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Abstract. Given the incredible popularity of video games in contexts
from entertainment to education, and the capacity of internet-connected
games to record fine-grained telemetry data, there exists an unprece-
dented opportunity to investigate gameplay behaviors, outcomes, and
their relationships to learning processes. However, with these opportuni-
ties come the need for technical infrastructures to manage the collection
and analysis of massive amounts of game event data. In this work, we
build upon existing literature to develop an architectural design for such
infrastructure. We address issues of play data collection across many
games; regular, repeatable extraction of gameplay features from raw
data; and access to data for secondary analyses. In addition, we describe
an implementation of this infrastructure and provide real-world examples
of the implementation’s usage in prior large-scale analysis work.
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1 Introduction

Unfortunately, but not unexpectedly, collection and analysis of game data
requires a significant amount of infrastructure and a diversity of expertise. A
complete games-based research project must cover game design and develop-
ment, distribution, data collection, data storage, data processing, visualization,
analysis, and communication of research results. Thus, there are many potential
barriers for new researchers or small teams to participate in game data research.

These barriers are exacerbated by the often closed nature of educational
research. Closed science refers to a process of scientific inquiry where research
questions, data, findings and results are kept confidential until publication, which
still may limit access to subscribers or purchasers. This approach may lead to
delayed dissemination, inaccuracy, lack of transparency and reproducibility, and
inequality [11,17]. Open science attempts to confront these limitations, offer-
ing enhanced accessibility and equity [30], improved reproducibility and trans-
parency [16], and better facilitation of collaboration [15]. The barriers to entering
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games research may be lowered by reducing the breadth of expertise required
for each project. If game studios can simply be game studios, and researchers
can simply be researchers, with shared infrastructure ensuring each group has
the resources they need, it becomes easier for newcomers to participate in their
area of expertise.

To this end, Open Game Data has been developed as a technical and social
infrastructure for game data logging and analysis, which is used and developed
by a growing number of educational video game researchers [4]. It is designed to
support the general needs for data collection and processing across all kinds of
video game, as well as the unique forms of learning data created by game envi-
ronments. This infrastructure provides modular components for data collection,
processing, access and analysis that support open science practices. Most impor-
tantly, it enables an open exchange of data between the studios that develop
learning games, and the researchers that study them. As of the time of writing,
the system processes 5—10M events daily from 17 games that use the system for
analysis and distribution of public data sets.

However, there are issues that face such an initiative, and the simple pipeline
described in past work on the subject. As the collection of games using shared
infrastructure grows, there is a greater need for standards to ensure compatibility
across games and over time. A need also arises to support diverse data analysis
tools and techniques. Across the entire pipeline, an increasing scale in games,
gameplay sessions, and analyses increases the number of points of failure in the
analysis pipeline and thus creates a need for adequate monitoring of system
performance. In this work, we expand upon the general pipeline described in the
prior work, presenting an architecture for logging and processing of telemetry
data across many games, and an implementation thereof.

2 Background

The commercial video game industry has a long tradition of leveraging data
and using analytics approaches. A collection of several dozen industry and aca-
demic case studies were published in a volume edited by Seif El-Nasr et al. [1]
demonstrating the value of using player data for topics such as ensuring game
quality, maximizing success, understanding player behavior and enhancing the
quality of the player experience. In educational contexts, the descriptive capac-
ity of event log data affords many theoretical and methodological approaches.
In games, learner performances can be conceptualized as both descriptive and
procedural, and game researchers have adopted theories such as embodiment
[3], socio-cultural learning [25], and situated learning [7]. Similarly, game stud-
ies using log data adopt a wide range of quantitative and qualitative methods
such as discourse analysis [26], epistemic network analysis [22], player clustering
[24,28], educational data mining [20], replay coding [19], learning engineering
[2], and evidence centered design [12].

