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A B S T R A C T

In this study, we optimize the quality and economic performance of biodiesel production through a scenario-
based adaptive state feedback control framework. Our goal is to maximize the operational efficiency while
ensuring the production of on-spec biodiesel, despite uncertainties in reaction kinetics. A first-principle model
is employed to describe the process dynamics, with kinetic parameters estimated online using a moving
horizon estimator (MHE). A pool of state feedback controllers is created via off-line nonlinear optimization and
metaheuristic algorithm based on sampled kinetic scenarios. Then, the uncertainty space is partitioned into
several clusters, each linked to an optimal controller from the pool. During online operation, the appropriate
controller is selected by matching the estimated kinetic parameters to the corresponding cluster. Simulation
studies on a semi-batch reactor demonstrate that manipulating the methanol feed flow rate and heat duty
with our control approach significantly improves operational efficiency, reduces online computational time,
and enhances robustness to kinetic uncertainties compared to model predictive control (MPC).
1. Introduction

Fossil fuels are a critical concern in the energy sector, mainly
due to their significant greenhouse gas emissions. To mitigate the
environmental impact of the fuel industry, biofuels producing from
animal fat or vegetable oil have emerged as a viable alternative. For
example, it has been shown that biodiesel offers comparable engine
performance to conventional fuel while reducing the carbon dioxide
significantly (Graboski and McCormick, 1998). To facilitate widespread
doption of biodiesel, producers should minimize the production cost
hile keeping the product quality on-spec. Biodiesel production, which
elies on a semi-batch transesterification process, is influenced by sev-
ral operating factors, such as the molar ratio between alcohol and
riglycerides, reaction time, and reaction temperature, which should
e controlled properly (Benavides and Diwekar, 2012a). Additionally,
uncertainties like feedstock composition and reaction kinetics can affect
production rate, quality, and economics, which should be addressed ef-
fectively (Benavides and Diwekar, 2012b). Our research aims to design
an effective control strategy to ensure that the process is operated on an
optimal condition while robust enough to uncertainties. To this end, we
begin by reviewing and discussing the model predictive control (MPC),
state feedback controller, moving horizon estimator (MHE), and kinetic
uncertainty.

MPC: Conventional MPC focuses on the setpoint tracking, which
minimizes the disparity between system outputs and desired setpoint
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through future dynamics prediction and online optimization. In addi-
tion, integrating operational constraints into the control action design is
a unique advantage of MPC compared to the traditional PID controllers.
In biodiesel production, the setpoint is often the mass content of fatty
acid methyl esters (FAME) in the effluent. Brásio et al. (2013) has
shown that a nonlinear MPC can effectively drive the process output
to reach the standard value of FAME, provided the process model is
accurate enough. However, their work did not address three critical
issues in the MPC design, including the computational cost, robustness,
and economic performance.

• The computational load of MPC is usually high due to its
optimization-based nature. This drawback becomes even worse
especially for nonlinear systems. A common strategy to mitigate
this issue is shifting the online computations to offline, such as
explicit MPC (Alessio and Bemporad, 2009).

• An inaccurate model used in MPC may lead to offset or even
instability. Hence, various robust MPC design methods, such as in-
variant set-based (Mayne et al., 2005), tube-based (Limon et al.),
scenario-based (Bernardini and Bemporad, 2009), and Lyapunov-
based (Mhaskar et al., 2006), have been broadly studied.

• The process industry is more interested in the optimal operations
beyond the setpoint tracking (Engell, 2007), which requires ad-
vanced controller, such as MPC, to incorporate production profit
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or cost into the objective function of the optimization framework,
leading to the development of economic MPC (EMPC) (Rawlings
et al., 2012; Ellis et al., 2014). However, the EMPC has more
complex structure than the traditional MPC, resulting in a higher
computational burden. In addition, achieving a balance between
control and economic performance needs extensive tuning.

hese three challenges, computational cost, robustness, and economic
erformance, may simultaneously degrade MPC performance and thus
eserve a unified solution. For example, (Lucia et al., 2014) studied
economic robustness of a polymerization batch process and found that
the batch time can be more effectively reduced by multi-stage NMPC
using a scenario-tree, compared to open-loop robust MPC and affine
control policies. However, that approach only branched the scenario
tree in the first stage to save the computational cost. Even though
more scenarios and stages in the multi-stage NMPC may enhance
the controller robustness, the online computational demand will rise
rapidly and render the resulting problem unsolvable.

State Feedback Controller: The state feedback controller employs
a pre-determined gain matrix to compute control actions in a closed-
loop manner, and thus requires minimal online computations. The
classical linear-quadratic regulator (LQR) provides an analytical for-
mula of optimal gain matrix for linear system without considering
constraint. The linear matrix inequality (LMI) is a popular optimiza-
tion tool to determine the gain matrix for linear or switched linear
systems subject to uncertainties or constraints (Montagner et al., 2006).
However, nonlinear systems are more complex, which may require
multiple models and controllers to handle a wide operation regime. A
common approach is to linearize the process at different operational
points and design a state feedback controller for each sub-domain
individually (Wang et al., 2007). So far, most state feedback control
approaches focus on the robustness and system nonlinearity, whereas
the economic performance is rarely studied.

MHE: The controller robustness can be enhanced through a state
or parameter estimator to reduce uncertainties. In many works (Nagy
and Braatz, 2003; Huang et al., 2012; Voelker et al., 2013; Jung et al.,
2015; Dong and Angeli, 2020), the extended Kalman filter (EKF) or
MHE are commonly integrated with feedback controllers for process
regulation under uncertainties. MHE solves a constrained optimization
problem to estimate process states or parameters by fitting past ob-
servations over a pre-defined time horizon (Rao et al., 2001). Several
critical studies have demonstrated that MHE generally offers superior
estimation performance compared to EKF for chemical reactions albeit
with higher computational demands (Haseltine and Rawlings, 2005;
Alexander et al., 2023). In batch processes, MHE is applied to handle
batch-to-batch parameter drifting (Kwon et al., 2015) and multi-rate
measurement (Bae et al., 2021). However, because MHE needs a long
observation window to ensure the estimation accuracy (Al-Matouq and
Vincent, 2015), its effectiveness for a batch process could be limited
when in-situ measurement has significant delay or the batch time
should be minimized.

Control under kinetic uncertainty: Kinetic parameters are usually
subject to uncertainties in the chemical reaction. A scenario-based
approach can be employed to address kinetic uncertainty to form
a multi-stage multi-scenario formula (Adloor and Vassiliadis, 2021).
However, it needs significantly long time to obtain an optimal solution,
and thus cannot be used for real-time control problem. A distribu-
tionally robust discrete control problem was studied for microbial
fermentation under kinetic uncertainty. It adopts an evolutionary com-
putation algorithm to solve a min–max problem with semi-infinite
constraints embedded, but also takes substantially long time (Wang
et al., 2023). The multistage and worst-scenario NMPCs were compared
in a study of the semi-batch reactor regulation subject to kinetic un-
certainty (Kummer et al., 2020). It found that the former is 38 times
slower than the latter without remarkable improvement in reactor
performance. Nevertheless, the design based on worst-scenario could

be very conservative.
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The goal of this paper is to optimize the biodiesel production
efficiency under kinetic uncertainties using an adaptive state feedback
control scheme. We define production efficiency as the ratio of batch
production profit to the batch time. This measure poses significant chal-
lenge to the conventional MPC as the batch time should be treated as an
online optimization variable. In addition, the kinetic uncertainty also
renders the online optimization more difficult. Inspired by the adaptive
state feedback controller designed based on multiple models (Narendra
and Balakrishnan, 1997), we firstly sample the kinetic parameter space
to generate several scenario sets for controller design and evaluation.
Then, a series of nonlinear optimization problems are solved offline
based on each sampled scenario to design gain matrices and tune batch
time. The resulting controller performance is assessed by the evalu-
ation set. We further employ the particle swarm optimization (PSO)
algorithm to search in the kinetic space and design better controllers.
Consequently, a pool of state feedback controller can be created. Next,
the uncertainty space is divided into several clusters, each associated
with an optimal state feedback controller selected from the pool. During
online operations, we apply MHE for kinetic parameters estimation,
identify the relevant cluster, and choose the proper state feedback
controller. The proposed controller design scheme has the following
merits:

• The proposed scenario-based state feedback controller can be
optimized and evaluated purely offline to avoid high online com-
putational load.

