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In this study, we optimize the quality and economic performance of biodiesel production through a scenario-
based adaptive state feedback control framework. Our goal is to maximize the operational efficiency while
ensuring the production of on-spec biodiesel, despite uncertainties in reaction kinetics. A first-principle model
is employed to describe the process dynamics, with kinetic parameters estimated online using a moving
horizon estimator (MHE). A pool of state feedback controllers is created via off-line nonlinear optimization and
metaheuristic algorithm based on sampled kinetic scenarios. Then, the uncertainty space is partitioned into
several clusters, each linked to an optimal controller from the pool. During online operation, the appropriate
controller is selected by matching the estimated kinetic parameters to the corresponding cluster. Simulation
studies on a semi-batch reactor demonstrate that manipulating the methanol feed flow rate and heat duty
with our control approach significantly improves operational efficiency, reduces online computational time,

and enhances robustness to kinetic uncertainties compared to model predictive control (MPC).

1. Introduction

Fossil fuels are a critical concern in the energy sector, mainly
due to their significant greenhouse gas emissions. To mitigate the
environmental impact of the fuel industry, biofuels producing from
animal fat or vegetable oil have emerged as a viable alternative. For
example, it has been shown that biodiesel offers comparable engine
performance to conventional fuel while reducing the carbon dioxide
significantly (Graboski and McCormick, 1998). To facilitate widespread
adoption of biodiesel, producers should minimize the production cost
while keeping the product quality on-spec. Biodiesel production, which
relies on a semi-batch transesterification process, is influenced by sev-
eral operating factors, such as the molar ratio between alcohol and
triglycerides, reaction time, and reaction temperature, which should
be controlled properly (Benavides and Diwekar, 2012a). Additionally,
uncertainties like feedstock composition and reaction kinetics can affect
production rate, quality, and economics, which should be addressed ef-
fectively (Benavides and Diwekar, 2012b). Our research aims to design
an effective control strategy to ensure that the process is operated on an
optimal condition while robust enough to uncertainties. To this end, we
begin by reviewing and discussing the model predictive control (MPC),
state feedback controller, moving horizon estimator (MHE), and kinetic
uncertainty.

MPC: Conventional MPC focuses on the setpoint tracking, which
minimizes the disparity between system outputs and desired setpoint
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through future dynamics prediction and online optimization. In addi-
tion, integrating operational constraints into the control action design is
a unique advantage of MPC compared to the traditional PID controllers.
In biodiesel production, the setpoint is often the mass content of fatty
acid methyl esters (FAME) in the effluent. Brasio et al. (2013) has
shown that a nonlinear MPC can effectively drive the process output
to reach the standard value of FAME, provided the process model is
accurate enough. However, their work did not address three critical
issues in the MPC design, including the computational cost, robustness,
and economic performance.

» The computational load of MPC is usually high due to its
optimization-based nature. This drawback becomes even worse
especially for nonlinear systems. A common strategy to mitigate
this issue is shifting the online computations to offline, such as
explicit MPC (Alessio and Bemporad, 2009).

An inaccurate model used in MPC may lead to offset or even
instability. Hence, various robust MPC design methods, such as in-
variant set-based (Mayne et al., 2005), tube-based (Limon et al.),
scenario-based (Bernardini and Bemporad, 2009), and Lyapunov-
based (Mhaskar et al., 2006), have been broadly studied.

The process industry is more interested in the optimal operations
beyond the setpoint tracking (Engell, 2007), which requires ad-
vanced controller, such as MPC, to incorporate production profit
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or cost into the objective function of the optimization framework,
leading to the development of economic MPC (EMPC) (Rawlings
et al., 2012; Ellis et al., 2014). However, the EMPC has more
complex structure than the traditional MPC, resulting in a higher
computational burden. In addition, achieving a balance between
control and economic performance needs extensive tuning.

These three challenges, computational cost, robustness, and economic
performance, may simultaneously degrade MPC performance and thus
deserve a unified solution. For example, (Lucia et al., 2014) studied
economic robustness of a polymerization batch process and found that
the batch time can be more effectively reduced by multi-stage NMPC
using a scenario-tree, compared to open-loop robust MPC and affine
control policies. However, that approach only branched the scenario
tree in the first stage to save the computational cost. Even though
more scenarios and stages in the multi-stage NMPC may enhance
the controller robustness, the online computational demand will rise
rapidly and render the resulting problem unsolvable.

State Feedback Controller: The state feedback controller employs
a pre-determined gain matrix to compute control actions in a closed-
loop manner, and thus requires minimal online computations. The
classical linear-quadratic regulator (LQR) provides an analytical for-
mula of optimal gain matrix for linear system without considering
constraint. The linear matrix inequality (LMI) is a popular optimiza-
tion tool to determine the gain matrix for linear or switched linear
systems subject to uncertainties or constraints (Montagner et al., 2006).
However, nonlinear systems are more complex, which may require
multiple models and controllers to handle a wide operation regime. A
common approach is to linearize the process at different operational
points and design a state feedback controller for each sub-domain
individually (Wang et al., 2007). So far, most state feedback control
approaches focus on the robustness and system nonlinearity, whereas
the economic performance is rarely studied.