While many of these data mining and analytics projects leveraged their own
proprietary systems and infrastructures, there are several examples of commer-
cially available game analytics systems that are available for any researcher or
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developer today. One of the most popular systems is Google Analytics (GA).
GA was initially developed for website analytics, specifically to understand user
demographics, user behaviour and user acquisition. Game Analytics is a game-
specific platform that is also widely used, and provides similar functionality to
GA. Both platforms provide client libraries to work with popular programming
languages and game engines as well as web-based visualization and reporting
tools. However, both platforms focus on increasing monetization rather than
understanding deeper features of the players’ thinking or learning.

Several education-focused projects have also been developed in recent years
that enable large-scale analytics and data mining. The ADAGE (Assessment
Data Aggregator for Game Environments) game research platform was designed
to collect and analyze data from digital game environments. Its purpose was
to facilitate the study of player interactions, learning outcomes, and behavior
within educational games, providing valuable insights for game designers and
educators [27]. Unfortunately, the platform was never widely adopted beyond its
developers, and is no longer in operation.

Successful tools for large-scale learning analytics include DataShop, a repos-
itory for educational data initiated by Carnegie Mellon University [13], and
MORF (Massive Open Ounline Courses Research Framework), a platform for
analyzing and sharing data from Massive Open Ounline Courses (MOOCs) [6].
DataShop has yielded numerous datasets, analytical tools, and insights into
learning processes, significantly contributing to the fields of educational data
mining and learning analytics. MORF provides a unique structure based in
the use of Docker containers, which are self-contained virtual machine images,
designed to ensure complete reproducibility while allowing the use of any soft-
ware or language.

3 Architecture

Data Collection Data Processing Data Access & Analysis

Logging
Server

Fig. 1. Full architecture diagram, including all three blocks of the architectural design.
Dashed lines indicate the primary flow of data from module to module. Dotted lines
specifically indicate the flow of event data through the various generator modules.
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With the projects discussed in 2 as a guide, we propose a modular infrastructure
capable of serving large-scale data collection and analysis needs across many
game projects. Our proposed system utilizes a layered architecture, allowing each
layer can use different technical solutions at increasing scales of use, requiring
only that the data exchanged between layers have a standardized format. There
are three major layers, corresponding to primary phases of game data analysis.
These are represented as top-level blocks within Fig. 1:

— Data Collection
— Data Processing
— Data Access and Analysis.

We describe each part of the architecture, and the relationships between them,
in the following sections.

3.1 Data Collection

Data analysis necessarily begins with the collection of the data to be analyzed.
In the case of game telemetry data, any number of players may interact with
the game at any time. To enable consistent deployment of logging across many
games and large numbers of players, we adopt a model using a single endpoint
to route data from multiple game clients to one or more storage locations. This
single entry point allows for the separation of event logging logic from the details
of event storage. That is, changes in storage location or technology can be made
without incurring maintenance costs to modify and re-deploy games that have
not otherwise been changed. Only the entry point must be modified to redirect
incoming data to a new storage endpoint.

Game Clients On the game/client side, a reusable logging package is imported
by each game, rather than using ad-hoc implementations per-game. The package
must adopt a standard event schema, such as the one proposed by Gagnon and
Swanson [5]. Using a standard allows for the logging package to be ported to dif-
ferent game platforms without fear of diverging formats. Further, use of a single
standard complements the single-point-of-entry system described in the “Log-
ging Server” section; allowing differing data formats would necessarily increase
the processing time needed to route data to storage, and may make the down-
stream portions of the data pipeline more difficult to manage. While the flexi-
bility of using ad-hoc data formats for each game may offer some gains in initial
development time, these are offset by the increased cost of long-term mainte-
nance and support.

Logging Server As discussed above, our architecture uses a single server end-
point to collect all event logs sent by game clients. This creates a single entry
point into the system for all clients across games and players, enabling moni-
toring of all data sources regardless of scale. The trade-off here is an emphasis
on lightweight processing of incoming data, to avoid server overload. Thus, this
server endpoint should act as a simple “router,” identifying the source of an
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event, mapping it to a storage location, and generating an appropriate insertion
request to the storage system. Optionally, this component of the architecture may
be augmented with a load-balancing system, which reroutes incoming events to
different logging server instances.

