Approximate Quantum Array Multiplier

Aden Crimmins*, Sonia Lopez Alarcon'
KGCOE Department of Computer Engineering, Rochester Institute of Technology
Rochester, New York
Email: *abc8255@rit.edu, Tslacec@rit.edu

Abstract—Maultiplication is a frequent computation in many
algorithms, classical and quantum. This paper targets the im-
plementation of quantum integer multiplication. Quantum array
multipliers take inspiration from classical array multipliers, with
the result of reduced circuit depth. They take advantage of the
quantum phase domain, through rotations controlled by the mul-
tiplier’s qubits. This work further explores this implementation
by applying approximate rotations. Although this approach can
have an impact on the accuracy of the result, the reduction in
depth can result in better outcomes when noise is involved.

Index Terms—Qubit, Quantum Entanglement, Multiplication,
Fourier Transform, Approximation, Control Gates, Phase Do-
main, Basis, O-Time Complexity, Array Multiplication.

I. INTRODUCTION

The design of quantum circuits faces a race against time
to beat decoherence and the impact of noise. The depth of
a quantum circuit, characterized by the number of compu-
tational steps or gate layers, is the key design metric that
is proportional to execution time. Therefore, finding designs
that minimize depth is critical to reaching meaningful results
that are as protected from noise, decoherence, and, in sum,
quantum error as possible.

Much like classical computing, quantum circuits can make
use of basic circuit designs that act as building blocks for
large-scale algorithms. This work focuses on one of these
basic operations, the multiplication of integers implemented
as quantum information. Improvements made to a quantum
multiplication algorithm could prove useful for different ap-
plications, such as modular multiplication in Shor’s algorithm
[1], or could play a role in the implementation of oracles
for Grover’s search algorithm [2]. In previous work, quantum
array multipliers showed a significant reduction in depth
against other naive implementations [3]. Reducing depth is
based on the efficiency of the computations as well as on how
parallelism is exploited through them. One other advantage
of the quantum array multiplier is that its implementation
is valid for any integer multiplication value, acting as an
insertable module that encodes the multiplicand and multiplier
in two corresponding quantum registers. This is opposed to
other designs [4] that vary the implementation dependent on
intermediate measurements.

In this paper we will show one additional advantage of the
quantum array multiplier, proposing the approximate quantum
array multiplier. In the quantum array multiplier, the mul-
tiplication is performed through rotations controlled by the

This material is based upon work supported by the National Science
Foundation under Award No. 2300476

qubits of the multiplier and multiplicand. The magnitude of
these rotations decreases with the significance of the control
qubits. Just like with any other computation, there is a choice
to be made on the precision of the computation. It is possible
to implement the design discarding the smaller rotations for
being insignificant in the greater scheme of the results. This
work looks at this approach to find that the depth of the quan-
tum array multiplier particularly benefits from this simplified
design, with little impact on the accuracy of the resulting
product. Further, when noise is considered, the reduction in
depth results in more accurate results in the approximate case
than in the exact case.

II. RELATED WORK

Quantum arithmetic has been developing for a few decades,
with new algorithms and techniques being proposed for effi-
cient and fast operations on qubits. The arithmetic operation
focused on within this paper is multiplication, as it is a
fundamental building block for a wide range of applications
in many different algorithms and calculations.

Adders are relevant to this discussion on multiplication,
as in most cases, multipliers involve additions in one way
or another. The implementation of quantum addition using a
full adder is given precisely by Sohel et al. [5]. A basic full
adder can be described with CNOT and Toffoli quantum gates.
The n-qubit design requires an n quantum register and an n
classical register to hold the values for input and output in
the quantum domain and the measured value in the classical
domain. The paper demonstrated the complete implementation
of the full adder truth table, with multiple intermediate steps
in which the qubits are used to store the intermediate values
that are not required at the end. The ripple carry adder circuit
proposed by Vedral et al. [6] demonstrates the addition of
two n-bit numbers as input and outputs a single bit, the most
significant bit of the sum. These circuits require n — 1 ancillae
qubits, with 4n 4+ 1 CNOT gates and 4n + 1 Toffoli (doubly
controlled-NOT) gates, resulting in limited parallelism. The
circuit was improved and was reduced to one ancilla qubit
proposed by Cuccaro et al. [7] with 2n + 1 Toffoli gates,
5n + O(1) CNOT gates, and 2n + 1 negations; the estimated
depth is 2n+ 1. A different approach was taken by Draper [8]
in which the quantum fourier transform is applied to perform
addition using phase rotations in the quantum phase domain.
This approach has an estimated depth of n+ 1 in the presence
of parallel computation, as well as no ancillary qubits required
to calculate the result.