• The PSO algorithm enables multiple controllers generation
through intelligent sampling.

• The MHE combined with kinetic parameter clustering can direct
the online state feedback controller gain selection to mitigate
kinetic uncertainties.

• Switching among multiple controllers can optimize the batch
process efficiency and ensure FAME specification under a wide
range of kinetic uncertainties.

We demonstrate the computational, economic, and robust superi-
ority of the proposed control scheme over classical nonlinear MPC
integrated with MHE on the testing scenario of biodiesel production
process. Because we do not assume the similarity or correlation among
different batches, the well-known iterative learning control (Lee and
Lee, 2007) is excluded from our investigation.

The rest of this paper is organized as follows. The biodiesel pro-
duction process model is described in Section 2. The proposed adap-
tive state feedback controller together with PSO and MHE, are pre-
sented in Section 3. The comparisons between classical MPC and state
feedback control on the simulated batch reaction are conducted in
Section 4 to highlight the superiority of the proposed scheme on
economic performance and robustness. Finally, conclusions are drawn
in Section 5.

Notation. Throughout this paper, vectors and matrices are denoted
by boldface letters. The overline and underline represent the upper and
lower bounds on a variable. The operator | ⋅ | on a set calculates its
cardinality.

2. Biodiesel production process

The transesterification reaction breaks down triglycerides into glyc-
erol and FAME using alcohol, typically methanol or ethanol. This
process involves a series of sequential steps: one for each glyceride,
tri-, di- and monoglyceride. The reactions are shown below:

𝑇𝐺 + CH3OH
𝑘1
⇌
𝑘2

𝐷𝐺 + 𝐹𝐴𝑀𝐸, (1)

𝐷𝐺 + CH3OH
𝑘3
⇌
𝑘4

𝑀𝐺 + 𝐹𝐴𝑀𝐸, (2)

𝑀𝐺 + CH3OH
𝑘5
⇌
𝑘6

𝐺 + 𝐹𝐴𝑀𝐸. (3)
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Fig. 1. The biodiesel production scheme.
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In Eq. (1), triglycerides, denoted as TG, typically derived from veg-
table oils, are reacted with methanol, CH3OH, to produce diglyceride,
enoted as DG, and FAME. Eq. (2) illustrates the subsequent reaction
etween DG and CH3OH. Then, the monoglyceride, denoted MG, is
ormed along with additional FAME. In Eq. (3) of this three-step pro-
ess, the MG yielded from Eq. (2) is reacted with CH3OH, to generate
lycerol, denoted as G, along with the final FAME. Assuming complete
onversion, each mole of triglyceride yields three moles of FAME,
aking transesterification an efficient method for biodiesel production.
n addition to the batch reactor, a separator is needed to split the crude
iodiesel from the remaining components in batch reactors. Unreacted
ethanol can be recycled into the reactor for subsequent batches. An
verview of the production system is shown in Fig. 1.
We use the following mass and energy balance equations to describe

he transesterification reaction (Brásio et al., 2013).

𝑚
𝑑𝑥𝑖
𝑑𝑡

= 𝐹 (𝑥0,𝑖 − 𝑥𝑖) + 𝜙𝑖, 𝑖 = 1, 2,… , 6, (4)

𝜌𝐴𝑑ℎ
𝑑𝑡

= 𝐹 + 𝑉 𝜌2
6
∑

𝑖=1

1
𝜌𝑖

𝑑𝑥𝑖
𝑑𝑡

, (5)

𝜌𝐶𝑝𝑉
𝑑𝑇
𝑑𝑡

= 𝐹𝐶𝑝,𝐹 (𝑇𝐹 − 𝑇 ) +
3
∑

𝑗=1
(𝛥𝐻)𝑗𝑟𝑗𝑉 +𝑄𝑤, (6)

where 𝑥𝑖 is the component mass fraction; 𝑚 is the total mass in the
reactor with unit gram; ℎ is the reactor liquid level with unit dm; 𝐴 is
the cross-sectional area of the reactor with unit dm2; 𝑉 is the volume
of mixture with unit liter; 𝑇 is the reaction temperature in Kelvin; 𝑄𝑤
is the heat duty; 𝑇𝐹 , 𝐶𝑝,𝐹 , and 𝐹 are the temperature, heat capacity,
and the mass flow rate of feeding methanol, respectively; (𝛥𝐻)𝑗 is the
heat of reaction; the mixture density 𝜌 and specific heat capacity 𝐶𝑝 are
dependent on each component density 𝜌𝑖 and heat capacity 𝐶𝑝,𝑖:

=
(

6
∑

𝑖=1

𝑥𝑖
𝜌𝑖

)−1, 𝐶𝑝 =
6
∑

𝑖=1
𝐶𝑝,𝑖𝑥𝑖. (7)

The reaction rate 𝑟𝑗 is defined as follows:

1 = 𝑘1𝐶2𝐶1 − 𝑘2𝐶3𝐶6, (8)

2 = 𝑘3𝐶3𝐶1 − 𝑘4𝐶4𝐶6, (9)

3 = 𝑘5𝐶4𝐶1 − 𝑘6𝐶5𝐶6, (10)

here 𝐶𝑝,𝑖, 𝑖 = 1, 2, 3… , 6 is the mole concentration of components 1 to
. Here the reaction rate 𝒌 = [𝑘1, 𝑘2,… , 𝑘6]T shown in Eqs. (1)–(3) is
pecified by the Arrhenius equation,

𝑏 = 𝑘0,𝑏 exp
(−𝐸𝑏
𝑅𝑇

)

, 𝑏 = 1, 2,… , 6, (11)

where 𝒌0 = [𝑘0,1, 𝑘0,2,… , 𝑘0,6]T is the pre-exponential factor; 𝐸𝑏 is
the energy of activation; 𝑅 is the ideal gas constant. The generation
reaction terms are shown below:
𝜙1 = −(𝑟1 + 𝑟2 + 𝑟3)𝑉𝑀1, 𝜙2 = −𝑟1𝑉𝑀2, (12) b
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Table 1
Component parameters.
𝑖 1 2 3 4 5 6

Name CH3OH TG DG MG FAME G
𝜌𝑖 (g∕L) 769 914.37 941.90 990.56 856.37 1346.60
𝑀𝑖 32.04 873.06 612.74 352.42 292.36 92.09
𝐶𝑝,𝑖 (J∕gK) 2.705 2.052 2.119 2.284 2.084 2.509

Table 2
Nominal kinetic parameters.
𝑏 1 2 3 4 5 6

𝐸𝑏 16377 19202 17867 19383 15302 4282
𝑘̃0,𝑏 0.5401 1.1180 4.3119 3.7486 0.0397 0.0317

𝜙3 = (𝑟1 − 𝑟2)𝑉𝑀3, 𝜙4 = (𝑟2 − 𝑟3)𝑉𝑀4, (13)

5 = 𝑟3𝑉𝑀5, 𝜙6 = (𝑟1 + 𝑟2 + 𝑟3)𝑉𝑀6, (14)

here 𝑀𝑖, 𝑖 = 1, 2,… , 6 is the molar weight of each component. The
alues of parameters are shown in Tables 1 and 2.
The nominal value of the pre-exponential factor, denoted as 𝑘̃0,𝑏, is

derived from experimental data at 𝑇 = 323 K Berchmans et al. (2010).
However, actual reaction kinetics may vary between batches. Thus, we
introduce uncertainties on 𝒌0 with ±30% of their nominal values in the
simulation. A larger variance of 𝒌0 will render the control task more
challenging. However, because we use a sampling-based method to
evaluate the impact of kinetic uncertainty on the developed controllers,
the proposed method is more robust and less conservative than the con-
ventional or worst-case MPC. We expect that this advantage becomes
more remarkable under larger variance of 𝒌0.

