Cn
_ Z div? (H()t(jlvh)(pﬂ(jl»h) ° q))) +divE@) + Eq)
J1,j2=0
Cx d
=) div? (H“U)(pf’(i) o q>)) + 3 divv T Eg .
j=0 k=1
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As aresult, we get (A.89), where E is defined by
d
E = Zdivk_lE(k) .
k=1
Since we have

supp H*Y) C - C supp (H*YV) C supp(G), supp p?U" C supp (),

(A.90) holds. Therefore, (i) and (ii) have been verified, as has (A.94) and (A.91a).
Furthermore, we have

< Ca,p (max()L, )J))N M (M, M;, v, v’)

< n%r_%(max(k, NV M (M, M, v, 7).

|>

o

H D¥DMR H < Co.pCap (T YIAN M (M, My, v,
Lp
for all integers N < N, — d? and M < M,. Also, E® satisfies

H pNpM E(k)‘

L

d/2
< C6.pCap (T2 max(a, 1) (T’T_z) TNM (M, M;, v, V)

forl<k<d,N<Ny—k-d2,and M < M,.

Finally, we apply Lemma A.7 to upgrade these estimates to the one with commu-
tations of the operators, (A.91b), (A.91c), (A.92), and (A.93). We will work only for
(A.91Db), then the last will follow by a similar argument. To avoid confusion in the
notations, we rewrite some repeated symbols from Lemma A.7 with bars above on
the left-hand side of the equalities below, while the right-hand side are parameters
glven in the assumptlons of the Corollary. Set p = p, N = =M, N, = N, — dd/2,
M, = M, v =v Q=suppG, C, = v(})! szkvzk My = f =V,
Hy=Hp="f=HW and Ay =%s = max(k 1'). Then, as a consequence of
the lemma, we have (A.91b). For (A.91c), we work at each point x in a similar way,
but set Q@ = Q(x) as a small closed neighborhood of x contained in supp (G) and use
the continuity of 7 so that supg .y 7 < 27 (x). O

Finally, we shall need a simpler case of the inverse divergence, when the density is
not flowed and the input is a scalar field.

Lemma A.22 (Inverse divergence without flow map). Fix dimensionn > 2. Let G be
a smooth scalar field and let d be a non-negative integer such that the smooth scalar
field o and tensor field ¥ defined on R x T" satisfy 0 = 0;, ... E)idl?(il"'id)(x) (note
that no symmetry assumptions needed).
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Part 1: Algorithm for inverse divergence
We have a decomposition

Go =: div(H(Go)) + E (A.95)

where the vector field H(Go) and scalar field E are defined by

d-1
H(Go)® =Y (=) * g, 9,6 div® pltmicsicrrmia) - p=(-1)dviG:v,
k=0 3

(A.96)

G = G and OC1ik®ik2.id)  —

where we use the convention 0 -0

9 1id-1:) yhen k = d — 1.

Part 2: Localized assumptions and output

Fix a set @ C R x T". Let parameters N, > M, > 1 be given. Define v and D;
as in Part 1 of Proposition A.13, where v satisfies (A.42b) with A/, v, v/, Ny, M, and
L (supp G) replaced with L™ (S2). Let smooth, non-negative functions = and i’ be
given such that

ik+2 iq

DYDY G| S mN M (M My v, ) on@ (A97a)

for N < Ny and M < M., where the parameters satisfy
MoA<T <A, max(A,A)Y <1, No>d, A,v,0 >1. (A.98)

Then H(G o) satisfies
supp (H(G)) < supp (GD), (A.99)

andfor N < N, —dand M < M,,
D¥DMH(Go)| S na' Y ' AN M (M, My, v,V)) on Q. (A.100)
Part 3: Nonlocal assumptions and output

Finally, we assume that all assumptions from (i) in Part 4 in Proposition A.13 hold.
Next, we assume that for N < Ny and M < M,,

HDND,MGHLOC < Cg.o0t N (HM, (A.101a)

H DN DMy, .. 5;, 9i1nid) HLOC < Choo T IAN V)M (A.101b)
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Also, we choose d large enough to satisfy

C6.00Cx.00 (max (i, A )T~ H¥2 A Ko (1 + M)M <1. (A.102)
Then we may write
E =:div(R*(Go)) + fT . Godx , (A.103)
where R*(G ) is a vector field which satisfies
H DY DMR*(Go) HLOO < %(max(k, WY I AN M (A.104)

for N < Noand M < M.