Real-Time FEvent Stream Monitoring One additional feature for the logging
server is a mechanism for real-time monitoring of incoming events. The logging
“router” mentioned above forwards each event to a monitor server, in addition
to requesting insertion into the storage system. This monitor can then filter
and/or process event data based on any active system monitor clients at the
data access level (discussed in 3.3). While any server technology can potentially
be used to implement such a monitor, we recommend a sockets-based server
application, allowing for multiple concurrent connections to a single, persistent
server instance.

Raw Event Storage We distinguish storage of raw event data from later,
calculated events and data features. Data collected in this part of the architecture
is treated as a series of objective, immutable events that occurred in the game.
The logging server translates event data as directly as possible from the request
sent by a logging client to the format of whatever storage technology is used.
Once an event has been logged, it should only (at most) be moved to another
location; event content is never modified or edited. Instead, post-processing may
create and use “annotated” copies of these game-generated events (discussed in
3.2).

3.2 Data Processing

Given large-scale datasets of fine-grained game events have been collected and
recorded, additional processing of the data may be performed at any time and
for purposes of any analysis. By cleanly separating logging from processing and
inference, we minimize the risk of changes to the game being required as research
needs grow and change. However, there are difficulties to address with processing
event data at scale; our primary concern is feature engineering. Feature engineer-
ing is often performed in an ad-hoc manner, tightly coupled to specifics of a given
game’s event logs, with little attention paid to repeatability of an analysis. This
approach can lead to problems when attempting to replicate results over time or
across similar games. Further, poorly-designed feature engineering processes can
lead to prohibitive processing times on large-scale datasets. To address this, our
architecture includes structures for a consistent, repeatable feature engineering
system.

Generators This segment of the data processing architecture is responsible for
the generation of post-hoc data, based on the game telemetry captured dur-
ing data collection. The output of this processing infrastructure includes the
following:

— Copies from the raw event data
— Newly-generated events, called “calculated” or “detector” events
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— Session-level features
— Player-level features
— Population-level features.

Our data generation process uses small code modules, rather than monolithic
implementations of ad-hoc, project-specific calculations. This directly enables
support for reusable and reproducible analyses. Because of the choice to enforce
a single event data schema in 3.1, these modules can be executed on any event
data, even across games. While a small cost may be paid in initial implementation
time, generator modules may be easily swapped in and out of any given data
processing task, and may be applied to new data as it is collected.

Event Manager and Event Detectors The event manager is responsible for copy-
ing the raw input data for a distributable output dataset, and for passing the raw
data to what we term “event detectors.” An event detector is a small code module
that accepts events as input and generates new events as output. For example, an
“idle detector” might generate begin_idle_behavior and end_idle_behavior
events based on long gaps in “meaningful” player interactions with the game,
for some definition of “meaningful” chosen by a researcher. This definition could
be based on an arbitrary threshold for gaps between any two game events, or on
labels generated by a machine learning model, trained on human-coded obser-
vations of players.

In this way, our architecture supports post-hoc generation of game-referenced
events with arbitrary complexity, from simple hand-written if-else logic to full
machine learning models. This eliminates the need for logging clients to report
anything other than objective, in-game actions and system responses.

Feature Manager and Feature Fxtractors The second component of data gen-
eration is feature extraction. The process here is similar to that described for
event detectors. In this case, however, the individual modules are called “fea-
ture extractors,” and each extractor generates a value summarizing the set of
events it has observed, rather than new events. We do not place any specific
constraints on the type of value generated by an extractor; the value could be
boolean, numeric, a string, or even a JSON object, though numeric values tend
to be most common.

