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The COMPASS Collaboration performed measurements of the Drell-Yan process in 2015 and 2018
using a 190 GeV=c π− beam impinging on a transversely polarized ammonia target. Combining the data of
both years, we present final results on the amplitudes of five azimuthal modulations, which correspond to
transverse-spin-dependent azimuthal asymmetries (TSAs) in the dimuon production cross section. Three of
them probe the nucleon leading-twist Sivers, transversity, and pretzelosity transverse-momentum
dependent (TMD) parton distribution functions (PDFs). The other two are induced by subleading effects.
These TSAs provide unique new inputs for the study of the nucleon TMD PDFs and their universality
properties. In particular, the Sivers TSA observed in this measurement is consistent with the fundamental
QCD prediction of a sign change of naive time-reversal-odd TMD PDFs when comparing the Drell-Yan
process with deep inelastic scattering. Also, within the context of model predictions, the observed
transversity TSA is consistent with the expectation of a sign change for the Boer-Mulders function.

DOI: 10.1103/PhysRevLett.133.071902

After decades of extensive theoretical studies and exper-
imental efforts, enormous progress has been made in the
study of the internal structure of nucleons. However, a full
understanding of the nucleon structure in terms of quarks
and gluons remains an open challenge. When exploring the
three-dimensional parton structure of hadrons in momen-
tum space, two types of measurements are of particular
importance: first, the semi-inclusive measurements of
hadron production in deep inelastic lepton-nucleon scatter-
ing, lN → l0hX, hereafter referred to as SIDIS; second, the
Drell-Yan process, i.e., quark–antiquark annihilation into a

pair of oppositely charged leptons (dileptons) in hadron-
nucleon collisions, hN → llX, hereafter referred to as DY.
The cross section can, in both cases, be factorized into

convolutions of perturbatively calculable hard-scattering
parton cross sections and nonperturbative functions. The
latter are the parton distribution functions (PDFs) describ-
ing the distribution of quarks in the target nucleon and
either the functions describing the fragmentation of a quark
into the observed hadron (in SIDIS) or the quark PDFs of
the incoming hadron (in DY) [1–9].
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The three-dimensional picture of hadrons involves both
the longitudinal and the intrinsic transverse motion of
partons inside (un)polarized hadrons, as well as the spin
degrees of freedom. Within the leading-twist (twist-2)
approximation of pQCD, there exist eight transverse-
momentum-dependent (TMD) PDFs of the nucleon
describing the distributions of longitudinal and transverse
momenta of partons and their correlations with nucleon and
quark spins.
These eight TMD PDFs are expected to be universal and

process independent for the set of processes, for which
standard TMD factorization theorems exist (e.g., SIDIS,
DY) [6]. However, within the TMD framework of QCD, the
two naively time-reversal-odd TMD PDFs f⊥1T and h⊥1 , i.e.,
the quark Sivers [10] and Boer-Mulders [11] functions, are
predicted to have the same magnitudes but opposite signs
when comparing DYand SIDIS [12–14]. The experimental
test of this fundamental prediction is a major challenge in
hadron physics.
The functions f⊥1T , h⊥1 , and other TMD PDFs are

accessed via measurements of specific azimuthal asymme-
tries in SIDIS and DY (for recent reviews and global fit
results see, e.g., Refs. [15–23]). The COMPASS experi-
ment at CERN [24,25] has the unique capability to explore
the transverse-spin structure of the nucleon in a kinematic
region that is similar for SIDIS and DY. This mitigates the
uncertainties of scale dependence (the TMD evolution
[6,26–29]) in the comparison of the TMD PDFs extracted
from these two measurements, while studying their process
(in)dependence.
In 2017, COMPASS reported the results of the first ever

DY measurement with a polarized target [30]. A first
measurement of the Sivers effect in W� and Z0-boson
production in collisions of transversely polarized protons at
RHIC was reported by the STAR Collaboration [31,32].
Both measurements showed some evidence for the sign-
change property of the Sivers function. New DY data
with transversely polarized protons were collected by
COMPASS in 2018. In this Letter, we report results from
the combined analysis of the COMPASS DY data collected
in 2015 and 2018. Both datasets are similar in size.
Following the conventions of Refs. [25,30,33], the

general expression for the differential cross section of
pion-induced DY lepton-pair production off a transversely
polarized nucleon can be written as follows:

dσ
dq4dΩ

∝ ðF1
U þ F2

UÞð1þ A1
Ucos

2θCSÞ

×
�
1þ ST

�
D1A

sinφS
T sinφS

þD2

�
Asinð2φCSþφSÞ
T sinð2φCS þ φSÞ

þ Asinð2φCS−φSÞ
T sinð2φCS − φSÞ

�

þD3

�
AsinðφCSþφSÞ
T sinðφCS þ φSÞ

þ AsinðφCS−φSÞ
T sinðφCS − φSÞ

���
: ð1Þ

Here, q is the four-momentum of the exchanged virtual
photon, F1

U, F
2
U are polarization- and azimuth-independent

structure functions, and the polar asymmetry A1
U (often

referred to as λ) is given as A1
U ¼ ðF1

U − F2
UÞ=ðF1

U þ F2
UÞ.

The subscript ðUÞT denotes (in)dependence on the trans-
verse polarization of the target. In analogy to SIDIS, the
virtual-photon depolarization factors are given as D1¼
ð1þcos2θCSÞ=ð1þλcos2θCSÞ, D2¼sin2θCS=ð1þλcos2θCSÞ
and D3 ¼ sin 2θCS=ð1þ λ cos2 θCSÞ. At leading order of
pQCD, within the twist-2 approximation, F2

U ¼ 0 and
λ ¼ 1. The angle φS defined in the target rest frame is
the relative azimuthal angle between the transverse com-
ponent of the virtual-photon momentum, qT, and the
direction of the nucleon transverse polarization ST (see
Ref. [30]). The azimuthal angle φCS and the polar angle θCS
of the lepton, as well as its solid angle Ω, are defined in the
Collins-Soper frame following Refs. [30,33].

In Eq. (1), the transverse-spin-dependent asymmetries
Aw
T (hereafter referred to as TSAs) are the amplitudes of the

azimuthal modulations w ¼ wðφS;φCSÞ, divided by the
polarization- and azimuth-independent part of the DY cross
section and the corresponding depolarization factor. The
cross section comprises five TSAs. Three of them can be
described by contributions from twist-2 TMD PDFs, while
the other two arise due to higher-twist PDFs related to
quark-gluon correlations, which induce a suppression by a

factorQ−1. The three DY twist-2 TSAs, AsinφS
T , Asinð2φCS−φSÞ

T

and Asinð2φCSþφSÞ
T are related to the nucleon Sivers (f⊥1T),

transversity (h1) and pretzelosity (h⊥1T) TMD PDFs, respec-
tively [33,34]. In the Sivers TSA, the nucleon TMD PDFs
are convoluted with the spin-independent pion TMD PDFs
f1;π, while for the other two TSAs the convolution involves
the pion Boer-Mulders TMD PDFs h⊥1;π . For convenience,
these TSAs are hereafter called Sivers TSA, transversity
TSA, and pretzelosity TSA.
In the case of unpolarized-hadron production in SIDIS of

leptons off transversely polarized nucleons, the three
aforementioned nucleon TMD PDFs induce analogous
twist-2 TSAs [33–36]. Experimentally, these TSAs were
investigated by HERMES using a proton target [37,38], by
COMPASS using both proton and deuteron targets [37,39–
44] and at JLab using a neutron target [45]. Nonzero quark
Sivers and transversity TMD PDFs were extracted from
SIDIS measurements, using both collinear [17,18,46–48]
and TMD [19–21,26–28,49–53] evolution approaches.
Possible relations between collinear and TMD distributions
and the matching of corresponding factorization and
evolution schemes are the subject of dedicated studies
[9,54–56].
The dimuon production data were collected by the

COMPASS experiment in 2015 and in 2018 using the
190 GeV=c secondary π− beam with an average intensity
of 0.7 × 108 s−1, delivered from the M2 beam line in the
north area of the super proton synchrotron (SPS) complex
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at CERN [57]. Beam particles were scattered off a set of
consecutive cylindrical targets, mounted coaxially along
the beam axis, which is chosen as the z axis of the
spectrometer. The polarized proton (NH3) target consisted
of two cylindrical cells, each 55 cm long and 4 cm in
diameter [58]. The two cells were polarized vertically
(transverse to the beam axis) in opposite directions,
allowing data to be taken with up- and down-spin ori-
entations simultaneously. In order to compensate for the
differences in the dimuon acceptance of the two cells,
the polarization of the target was periodically reversed. The
reversals were performed nearly every two weeks to reduce
possible acceptance variations over time. The target trans-
verse polarization was preserved using a 0.6 T dipole
magnetic field with a relaxation time of about 1000 h [58].
The magnitude of the average proton polarization during
the 2015 and 2018 measurements was hPTi ≈ 0.7. The
resolution of the reconstructed interaction vertex position
along the z axis was estimated to be of order of 10 cm for
the DY events produced in the polarized target region. The
cells were separated by a 20 cm gap to minimize migration
of events from one cell to the other. The dilution factor,
accounting for the fraction of polarizable nucleons in the
target and the migration of reconstructed events from one
target cell to the other, was calculated to be hfi ≈ 0.18 [59].
Both contributions were evaluated as a function of kin-
ematic variables and were taken into account on an event-
by-event basis.
A 240 cm long hadron absorber made of aluminium