The quality specification of biodiesel requires the FAME percentage
𝜒𝐸 to be greater than 98.8% by following the standard EN 14214:2008
(Brásio et al., 2013).

𝜒𝐸 =
𝑥5

𝑥2 + 𝑥3 + 𝑥4 + 𝑥5
⩾ 98.8% (15)

he profit of biodiesel production (𝑥2+𝑥3+𝑥4+𝑥5) is calculated based
n the biodiesel sales 𝑃𝑑 = $1.19 per liter, methanol cost 𝑃𝑚 = $526 per
etric ton, electricity price 𝑃𝑒 = $0.0832 per kWh, energy consumption
or separation of methanol 𝐸𝑠 = 0.374 kWh/kg, and soybean oil cost
er batch 𝑃𝑠 = $725.05.

Profit = 𝑃𝑑 ⋅ Biodiesel Production − 𝑃𝑚 ⋅ (Consumed Methanol
+ 10%Unreacted Methanol)

−𝑃𝑠 − 𝑃𝑒 ⋅ (Heating Energy + 𝐸𝑠 ⋅ 90%Unreacted Methanol) (16)

ere we assume that 90% of unreacted methanol in a batch can be
ecycled. However, separation of such amount of methanol from the

atch effluent needs to consume some extra energy.
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Fig. 2. The overall controller design and application scheme.
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. Control system design

The purpose of control is to maximize the biodiesel production
rocess efficiency while ensuring the product quality specification. The
roposed control system design involves two phases. In the offline de-
ign phase, we sample the uncertain parameter 𝒌0 to generate a training
et, denoted as 𝛤 , an evaluation scenario set, denoted as 𝛱 , and a
lustering scenario set, denoted as 𝛷, respectively. The state feedback
ontrollers are initially designed based on each scenario of 𝒌0 in the
raining set 𝛤 . Then, the scenarios in evaluation set are used to deter-
ine the average process efficiency using the proposed controllers. A
SO-based scheme is developed to further improve these controllers by
earching for more representative kinetic parameter values and solving
he associated optimal control problem. During this searching process, a
ool of controllers is created. Finally, the uncertainty space is divided
nto several clusters using the larger and more representative set 𝛷.
ach cluster is equipped with the best controller from the pool. In the
nline implementation phase, the MHE is solved at each time instant to
stimate kinetic parameter 𝒌0 and identify the cluster that it belongs to.
ubsequently, the state feedback controller associated with that cluster
an be chosen to regulate the plant. This design and application scheme
s shown in Fig. 2.

.1. State feedback control design and evaluation

In this section, we describe the concept of state feedback control
ased on a sampled kinetic parameter vector. First, let us introduce
he optimization-based state feedback controller design formula. The
iodiesel production process has two inputs 𝐹 and 𝑄𝑤. Their state
eedback control law is shown in (17) and (18):

[

𝐹
𝑄𝑤

]

=

[

𝑲𝑭
𝑲𝑸

] ⎡

⎢

⎢

⎢

⎣

𝒙
ℎ
𝑇

⎤

⎥

⎥

⎥

⎦

+

[

𝑌𝐹
𝑌𝑄

]

, (17)

𝐹 ← min{𝐹 , 𝐹 }, 𝐹 ← max{𝐹 , 𝐹 }, 𝑄𝑤 ← min{𝑄𝑤, 𝑄𝑤}, 𝑄𝑤 ← max{𝑄
𝑤
, 𝑄𝑤},

(18)

here 𝒙 = [𝑥1, 𝑥2,… , 𝑥6]T; 𝑲𝐹 ∈ R1×8 and 𝑲𝑄 ∈ R1×8 are feedback
ain; 𝑌𝐹 ∈ R and 𝑌𝑄 ∈ R are constants. Eq. (18) enforces the control
inputs to be within the lower and upper bounds on 𝐹 and 𝑄𝑤. The
offline design task is to determine

{

𝑲𝐹 ,𝑲𝑄, 𝑌𝐹 , 𝑌𝑄
}

.
Given the kinetic parameter 𝒌0, we develop a model-based pre-
diction scheme to optimize the production efficiency and determine s
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controller parameters offline:

(𝒌0) = min
𝑲𝐹 ,𝑲𝑄 ,𝑌𝐹 ,𝑌𝑄

1
𝐷𝑝

(

𝑃𝑑𝑚(𝐷𝑝)
(

𝑥2(𝐷𝑝) + 𝑥3(𝐷𝑝)

+ 𝑥4(𝐷𝑝) + 𝑥5(𝐷𝑝)
)

−𝑃𝑠

−𝑃𝑚
(

𝐷𝑝
∑

𝑙=1
𝐹 (𝑙) + 0.1𝑚(𝐷𝑝)𝑥1(𝐷𝑝)

)

− 𝑃𝑒
(

𝐷𝑝
∑

𝑙=1
𝑄𝑤(𝑙)𝛿 + 0.9𝐸𝑠 ⋅ 𝑚(𝐷𝑝)𝑥1(𝐷𝑝)

)

)

()
.t. 𝑚

(

𝑥𝑖(𝑙) − 𝑥𝑖(𝑙 − 1)
)

= 𝛿𝐹 (𝑙 − 1)
(

𝑥0,𝑖 − 𝑥𝑖(𝑙 − 1)
)

+ 𝛿𝜙𝑖, 𝑖 = 1, 2,… , 6,
(19)

𝜌𝐴
(

ℎ(𝑙) − ℎ(𝑙 − 1)
)

= 𝛿𝐹 (𝑙 − 1) + 𝛿𝑉 𝜌2
6
∑

𝑖=1

1
𝜌𝑖

(

𝑥𝑖(𝑙) − 𝑥𝑖(𝑙 − 1)
𝛿

)

(20)
𝜌𝐶𝑝𝑉

(

𝑇 (𝑙) − 𝑇 (𝑙 − 1)
)

= 𝛿𝐶𝑝,𝐹 (𝑇𝐹 − 𝑇 (𝑙 − 1))

+ 𝛿
3
∑

𝑗=1
(𝛥𝐻)𝑗𝑟𝑗𝑉 + 𝛿𝑄𝑤(𝑙 − 1), (21)

Eqs. (7)–(14), (17), ∀𝑙 ∈ {1, 2,… , 𝐷𝑝},

𝜒𝐸 (𝑙) ⩾ 98.8%, ∀𝑙 ∈ {𝐷𝑐 + 1, 𝐷𝑐 + 2,… , 𝐷𝑝}, (22)

𝐹 (𝑙) = 0, ∀𝑙 ∈ {𝐷𝑐 + 1, 𝐷𝑐 + 2,… , 𝐷𝑝}, (23)