Proof of Lemma A.22 With the definition (A.96) in hand, we can easily check (A.95)-
(A.100). To define R*(Gg), we use the standard operator (R f ) = A7y and let
R*(Go) = RE. The desired estimate for R*(Gg) follows as in the Proof of Propo-
sition A.13 with minor modifications, and we leave the details to the reader. O

A.4 Upgrading Material Derivatives
Lemma A.23 (Upgrading material derivatives). Fix p € [1, co] and a positive inte-

ger N, < 3Nn/a. Assume that a tensor F is given with a decomposition F = F! + F*
which satisfy

’(wi,qDND%IF’ Hp < Cp i M (M, Nipa, T2, 1 TIT,Y) (ALI0S2)

N M
HD Dl‘,qF q+n

S CpThma N g M (A.105b)
o0

forall M + N < N,, an absolute constant ¢ < 20, and constants C, g and Cy .
Assume furthermore that there exists k such thatq + 1 < k < q + n and

supp (W, k(j_/qu/) Nsupp(FH=0 Vg+1<q <k. (A.106)
Finally, assume that
1 1
imax+2 ¢ 2 -3 —1
ApTT80 g P < T s (A.107)

Then F obeys the following estimate with an upgraded material derivative for all
M+ N < N,;

H wi’k_lDND%{_lFHp
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S Cpor + o) maxCer, M)V M (M, Ninass Ty 7y TR TEL )
(A.108)

In particular, the nonlocal part F* obeys better estimate

[ DYDY | S Cor max(hr, A Dee )Y M (M Ninag, 7 T )
(A.109)
for N+ M < N,.
Similarly, if instead of (A.105a), F! satisfies
Vi DYDY F| S i M (M Ny, Tt T 0T, (A.110)

forall M + N < N,, an absolute constant ¢ < 24, and a positive function wr with
g > Cy F, we have

i1 DY DI F| S e max o, Ak M (M, N Ty 7 T T )
(A111)

forall M + N < N,, provided that (A.107) holds.

Proof We first handle the local portion F! by upgrading Vi q in (A.105a) to the one
with ¥; ¢ 1, and then upgrading D; 4 to D; ;1. Since wﬁ p forms a partition of unity

from (2.11) and we have rq_ll"g+24 < rkill F,’;fl when ¥ Wi k-1 # 0 by (2.17), we
p

obtain that
NpM gl
> H‘””"‘ID DM F
"yt g Wi k-170

S CpripM (M, Nina T Th_po T T ) . (A112)

imax
6 N M -l
Vik1 y v DVDMF
i'=0

oot

AN

l,

Here we used the maximal cardinality of i’ is imax. Then, using (A.106), we have
D%(_IF b= D%[ F' and the desired inequality (A.108) for F' follows. In a similar
way, we can also get (A.111) for F’.

On the other hand, we handle the nonlocal portion F* by claiming that for each
qg <k’ <k—1, we have

HDN DM, F*

Nin, — —
S CrT R max (i, e TV (L TDY. (A1)
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for all N + M < N,. In particular, this implies that

HDND,k | F*

. < Cs.p max(hp, Ag—1Tk—) Y M (M, Nind.t, TI:,II,T,:E]FI:J

for N + M < N,, which yields (A.108) and (A.111). The proof of the claim is then
given by an inductive argument on k’. When k' = g, it easily follows from (A.105b).
Next, suppose that (A.113) holds for some k' < k — 1, and we apply Remark A.10 to
V=T, w =Wy, f =F, Q=T N, = N,, N; = Ning,r. Then (A.113) holds for
k" + 1, using (2.28), (2.30), the inductive assumption (A.113) for k¥, and (A.107). O

A.5 Mollification Estimates

In this subsection, we require two algebraic identities originally stated in [3, (5.17a)—
(5.17b)], which we now recall. Let v be a sufficiently smooth divergence-free vector
field and let D; = 9; + v - V be the material derivative operator associated to v. For any
sufficiently smooth function F = F(x, t) and any n, m > 0, the Leibniz rule implies
that

DnD;nF = Dn(at +v- Vx)mF = Z dn,m,n’,m’(v)(xv I)Dn/atm/F

m'<m
n'+m’'<n+m

(A.1142)
m—m’ k
o @) = Y > comnky. pT](Pof )
k=0 {yeNk: |y|=n—n'+k, =1
BeNK: |Bl=m—m'—k}
(A.114b)

where c(m, n, k, y, B) denotes an explicitly computable combinatorial coefficient
which depends only on the factors inside the parentheses. Identities (A.114a)—(A.114b)
hold because D and d; commute; the proof is based on induction on n and m and is
left to the reader.

Proposition A.24 (Mollification with spatial and material derivatives). Let p €
[1, 00], Ng, N¢, M;, Ny, and N, be positive integers, v be a divergence free vector
field, and D; = 9; + v - V. leparametersk AT, TI'>1iCrp < Cf, Cy, and
c € [0, 30] such that

Ng <Ne < Ny/4, M;<N,<N,, AP <A, t7'T"" <1 Ca<T',
(A.115a)

(TIn)MC,r =" < 1= Negy oM (A.115b)
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Let (a, b)+T be a time domain and  C (a, b)+T x T¢ be a subset in the space-time
domain. Assume that v satisfies

< CaNT M (A.116)

~

| DY oM u, 0|
L®((a,b)+TxT3)

forall N+M < N,.Assume that f : (a,b) +T x T — R satisfies the estimates®’

HDNDth‘ e S Cr AN M (M, M,, Tt T’]) (A.117a)
”DNa,Mf” <CpaNT M (A.117b)

L®((a,b)+TxTd) ™

for N+ M < N,. Let yy be a compactly supported mollifier in space at scale
A"TATHYY2 v, be a compactly supported mollifier in time at scale TT "2, and
assume that the kernels for both mollifiers have vanishing moments up to N. and
are CNv differentiable.