oxide with a cylindrical tungsten core of 5 cm in diameter
was placed 135 cm downstream of the polarized target.
The COMPASS spectrometer configuration used during

the DY measurements was essentially the same as during
SIDIS measurements [24,39,43]. The hadrons produced in
pion-nucleon interactions in the target region were mostly
stopped by the absorber. Charged particles were detected
by the system of tracking detectors in the two-stage
spectrometer. The COMPASS muon identification systems,
consisting of a set of large-area trackers and hadron
absorbers, allowed the selection of muon tracks. The
triggering of dimuon events required the hit pattern of
several hodoscope planes to be consistent with two muon
candidates originating from the target region. These hodo-
scope systems covered a wide acceptance in muon polar
angle θμ (8 mrad < θμ < 160 mrad).
The physics data taking in 2015 (2018) was performed in

nine (eight) periods, each consisting of two consecutive,
about week-long subperiods with opposite target polar-
izations. For the analysis presented in this Letter, both 2015
and 2018 data were iteratively reprocessed, improving
detector calibrations and alignment, and optimizing the
reconstruction settings.
The data collected in each given (sub-)period were

analyzed independently for possible instabilities of kin-
ematic and azimuthal distributions, which could be due to

unnoticed detector or trigger problems. Dimuon event
candidates are selected requiring reconstructed tracks of
an incoming pion and at least two oppositely charged
outgoing muons associated with a common production
vertex. Production vertices are required to be within the
fiducial volumes of the polarized-target cells. A set of
selection criteria was applied to ensure the quality of the
reconstructed tracks, the reliability of the muon identifi-
cation and to verify that the topology of the dimuon events
is consistent with the registered trigger patterns.
The dimuon transverse momentum qT is required to be

above 0.4 GeV=c to ensure sufficient resolution of the
azimuthal angles φCS and φS. In order to reduce back-
ground from two-muon events that are not produced via the
DY process, the dimuon mass range was chosen as
4.0 GeV=c2 < Mμμ < 9.0 GeV=c2. This range was
enlarged compared to our previous publication [30], where
stricter requirements on the invariant mass range were
applied: 4.3 GeV=c2 < Mμμ < 8.5 GeV=c2. At lower
masses, the background contamination consists of contri-
butions from ψ 0, J=ψ , semimuonic open-charm decays and
combinatorial background. Choosing the upper limit at
9.0 GeV=c2 practically eliminates the contribution of ϒ-
resonances. Based on Monte-Carlo studies (using the
PYTHIA-8 generator and the GEANT-4 based COMPASS
setup simulation tool), it was observed that the background
contribution depends dominantly on the mass. In the first
mass bin (4.00 GeV=c2 < Mμμ < 4.36 GeV=c2), the esti-
mated background amounts to about 30%, with the largest
contribution coming from the ψ 0 tail. It rapidly drops to 6%
in the next mass bin (4.36GeV=c2<Mμμ<5.12GeV=c2)
[59]. Over all the enlarged mass range the background was
estimated to be about 10%, while it was below 5% using the
previous selection [30]. Recent COMPASS studies indicate
that in the ψ 0 and J=ψ regions, and between them, the
asymmetries are small and compatible with zero within
0.5%–2% statistical precision. This suggests that the back-
ground represents only a dilution to the DY TSAs. The
appropriate weighting factors were evaluated on an event-
by-event basis as a function of Mμμ and included in the
overall dilution factor, assigning an additional 5% nor-
malization uncertainity to it, accounting for possible small
background asymmetries. After all selections, about
102000 dimuon events remained for analysis (50000 in
2015 and 52000 in 2018).
The Bjorken scaling variables related to the beam pion,