MHE: The controller robustness can be enhanced through a state
or parameter estimator to reduce uncertainties. In many works (Nagy
and Braatz, 2003; Huang et al., 2012; Voelker et al., 2013; Jung et al.,
2015; Dong and Angeli, 2020), the extended Kalman filter (EKF) or
MHE are commonly integrated with feedback controllers for process
regulation under uncertainties. MHE solves a constrained optimization
problem to estimate process states or parameters by fitting past ob-
servations over a pre-defined time horizon (Rao et al., 2001). Several
critical studies have demonstrated that MHE generally offers superior
estimation performance compared to EKF for chemical reactions albeit
with higher computational demands (Haseltine and Rawlings, 2005;
Alexander et al., 2023). In batch processes, MHE is applied to handle
batch-to-batch parameter drifting (Kwon et al., 2015) and multi-rate
measurement (Bae et al., 2021). However, because MHE needs a long
observation window to ensure the estimation accuracy (Al-Matouq and
Vincent, 2015), its effectiveness for a batch process could be limited
when in-situ measurement has significant delay or the batch time
should be minimized.

Control under kinetic uncertainty: Kinetic parameters are usually
subject to uncertainties in the chemical reaction. A scenario-based
approach can be employed to address kinetic uncertainty to form
a multi-stage multi-scenario formula (Adloor and Vassiliadis, 2021).
However, it needs significantly long time to obtain an optimal solution,
and thus cannot be used for real-time control problem. A distribu-
tionally robust discrete control problem was studied for microbial
fermentation under kinetic uncertainty. It adopts an evolutionary com-
putation algorithm to solve a min-max problem with semi-infinite
constraints embedded, but also takes substantially long time (Wang
et al., 2023). The multistage and worst-scenario NMPCs were compared
in a study of the semi-batch reactor regulation subject to kinetic un-
certainty (Kummer et al., 2020). It found that the former is 38 times
slower than the latter without remarkable improvement in reactor
performance. Nevertheless, the design based on worst-scenario could
be very conservative.
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The goal of this paper is to optimize the biodiesel production
efficiency under kinetic uncertainties using an adaptive state feedback
control scheme. We define production efficiency as the ratio of batch
production profit to the batch time. This measure poses significant chal-
lenge to the conventional MPC as the batch time should be treated as an
online optimization variable. In addition, the kinetic uncertainty also
renders the online optimization more difficult. Inspired by the adaptive
state feedback controller designed based on multiple models (Narendra
and Balakrishnan, 1997), we firstly sample the kinetic parameter space
to generate several scenario sets for controller design and evaluation.
Then, a series of nonlinear optimization problems are solved offline
based on each sampled scenario to design gain matrices and tune batch
time. The resulting controller performance is assessed by the evalu-
ation set. We further employ the particle swarm optimization (PSO)
algorithm to search in the kinetic space and design better controllers.
Consequently, a pool of state feedback controller can be created. Next,
the uncertainty space is divided into several clusters, each associated
with an optimal state feedback controller selected from the pool. During
online operations, we apply MHE for kinetic parameters estimation,
identify the relevant cluster, and choose the proper state feedback
controller. The proposed controller design scheme has the following
merits:

The proposed scenario-based state feedback controller can be
optimized and evaluated purely offline to avoid high online com-
putational load.

The PSO algorithm enables multiple controllers generation
through intelligent sampling.

The MHE combined with kinetic parameter clustering can direct
the online state feedback controller gain selection to mitigate
kinetic uncertainties.

Switching among multiple controllers can optimize the batch
process efficiency and ensure FAME specification under a wide
range of kinetic uncertainties.

We demonstrate the computational, economic, and robust superi-
ority of the proposed control scheme over classical nonlinear MPC
integrated with MHE on the testing scenario of biodiesel production
process. Because we do not assume the similarity or correlation among
different batches, the well-known iterative learning control (Lee and
Lee, 2007) is excluded from our investigation.

The rest of this paper is organized as follows. The biodiesel pro-
duction process model is described in Section 2. The proposed adap-
tive state feedback controller together with PSO and MHE, are pre-
sented in Section 3. The comparisons between classical MPC and state
feedback control on the simulated batch reaction are conducted in
Section 4 to highlight the superiority of the proposed scheme on
economic performance and robustness. Finally, conclusions are drawn
in Section 5.

Notation. Throughout this paper, vectors and matrices are denoted
by boldface letters. The overline and underline represent the upper and
lower bounds on a variable. The operator |- | on a set calculates its
cardinality.

2. Biodiesel production process

The transesterification reaction breaks down triglycerides into glyc-
erol and FAME using alcohol, typically methanol or ethanol. This
process involves a series of sequential steps: one for each glyceride,
tri-, di- and monoglyceride. The reactions are shown below:

k

TG + CH;0H ;é DG + FAME, 1
2
k

DG + CH;0H ké MG + FAME, @
4
k.

MG + CH;0H ké G+ FAME. 3)

6
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Batch Reactor

Fig. 1. The biodiesel production scheme.

In Eq. (1), triglycerides, denoted as TG, typically derived from veg-
etable oils, are reacted with methanol, CH;OH, to produce diglyceride,
denoted as DG, and FAME. Eq. (2) illustrates the subsequent reaction
between DG and CH;OH. Then, the monoglyceride, denoted MG, is
formed along with additional FAME. In Eq. (3) of this three-step pro-
cess, the MG yielded from Eq. (2) is reacted with CH;OH, to generate
glycerol, denoted as G, along with the final FAME. Assuming complete
conversion, each mole of triglyceride yields three moles of FAME,
making transesterification an efficient method for biodiesel production.
In addition to the batch reactor, a separator is needed to split the crude
biodiesel from the remaining components in batch reactors. Unreacted
methanol can be recycled into the reactor for subsequent batches. An
overview of the production system is shown in Fig. 1.