The feature manager creates and tracks instances of each extractor mod-
ule, and routes their outputs to the rest of the processing pipeline. This may
include directing outputs to what we term “higher-order” feature extractors,
which accept other features’ values as inputs, in addition to event data. Extrac-
tors may operate at the level of a population, a player, or a gameplay session.
Population-level features generate values based on all events in the given pro-
cessing task, while session-level extractors use all events for a given session ID.
In cases where a game provides user identifiers (discussed in ?7?), the architecture
produces player-level extractors using all events for each given player ID. This
creates further flexibility in the feature engineering process.

Processing Management Above the generators segment of our architecture
sits a processing manager. This manager is responsible for organizing the com-
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mon, high-level process of moving data through the pipeline, separating that
process from the details of any given game’s data or feature set. It maps inputs,
in the form of raw event data, to the lower-level managers, described in the
“Generators” section above. It also maps outputs into the calculated data stor-
age. Finally, the processing manager is responsible for recording reports on the
success or failure of processing tasks.

“Calculated Data” Storage Here, we distinguish storage of all data calculated
post-hoc from raw event data logged from game clients. Unlike game telemetry
data, in which events objectively occur once and are recorded for analysis, the
inferences made about data are subject to change. This may be due to bugfixes
during feature engineering, or changes in how an inference is made. By separat-
ing “calculated” data in our architecture, we allow such data to be governed by
an invalidation scheme, which in turn allows re-calculation of data to be sched-
uled. The details of such a scheme are left to implementation, depending on
researchers’ needs for specific projects or games.

3.3 Data Access and Analysis

There are two primary concerns for access to data generated by the system.
Namely, we must consider endpoints for the system, which deliver data in a spe-
cific format, as well as the analysis tools that will connect with those endpoints.
While there are many technologies and formats that could theoretically be used,
we identify several broad categories of tools for data exploration and analysis,
not as a comprehensive summary but as a means to describe and account for
common use cases. We then discuss four main endpoint types that cover a sig-
nificant portion of use cases.

Due to the great variety of analysis tools and technologies for data access,
this is the least prescriptive segment of our proposed architecture. Rather than
present a specific set of relationships between components, we provide major
categories of tools and show how different endpoints naturally map to different
analysis tools, and how existing analysis pipelines can be improved by integrating
our proposed architecture.

Analysis and Exploration Tools

— Interactive Notebooks
Notebook environments organize executable code into individual “chunks”
that can be independently edited and executed in any order. Jupyter Note-
books are a very popular implementation, supporting Python and other
statistics-oriented programming languages in one environment [18]. Several
other programming languages, including R and Matlab, provide their own
notebook environments.

— Data Dashboards
Dashboards are typically data visualization tools that display pre-set visual
summaries of a selected dataset. Google’s Looker Studio is a popular dash-
board creation tool that integrates with Google-Cloud-based data stores.
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Another commonly-used tool for dashboard design is Tableau, which provides
general-purpose data visualization features.

— System Monitors
This class of tool addresses the case of analyzing an analysis system itself.
Many popular web service providers offer monitoring tools for their users,
such as Amazon’s CloudWatch or Microsoft’s Azure Monitor. In the context
of our proposed architecture, system monitors are generally assumed to be
dedicated tools built as part of the architecture implementation.

— Third-Party Tools
This last category serves as a catch-all for tools that do not fit cleanly into one
of the identified categories. This may include custom-built scripts, offline data
visualization and exploration tools, or other data mining and modeling tools.
Examples here include Weka, a tool implementing many machine learning
algorithms, and RapidMiner, a data mining and analytics tool.

Data Access Endpoints As noted, the variety of data tools and analysis needs
make it impossible to definitively assign methods of data access to analysis tools.
However, it is possible to identify cases where affordances and needs match well.