xπ , and the target nucleon, xN, have the following average
values: hxNi ¼ 0.16, hxπi ¼ 0.48. Hence, the kinematic
domain explored by the COMPASS measurement probes
mainly the valence quark region, where the expected
dominant TMD PDF contributions come from the u quarks
of the nucleon and the ū quark of the incoming π−. The
average values for dimuon transverse momentum (hqTi ¼
1.2 GeV=c) and invariant mass (hMμμi ¼ 5.1 GeV=c2)
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satisfy the requirements imposed by the factorization
theorems [52].
For each data-taking year separately, all fiveTSAs present

in the cross section [see Eq. (1)] are extracted period by
period and then averaged. The extraction of the asymmetries
is performed using an extended unbinned maximum like-
lihood estimator, where all five modulations are fitted
simultaneously using dimuon events produced in each target
cell for the two directions of the target polarization. The
estimator is based on the method developed for the
COMPASS SIDIS TSA analyses [65]. In this approach,
flux and acceptance-dependent systematic uncertainties are
minimized. The TSAs are evaluated in one-dimensional
kinematic bins as a function of xN, xπ , dimuon Feynman
variable xF, qT, orMμμ, integrating over the entire accepted
range of all other variables. In order to evaluate theTSAs, the
amplitudes of the modulations are corrected for the depo-
larization factors and for the effective proton polarization
f · hPTi. The depolarization factors and the dilution factor
are applied as weights on an event-by-event basis. The
depolarization factors are evaluated using the approximation
λ ¼ 1. Known deviations from this assumption with λ
ranging between 0.5 and 1 [66–68] decrease the normali-
zation by at most 5%. This effect is not included in the total
uncertainties. The largest systematic uncertainties for the
TSAs are attributed to residual variations of the experimental
conditions. Such instabilities may result in changes of the
spectrometer acceptance, which may not be entirely can-
celled when combining the data in a given period. The
corresponding systematic effects are quantified by evaluat-
ing various types of false asymmetries, similar to the
COMPASS SIDIS analyses [40,69], and by checking the
stability of the results over the periods. Thorough studies
performed separately for the two data-taking years revealed
somewhat larger systematic effects and instabilities for 2018
compared to 2015. The systematic point-to-point uncertain-
ties associated with the TSAs were estimated to be between
0.7 to 0.8 times the corresponding statistical uncertainties in
2015 and between 1.0 to 1.2 in 2018. For the two years, the
normalization uncertainties associated with target polariza-
tion and overall dilution factor are 5% and 12%, respec-
tively. For each TSA, the 2015 and 2018 results are
combined by calculating the weighted average in each
kinematic bin, taking into account the quadratically added
statistical and systematic uncertainties.
In Fig. 1, the combined 2015 and 2018 COMPASS

results obtained for the three twist-2 TSAs AsinφS
T ,

Asinð2φCSþφSÞ
T , and Asinð2φCS−φSÞ

T are shown as a function of
the variables xN, xπ , xF, qT, and Mμμ. Compared to the
previous analysis of only the 2015 data [30], adding the
2018 data and enlarging the dimuon mass range increased
the statistical precision of the measurement by a factor of
1.5 [59]. The presented TSAs are compared with recent
theoretical predictions, which are based on calculations
performed in Ref. [52]. These predictions are obtained by

using for each bin the appropriate average kinematic values
given by the event population. For each TSA, four different
calculations based on two different approaches are pre-
sented. The first approach is solely based on model
predictions for pion and proton TMD PDFs using the
light-front constituent quark model (LFCQM) [70–77] and
the spectator model (SPM) [78–82]. The second is a
“hybrid” approach, in which model inputs are restricted
to the usage of LFCQM and SPM for the pion Boer-
Mulders function, while the nonperturbative inputs for the
proton TMD PDFs are taken from available parametriza-
tions extracted from experimental data (“Torino” fit [48],
“JAM20” global fit [53] and “LP15” fit [83]). The MSTW
extraction [84] was used for the collinear proton PDF f1;p,
while for the collinear pion PDF f1;π the SMRS [85] fits
were used. In these predictions, the TMD evolution is
implemented at next-to-leading logarithmic precision for
all twist-2 TSAs. The model calculations were performed
using the sign-change hypothesis for both the nucleon
Sivers and Boer-Mulders TMD PDFs [52,86]. Within the
current experimental precision, the models considered here
are consistent with the data, and none can be considered
preferred.
The Sivers TSA AsinφS