We use the following mass and energy balance equations to describe
the transesterification reaction (Brasio et al., 2013).

dx;
m— = F(xg; —x)+¢;, i=1,2,....,6,

'R 4
A1-=F+V2zldx )
dt pi
dT y

PCyV - = FC, o (Tp = T) + Y (AH);r;V + Q. (6)

j=1
where x; is the component mass fraction; m is the total mass in the
reactor with unit gram; 4 is the reactor liquid level with unit dm; A is
the cross-sectional area of the reactor with unit dm?; V is the volume
of mixture with unit liter; T is the reaction temperature in Kelvin; Q,,
is the heat duty; T, Cprs and F are the temperature, heat capacity,
and the mass flow rate of feeding methanol, respectively; (4H); is the
heat of reaction; the mixture density p and specific heat capacity C, are
dependent on each component density p; and heat capacity C

:4Z£—

Il
.Mo

i, Z Cpi%;. 7
The reaction rate r; is defined as follows:
r1 = kG Cp = ky GG, (8)
ry = k3C3C) — kyCyCg, ()]
ry = ksC4Cy — kgCsCe, (10
where C,ii=123...,6 is the mole concentration of components 1 to

6. Here the reaction rate k = [k, k,, ... ,k6]T shown in Egs. (1)-(3) is

specified by the Arrhenius equation,
=1,2,...,6,

ky = ko pexp(— (€8]

—E,

%), b
RT
where kg = [kq.ko, ..., koglT is the pre-exponential factor; E, is
the energy of activation; R is the ideal gas constant. The generation
reaction terms are shown below:

b == +r,+r3)VM, ¢y =—r VM, (12)
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Product:
g FAME
Separator
Table 1
Component parameters.
i 1 2 3 4 5 6
Name CH;0H TG DG MG FAME G
p; (g/L) 769 914.37 941.90 990.56 856.37 1346.60
M, 32.04 873.06 612.74 352.42 292.36 92.09
C,; J/gK) 2.705 2.052 2.119 2.284 2.084 2.509
Table 2
Nominal kinetic parameters.
b 1 2 3 4 5 6
E, 16377 19202 17 867 19383 15302 4282
7(0‘,, 0.5401 1.1180 4.3119 3.7486 0.0397 0.0317

13
14)

b3 =) —r)VM3, ¢pyp=(ry —1r3)V My,
¢s =r3VMs, ¢pg=(r| +1r, +r3)V Mg,

where M;, i = 1,2,...,6 is the molar weight of each component. The
values of parameters are shown in Tables 1 and 2.

The nominal value of the pre-exponential factor, denoted as kg, is
derived from experimental data at T = 323 K Berchmans et al. (2010).
However, actual reaction kinetics may vary between batches. Thus, we
introduce uncertainties on k, with +30% of their nominal values in the
simulation. A larger variance of k, will render the control task more
challenging. However, because we use a sampling-based method to
evaluate the impact of kinetic uncertainty on the developed controllers,
the proposed method is more robust and less conservative than the con-
ventional or worst-case MPC. We expect that this advantage becomes
more remarkable under larger variance of k,.

The quality specification of biodiesel requires the FAME percentage
x to be greater than 98.8% by following the standard EN 14214:2008
(Brésio et al., 2013).

Xs

IE = > 98.8% (15)

Xy 4 X3 4 X4 + X5
The profit of biodiesel production (x, + x3 + x4 + x5) is calculated based
on the biodiesel sales P, = $1.19 per liter, methanol cost P,, = $526 per
metric ton, electricity price P, = $0.0832 per kWh, energy consumption
for separation of methanol E; = 0.374 kWh/kg, and soybean oil cost
per batch P, = $725.05.

Profit = P, - Biodiesel Production — P,,
+ 10%Unreacted Methanol)

- (Consumed Methanol

—P; — P, - (Heating Energy + E, - 90%Unreacted Methanol) (16)

Here we assume that 90% of unreacted methanol in a batch can be
recycled. However, separation of such amount of methanol from the
batch effluent needs to consume some extra energy.
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Fig. 2. The overall controller design and application scheme.

3. Control system design

The purpose of control is to maximize the biodiesel production
process efficiency while ensuring the product quality specification. The
proposed control system design involves two phases. In the offline de-
sign phase, we sample the uncertain parameter k, to generate a training
set, denoted as I', an evaluation scenario set, denoted as I7, and a
clustering scenario set, denoted as @, respectively. The state feedback
controllers are initially designed based on each scenario of k; in the
training set I". Then, the scenarios in evaluation set are used to deter-
mine the average process efficiency using the proposed controllers. A
PSO-based scheme is developed to further improve these controllers by
searching for more representative kinetic parameter values and solving
the associated optimal control problem. During this searching process, a
pool of controllers is created. Finally, the uncertainty space is divided
into several clusters using the larger and more representative set @.
Each cluster is equipped with the best controller from the pool. In the
online implementation phase, the MHE is solved at each time instant to
estimate kinetic parameter k, and identify the cluster that it belongs to.
Subsequently, the state feedback controller associated with that cluster
can be chosen to regulate the plant. This design and application scheme
is shown in Fig. 2.

3.1. State feedback control design and evaluation

In this section, we describe the concept of state feedback control
based on a sampled kinetic parameter vector. First, let us introduce
the optimization-based state feedback controller design formula. The
biodiesel production process has two inputs F and Q,. Their state
feedback control law is shown in (17) and (18):

o)=Ll []

F —min{F,F}, F « max{F,F}, 0, < min{Q,,0,}, 0, < max{Q ,0,},
18)

a7

where x = [x|,x;,...,x5]T; Kz € R>® and K, € R>® are feedback
gain; Y, € R and Yy € R are constants. Eq. (18) enforces the control
inputs to be within the lower and upper bounds on F and Q,. The
offline design task is to determine {K, K.Y, Yy}

Given the kinetic parameter k,, we develop a model-based pre-
diction scheme to optimize the production efficiency and determine

84

controller parameters offline:

E(ky) = KFJ?;I}F,YQD_,) ( Pym(D,) ( x,(D,) + x3(D,)
+ x4(D,) + x5(D,) ) =P,
DIJ
—Pm(z F(I) +0.1m(D,)x,(D,))
I=1
DP
= P(D 06 +09E, - m(D,)x,(D,)) >
I=1
(FO)
s.t. m(x;(D) = x;(1 = 1)) = 6F(I — 1)(xg; — x;,(I = 1)) + 8¢, i =1,2,....6,
19
J ()= x,(1 = 1)
A(h(D) = h(I = 1)) = 6F( — 1) + 6V 2 l(’c(—>
pA(h(l) = h(l = 1) = 6F(I = 1) + ”;pf >
(20)
pCV(T() =T = 1)) =8C, po(Tp =T = 1))
3
+ 8 ) (AH);rV + 80,1~ 1), (1)
j=1
Egs. (7)-(14), (17), VI € {1,2,....D,},
xe(l) > 98.8%, VI € (D, +1.D, +2,...,D,}, (22)
F()=0,VI€{D,+1,D,+2,....D,}, (23)
F() € [F,F), VI € {1,2,...,D.}, Qu(D) €0, Q.
Vie{l,2,...,D,)}, 24

where D, is the control horizon and D, is the prediction horizon.
Egs. (19)-(21) are derived through the finite difference method to
discrete the process model (4)-(6) with the sampling time interval as
6 = 30 s. Eq. (22) enforces yp to reach the desired quality 98.8% by
the end of control horizon. After D, time instants, the input methanol
can be set as F = 0 and it usually takes around 6.5 min to reach the
steady state. In our simulation, we thus set D, = D, +13. The objective
function of (7C) is the production profit per unit time instant. For the
transesterification reaction, the time to reach desired 98.8% FAME can
be shortened if the methanol input is maximized. However, excessive
methanol in the reactor may increase the recycle duty and unnecessary
depletion. Hence, the efficiency (profit per unit time instant) is a more
suitable index to characterize the production performance compared to
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the batch time or total profit. The associated challenge is that the op-
timal D, varies given different k, value and depends on the employed
controller. Thus, we may need to enumerate D, in a specific range
and solve resulting (7€) individually. This manner may prolong the
offline computational time but enhance the optimality on the prediction
horizon. Here we employ the IPOPT (Wichter and Biegler, 2006) to
solve (FC) and let {K’;",KZ",Y:O,YQk”} to denote the solution given
the kinetic model parameter k.

Note that the proposed controller in (7C) is designed only based on
the specific k(, which is subject to uncertainty in practical operations.
It is thus necessary to evaluate the controller performance under model
mismatch. To this end, we calculate the average process efficiency
across all scenarios in the evaluation set IT. Let £(k); k) denote the
process efficiency with actual kinetic parameter k6 € II, but regulated
by the controller derived in (FC) based on parameter k, € I'. We
can simulate the process model in Egs. (7)-(14) to obtain the process
efficiency.

oy =
E(K) ;s ky) D,
+ x4(D,. ki ko) + x5(D,. k{): kp) )
Dn
-P, - Pm(z F(, k[); ko) + 0.1m(D,,, k) ko)x (D, kj: ko))
I=1

< Pym(D,,, kiy; ko) ( xo(D,, ki) ko) + x3(D,,, ki): ko)

DF
-P, (Z 0, kiys ko)s + 0.9E, - m(D,,, kyy; ko)x (D, kyy: ko)) >
1=1
(25)

where m(D,, ky; ko), x;(D,, ks ko),Vi = 1,2,...,5, and F(l, kj; ko) are
process variables with model parameter k6 and controller parameters
{K’;’,Kg’,Y;",YkO}. Here D, is based on our previous setting: D, =
D, + 13 and D, is determined when y. reaches the desired values
98.8%. Then, the average performance of a controller derived from a

specific k is:
Zkéen Eky: ko)

Eky) =
(ko) Vi

(26)

3.2. Controller improvement and refinement

Controller Improvement: In this subsection, we discuss how to im-
prove the controller performance characterized by simulation over mul-
tiple scenarios shown in Eq. (26). One may consider to form a large-
scale optimization formula for {Kp, Ky, Yp, Yy} across all sampled
scenarios simultaneously. However, three issues should be addressed:

1. The prediction horizon D, varies across scenarios and is hard to
be pre-determined.

2. The resulting large-scale multi-scenario multi-step prediction
model is highly nonlinear, making it challenging to secure a
high-quality solution.

3. If we can estimate k, through MHE, then an adaptive con-
trol scheme might be more suitable than a single controller
optimized for all kinetic scenarios.

Therefore, we employ an intelligent optimization approach, PSO, to
generate additional k, samples, solve resulting (FC) sequentially, and
build a controller pool. Note that PSO is a well-established methodology
with numerous variations. The aim of this paper is not to create a new
PSO method, but to utilize the classical adaptive PSO scheme (Zhan
et al., 2009). The essential steps and modifications are outlined in
Algorithm 1. Totally |I'| particles are considered in this scheme. Each
particle represents a search agent for the kinetic parameter k.