TSV Files A simple, flat, tabular file format is perhaps the most general and
widely-supported means of data access possible. The comma-delimited version
of such files (CSV) is supported by every major data processing software. Most
support tab-delimited (TSV) files as well; we chose the TSV format because event
and feature data structures contain some internal JSON-formatted elements. A
tab delimiter ensures file parsers do not confuse the comma-separated JSON
elements with the rest of the tabular data structure. The general-purpose nature
and wide support for this file format format makes it a good match for general
3rd-party tools, as well as interactive notebook environments.

File API While TSV files may be easily shared and used locally, effective data
sharing may be supported via an API for accessing datasets on a file server. Such
an API could be used by a central repository website for dataset distribution.
Accessing files from a server, rather than locally from the analyst’s machine, may
also be a good match for a notebook environment. Notebooks are often hosted in
cloud-based environments, such as Google Colab or GitHub Codespaces. A sim-
ple API request that can obtain a specific dataset from any environment could
maximize interoperability between cloud-based and locally-run notebooks. Cer-
tain types of dashboard are also well-served by a file API, specifically dashboards
designed for summarizing a full dataset.

Random Access API A “random access API” allows users to request an arbitrary
time range or set of IDs for data retrieval, rather than a fixed dataset as offered
by a “File APL.” This is desirable for analyses that require data from a highly
specific cohort or sub-population of players, such as a group from a specific
gameplay event. This endpoint is a good match for dashboards designed for
exploratory data analysis. Fixed datasets may be too limiting for such tools;
instead, the ability to re-parameterize the choice of data on-the-fly is desirable.
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Real-Time API This type of API provides access to data for users with active
play sessions. The emphasis here is on low latency, allowing for evaluation of
game data as it is generated. While this is the least general option we have
listed, the implementation of such an API can unlock research that would not
be feasible with any of the other data access methods described so far, such
as studies of how teachers can use gameplay data to better facilitate classroom
play sessions [29]. Real-time APIs are the best option for a system monitor
application, allowing issues with the system to be detected as soon as they occur.
They are also appropriate for certain data dashboard use-cases, particularly for
dashboards meant for live usage concurrent with an event, such as a play-test.

4 Implementation

Having laid out a comprehensive description of a general architecture for repeat-
able, flexible, scalable processing of video game data, we now present an imple-
mentation of this architecture through a series of publicly-available, permissively-
licensed software packages. We discuss the design decisions made to generate
a specific implementation of the general architecture, and suggest alternate
approaches or potential future improvements. Collectively, this discussion should
serve to illustrate how the proposed architecture can be realized in a practical
research environment.

4.1 Data Collection

The first block of the architecture is implemented in client pack-
ages opengamedata-unity and opengamedata-js-log, and logging package
opengamedata-logger. The client packages implement the event schema pro-
posed by Gagnon and Swanson [4] for Unity- and JavaScript-based games,
and use simple configurations to direct their output to an instance of
opengamedata-logger. Data is sent via standard HTTP POST requests.
Request header parameters are used for any schema elements that are constant
within a given gameplay session (e.g. identifier and versioning items), while data
that varies per-event (game state, timestamps, etc.) is merged into a binary-
encoded request body package. This allows for packaging of co-occurring events
into a single request.

Conversely, opengamedata-logger decomposes the request body into multi-
ple events, copying the request parameters into the corresponding elements of
each event. We use a relational database system for raw event storage, and the
packaging of events within requests is extended to allow multiple events to be
packaged into a single database insertion. This minor implementation feature
helps to manage potential server load issues by reducing the overall number of
HTTP requests needed to log a given set of events.

Finally, we provide system monitoring via a web-sockets-based API, in the
opengamedata-monitor package. This API serves a simple client web page for
monitoring incoming data. Each event received by a opengamedata-logger
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instance is forwarded to an HTTP endpoint for the API, where the
opengamedata-monitor instance parses and routes the events to its web clients
based on per-game “rooms.” Thus, incoming data for any game can be checked
by researchers or system developers who need to ensure a particular game’s
logging is not failing.