T is predicted to be positive in the
entire kinematic range [52], which is in agreement with
the COMPASS data points shown in Fig. 1. The average
Sivers TSA, hAsinφS

T i ¼ 0.070� 0.037ðstatÞ � 0.031ðsystÞ,
is found to be above zero at about 1.5 standard deviations of
the total uncertainty. In the left panel of Fig. 2, the Sivers
TSA is shown together with model predictions [52]
evaluated with and without the sign-change hypothesis,
shown as dark-shaded curves in the top and light-shaded

FIG. 1. Kinematic dependences of the Sivers, pretzelosity, and
transversity TSAs (top to bottom). Inner (outer) error bars
represent statistical (total experimental) uncertainties. For theo-
retical predictions see text.
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curves in the bottom of the figure, respectively. Using the
band of the presented model predictions, the COMPASS
measurement is found to agree with the sign-change
hypothesis within less than 1 standard deviation of its total
uncertainty, while being away from the no-sign-change
hypothesis by about 2.5 to 3 standard deviations. In
addition, the present results do not support earlier expect-
ations of a large Sivers effect in the DY process at
COMPASS kinematics [25].
The transversity TSA Asinð2φCS−φSÞ

T is expected to be
negative, but larger in absolute value compared to the
Sivers TSA [52,87]. The average value for the transversity
TSA is measured to be below zero with a significance of

about 2 standard deviations, hAsinð2φCS−φSÞ
T i ¼ −0.131�

0.046ðstatÞ � 0.047ðsystÞ. In the right panel of Fig. 2,
the average transversity TSA is shown together with model
calculations [52]. The COMPASS measurement is found to
agree in sign and magnitude with the band of available
model predictions, which supports the universal nature of
the transversity TMD PDFs.
As discussed in Refs. [52,86], the negative sign of the

transversity TSA implies a positive sign of the ū π− Boer-
Mulders TMD PDF. Together with the positive sign of the
cosð2φCSÞ modulation found in the unpolarized Drell-Yan
data taken with a π− beam [66,67], which suggests the same
sign for the ū pion and u proton Boer-Mulders TMD PDFs,
it follows that the latter function has a positive sign in
the Drell-Yan process. Since this positive sign is opposite
to the negative sign found for this function in SIDIS
[88,89], the present TSA data strongly support the sign
change of the proton Boer-Mulders function between DY
and SIDIS. We note that all theory calculations shown in
Figs. 1 and 2 for the transversity TSA assume such a sign
change for the proton Boer-Mulders TMD PDF.
The pretzelosity TSA Asinð2φCSþφSÞ

T is predicted to be very
small, which is explained by the magnitude of the pretze-
losity TMD PDFs and kinematic suppression factors [52].

The measured average value, hAsinð2φCSþφSÞ
T i ¼ −0.027�

0.046ðstatÞ � 0.043ðsystÞ, is indeed found to be small
and compatible with zero within uncertainties. For
the two higher-twist TSAs, the averaged values

hAsinðφCS−φSÞ
T i ¼ 0.113� 0.076ðstatÞ � 0.071ðsystÞ and

hAsinðφCSþφSÞ
T i ¼ −0.071� 0.071ðstatÞ � 0.064ðsystÞ are

consistent with zero within about 1 standard deviation of
the total uncertainty. Compared to the twist-2 TSAs, the
statistical uncertainties of the two TSAs related to higher-
twist TMD PDFs are notably larger, which is explained by
the relative smallness of the depolarization factor D3. No
predictions are available for these twist-3 TSAs. The full set
of numerical values for the extended and the narrower mass
ranges is available upon request.
The new COMPASS results presented in this Letter

supersede the previous ones from our first publication [30].
They demonstrate the importance and the potential of
measuring the DY process with transversely polarized
nucleon targets, thereby paving the way for new projects
aiming to perform similar studies at CERN and elsewhere
[90–92].
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[70] C. Lorcé, B. Pasquini, and P. Schweitzer, Eur. Phys. J. C 76,
415 (2016).

[71] B. Pasquini, S. Cazzaniga, and S. Boffi, Phys. Rev. D 78,
034025 (2008).

[72] B. Pasquini and F. Yuan, Phys. Rev. D 81, 114013 (2010).
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[77] C. Lorcé, B. Pasquini, and M. Vanderhaeghen, J. High

Energy Phys. 01 (2015) 103.
[78] R. Jakob, P. J. Mulders, and J. Rodrigues, Nucl. Phys.A626,

937 (1997).