𝐹 (𝑙) ∈ [𝐹 , 𝐹 ], ∀𝑙 ∈ {1, 2,… , 𝐷𝑐}, 𝑄𝑤(𝑙) ∈ [𝑄𝑤, 𝑄𝑤
],

∀𝑙 ∈ {1, 2,… , 𝐷𝑝}, (24)

where 𝐷𝑐 is the control horizon and 𝐷𝑝 is the prediction horizon.
Eqs. (19)–(21) are derived through the finite difference method to
iscrete the process model (4)–(6) with the sampling time interval as
= 30 s. Eq. (22) enforces 𝜒𝐸 to reach the desired quality 98.8% by
he end of control horizon. After 𝐷𝑐 time instants, the input methanol
an be set as 𝐹 = 0 and it usually takes around 6.5 min to reach the
teady state. In our simulation, we thus set 𝐷𝑝 = 𝐷𝑐 +13. The objective
unction of () is the production profit per unit time instant. For the
ransesterification reaction, the time to reach desired 98.8% FAME can
e shortened if the methanol input is maximized. However, excessive
ethanol in the reactor may increase the recycle duty and unnecessary
epletion. Hence, the efficiency (profit per unit time instant) is a more
uitable index to characterize the production performance compared to
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the batch time or total profit. The associated challenge is that the op-
timal 𝐷𝑝 varies given different 𝒌0 value and depends on the employed
ontroller. Thus, we may need to enumerate 𝐷𝑝 in a specific range
and solve resulting () individually. This manner may prolong the
offline computational time but enhance the optimality on the prediction
horizon. Here we employ the IPOPT (Wächter and Biegler, 2006) to
solve () and let

{

𝑲𝒌0
𝐹 ,𝑲𝒌0

𝑄 , 𝑌 𝒌0
𝐹 , 𝑌 𝒌0

𝑄
}

to denote the solution given
he kinetic model parameter 𝒌0.
Note that the proposed controller in () is designed only based on

the specific 𝒌0, which is subject to uncertainty in practical operations.
It is thus necessary to evaluate the controller performance under model
mismatch. To this end, we calculate the average process efficiency
across all scenarios in the evaluation set 𝛱 . Let (𝒌′0;𝒌0) denote the
process efficiency with actual kinetic parameter 𝒌′0 ∈ 𝛱 , but regulated
by the controller derived in () based on parameter 𝒌0 ∈ 𝛤 . We
can simulate the process model in Eqs. (7)–(14) to obtain the process
efficiency.

(𝒌′0;𝒌0) =
1
𝐷𝑝

(

𝑃𝑑𝑚(𝐷𝑝,𝒌′0;𝒌0)
(

𝑥2(𝐷𝑝,𝒌′0;𝒌0) + 𝑥3(𝐷𝑝,𝒌′0;𝒌0)

+ 𝑥4(𝐷𝑝,𝒌′0;𝒌0) + 𝑥5(𝐷𝑝,𝒌′0;𝒌0)
)

−𝑃𝑠 − 𝑃𝑚
(

𝐷𝑝
∑

𝑙=1
𝐹 (𝑙,𝒌′0;𝒌0) + 0.1𝑚(𝐷𝑝,𝒌′0;𝒌0)𝑥1(𝐷𝑝,𝒌′0;𝒌0)

)

−𝑃𝑒
(

𝐷𝑝
∑

𝑙=1
𝑄𝑤(𝑙,𝒌′0;𝒌0)𝛿 + 0.9𝐸𝑠 ⋅ 𝑚(𝐷𝑝,𝒌′0;𝒌0)𝑥1(𝐷𝑝,𝒌′0;𝒌0)

)

)

(25)

where 𝑚(𝐷𝑝,𝒌′0;𝒌0), 𝑥𝑖(𝐷𝑝,𝒌′0;𝒌0),∀𝑖 = 1, 2,… , 5, and 𝐹 (𝑙,𝒌′0;𝒌0) are
process variables with model parameter 𝒌′0 and controller parameters
{𝑲𝒌0

𝐹 ,𝑲𝒌0
𝑄 , 𝑌 𝒌0

𝐹 , 𝑌 𝒌0
𝑄 }. Here 𝐷𝑝 is based on our previous setting: 𝐷𝑝 =

𝐷𝑐 + 13 and 𝐷𝑐 is determined when 𝜒𝐸 reaches the desired values
98.8%. Then, the average performance of a controller derived from a
specific 𝒌0 is:

̃(𝒌0) =

∑

𝒌′0∈𝛱
(𝒌′0;𝒌0)

|𝛱|

(26)

3.2. Controller improvement and refinement

Controller Improvement: In this subsection, we discuss how to im-
prove the controller performance characterized by simulation over mul-
tiple scenarios shown in Eq. (26). One may consider to form a large-
scale optimization formula for {𝑲𝐹 ,𝑲𝑄, 𝑌𝐹 , 𝑌𝑄} across all sampled
scenarios simultaneously. However, three issues should be addressed:

1. The prediction horizon 𝐷𝑝 varies across scenarios and is hard to
be pre-determined.

2. The resulting large-scale multi-scenario multi-step prediction
model is highly nonlinear, making it challenging to secure a
high-quality solution.

3. If we can estimate 𝒌0 through MHE, then an adaptive con-
trol scheme might be more suitable than a single controller
optimized for all kinetic scenarios.

Therefore, we employ an intelligent optimization approach, PSO, to
generate additional 𝒌0 samples, solve resulting () sequentially, and
build a controller pool. Note that PSO is a well-established methodology
with numerous variations. The aim of this paper is not to create a new
PSO method, but to utilize the classical adaptive PSO scheme (Zhan
et al., 2009). The essential steps and modifications are outlined in
Algorithm 1. Totally |𝛤 | particles are considered in this scheme. Each
particle represents a search agent for the kinetic parameter 𝒌0.

In Algorithm 1, the training set 𝛤 consists of all the initial scenarios
0,𝑚
0 and 𝛤 ′ is an enlarged set storing all sampled kinetic scenarios.
ndex 𝑔 denotes the evolving iteration and index 𝑚 denotes the particle.
ec is the velocity vector of particles. 𝜔𝑔 is the inertia weight. 𝑐𝑔 and
1
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utput: 𝑲
𝒌𝑔,𝑚0
𝐹 ,𝑲

𝒌𝑔,𝑚0
𝑄 , 𝑌

𝒌𝑔,𝑚0
𝐹 , 𝑌

𝒌𝑔,𝑚0
𝑄 , ∀𝒌𝑔,𝑚0 ∈ 𝛤 ′

nitialize: 𝛤 , 𝑐1,𝑚1 , 𝑐1,𝑚2 , 𝜔1, 𝒌0,𝑚0 ;
or 𝑔 ← 1 to 𝐺 do
for 𝑚 ← 1 to |𝛤 | do

Vec𝑔,𝑚 =
𝜔𝑔Vec𝑔−1,𝑚+𝑐𝑔1𝜶

𝑔,𝑚
1 (pBest𝑚−𝒌𝑔−1,𝑚0 )+𝑐𝑔2𝜶

𝑔,𝑚
2 (gBest−𝒌𝑔−1,𝑚0 )

;
𝒌𝑔,𝑚0 ← 𝒌𝑔−1,𝑚0 + Vec𝑔,𝑚 ;
𝒌𝑔,𝑚0 ← max{𝒌𝑔,𝑚0 ,𝒌0}; 𝒌

𝑔,𝑚
0 ← min{𝒌𝑔,𝑚0 ,𝒌0} ;