In Algorithm 1, the training set I" consists of all the initial scenarios
kg”" and I'' is an enlarged set storing all sampled kinetic scenarios.
Index g denotes the evolving iteration and index m denotes the particle.
Vec is the velocity vector of particles. w$ is the inertia weight. ci” and
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kg’m g’m k(g;m kgym g.m 1
output.KF ,KQ ,YF ,YQ ,VkO er

Initialize: T, cll'”', czl’m, ', kg"";
for g < 1to G do

for m < 1to |I'| do
Vecé" =

w8Vect M4 cfa®" (pBest™ — kg_l"") +cad" (gBest— kg_l"")

k5™ — kg_l’”' + Vec®™ ;
KE™ — max{kE™ ko ); kE" < min{kgi,io} ;
Solve (FC) with kf)"" and D, € [D,, D,] to obtain S(kg”")
g-m g,m kg,m kg.m
and K ~,KQ Yt LYy
Calculate £(k”"; kf)"") over the evaluation set Vkj; € IT ;
if £(k™) > (pBest™) then
‘ Update pBest™ ;
end

end

'=r"u{k", Yym=12,...,|T|};

Calculate evolution factor to determine w4+!, c‘f“

if 3me{1,2,....|T|}, EKE™) > E(gBest) then
‘ Update gBest ;

end

g+l
, and s

end

Algorithm 1: PSO for controller improvement

¢® are the acceleration coefficients. ™ and «

5 | 5" are two uniformly
distributed random vectors independently generated within [0, 1]. The
particle’s new position kg‘m is calculated by adding the velocity vector
to the previous position and restricted by the searching range [Eo~;0]~
The controller average performance £ is used as the fitness function
in PSO; pBest™ is the kinetic vector corresponding to the best con-
troller found by mth particle. gBest is the kinetic vector corresponding
to the best controller among all particles. The updating formula of
evolution factor, parameters w, ¢, and ¢, can be found in Ref. Zhan
et al. (2009). The number of evolving iteration is denoted as G. The
number of particles is initialized as | I"|, which implies that we solve |I'|
scenarios and generate the same number of controllers at each iteration.
Consequently, there should be |I''| = G|I'| controllers in the pool.
Different from conventional PSO that only keeps the optimal solution
gBest. Here we collect all investigated |I"’| controllers and associated
£ for next step: controller refinement.

In the PSO framework, we solve (7 ) by enumerating D, to achieve
the optimal efficiency and associated batch time for a given k. How-
ever, this exhaustive search could be very time demanding and thus
limiting the number of PSO iterations. To resolve this issue, we can
develop a regression model to narrow the searching range of D, given
a sampled kinetic parameter k:

g,m g,m

D, = D(ky), D, €[|D,].[D,]] (27)

where the regression function D is learned from the existing samples
ko and associated optimal D,. The range of D, is rounded down and
up to the nearest integers of 15[,.

Controller refinement: Although PSO yields a bunch of controllers,
only a few of them will be employed, including the best controller in
the pool:
{K’;O’ KZO’ yﬁﬂ, kaO } =arg kr[?eal)g/ f(ko) (28)
To develop an adaptive control scheme, we generate a much larger
kinetic scenario set @ and partition it into several groups. The vector
components k , are normalized based on their nominal values and then

fed into the k-means method for clustering. Each cluster is equipped
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with a state feedback controller denote as {K rj Ko Yr) Yo, j},Vj =
1,2,...,N. Let ®|,®,, ..., @ to represent totally N clusters of scenar-
ios, and their centers are u;, p,,..., uy, respectively. We choose the
state feedback controller from the pool I’ for jth cluster based on (29):

~ ZVkoe(D/ E(ky; kﬁ‘"’) ZVkoeoj E(ko; kﬁ"">

£* = max , {g*, m*} = argmax
o, =M ] {g",m"} = arg na @]

29
where 5'* is the average efficiency in cluster @; using the opti-

mal controller from the pool Then, there is {Kj Ko Yr . Y J} =
kl’ m* kg m* k;, m* kg m*

(K Ky .v° .y, L
3.3. Online control implementation

Because the offline designed controllers are associated with the
kinetic clusters, the online control scheme should firstly estimate k
via MHE, given the measurement of component mass fraction x;,i =
1,2,...,6, liquid level A, and reactor temperature 7. Let s to denote the
current time step index. MHE can be constructed as an optimization
formula over a backward window with length D,,: s— D, +1,s—D,, +
2,...,5.

s 6

min Z 2 (D) — %,119))* + Wiy (h(l) — h(l]s))?

Ko 1=s=D,+1i=1
+ W () - Tl
+ Wiko(s) — ko(s = 1)
s.t. m(%,(1]5) = %, = 1|s)) = 6F (I — 1)(xq; — %,(I — 1]5)) + 6, — 1)

(MHE)

i=1,2,....6, (30)
) ) & 2.(1ls) = %,(1 = 1]s)
A(h(l|s) — h(l = 1|5)) = 6F( — 1) + 6V p* i(“—)
pA((1s) = h(I = 11s)) = 8F( ~ 1) + "Z‘p,- 5
31
pC,V (T)s) - T - 1]5)) = 6C, F(TF —TWu-1]s)
+62(AH)rV+6Q (=1, (32)

Jj=
Egs. (7)—(14), [ € {s— D, +1,s = D,, +2,...,s},
ko € 10.7ky, 1.3k,1, %, €[0,1], T € [T, T, h € [h,hl,

where W), Wy, and W, Vi = 1,2, ..., 6, are weighting parameters of the
stage cost for each state Var1able, W, is the weighting parameter of
the arrival cost; %;(/|s), h(l|s) and T(I|s) are estimated state values for
time instant / at current time instant s; IAco(s) is the estimated parameter
value at time instant s.

Several comments on MHE are presented in order. First, the ob-
jective function of (MHE) is composed of the sum of stage-wise
estimation error over the window and an arrival cost WE(IACO(S) -
fcg(s —1)). The weighting parameters within the objective function can
be tuned according to the covariance information of each deviation
term. The arrival cost helps smooth the estimation of k, across con-
secutive time instants. Second, MHE is superior than other estimation
approaches because it can integrate various physical bounds directly
into the formula. Therefore, we specify upper and lower limits for
each estimation variable to improve the estimation accuracy. How-
ever, (MHE) is a nonlinear program (NLP) that can only guarantee
suboptimal solutions. This inherent characteristic should be considered
when evaluating the performance of MHE. Third, the length of the
estimation window D,, may impact the estimation performance. A
larger D,, allows for the inclusion of more historical data in (MH&),
potentially leading to more reliable estimations. However, a longer
window increases the online computational demand. More importantly,
this semi-batch process has relatively short reaction time. Long data
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Table 3
Operational constraints.