Set fy, = vy * yx * f. Then for N + M < N, we have that

[p¥) |

SCrpAV M (M, M, v pitett, T_1F> , (A.118)
LP(QN(a,b)xT9)

while for N + M < N,, we have that

|pVDi(r - 1)

STV, , AV M (M, My, e TT)
LP(QN(a,b)xT9) ’
(A.119)

Proof We split the proof into steps. We first set up the Taylor expansion which allows
us to take advantage of the vanishing moments. Next, we prove (A.118) and (A.119)
for N, M < N:/4. Finally, we prove (A.118) and (A.119) in the remaining cases where
either N > N«/4 or M > N«/4. Note that since y; has a compact support in time at
scale Tl '/, fy is well-defined in the domain (a, b) x T4,

Step 1: Let us denote by K; the kernel for y; and K, the kernel for y, so that
K := K; K, is the space-time kernel for y; * yx. We denote space-time points (¢, x) €
(a,b) x T? and (s, y) € (a,b) + T x T by

(t,x) =20, (s,y)=«. (A.120)

Using this notation we may write out f, explicitly as

£, 0) = / £(0 — K (k) dic . (A.121)
Td xR

37 By LP(2), we mean LP for each fixed timeslice 2N {r = #(}, continuously in time which is non-empty.
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Expanding f in a Taylor series in space and time around 6 yields the formula

Ne—1

1
FO-0=FO+ 3 D" O + Ry (0,5)  (A122)
la|+m=1 "~ """

where
NC (a,m) ! Ne—1 noqm
Ry (0, k) = E _a'm'(_K) ’ A (I =)™ D% f(0 —nx)dn.

loe|+m=N,
(A.123)

Step 2: Assume that N, M < N«/4. Here we note that because of the vanishing
moments of K,

fy(©) = £©)
N
- 2: 'TTF/d K (k)
la|+m " =Ne am-l Jrd xR
" 1 "
(—r)(@m {/ia-—n)Mle“aﬁ.fw-nx)dndx. (A.124)
0

Now we appeal to the identity (A.114a) with F = f}, — f to obtain

|D" D" (fy — £) ”LOO((a,b)de)
S 2 ldmww @] H D 3" (fy = 1) HLOO((a peray - A1)
m'<m ’

n'+m’'<n+m
From assumptions (A.115) and (A.116) and the formula (A.114b), we have that

m—m’

|t )| oo S Y CERTHR Ry =k g phymemt - (AL126)
k=0

Combining this estimate with the bound (A.117b), we deduce that

DNDM(f, — H
H e Uy =D L ((a,b)xTd)

5 Z )\’an/(Tfl)Mfm, H Dn,atm/(fy _ f) H
m' <M
n'+m' <N+M

g Z Z AN—n/ (T—I)M—m/

m' <M |a|+m" =N
n'+m'<N+M

L ((a,b)xT)
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X Efkn’+|a\ (Tfl)murm” / )K(a,m")‘ |K(K)|dK
T3 xR

N

Ef Z kN+‘0[|(Tfl)Mer//(A)\)f\a\/Z(Trfl/Z)m//
loe|+m"=N¢

STNTMp=re2 < p=Neg, AN M (M, M, ", T_1F> . (A127)

where the last inequality follows from (A.115) and holds for N, M < N«/4. This
establishes (A.119) in this range of N, M, and by the triangle inequality for f, =
fy — f + f establishes (A.118) in the same range of N, M.

Step 3: Wenow consider (A.118) in the case that either M > N«/4 or N > N+«/4, and
N + M < N,. We first note that when N, < N + M < N,, applying the differential
operator to the kernels for the mollifiers, we get

~ 1
<C;  min A"T(AA)2 N (T ipl2)Mom
L% ((a,b)xTd) n+m=N,
n<N,m<M

[oYar sy |
(A.128)

This implies that when either N or M exceeds N+/4but N + M < N,,, we have

N M < nam
HD Dy HLOO((a,b)xw) ~ m;W e tonn @) o 0707 1y ]
n+m<N+M
<Cr ¥ ANT DM <Cr- T AN (T ImM
(A.129)

< FngCf,pANM (M, M;, Tﬁla Tilr)

where we have used (A.126), (A.117b), (A.128), (A.115), and (A.115b) . In the second

inequality, the factor '8 gain has been obtained by paying lossy derivative costs.
This completes the proof of (A.118) when either N or M exceeds N«/4and N + M <
N, .
Finally, in order to prove (A.119) when either N or M exceeds N«/4and N + M <
Ny, we use the triangle inequality as in the previous step, the estimate just shown, and
the estimate

o0

< Cf,pr—(M+N)ANM (M, M, tiTiter T_1F>
LP(QN(a,b)xTd)

STy, AV M (M, M o7 7T
which follows from (A.117a) and (A.115). m]
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