Solve () with 𝒌𝑔,𝑚0 and 𝐷𝑝 ∈ [𝐷𝑝, 𝐷𝑝] to obtain (𝒌𝑔,𝑚0 )

and 𝑲
𝒌𝑔,𝑚0
𝐹 ,𝑲

𝒌𝑔,𝑚0
𝑄 , 𝑌

𝒌𝑔,𝑚0
𝐹 , 𝑌

𝒌𝑔,𝑚0
𝑄 ;

Calculate ̃(𝒌𝑛0;𝒌
𝑔,𝑚
0 ) over the evaluation set ∀𝒌𝑛0 ∈ 𝛱 ;

if ̃(𝒌𝑔,𝑚0 ) > ̃(pBest𝑚) then
Update pBest𝑚 ;

end
end
𝛤 ′ = 𝛤 ′ ∪ {𝒌𝑔,𝑚0 , ∀𝑚 = 1, 2,… , |𝛤 |};
Calculate evolution factor to determine 𝜔𝑔+1, 𝑐𝑔+11 , and 𝑐𝑔+12 ;
if ∃𝑚 ∈ {1, 2,… , |𝛤 |}, ̃(𝒌𝑔,𝑚0 ) > ̃(gBest ) then

Update gBest ;
end

nd
Algorithm 1: PSO for controller improvement

𝑐𝑔2 are the acceleration coefficients. 𝜶
𝑔,𝑚
1 and 𝜶𝑔,𝑚

2 are two uniformly
distributed random vectors independently generated within [0, 1]. The
particle’s new position 𝒌𝑔,𝑚0 is calculated by adding the velocity vector
to the previous position and restricted by the searching range [𝒌0,𝒌0].
The controller average performance ̃ is used as the fitness function
in PSO; pBest𝑚 is the kinetic vector corresponding to the best con-
troller found by 𝑚th particle. gBest is the kinetic vector corresponding
to the best controller among all particles. The updating formula of
evolution factor, parameters 𝜔, 𝑐1 and 𝑐2 can be found in Ref. Zhan
et al. (2009). The number of evolving iteration is denoted as 𝐺. The
number of particles is initialized as |𝛤 |, which implies that we solve |𝛤 |

scenarios and generate the same number of controllers at each iteration.
Consequently, there should be |𝛤 ′

| = 𝐺|𝛤 | controllers in the pool.
Different from conventional PSO that only keeps the optimal solution
gBest. Here we collect all investigated |𝛤 ′

| controllers and associated
̃ for next step: controller refinement.

In the PSO framework, we solve () by enumerating 𝐷𝑝 to achieve
he optimal efficiency and associated batch time for a given 𝒌0. How-
ver, this exhaustive search could be very time demanding and thus
imiting the number of PSO iterations. To resolve this issue, we can
evelop a regression model to narrow the searching range of 𝐷𝑝 given
a sampled kinetic parameter 𝒌0:

𝐷̂𝑝 = (𝒌0), 𝐷𝑝 ∈ [⌊𝐷̂𝑝⌋, ⌈𝐷̂𝑝⌉] (27)

where the regression function  is learned from the existing samples
𝒌0 and associated optimal 𝐷𝑝. The range of 𝐷𝑝 is rounded down and
up to the nearest integers of 𝐷̂𝑝.

Controller refinement: Although PSO yields a bunch of controllers,
nly a few of them will be employed, including the best controller in
he pool:

𝑲
𝒌∗0
𝐹 ,𝑲

𝒌∗0
𝑄 , 𝑌

𝒌∗0
𝐹 , 𝑌

𝒌∗0
𝑄

}

= arg max
𝒌0∈𝛤 ′

̃(𝒌0) (28)

To develop an adaptive control scheme, we generate a much larger
kinetic scenario set 𝛷 and partition it into several groups. The vector
components 𝑘0,𝑏 are normalized based on their nominal values and then
fed into the k-means method for clustering. Each cluster is equipped
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with a state feedback controller denote as
{

𝑲𝐹 ,𝑗 ,𝑲𝑄,𝑗 , 𝑌𝐹 ,𝑗 , 𝑌𝑄,𝑗
}

,∀𝑗 =
1, 2,… , 𝑁 . Let 𝛷1, 𝛷2,… , 𝛷𝑁 to represent totally 𝑁 clusters of scenar-
ios, and their centers are 𝝁1,𝝁2,… ,𝝁𝑁 , respectively. We choose the
state feedback controller from the pool 𝛤 ′ for 𝑗th cluster based on (29):

̃∗
𝛷𝑗

= max
𝑔,𝑚

∑

∀𝒌0∈𝛷𝑗
(𝒌0;𝒌

𝑔,𝑚
0 )

|𝛷𝑗 |
, {𝑔∗, 𝑚∗} = argmax

𝑔,𝑚

∑

∀𝒌0∈𝛷𝑗
(𝒌0;𝒌

𝑔,𝑚
0 )

|𝛷𝑗 |

(29)

where ̃∗
𝛷𝑗

is the average efficiency in cluster 𝛷𝑗 using the opti-
mal controller from the pool. Then, there is

{

𝑲𝐹 ,𝑗 ,𝑲𝑄,𝑗 , 𝑌𝐹 ,𝑗 , 𝑌𝑄,𝑗
}

=
{

𝑲
𝒌𝑔

∗ ,𝑚∗
0

𝐹 ,𝑲
𝒌𝑔

∗ ,𝑚∗
0

𝑄 , 𝑌
𝒌𝑔

∗ ,𝑚∗
0

𝐹 , 𝑌
𝒌𝑔

∗ ,𝑚∗
0

𝑄
}

.

.3. Online control implementation

Because the offline designed controllers are associated with the
inetic clusters, the online control scheme should firstly estimate 𝒌0
ia MHE, given the measurement of component mass fraction 𝑥𝑖, 𝑖 =
, 2,… , 6, liquid level ℎ, and reactor temperature 𝑇 . Let 𝑠 to denote the
urrent time step index. MHE can be constructed as an optimization
ormula over a backward window with length 𝐷𝑚: 𝑠−𝐷𝑚 + 1, 𝑠−𝐷𝑚 +
,… , 𝑠.

min
𝒌̂0

𝑠
∑

𝑙=𝑠−𝐷𝑚+1

6
∑

𝑖=1
𝑊𝑖(𝑥𝑖(𝑙) − 𝑥̂𝑖(𝑙|𝑠))2 +𝑊ℎ(ℎ(𝑙) − ℎ̂(𝑙|𝑠))2

+ 𝑊𝑇 (𝑇 (𝑙) − 𝑇̂ (𝑙|𝑠))2

+ 𝑾 T
𝒂(𝒌̂0(𝑠) − 𝒌̂0(𝑠 − 1)) ()

.t. 𝑚
(

𝑥̂𝑖(𝑙|𝑠) − 𝑥̂𝑖(𝑙 − 1|𝑠)
)

= 𝛿𝐹 (𝑙 − 1)
(

𝑥0,𝑖 − 𝑥̂𝑖(𝑙 − 1|𝑠)
)

+ 𝛿𝜙𝑖(𝑙 − 1),

𝑖 = 1, 2,… , 6, (30)

𝜌𝐴
(

ℎ̂(𝑙|𝑠) − ℎ̂(𝑙 − 1|𝑠)
)

= 𝛿𝐹 (𝑙 − 1) + 𝛿𝑉 𝜌2
6
∑

𝑖=1

1
𝜌𝑖

(

𝑥̂𝑖(𝑙|𝑠) − 𝑥̂𝑖(𝑙 − 1|𝑠)
𝛿

)