One technique used in classical computing is to limit
the accuracy of the calculation in order to reduce power

consumption, area, and delay of hardware incurred. While
this makes for faster circuits that consume less power, the
downside of this is that the results in the end are not guaranteed
to be exact, rather, they are within a certain range of error
defined by the amount of approximation used. This type of
computation is often used in image filtering, data mining, and
pattern recognition as they often do not require exact results,
but “good enough” results, due to the error resilience built
into those applications. Research that took this approach on
quantum computers was performed by Sajadimanesh et al. [9].
They propose four different approximate circuits combined
to perform multiplication, showing the different trade-offs of
each design in terms of accuracy and circuit complexity. This
approach was based on binary implementation of the integer
multiplication using Toffoli gates, and its approximate version.
Binary implementations are however highly inefficient and
approximate Toffoli gates in this case incur into high error
on the overall calculation’s result, since the solution is only
guaranteed to be within a certain range of the actual solution
and not exact at any point due to dropped terms.

Taking a different approach to approximation, we focus on
the controlled application of phase shifts within the phase
domain within this work. This technique was introduced by
Barenco et. al. [10] and focused specifically on the application
of the quantum fourier transform. It was shown that by
removing rotations below a certain threshold, an approximate
quantum fourier transform was able to achieve better perfor-
mance than its non-approximate counterpart in the presence of
decoherence. This is due to the fact that, for especially small
phase rotation applications, the accuracy added to the circuit is
outweighed by the decoherence accumulated in the application
of the rotation. By removing these extremely small rotations,
it is possible to increase the final accuracy when decoherence
is present in the system. This idea was taken a step further by
Draper [8], in which he proposed an addition circuit that took
advantage of both the quantum phase domain and the same
approximation technique utilized in the approximate QFT. By
setting a limit to the phase shifts taking place in the addition
circuit, one can significantly reduce the depth of the addition
circuit.

The focus of this paper is on the application of this phase
approximation technique to perform efficient multiplication of
two integers in a quantum environment. In order to apply this
technique, multipliers that operate within the quantum phase
domain are considered.

A. Quantum Array Multiplier, Repeated Addition and Quan-
tum Fourier Multiplier

The quantum array multiplier (QAM) was proposed in pre-
vious work [3], and it is inspired by classical array multipliers.
In the classical design, each full adder takes in both the result
of the current row and the previous row. In the quantum case,
the phase shift is directly passed on to the product naturally
taking care of carry dependencies. The design is summarized
in Figure 1. The quantum array multiplier goes through four
main steps: (i) The multiplicand and multipliers are initialized
to the corresponding binary value (via X gates) (ii) the product

register is placed in the phase domain (via Quantum Fourier
Transform block) (iii) double-controlled rotations of decreas-
ing magnitude are applied, and (iv) the product is converted
back to the computational basis (via Inverse Quantum Fourier
Transform).

A more naive quantum multiplier design in the phase basis
[4] is based on the repeated addition (RA) of the multiplicand
in an accumulator, as many times as the multiplier indicates.
This repeated addition also takes place in the phase domain.
The basic functionality of this multiplier is as follows: The
initial state of the accumulator is encoded in the phase domain
through a Quantum Fourier Transform (QFT), so the multipli-
cand can control rotations of the qubits’ phases depending on
the significance of the qubit upon which the rotation is acting.
The multiplier is then decremented by 1 and measured. This
cycle is repeated until the multiplier is measured to be 0. Last,
the accumulator is returned to encoding in the computational
basis through an inverse QFT to extract the result of the
multiplication. An example of this design is shown in Figure
2. Previous work [3] demonstrated the better overall depth
performance of QAM over RA.

A Quantum Fourier Multiplier (QFM) has been incorporated
into the Qiskit toolset [11][12]. This multiplier works similarly
to QAM but has two drawbacks when compared to the first
one in this section: on one hand, it does include 2nm rotations,
which is pointless since they bring the phase to the same prac-
tical point, and on the other, only allows for multiplications in
which multiplicand and multiplier have the same width, which
results in reduced versatility as an insertable component when
compared to QAM. This implementation was not compared
against in previous work [3], but as it will be shown in this
work, it is less efficient depth-wise while following similar
trends.