Upper bound Lower bound

F 800 g/s 0g/s
0, 36 kW —-20 kW
T 340 K 290 K
h 30 dm 0 dm

collection period may delay the application of k, in the control scheme.
We thus set D,, = 8 in the simulation.

Note that MHE needs gathering D,, data to estimate k. Hence,
in the beginning of a batch W*e have to employ the best available
controller in the pool: {K K ,YF Y, 0}. Once enough data points
are collected and k, is estlmated by MHE we can identify the cluster
that belongs to. The k-means method determines the cluster based on
Euclidean distance:

* = ko-u; 33
Ji=arg  min llko — u;l (33)
Note that k, should be normalized based on their nominal value
and then compared with ;. Then, the controller can be switched to
{KFJ-*,KQJ*,YFJ*,YQJ*}, and we use (17) and (18) to determine F

and Q.
4. Simulation study

In this section, we simulate the biodiesel production process de-
scribed in Section 2. The hardware platform is a workstation with Intel
Xeon Silver 4208 processor and 16 GB memory. The software platform
is MATLAB and OPTI toolbox with NLP solver IPOPT.

The simulated batch reactor has a diameter of 1 meter and a height
of 3 m. The operational constraints of the biodiesel production process
are listed in Table 3. The scenarios are generated as follows. First, the
basic variations are chosen randomly from the range [-30%,30%] of
the nominal k, values shown in Table 2. Additional +2% time-varying
fluctuations are further added to make the simulation more realistic.
Here we do not introduce parameter drifting during each batch. An
example of the sampled kinetic scenario will be shown in Figs. 5 and
6, Section 4.4.

4.1. Benchmark: Model predictive control

For comparative analysis, we implemented the MPC as an alterna-
tive way to control the production process. The MPC is formulated as an
online optimization problem with kinetic parameter estimated through
(MHE). At each time step s, the MPC formulation involves solving the
following problem to determine methanol flow rate F and heat duty
Oyt

S+D£_
min . (1005 (l]s) — 98.8) + W, F(l|s) + W,p0,,(l]5)? (MPC)
TEW =541
s.t. m(%;(l]s) = £,(1 = 1]s5)) = 6F( = 1]5)(x¢,; — ;I = 1]5))
+ 8¢, = 1]s), i =1,2,...,6, 34

A(h(l]s) — h(l = 1]5)) = 6F( - 1]s)

6 N N
+ oV z{%(X,-(IIS)—Z,-(I - 1|S)>’

(35)
pCV (TUls) =T = 1]5)) = 6C, p (T — T(I = 1]5))

+ 6 ) (AH);rV + 60,1~ 119),
j=1
Egs. (7)-(14), [ € {s+ L5 +2.....

(36)

!
s+DC},
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Table 4
Training set: basic variations. Note: Additional +2% random variations is further
introduced.
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Table 5
The performance of each controller derived from 6 training scenarios.

Optimal D, Efficiency in each Average efficiency
ko, koo ko3 ks kos kog training scenario in evaluation set
Scenario 1 -30% —30% —30% —30% —-30% —-30% Controller 1 44 4.6704 5.2226
Scenario 2 —25% —25% —25% —25% —25% —25% Controller 2 41 4.8073 5.1876
Scenario 3 0% 0% 0% 0% 0% 0% Controller 3 38 5.4383 5.1959
Scenario 4 15% 25% 10% 25% 20% 30% Controller 4 36 5.7413 5.1897
Scenario 5 30% 30% 30% 30% 30% 30% Controller 5 36 5.9336 5.0740
Scenario 6 —-30% —-25% —-20% —-25% -30% —-25% Controller 6 43 4.6767 5.2295
x;(I|s) € [0,1], T(I|s) € [Z,?], h(l|s) € [Q,ﬁ], value (—30%, scenario 1) in (7C) leads to higher process efficiency
, . . i i than using a larger kinetic value (30%, scenario 5). This observation
where D! = 20 is the control horizon of MPC in this study; Our

investigation shows that further increasing D/ value does not improve
the economic performerence of this reactor but significantly extends
the computational time; notation (/|s) denotes the prediction of time
step / at current time s. Similar with the proposed approach, when
g reaches the desired value 98.8%, the methanol flow derived from
MPC is overridden to F = 0. Subsequently, the operations continue
for 6.5 min and then collect the product. Note that formula (MPC)
is highly nonlinear due to the complex process model. It is designed
for setpoint tracking while the input cost is minimized. According to
Ref. Brasio et al. (2013), adjusting the weighting parameter W,; and
W,, may improve the process economic efficiency. As the electricity
price is significantly less than the methanol cost, we always set W,, =0
to enable high power heating. In addition, we will also tune W, to
investigate its influence on the economic performance of the process.
Since kinetic parameters are not known in advance, we use their
nominal values in MPC during 1,2, ..., D,, time instants. After collecting
D,, data points, the MHE provides estimates for the kinetic parameters,
which are then incorporated into the MPC for more accurate control.