,

(31)
𝜌𝐶𝑝𝑉

(

𝑇̂ (𝑙|𝑠) − 𝑇̂ (𝑙 − 1|𝑠)
)

= 𝛿𝐶𝑝,𝐹 (𝑇𝐹 − 𝑇̂ (𝑙 − 1|𝑠))

+ 𝛿
3
∑

𝑗=1
(𝛥𝐻)𝑗𝑟𝑗𝑉 + 𝛿𝑄𝑤(𝑙 − 1), (32)

Eqs. (7)–(14), 𝑙 ∈ {𝑠 −𝐷𝑚 + 1, 𝑠 −𝐷𝑚 + 2,… , 𝑠},

𝒌̂0 ∈ [0.7𝒌̃0, 1.3𝒌̃0], 𝑥̂𝑖 ∈ [0, 1], 𝑇̂ ∈ [𝑇 , 𝑇 ], ℎ̂ ∈ [ℎ, ℎ],

where 𝑊ℎ, 𝑊𝑇 , and 𝑊𝑖,∀𝑖 = 1, 2,… , 6, are weighting parameters of the
stage cost for each state variable; 𝑾 𝒂 is the weighting parameter of
the arrival cost; 𝑥̂𝑖(𝑙|𝑠), ℎ̂(𝑙|𝑠) and 𝑇̂ (𝑙|𝑠) are estimated state values for
time instant 𝑙 at current time instant 𝑠; 𝒌̂0(𝑠) is the estimated parameter
value at time instant 𝑠.

Several comments on MHE are presented in order. First, the ob-
jective function of () is composed of the sum of stage-wise
estimation error over the window and an arrival cost 𝑾 T

𝒂(𝒌̂0(𝑠) −
𝒌̂′0(𝑠 − 1)). The weighting parameters within the objective function can
be tuned according to the covariance information of each deviation
term. The arrival cost helps smooth the estimation of 𝒌0 across con-
secutive time instants. Second, MHE is superior than other estimation
approaches because it can integrate various physical bounds directly
into the formula. Therefore, we specify upper and lower limits for
each estimation variable to improve the estimation accuracy. How-
ever, () is a nonlinear program (NLP) that can only guarantee
suboptimal solutions. This inherent characteristic should be considered
when evaluating the performance of MHE. Third, the length of the
estimation window 𝐷𝑚 may impact the estimation performance. A
larger 𝐷𝑚 allows for the inclusion of more historical data in (),
potentially leading to more reliable estimations. However, a longer
window increases the online computational demand. More importantly,

this semi-batch process has relatively short reaction time. Long data
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Table 3
Operational constraints.

Upper bound Lower bound

𝐹 800 g/s 0 g/s
𝑄𝑤 36 kW −20 kW
𝑇 340 K 290 K
ℎ 30 dm 0 dm

collection period may delay the application of 𝒌̂0 in the control scheme.
We thus set 𝐷𝑚 = 8 in the simulation.

Note that MHE needs gathering 𝐷𝑚 data to estimate 𝒌0. Hence,
in the beginning of a batch, we have to employ the best available
controller in the pool:

{

𝑲
𝒌∗0
𝐹 ,𝑲

𝒌∗0
𝑄 , 𝑌

𝒌∗0
𝐹 , 𝑌

𝒌∗0
𝑄

}

. Once enough data points
are collected and 𝒌̂0 is estimated by MHE, we can identify the cluster
that belongs to. The k-means method determines the cluster based on
Euclidean distance:

𝑗∗ = arg min
𝑗∈{1,2,…,𝑁}

‖𝒌̂0 − 𝝁𝑗‖ (33)

Note that 𝒌̂0 should be normalized based on their nominal value
and then compared with 𝝁𝑗 . Then, the controller can be switched to
{

𝑲𝐹 ,𝑗∗ ,𝑲𝑄,𝑗∗ , 𝑌𝐹 ,𝑗∗ , 𝑌𝑄,𝑗∗
}

, and we use (17) and (18) to determine 𝐹
and 𝑄𝑤.

4. Simulation study

In this section, we simulate the biodiesel production process de-
scribed in Section 2. The hardware platform is a workstation with Intel
Xeon Silver 4208 processor and 16 GB memory. The software platform
is MATLAB and OPTI toolbox with NLP solver IPOPT.

The simulated batch reactor has a diameter of 1 meter and a height
of 3 m. The operational constraints of the biodiesel production process
are listed in Table 3. The scenarios are generated as follows. First, the
basic variations are chosen randomly from the range [−30%, 30%] of
the nominal 𝒌0 values shown in Table 2. Additional ±2% time-varying
fluctuations are further added to make the simulation more realistic.
Here we do not introduce parameter drifting during each batch. An
example of the sampled kinetic scenario will be shown in Figs. 5 and
, Section 4.4.

.1. Benchmark: Model predictive control

For comparative analysis, we implemented the MPC as an alterna-
ive way to control the production process. The MPC is formulated as an
nline optimization problem with kinetic parameter estimated through
). At each time step 𝑠, the MPC formulation involves solving the
ollowing problem to determine methanol flow rate 𝐹 and heat duty
𝑤:

min
,𝑄𝑤

𝑠+𝐷′
𝑐

∑

𝑙=𝑠+1
(100𝜒𝐸 (𝑙|𝑠) − 98.8)2 +𝑊𝑢1𝐹 (𝑙|𝑠)2 +𝑊𝑢2𝑄𝑤(𝑙|𝑠)2 ()

s.t. 𝑚
(

𝑥̂𝑖(𝑙|𝑠) − 𝑥̂𝑖(𝑙 − 1|𝑠)
)

= 𝛿𝐹 (𝑙 − 1|𝑠)
(

𝑥0,𝑖 − 𝑥̂𝑖(𝑙 − 1|𝑠)
)

+ 𝛿𝜙𝑖(𝑙 − 1|𝑠), 𝑖 = 1, 2,… , 6, (34)
𝜌𝐴

(

ℎ̂(𝑙|𝑠) − ℎ̂(𝑙 − 1|𝑠)
)

= 𝛿𝐹 (𝑙 − 1|𝑠)

+ 𝛿𝑉 𝜌2
6
∑

𝑖=1

1
𝜌𝑖

(

𝑥̂𝑖(𝑙|𝑠) − 𝑥̂𝑖(𝑙 − 1|𝑠)
𝛿

)

,

(35)
𝜌𝐶𝑝𝑉

(

𝑇̂ (𝑙|𝑠) − 𝑇̂ (𝑙 − 1|𝑠)
)

= 𝛿𝐶𝑝,𝐹 (𝑇𝐹 − 𝑇̂ (𝑙 − 1|𝑠))

+ 𝛿
3
∑

𝑗=1
(𝛥𝐻)𝑗𝑟𝑗𝑉 + 𝛿𝑄𝑤(𝑙 − 1|𝑠), (36)

Eqs. (7)–(14), 𝑙 ∈ {𝑠 + 1, 𝑠 + 2,… , 𝑠 +𝐷′},
𝑐
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Table 4
Training set: basic variations. Note: Additional ±2% random variations is further
introduced.