These three multipliers have one main feature in common,
which is that the multiplication is performed in the phase
domain. As the multiplier, multiplicand, and product registers
grow in size, there are increasingly small rotations to perform.
This work discusses the benefits and drawbacks of discarding
some of these rotations in the same manner as the previous
approximation technique discussed. The method for applying
this approximation and how it will impact depth will be shown
next.

III. APPROXIMATE QUANTUM ARRAY MULTIPLIER

When the multiplication is performed in the phase domain,
the minimum phase shift gets increasingly small as the input
operands’ size increases. Due to technology limitations, one
may not be able to perform rotations of a magnitude below a
certain threshold. In addition, since every gate inherently adds
some amount of noise to the circuit, applying such rotations
may contribute to noise more than to the accuracy of the
calculation. There is a threshold under which the rotation
is not worth applying. Barenco, et. al. showed that in the
case of the QFT an approximate version, the Approximate
QFT (AQFT), could be more accurate than the full QFT [10].
The implications are that the QFT and IQFT stages of the
multiplier are able to be reduced by limiting the phase shifts

Multipliery —| X

Multiplier; —| X

Multiplicand —| X

Multiplicand; —| X

Producty — —E —|/7<|
Product; —— @ E @ @
QFT IQFT
Producty —— @ @ @ E @
Product — l_él @ l_lil l_g EI

Fig. 1: Quantum Array Multiplier(QAM) with each stage included starting with the Initialization of the inputs, followed by
the QFT stage, each of the row additions, and finally the IQFT.

[7] [1 [7] []
LA | L7 L] sl
accumulator
H|—7T/2 /2 —7T/2—|H [7(
multiplier -IE H /7i|
multiplicand -IE
classical register
Init. QFT Acc. Addition Decrement IQFT Acc.

Fig. 2: Full 1x1 repeated addition multiplication circuit post improvements. Each stage outlined and labelled underneath the

circuit.

to roughly N = [Logs(Product_width)+2] where the phase
shift applied is represented by R = 5% . This approximation
is applied to the QFT, multiplication, and IQFT blocks of the
implementation. For example, in the case of a five-qubit input
multiplicand and multiplier, the product register is ten qubits
wide. In that case, N = [Logs(Product_width) + 2] =
[(Log2(10) 4+ 2)] = 6 . The minimum rotation that can be
applied then would be R = 5 = ;. Any rotations below
this value will not be implemented in this approximate circuit
example.

Approximation in the phase domain does not affect to output
like it would when precision is dropped in the classical setting.
To better illustrate the effects of approximation, a one-qubit
example is shown in Figure 3. Through this example, we
intend to show how small rotations in the phase domain
(whether added or removed) have a small impact on the
measured outcome of the qubits, when the outcome is basis-
encoded, as it is in the binary representation of the integer
multiplication. In this case, the rotation is added rather than
removed. As shown in Figure 3, the qubit is initially in state
|0). After applying a Hadamard gate, it will evolve to the

|+) state, now placed in the phase domain. To simulate the
impact of the approximate phase shifting technique a (“small”)
phase of 7/8 is applied, taking it out of the |4) state. After
the small rotation, a Hadamard gate is once again applied to
return the qubit to the computational basis. If there were no
approximation, then the Hadamard would take it directly back
to the |0) state, but with the small additional rotation, the
final state is not exactly set to |0). Still, a measurement on the
computational basis will project this state to the |0) state “most
of the time” (p. = 0.96) this case with probability and only
sometimes it will wrongly measure the |1) (p,, = 0.04). This
is the reason why even when rotations are removed, it is still
possible to measure the correct output with high probability.

Two things must be noted in the case of quantum array mul-
tipliers, —or more generally, phase multipliers or adders.—
First, removing multiple small rotations can potentially add
up enough to take the final state “far” (phase-wise) from the
computational basis, resulting in other basis states being mea-
sured with significant probability, and consequently lowering
the probability of the correct solution. And second, the qubits
that contribute with smaller rotations, and hence are more

likely to benefit from approximation are the most significant
qubits of the product quantum register. If we were faced
with a significant enough transformation of the probability
distribution to result in other states having similar probability
to the correct output, the new value(s) would not be in the
vicinity of the correct value.

10) |0)

(b) Hadamard Applied

(a) Initial State

10)

(d) Second Hadamard

(c) 7/8 rotation

Fig. 3: Example Bloch diagram transformations showing the
impact of approximation in the quantum phase basis. Starting
in (a) with the initial state of |0) a Hadamard is applied
transitioning to |+) as shown in (b). Once in the phase basis, a
sample rotation of 7 /8 is applied, (c), followed by a Hadamard
gate application returning the state almost to |0) as shown in

(d).