4.2 Data Processing

A full implementation of the data processing step is contained in
opengamedata-core. This implementation uses a request format that allows
for users to specify either a date range or set of player/session IDs for process-
ing, as well as a list of event detectors and feature extractors to be included in
the output of the processing request. This allows users a great degree of control
over the amount of data and complexity of processing. If a researcher is working
with a particularly large-scale dataset, they can easily turn off extraction of any
features they do not intend to use in their analysis, avoiding potentially long
processing times.

Event Manager and Detectors In our implementation, an event detector
defines an event filter, update rule, trigger, and generator rule. The event filter
defines which game events are inspected by the detector. The manager passes any
events that match the filter, one-by-one, to the update rule, which updates the
detector’s internal state. Following each update, the trigger checks for a condition
in the detector state, and if the condition is met, “triggers” the generator rule,
which produces a new event.

In the simplest case, a generator’s update rule might contain hard-coded
checks for patterns of event sequences. More complex detectors could use machine
learning models trained to predict a human-coded label from sequences of event
data. Thus, our implementation supports the broad set of use cases described
by our proposed architecture.

Feature Manager and Extractors Like event detectors, our implementation
of feature extractors use an event filter, update rule, and generator rule, which
converts the current state into the single summary value. Unlike a detector, there
is no need for a “trigger;” the feature manager simply invokes the generator rule
when all events have been passed through the update rule.

In order to reduce the need for redundant calculations, our implementation
also supports “sub-features.” These are additional feature values generated by
a single code module. Thus, a feature extractor module for an “average score”
feature, which divides a total score by number of completed levels, could gener-
ate a “total score” sub-feature, avoiding redundant calculation by a standalone
“total score” module.

Finally, our implementation supports a “second-order feature” class, as initial
work towards the general “higher-order features” described in 3.2. These are
feature extractors that define an additional feature filter and feature update rule,
which function similarly to the event filter and update rule, but filter and update
based on feature data.
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As with the event detectors, our implementation supports arbitrarily complex
calculation of feature values from event (and feature) data. Thus, our framework
for feature engineering maintains flexibility and power, while ensuring analyses
are reusable with future datasets that share the common event schema.

4.3 Data Access and Analysis

We have discussed the variety of data access and analysis approaches possible.
Our implementation of the third block of the architecture provides packages for
several data access services.

— The opengamedata-core package produces TSV output files by default. We
automate the production of per-game, per-month datasets, including raw
event, raw + calculated event, session feature, player feature, and popula-
tion feature files. Thus, workflows for general 3rd-party tools and notebook
environments are well-supported.

— The opengamedata-api-files package is a RESTful API for access to
datasets stored on a file server. 0GDUtils provides functionality for accessing
data from the opengamedata-api-files API directly in any Python envi-
ronment, such as a Jupyter Notebook.

— The opengamedata-api-data package implements a RESTful API for gener-
alized requests for feature data. Users can request, per game, a custom set of
features at the session, player, or population level, based on a set of IDs or a
range of dates. The API server retrieves and extracts all feature data for the
custom dataset using the opengamedata-core package, returning the data in
a JSON-formatted web response.

— A general-purpose real-time API for data access remains a work-in-progress;
the opengamedata-monitor package implements a sockets-based system mon-
itoring tool as proof-of-concept for such an API. Future work on the API will
allow a persistent instance of the monitor to build metrics and player models
for select users as new events are generated live in a play-testing or classroom
environment,.

5 Case Studies

In order to illustrate the potential uses of Open Game Data we provide a few case
studies in two categories, namely research using large datasets, and automated
analysis designed for operation at large scales.

One of the promises of learning engineering is the ability to conduct large
scale design experiments. This process was recently demonstrated in a four-
condition experiment on the game Jo Wilder and the Capitol Case. This project
utilized the existing game, making only low cost modifications to explore the
effect of different game scripts on player engagement, enjoyment, and relatability
with the game’s protagonist with and nearly 12,000 game sessions [2,23].