𝑘0,1 𝑘0,2 𝑘0,3 𝑘0,4 𝑘0,5 𝑘0,6
Scenario 1 −30% −30% −30% −30% −30% −30%
Scenario 2 −25% −25% −25% −25% −25% −25%
Scenario 3 0% 0% 0% 0% 0% 0%
Scenario 4 15% 25% 10% 25% 20% 30%
Scenario 5 30% 30% 30% 30% 30% 30%
Scenario 6 −30% −25% −20% −25% −30% −25%

𝑥𝑖(𝑙|𝑠) ∈ [0, 1], 𝑇 (𝑙|𝑠) ∈ [𝑇 , 𝑇 ], ℎ(𝑙|𝑠) ∈ [ℎ, ℎ],

here 𝐷′
𝑐 = 20 is the control horizon of MPC in this study; Our

nvestigation shows that further increasing 𝐷′
𝑐 value does not improve

he economic performerence of this reactor but significantly extends
he computational time; notation (𝑙|𝑠) denotes the prediction of time
tep 𝑙 at current time 𝑠. Similar with the proposed approach, when
𝐸 reaches the desired value 98.8%, the methanol flow derived from
PC is overridden to 𝐹 = 0. Subsequently, the operations continue
or 6.5 min and then collect the product. Note that formula ()
s highly nonlinear due to the complex process model. It is designed
or setpoint tracking while the input cost is minimized. According to
ef. Brásio et al. (2013), adjusting the weighting parameter 𝑊𝑢1 and
𝑢2 may improve the process economic efficiency. As the electricity
rice is significantly less than the methanol cost, we always set 𝑊𝑢2 = 0
o enable high power heating. In addition, we will also tune 𝑊𝑢1 to
nvestigate its influence on the economic performance of the process.
ince kinetic parameters are not known in advance, we use their
ominal values in MPC during 1, 2,… , 𝐷𝑚 time instants. After collecting

𝐷𝑚 data points, the MHE provides estimates for the kinetic parameters,
which are then incorporated into the MPC for more accurate control.

4.2. State feedback controller design: Initial results

We start by building the training set 𝛤 , which includes 6 kinetic
scenarios. The basic variations of these scenarios compared to the nom-
inal one are summarized in Table 4. Here the training set contains the
nominal scenario (0%), as well as the slowest (−30%) and fastest (30%)
kinetic scenarios to ensure a representative coverage. For each scenario
in the training set, we enumerate the prediction horizon 𝐷𝑝 ∈ [36, 45]
nd solve associated control problem () to determine an optimal
tate feedback controller. We initially start with a narrow range for the
rediction horizon 𝐷𝑝 and continuously extend it if the optimal horizon
ength 𝐷𝑝 is found on the boundary of current range. This process is
erminated when the optimal 𝐷𝑝 value is found within the interior of
he range for all scenarios on Table 4, or 𝐷𝑝 value results in infeasible
roblem. In fact, when 𝐷𝑝 is set as 35, all scenarios become infeasible
ecause the required reaction time is too short to achieve the desired
AME value. Next, we further sample the kinetic parameter space to
enerate 113 samples, including 100 fully random scenarios and 13
ystematically varied scenarios from −30% to 30% in 5% interval, as an
valuate set for controller performance. The evaluation results of each
ontroller are detailed in Table 5. Here we can observe high variance
n efficiency for different training scenarios and associated controllers.
onsequently, these findings highlight the importance to utilize a large
nd diverse scenario set to assess controller performance under process
ncertainties.

.3. State feedback controller design: Improved results

The kinetic scenarios in the training set sever as the particles’
nitial position in the PSO algorithm. The controllers derived from the
raining set 𝛤 provide the initial design and are further improved by
SO. We execute Algorithm 1 to explore different kinetic parameters
nd solve associated (). Table 5 shows that using a smaller kinetic
 T
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Table 5
The performance of each controller derived from 6 training scenarios.

Optimal 𝐷𝑝 Efficiency in each Average efficiency
training scenario in evaluation set

Controller 1 44 4.6704 5.2226
Controller 2 41 4.8073 5.1876
Controller 3 38 5.4383 5.1959
Controller 4 36 5.7413 5.1897
Controller 5 36 5.9336 5.0740
Controller 6 43 4.6767 5.2295

value (−30%, scenario 1) in () leads to higher process efficiency
than using a larger kinetic value (30%, scenario 5). This observation
motivates us to slightly extend the searching range from [0.7𝒌̃0, 1.3𝒌̃0] to
0.69𝒌̃0, 1.3𝒌̃0] in PSO. Let particles to evolve for 16 iterations, namely

= 16. In Fig. 3, we plot the fitness value (process efficiency) of
ach particle, including the initial fitness value and 16 iterations. The
𝑝 searching range is initially set as 𝐷𝑝 ∈ [36, 45]. After 6 iterations,
e feed all investigated kinetic samples with their optimal 𝐷𝑝 into
he MATLAB Regression Learner App to compare different regression
ethods. Finally, the best model, Gaussian Process Regression with
atérn kernel, is chosen for predicting 𝐷𝑝. This regression model
chieves a root mean square error (RMSE) of 0.64 and an 𝑅2 value
f 0.91. The predicted and true optimal 𝐷𝑝 for the initial 6 iterations
re compared in Fig. 4.
During the first 6 iterations of the PSO algorithm, the best fitness

alue is found in 5th iteration of 5th particle. After building the optimal
𝑝 prediction model, the PSO continues for another 10 iterations to
enerate a better solution found in 15th iteration of 1st particle. The
𝐁𝐞𝐬𝐭 vectors obtained after the initial 6 and complete 16 iterations are
hown in Table 6. In fact, the solution found in 5th iteration is also the
econd best controller generated by the PSO. After more iterations, the
olution performance is slightly improved.
In the next step, controllers identified by the PSO are selected for the

daptive control scheme. To achieve this, a much larger kinetic set 𝛷,
omprising 800 scenarios, is generated to represent a broader range of
ncertainty. These kinetic vectors are divided into 10 clusters by using
-means approach, whose centers and number of contained scenarios
re presented in Table 7. For each cluster, we use Eq. (29) to select
ts optimal controller from the pool. We expect that kinetic scenarios
ithin the same cluster exhibit similar reaction rate, and thereby prefer
he same controller. The average performance of each cluster, using
ontrollers optimized by PSO, is summarized in Table 7, revealing a
ignificant variance among clusters.

.4. Comparison on the testing set

In this subsection, we compare the performance of benchmark MPC
ith the proposed state feedback controller. The kinetic parameters
or both schemes are estimated through MHE with window length
𝑚 = 8. It is worthwhile to note that the proposed state feedback
ontroller only needs to locate the cluster of kinetic parameter belongs
o and uses Eq. (17) to determine control actions, which normally
akes 0.002 s. The MPC usually spends 35 to 85 s at each time step
or online optimization during the initial reaction, which actually is
onger than the sampling time 𝛿 = 30 s. Therefore, the state feedback
ontroller can at least reduce 99.994% of the online computational
emand compared with MPC. We are more concerned with the average
rocess efficiency using different control strategies. Thus, a testing set
s generated, consisting of 40 independent kinetic scenarios. We tune
he weighting parameters of MPC and compare it with the proposed
tate feedback controllers on the testing set. The results are listed in

able 8.
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Fig. 3. The particle fitness value evolution.
Fig. 4. The regression model performance for 𝐷𝑝 on validation data points.
Table 6
Best kinetic parameters for () found by PSO and associated average efficiency in 𝛱 .

𝑘0,1 𝑘0,2 𝑘0,3 𝑘0,4 𝑘0,5 𝑘0,6 ̃

gBest after 6 iterations 0.3727 0.8071 3.4170 2.5865 0.0221 0.0284 5.2374
gBest after 16 iterations 0.3727 0.7867 3.4020 2.5870 0.0219 0.0280 5.2388
88 
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Table 7
Clusters’ centers, number of scenarios, and ̃∗

𝛷𝑗
: average efficiency in 𝛷𝑗 .