4.2. State feedback controller design: Initial results

We start by building the training set I', which includes 6 kinetic
scenarios. The basic variations of these scenarios compared to the nom-
inal one are summarized in Table 4. Here the training set contains the
nominal scenario (0%), as well as the slowest (—=30%) and fastest (30%)
kinetic scenarios to ensure a representative coverage. For each scenario
in the training set, we enumerate the prediction horizon D, € [36,45]
and solve associated control problem (7C) to determine an optimal
state feedback controller. We initially start with a narrow range for the
prediction horizon D, and continuously extend it if the optimal horizon
length D, is found on the boundary of current range. This process is
terminated when the optimal D, value is found within the interior of
the range for all scenarios on Table 4, or D, value results in infeasible
problem. In fact, when D, is set as 35, all scenarios become infeasible
because the required reaction time is too short to achieve the desired
FAME value. Next, we further sample the kinetic parameter space to
generate 113 samples, including 100 fully random scenarios and 13
systematically varied scenarios from —30% to 30% in 5% interval, as an
evaluate set for controller performance. The evaluation results of each
controller are detailed in Table 5. Here we can observe high variance
in efficiency for different training scenarios and associated controllers.
Consequently, these findings highlight the importance to utilize a large
and diverse scenario set to assess controller performance under process
uncertainties.

4.3. State feedback controller design: Improved results

The kinetic scenarios in the training set sever as the particles’
initial position in the PSO algorithm. The controllers derived from the
training set I" provide the initial design and are further improved by
PSO. We execute Algorithm 1 to explore different kinetic parameters
and solve associated (7C). Table 5 shows that using a smaller kinetic
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motivates us to slightly extend the searching range from [0.7k,, 1.3k,] to
[0.69k,, 1.3k,] in PSO. Let particles to evolve for 16 iterations, namely
G = 16. In Fig. 3, we plot the fitness value (process efficiency) of
each particle, including the initial fitness value and 16 iterations. The
D, searching range is initially set as D, € [36,45]. After 6 iterations,
we feed all investigated kinetic samples with their optimal D, into
the MATLAB Regression Learner App to compare different regression
methods. Finally, the best model, Gaussian Process Regression with
Matérn kernel, is chosen for predicting D,. This regression model
achieves a root mean square error (RMSE) of 0.64 and an R? value
of 0.91. The predicted and true optimal D, for the initial 6 iterations
are compared in Fig. 4.

During the first 6 iterations of the PSO algorithm, the best fitness
value is found in 5th iteration of 5th particle. After building the optimal
D, prediction model, the PSO continues for another 10 iterations to
generate a better solution found in 15th iteration of 1st particle. The
gBest vectors obtained after the initial 6 and complete 16 iterations are
shown in Table 6. In fact, the solution found in 5th iteration is also the
second best controller generated by the PSO. After more iterations, the
solution performance is slightly improved.

In the next step, controllers identified by the PSO are selected for the
adaptive control scheme. To achieve this, a much larger kinetic set @,
comprising 800 scenarios, is generated to represent a broader range of
uncertainty. These kinetic vectors are divided into 10 clusters by using
k-means approach, whose centers and number of contained scenarios
are presented in Table 7. For each cluster, we use Eq. (29) to select
its optimal controller from the pool. We expect that kinetic scenarios
within the same cluster exhibit similar reaction rate, and thereby prefer
the same controller. The average performance of each cluster, using
controllers optimized by PSO, is summarized in Table 7, revealing a
significant variance among clusters.

4.4. Comparison on the testing set

In this subsection, we compare the performance of benchmark MPC
with the proposed state feedback controller. The kinetic parameters
for both schemes are estimated through MHE with window length
D, = 8. It is worthwhile to note that the proposed state feedback
controller only needs to locate the cluster of kinetic parameter belongs
to and uses Eq. (17) to determine control actions, which normally
takes 0.002 s. The MPC usually spends 35 to 85 s at each time step
for online optimization during the initial reaction, which actually is
longer than the sampling time 6 = 30 s. Therefore, the state feedback
controller can at least reduce 99.994% of the online computational
demand compared with MPC. We are more concerned with the average
process efficiency using different control strategies. Thus, a testing set
is generated, consisting of 40 independent kinetic scenarios. We tune
the weighting parameters of MPC and compare it with the proposed
state feedback controllers on the testing set. The results are listed in
Table 8.
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Table 6
Best kinetic parameters for (7'C) found by PSO and associated average efficiency in I71.
kO.l kO.Z k0,3 k0,4 k0,5 k0,6 £~
gBest after 6 iterations 0.3727 0.8071 3.4170 2.5865 0.0221 0.0284 5.2374
gBest after 16 iterations 0.3727 0.7867 3.4020 2.5870 0.0219 0.0280 5.2388
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Table 7

Clusters’ centers, number of scenarios, and é‘; : average efficiency in @;.
)

Chemical Engineering Research and Design 209 (2024) 81-93

ko1 koo kos kou kos kog Number of & 5, after 6 5‘;/ after 16
scenarios iterations iterations
@D, 0.6050 1.2643 3.6880 4.3847 0.0357 0.0411 94 5.2765 5.2779
@b, 0.6310 1.0251 3.6287 3.2180 0.0286 0.0423 71 5.3333 5.3407
D, 0.4421 0.9165 4.5408 4.0078 0.0305 0.0462 81 4.7427 4.7427
D, 0.5104 0.9252 4.5837 4.4195 0.0288 0.0315 69 5.0059 5.0073
Dy 0.4528 1.3068 4.8993 4.1615 0.0365 0.0413 69 4.8067 4.8067
D 0.6355 1.1516 5.0277 4.0835 0.0283 0.0437 75 5.4030 5.4081
(o3 0.4903 1.2644 4.8012 3.0347 0.0276 0.0392 89 4.9159 4.9174
Dy 0.6148 1.0323 5.1120 3.4425 0.0375 0.0410 90 5.4329 5.4342
Dy 0.4894 1.2315 3.6357 4.0439 0.0267 0.0338 66 4.8564 4.8564
D 0.4889 1.0493 3.6000 3.1590 0.0375 0.0359 96 4.9132 4.9132
Table 8

Comparing average process efficiency by using different control strategies.