[79] Z. Lu and B.-Q. Ma, Phys. Rev. D 70, 094044 (2004).
[80] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys. Rev.

D 77, 094016 (2008).
[81] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D 78,

074010 (2008).
[82] L. Gamberg and M. Schlegel, Phys. Lett. B 685, 95 (2010).
[83] C. Lefky and A. Prokudin, Phys. Rev. D 91, 034010 (2015).
[84] M. Anselmino, M. Boglione, J. O. Gonzalez Hernandez,

S. Melis, and A. Prokudin, J. High Energy Phys. 04
(2014) 005.

[85] P. J. Sutton, A. D. Martin, R. G. Roberts, and W. J. Stirling,
Phys. Rev. D 45, 2349 (1992).

[86] J.-C. Peng, EPJ Web Conf. 85, 01009 (2015).
[87] A. N. Sissakian, O. Yu. Shevchenko, A. P. Nagaitsev, and

O. N. Ivanov, Phys. Part. Nucl. 41, 64 (2010).
[88] V. Barone, S. Melis, and A. Prokudin, Phys. Rev. D 81,

114026 (2010).
[89] V. Barone, S. Melis, and A. Prokudin, Phys. Rev. D 82,

114025 (2010).
[90] C. A. Aidala et al. (The LHCSpin Project Collaboration),

arXiv:1901.08002.
[91] C. Barschel et al., LHC Fixed Target Experiments:

Report from the LHC Fixed Target Working Group of
the CERN Physics Beyond Colliders Forum, CERN
Yellow Reports: Monographs Vol. 4/2020 (CERN, Geneva,
2020).

[92] D. Keller (SpinQuest Collaboration), arXiv:2205.01249.

PHYSICAL REVIEW LETTERS 133, 071902 (2024)

071902-8

https://doi.org/10.1016/j.physletb.2012.05.015
https://doi.org/10.1016/j.physletb.2012.05.015
https://doi.org/10.1007/BF01549713
https://doi.org/10.1007/BF01549713
https://doi.org/10.1103/PhysRevD.39.92
https://doi.org/10.1103/PhysRevD.39.92
https://doi.org/10.1103/PhysRevD.93.114013
https://doi.org/10.1103/PhysRevD.93.114013
https://doi.org/10.1016/j.physletb.2012.09.055
https://doi.org/10.1016/j.physletb.2012.09.055
https://doi.org/10.1140/epjc/s10052-016-4257-8
https://doi.org/10.1140/epjc/s10052-016-4257-8
https://doi.org/10.1103/PhysRevD.78.034025
https://doi.org/10.1103/PhysRevD.78.034025
https://doi.org/10.1103/PhysRevD.81.114013
https://doi.org/10.1007/JHEP05(2011)041
https://doi.org/10.1007/JHEP05(2011)041
https://doi.org/10.1103/PhysRevD.79.094012
https://doi.org/10.1103/PhysRevD.83.114044
https://doi.org/10.1103/PhysRevD.83.114044
https://doi.org/10.1103/PhysRevD.90.014050
https://doi.org/10.1103/PhysRevD.90.014050
https://doi.org/10.1007/JHEP01(2015)103
https://doi.org/10.1007/JHEP01(2015)103
https://doi.org/10.1016/S0375-9474(97)00588-5
https://doi.org/10.1016/S0375-9474(97)00588-5
https://doi.org/10.1103/PhysRevD.70.094044
https://doi.org/10.1103/PhysRevD.77.094016
https://doi.org/10.1103/PhysRevD.77.094016
https://doi.org/10.1103/PhysRevD.78.074010
https://doi.org/10.1103/PhysRevD.78.074010
https://doi.org/10.1016/j.physletb.2009.12.067
https://doi.org/10.1103/PhysRevD.91.034010
https://doi.org/10.1007/JHEP04(2014)005
https://doi.org/10.1007/JHEP04(2014)005
https://doi.org/10.1103/PhysRevD.45.2349
https://doi.org/10.1051/epjconf/20158501009
https://doi.org/10.1134/S1063779610010041
https://doi.org/10.1103/PhysRevD.81.114026
https://doi.org/10.1103/PhysRevD.81.114026
https://doi.org/10.1103/PhysRevD.82.114025
https://doi.org/10.1103/PhysRevD.82.114025
https://arXiv.org/abs/1901.08002
https://arXiv.org/abs/2205.01249