The idea of the Approximate Quantum Fourier Transform
(AQFT) was then advanced by Draper [8], in which he
proposes using the same technique as the approximation of
the QFT, but this time applied to the phase rotations of the
quantum addition being performed. By eliminating the phase
additions that fall below a certain threshold a reduced number
of gates can be added, and using the same logic as the AQFT,
in the presence of noise or decoherence, there is a potential
increase in the accuracy of the circuit. Additionally highlighted
by Draper was a method for parallelizing the execution of the
addition operations in which each addition may be performed
in logan time slices.

Both of these techniques were utilized within this work in
the design of the AQAM. This design follows the same struc-
ture as the original QAM but includes a phase limit determined
using the qubit size of the product register. Rotations below a
threshold defined by [Logs(Product_width)+2] are dropped
out of the calculation. Since the RA and QFM algorithms
are also based on the phase domain, the same approximation

technique applies to those two algorithms as well.

IV. RESULTS

In this result section, the following algorithms are com-
pared:

e Quantum Array Multiplier (QAM)

o Approximate Quantum Array Multiplier (AQAM)

« Repeated Addition (RA)

o Approximate Repeated Addition (ARA)

e Quantum Fourier Multiplier (QFM)

Each algorithm which computed in the phase domain and
their approximate variations were compared, except QFM,
which implements almost the same algorithm as QAM, just
slightly less efficiently. Due to time constraints, the approx-
imate behavior of this approach was estimated based on the
behavior of AQAM.

The Qiskit [11] toolset was used to simulate and obtain
metrics for these implementations. The main metrics used
were the depth of each of the circuits as provided by Qiskit
after undergoing decomposition and optimization as well as
accuracy. The accuracy was assessed by providing the number
of shots that resulted in the correct product.

A. Depth

The depth of these implementations depends on the numbers
being multiplied specifically for the repeated addition imple-
mentations since it repeats the addition as many times as the
multiplier requires. For that reason, two extreme cases were
tested: n x n square multiplication and identity multiplication
nxl.

1) Square Multiplication: multiplies each number n with
bit widths from 1 to 20 having every bit initialized to 1.
The resulting depths of each of the different multiplication
algorithms can be seen in Figure 4. AQFM is estimated based
on the behavior of the QAM since the same gates are removed
in both cases. RA has the worst behavior in terms of depth.
The exponential increase in depth comes from the number of
repeated additions doubling each time the bit length of the
inputs increases by 1. In addition, it is interesting to see that
the approximation results in no savings in depth in the RA
case. This is due to the structure of RA. Looking back at
Figure 2, the addition step is followed by a decrement step in
the multiplier. In the figure, this is only for a 1x1 case, but
in a larger case, these two are interleaved. In addition, both
blocks can be performed in parallel or partially in parallel. The
addition also gets partially collapsed, to a lower depth than the
decrement most of the time, since a fair number of rotations
can be performed in parallel, which is not the case with
the decrement step. For that reason, the decrement dominates
the depth of the circuit in each pair addition-decrement, and
therefore, dropping rotations in the addition portion saves no
overall depth. For the QAM, AQAM shows a reduction in
depth, as expected. It will be shown that AQAM’s accuracy
does not suffer significantly from this simplification. QFM
performs worse than QAM and AQAM in terms of depth
and the predicted behavior is that AQFM would still have
higher depth than QAM for all the tested cases. The QFM

algorithm utilizes phase shifts of (2w, 4w, 8m, etc.) when
performing the addition, which both does not fundamentally
change the resulting values on the qubit being operated on and
adds unnecessary gate layers.

4
5 10 T T T
—— RA
4| ARA |
—e— QFM
-~ - AQFM
s 3= QaM { 1
g* —s— AQAM

Input Qubits

Fig. 4: Depth results for the square multiplication n x n of
each of the algorithms being compared. AQFM is estimated
based on the behavior of AQAM since it cancels the same
gates in both cases.

2) Identity Multiplication: The second case for comparison
between the different implementations is identity multiplica-
tion shown in Figure 5. In this test set the QFM was not
included as, per limitations of its implementation in Qiskit,
it cannot be used in cases where the bit widths of the two
operands are different.