Methods Parameters Average process efficiency
(40 testing scenarios)
MPC1 W, =0 5.0034
MPC2 W,, = 0.00005 4.9905
State Feedback (After 6 iterations, single) N/A 5.1464
State Feedback (After 6 iterations, adaptive) N/A 5.1604
State Feedback (After 16 iterations, single) N/A 5.1478
State Feedback (After 16 iterations, adaptive) N/A 5.1616

Several discussions of these comparison results are in order:

First, we set the weighting parameter W,, to zero in the MPC
because electricity cost is substantially lower than the cost of methanol.
Increasing W,, reduces the process efficiency because it lowers
methanol flow, which in turn increases the batch time.

Second, Figs. 5 and 6 depict the estimated kinetic parameters for
one of the testing scenarios. In this scenario, the MPC achieves an
efficiency of 5.5605, while our state feedback controller achieves an
efficiency of 5.6603. Under different control strategies, the estimated
k, can be distinct due to various control actions and process outputs.
The MHE requires D,, time steps for process data collection, and the
estimates for some kinetic parameters diverge from their actual values
due to the challenges posed by solving a high-dimensional nonlinear
optimization problem. We aim to demonstrate that MPC can be very
sensitive to the estimation error, whereas our state feedback control is
not. During the offline design stage, we determine a suitable state feed-
back controller for the entire cluster that already takes uncertainty into
account. This is why the state feedback controller, despite using less
accurate kinetic parameters than the MPC, still shows better economic
performance.

Third, the proposed state feedback controller achieves higher pro-
cess efficiency than MPC on average. The kinetic uncertainty degrades
the MPC’s online optimization performance during the semi-batch pro-
cess. In addition, since batch time is uncertain due to kinetic variability,
MPC cannot directly optimize the process efficiency within its objective
function. Although the proposed state feedback controller has fixed
structure and relies on offline optimization, it is selected via the eval-
uation and clustering on numerous kinetic scenarios, making it more
robust than the MPC. Direct comparisons between MPC1 (W,; = 0)
and adaptive state feedback control (after 16 iterations) are shown
in Figs. 7-9. In Fig. 7, we can see that both control schemes drive
the FAME concentration to the desired 98.8% across various testing
scenarios, because high methanol flow ensures high yield of FAME and
less batch time. However, the input signals in Fig. 8 demonstrate that
state feedback controller is more aggressive due to the incorporation
of target constraint (22) into the optimization formula whereas MPC
ensures FAME specification through the objective function. In fact,
the methanol consumption and batch time are two key factors in
determining the efficiency. We can see that MPC uses less methanol
F than the proposed state feedback controller. However, the proposed
controller leads to a shorter batch time (39 vs 41), achieving a better
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trade-off between methanol consumption and batch time. Fig. 9 plots
the efficiency histograms with MPC and state feedback control, respec-
tively. Notably, the state feedback controller can regulate the process
with better efficiency than the MPC in most of scenarios. Even though
this improvement is only 0.16/5 = 3%, it yields $0.16 more profit per
30 s. Over a year of continuous operation, this results in an annual
profit increase of 0.16 x 120 x 24 x 365 = $168, 192 for the studied pilot-
scale reactor. In addition, the process efficiency actually is influenced
by the prices of methanol (inflow) and biodiesel (outflow). Therefore,
the improvement value could be even higher if methanol or biodiesel
price increases.

Fourth, we can compare the single state feedback controller and the
adaptive scheme in Table 8. Efficiency results indicate that properly
varying the controller according to the estimated kinetic cluster further
enhances process efficiency. This clustering-based approach, which se-
lects controllers offline designed for specific kinetic scenarios, reduces
the adverse effects of estimation errors compared to directly using the
estimated kinetic parameter value in online optimization.

5. Conclusion

This paper presents a novel control approach to optimize the effi-
ciency of the biodiesel production process, specifically under conditions
of kinetic uncertainty, while ensuring product quality. The proposed
adaptive state feedback control scheme is implemented in two phases:
an offline design phase and an online implementation phase. In the
offline design phase, the uncertain kinetic parameter is sampled to
generate a training set, an evaluation set, and a clustering set. State
feedback controllers are designed for each scenario in the training set
and their performance is evaluated using the scenarios in the evaluation
set. The particle swarm optimization (PSO) and a batch time regression
model are employed to further improve the controller pool. The uncer-
tainty space is then divided into several groups based on the clustering
set. Each cluster is equipped with the best-performing controller from
the pool. In the online implementation phase, the moving horizon
estimation (MHE) is used to estimate the kinetic parameter in real-
time. Based on the estimated kinetic value, the appropriate cluster
and its associated state feedback controller are selected to regulate the
plant. Simulation studies, involving 40 testing scenarios, demonstrate
that the proposed adaptive state feedback control approach outper-
forms the model predictive control (MPC) method. The designed state
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Fig. 7. The FAME percentage y, of the process regulated by MPC and state feedback controller. The FAME of all 40 testing scenarios finally can exceed the desired standard
value 98.8% using either MPC or state feedback controller..
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Fig. 9. The histograms of process efficiency using MPC or state feedback controller in testing scenarios.

feedback controller, enables fast calculation, achieves higher process
efficiency, and exhibits greater robustness against parameter estimation
errors compared to MPC. This robust performance is attributed to the
extensive offline optimization and the adaptive controller selection
mechanism, which effectively addresses kinetic uncertainties.
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