In another recent experiment, researchers focused on understanding players
strategies and approaches to a city-building game called Lakeland. In this study,
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data from 32,000 game sessions was analyzed using an unsupervised cluster-
ing method and visualized as radar plots to describe different types of player
interactions [28].

Most recently, researchers utilized large datasets from 10 different games on
Open Game Data to empirically validate their development of an interoperable
ontology of game-based assessment metrics [8].

Another area that may benefit from our system is the automation of quali-
tative analysis. Utilizing a method previously developed for automated labeling
of data from a cognitive tutor [21], researchers used game data from the game
Wake: Tales from the Aqualab to train an automated detector for students who
are experiencing “struggle” [14]. This was done by displaying segments of game-
play in text, effectively creating a textual narration of the players’ actions and
progression events. Researchers reviewed and labeled thousands of these game
play text replays, providing a training set to a machine learning classifier. Once
trained, the system can be deployed at arbitrarily large scale, and assess play
sessions in real time.

6 Discussion and Future Work

Open Game Data is promising open science project in service of the educational
game research community. The platform provides open source client-side code
for integration into any game project, and a scalable architecture for data inges-
tion, real-time relay, and storage. A modular processing architecture supports
the generation of post-hoc event identification, as well as feature engineering.
Features can operate at different levels of aggregation, from a single play session
up to a whole population. Additionally, these features can inform one another,
so a session feature can be contextualized within a population, even with very
large datasets. Finally, the data access components make data available via flat
.tsv files as well as web APIs to integrate with extant and future tools.

While the project has shown promise to integrate with a number of games
and support various forms of research, it has limitations across each component
of the technical architecture and even more in the social infrastructure that will
require significant additional investments and collaboration to resolve.

One of the fundamental challenges in games research is the significant cost of
developing games that create the contexts, potential actions and data reporting
required to conduct a specific experiment. One future direction for this project is
to develop socio-legal-technological systems to broker the connections between
researchers and the game studios that either own the game’s licence or work
within the game’s licensing agreements. This will provide opportunities for exist-
ing games to be modified to support new research.

Similarly, additional infrastructure to support the automation of game
modifications, or “remote configuration,” is technically feasible and should be
explored. If such infrastructure were developed, participating game studios could
design their games to allow application of customizations at runtime without
any modification to the game’s compiled code. Establishing this capacity would
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allow for automation of experiments, where game owners have only to approve
experiments before they are deployed.

Further work on data standards is also an area for development. Some prelim-
inary work in this direction has been proposed by Gagnon et al. [5], but further
work is needed to expand upon their proposed “ontologies” of event and feature
collections. At each stage of coordination and standard development, new effi-
ciencies are be gained for processes later in the data pipeline. The challenge will
be developing these standards so they respect the flexibility of game design and
do not add additional burden to implementation.

There are also many opportunities for reusable replay and annotation tools.
Prior work (e.g. Rowe et al. [19]) have demonstrated the value of replay and
labeling capability for learning research and game design. Work is underway to
develop web-based tools to replay VR game sessions at high frame rates so that
qualitative research can be conducted during or after a play session occurs. Given
sufficient resources, a generalized client library could be produced that would
create parity between events that are sent and events that would be required for
replay and annotation to train detectors and other forms of models.

Another future technical direction focuses on the real time analysis of incom-
ing game data. A first application of this capacity could be the creation of gener-
alized tools for supporting classroom instruction with educational games, scaling
the exploratory work of existing dashboard-based projects [29] and mixed reality
interfaces for teachers [9]. The second application is for real-time augmentation
of qualitative research efforts. This method, currently being explored by Hutt
et al. [10] uses machine learning detectors to direct the attention of classroom
researchers to previously-defined moments of interest so they can conduct obser-
vations and interviews at particular moments and synchronize those observations
with game data. This is a promising new direction for human-machine pairing
in educational research.
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