When the addition does not have to be repeated but once,
RA excels in depth. In this simplest case, the dropped terms do
save some gate layers, starting in the 8-qubit size experiment.
This is due to the fact that, in this trivial multiplication
case, the subtraction stage is smaller than the additions being
performed. The difference, however, is so small that it is
almost negligible. AQAM does save depth significantly when
compared to the QAM, both of them being higher than RA.
AQAM takes on a stepping form, not following a smooth
curve. The rise in depth between the 16 and 17 qubit case
comes from the logarithmic nature of the rotation terms
dropped. When calculating the phase the minimum is 7 /2%
where N is calculated with [Logz(Product_width) + 2]. In
the 16 input qubit case the product register has 32 qubits
resulting in [log,(32) + 2] = 7, whereas in the 17 input qubit
case it is calculated to be [log,(34) 4+ 2] = 8, thus allowing
for a larger number of phase shifts to be included in the circuit.

3) Multiplier value sweep: In order to better visualize how
the depth changes between the trivial and square multiplication
an additional set of tests was run. The third set of tests
simulated how the depth of each circuit grows depending on
varied input sizes. In all of the simulations, the multiplicand
used as an input was 12 bits long, each of which was initialized
to 1’ corresponding to a decimal value of 4095. The multiplier

800 1| * ARA
600
a,
a2

400

200

Input Qubits

Fig. 5: Depth results for the identity multiplication n x 1.
Identity multiplication is not implementable in the QFM case,
and therefore, it is not included in this plot.

was then varied from 1 to 4095 by left shifting the input
and inserting a 1 into the least significant bit. The results of
which are shown in Figure 6. Due to their structure not being
influenced by the decimal values of the operands the QFM,
QAM, and AQAM have a constant depth.

5
2 10\ T T T
—+ RA)
+ ARA
15| e QFM y
-~ AQFM
< —= QAM
& 1| = AQAM 8
Q A
0.5} J .

[
o~ v -
N O AN N —
— AN

Multiplier Value

4095

Fig. 6: Depth of each algorithm given a multiplicand value
of 4095 and a multiplier value scaling from 1 to 4095. RA
roughly doubles in depth at each interval as the number of
times it needs to repeat has been doubled.

In the cases where the value of the multiplier is guaranteed
or known to be small relative to the multiplicand, the RA
algorithm has better depth. At an input value of 63, 127, and
255 it begins to perform depth-wise worse than the AQAM,
QAM, and QFM respectively. This shows that the repeated
addition is only the desired choice for 1.5% (63/4095) of the

possible input combinations when compared to AQAM, or
3.1% (127/4095) and 6.2% (255/4095) for QAM and QFM.
When the input value is not known or is guaranteed to be
fairly large, the ideal algorithms would be either the QAM or
AQAM. As will be shown next, noise also has an impact on
this decision.

B. Simulated Accuracy

Noiseless simulations as well as two different noisy simula-
tions were tested in these comparisons. The noisy simulations
include simulated noise from each of the primary sources
as part of the Qiskit Aer simulation package. The specific
model used to simulate noise in this work came from the
GenericBackendV2. This was selected because it allowed for
a variable number of input qubits rather than being limited
to a small sample of qubits like those based on real devices.
The downside of this is that it has a high default noise model,
so noise accrues rather quickly in each of the simulations.
The noise values are 10~ and 5 - 10~* for single qubit and
two qubit gates respectively. A second model was created to
show potential future performance on systems with lower noise
levels. Specifically the noise values for gate applications were
reduced to 1076 and 1075 for single qubit and two qubit
gates respectively. All simulations were performed with at
least 1024 shots for the experiments that measure accuracy.
The implementation is tested again in the two extreme cases,
nxnand n x 1.

The accuracy in this work comes from the probability dis-
tribution of the final state. Out of each simulation, the correct
output is obtained with probability p.. Design approximation
and noise contribute to all the other outcomes with probability
1 — p. across all other states. In these results, p. is also used
as the accuracy metric of the computation. These results are
limited to seven input qubits due to the hardware-intensive
nature of executing each simulation.Approximate algorithm
results are shown only for the comparison of QAM and AQAM
since RA had hardly any benefit from approximation, and
QFM will follow the same trends as QAM but with slightly
higher depth numbers.