𝑘0,1 𝑘0,2 𝑘0,3 𝑘0,4 𝑘0,5 𝑘0,6 Number of ̃∗
𝛷𝑗
after 6 ̃∗

𝛷𝑗
after 16

scenarios iterations iterations

𝛷1 0.6050 1.2643 3.6880 4.3847 0.0357 0.0411 94 5.2765 5.2779
𝛷2 0.6310 1.0251 3.6287 3.2180 0.0286 0.0423 71 5.3333 5.3407
𝛷3 0.4421 0.9165 4.5408 4.0078 0.0305 0.0462 81 4.7427 4.7427
𝛷4 0.5104 0.9252 4.5837 4.4195 0.0288 0.0315 69 5.0059 5.0073
𝛷5 0.4528 1.3068 4.8993 4.1615 0.0365 0.0413 69 4.8067 4.8067
𝛷6 0.6355 1.1516 5.0277 4.0835 0.0283 0.0437 75 5.4030 5.4081
𝛷7 0.4903 1.2644 4.8012 3.0347 0.0276 0.0392 89 4.9159 4.9174
𝛷8 0.6148 1.0323 5.1120 3.4425 0.0375 0.0410 90 5.4329 5.4342
𝛷9 0.4894 1.2315 3.6357 4.0439 0.0267 0.0338 66 4.8564 4.8564
𝛷10 0.4889 1.0493 3.6000 3.1590 0.0375 0.0359 96 4.9132 4.9132
Table 8
Comparing average process efficiency by using different control strategies.
Methods Parameters Average process efficiency

(40 testing scenarios)

MPC1 𝑊𝑢1 = 0 5.0034
MPC2 𝑊𝑢1 = 0.00005 4.9905
State Feedback (After 6 iterations, single) N/A 5.1464
State Feedback (After 6 iterations, adaptive) N/A 5.1604
State Feedback (After 16 iterations, single) N/A 5.1478
State Feedback (After 16 iterations, adaptive) N/A 5.1616
t
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Several discussions of these comparison results are in order:
First, we set the weighting parameter 𝑊𝑢2 to zero in the MPC

ecause electricity cost is substantially lower than the cost of methanol.
ncreasing 𝑊𝑢1 reduces the process efficiency because it lowers
ethanol flow, which in turn increases the batch time.
Second, Figs. 5 and 6 depict the estimated kinetic parameters for

ne of the testing scenarios. In this scenario, the MPC achieves an
fficiency of 5.5605, while our state feedback controller achieves an
fficiency of 5.6603. Under different control strategies, the estimated
0 can be distinct due to various control actions and process outputs.
he MHE requires 𝐷𝑚 time steps for process data collection, and the
stimates for some kinetic parameters diverge from their actual values
ue to the challenges posed by solving a high-dimensional nonlinear
ptimization problem. We aim to demonstrate that MPC can be very
ensitive to the estimation error, whereas our state feedback control is
ot. During the offline design stage, we determine a suitable state feed-
ack controller for the entire cluster that already takes uncertainty into
ccount. This is why the state feedback controller, despite using less
ccurate kinetic parameters than the MPC, still shows better economic
erformance.
Third, the proposed state feedback controller achieves higher pro-

ess efficiency than MPC on average. The kinetic uncertainty degrades
he MPC’s online optimization performance during the semi-batch pro-
ess. In addition, since batch time is uncertain due to kinetic variability,
PC cannot directly optimize the process efficiency within its objective
unction. Although the proposed state feedback controller has fixed
tructure and relies on offline optimization, it is selected via the eval-
ation and clustering on numerous kinetic scenarios, making it more
obust than the MPC. Direct comparisons between MPC1 (𝑊𝑢1 = 0)
nd adaptive state feedback control (after 16 iterations) are shown
n Figs. 7–9. In Fig. 7, we can see that both control schemes drive
he FAME concentration to the desired 98.8% across various testing
cenarios, because high methanol flow ensures high yield of FAME and
ess batch time. However, the input signals in Fig. 8 demonstrate that
tate feedback controller is more aggressive due to the incorporation
f target constraint (22) into the optimization formula whereas MPC
nsures FAME specification through the objective function. In fact,
he methanol consumption and batch time are two key factors in
etermining the efficiency. We can see that MPC uses less methanol
than the proposed state feedback controller. However, the proposed
ontroller leads to a shorter batch time (39 vs 41), achieving a better
 f

89 
rade-off between methanol consumption and batch time. Fig. 9 plots
he efficiency histograms with MPC and state feedback control, respec-
ively. Notably, the state feedback controller can regulate the process
ith better efficiency than the MPC in most of scenarios. Even though
his improvement is only 0.16∕5 = 3%, it yields $0.16 more profit per
0 s. Over a year of continuous operation, this results in an annual
rofit increase of 0.16 × 120 × 24 × 365 = $168, 192 for the studied pilot-
cale reactor. In addition, the process efficiency actually is influenced
y the prices of methanol (inflow) and biodiesel (outflow). Therefore,
he improvement value could be even higher if methanol or biodiesel
rice increases.
Fourth, we can compare the single state feedback controller and the

daptive scheme in Table 8. Efficiency results indicate that properly
arying the controller according to the estimated kinetic cluster further
nhances process efficiency. This clustering-based approach, which se-
ects controllers offline designed for specific kinetic scenarios, reduces
he adverse effects of estimation errors compared to directly using the
stimated kinetic parameter value in online optimization.

. Conclusion

This paper presents a novel control approach to optimize the effi-
iency of the biodiesel production process, specifically under conditions
f kinetic uncertainty, while ensuring product quality. The proposed
daptive state feedback control scheme is implemented in two phases:
n offline design phase and an online implementation phase. In the
ffline design phase, the uncertain kinetic parameter is sampled to
enerate a training set, an evaluation set, and a clustering set. State
eedback controllers are designed for each scenario in the training set
nd their performance is evaluated using the scenarios in the evaluation
et. The particle swarm optimization (PSO) and a batch time regression
odel are employed to further improve the controller pool. The uncer-
ainty space is then divided into several groups based on the clustering
et. Each cluster is equipped with the best-performing controller from
he pool. In the online implementation phase, the moving horizon
stimation (MHE) is used to estimate the kinetic parameter in real-
ime. Based on the estimated kinetic value, the appropriate cluster
nd its associated state feedback controller are selected to regulate the
lant. Simulation studies, involving 40 testing scenarios, demonstrate
hat the proposed adaptive state feedback control approach outper-

orms the model predictive control (MPC) method. The designed state
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Fig. 5. The estimated value of kinetic parameters 𝑘1 − 𝑘3. Blue: Actual value; Red dash: MPC1; Yellow dash–dot: State Feedback.

Fig. 6. The estimated value of kinetic parameters 𝑘4 − 𝑘6. Blue: Actual value; Red dash: MPC1; Yellow dash–dot: State Feedback.
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Fig. 7. The FAME percentage 𝜒𝐸 of the process regulated by MPC and state feedback controller. The FAME of all 40 testing scenarios finally can exceed the desired standard
value 98.8% using either MPC or state feedback controller..

Fig. 8. The 𝐹 and 𝑄𝑤 computed by MPC or state feedback controller in one of the testing scenarios. Batch time: MPC (41) vs. State Feedback (39).

Chemical Engineering Research and Design 209 (2024) 81–93 
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Fig. 9. The histograms of process efficiency using MPC or state feedback controller in testing scenarios.
feedback controller, enables fast calculation, achieves higher process
efficiency, and exhibits greater robustness against parameter estimation
errors compared to MPC. This robust performance is attributed to the
extensive offline optimization and the adaptive controller selection
mechanism, which effectively addresses kinetic uncertainties.
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