1) Noiseless Simulation: The first set of tests used the
ideal (noiseless) simulation to assess the impact of removed
rotations in the final outcome of the multiplication algorithm.
Since RA and QFM exact implementations have 100% accu-
racy, and their approximate implementations show no relevant
information in this case as explained above, they are not
included in this discussion. The expected result is that AQAM
will display reduced accuracy as the size of the operands
increases due to circuit simplifications. The results of these
simulations for square multiplication can be seen in Figure
7. Under ideal conditions, the QAM remains 100% accurate
regardless of bit width while the accuracy of the AQAM begins
to decline as more qubits are added. When the inputs reach
a qubit size of seven, the accuracy is 74%. This accuracy
loss will be less pronounced in cases where not every bit
in the input is high, so this case can be seen as the worst
case accuracy for the given AQAM implementation. Still, it
should be noted that this means the correct output had a 74%

probability in the histogram, being the most probable outcome
by far when compared to all other outputs —all of them adding
up to the remainder of 26% for all the other outputs that are not
correct (214 —1 possible outputs in the 7x 7)—. If the reduction
in ideal accuracy becomes too large, the approximation scheme
can be adjusted to allow smaller phase shifts to occur. This
will bring the AQAM closer to the performance of the QAM.

A comparison of the accuracy of QAM and AQAM imple-
mentations in the trivial n x 1 multiplication case is shown in
Figure8. While there is still a reduced accuracy in the AQAM,
it has a noticeably lower loss than the square multiplication.
This can be attributed to the fact that the identity cases have
lower depth, and to the lower number of phase shift activations
that are performed in the trivial multiplication.

|
1 [

0.8 - n

0.6 - n

0.4

0.2 =
0 [|

T T T T T T T T
1 2 3 4 5 6 7

InQaM InAQAM

Accuracy

Fig. 7: Noiseless simulation of square (n x n) multiplication
with QAM and AQAM. As with all of the other algorithms,
when in a noiseless environment, QAM has 100% accuracy
for any given input width. AQAM sees a reduction in accuracy
as the input size increases since it is removing an increasingly
large number of phase shifts from being executed. AQAM’s
lowest accuracy is 74%.

2) Noisy Simulation: Each of the different multiplication
algorithms were run under noisy simulated environments to
observe changes in accuracy with increasing input width. The
first set of simulations for the square (n x n) case, performed
with the default GenericBackendV2 noise model, is shown
in Figure 9. The loss of accuracy is dramatic in this case.
It can be seen that, while RA implementation starts with the
most accuracy, it is the first to reach near 0% accuracy at
four qubits. The trend aligns with the depth graph in Figure 4,
starting better than QAM and QFM, but quickly deteriorating.
QFM does eventually perform better than RA, but it remains
worse than both QAM and AQAM implementations. Finally,
comparing the performance of QAM and AQAM, they are
almost identical in accuracy, with AQAM having slightly
better accuracy once the input’s width surpasses three qubits.
Despite the loss in precision due to the design simplifications
in the approximate case, the accuracy of AQAM still surpasses

0.98

0.96 - 1

Accuracy

0.94 |- n

0.92

0.9 :
1 2 3 4 5 6 7
InQaMEn AQAM

Fig. 8: Trivial n x 1 QAM vs AQAM accuracy simulation
results in a noiseless environment. As in the square multi-
plication case, the QAM remains 100% accurate while the
AQAM begins to fall, but in this case, the accuracy reduction
of the AQAM is less pronounced due to its lower count of
gates removed.

QAM thanks to the reduced depth and consequent reduced
overall noise. This confirms that in the presence of noise,
there can be a benefit in sacrificing algorithmic precision for
the sake of depth and overall accuracy. The overall accuracy
is, in any case, extremely poor. For example, measuring the
correct multiplier outcome for the four qubit input case results
in only 0.077 probability for the best case (AQAM) and 0.021
for the worst (RA), and 0.69 QAM. AQAM is 7x better
than RA. Despite approximations, AQAM is 1.1 x better
than QAM. It should be noted that the individual probabilities
under uniform superposition of an output with 4 +4 = 8§
qubits are 2% ~ 0.016, which makes these probabilities still
higher than uniform superposition values, but inconclusive in
the real setting. As it will be shown in Figure 11, when noise
is reduced, this accuracy can scale to show better results.

Using the same noise model, the trivial nx 1 case was tested
for accuracy, in order to get the other side of the spectrum,
where a lower number of small rotations are removed from
the design. Figure 10 depicts these results. RA has the best
accuracy. Since only one addition is required, the positive
impact in depth reduces the impact of noise on the final state,
as expected. QAM and AQAM are both extremely similar
as they have nearly the same depth for small input sizes,
with AQAM having higher accuracy once it reaches an input
width of five qubits. This is concurrent with the depth results
shown previously in Figure 5. Again, the removed rotations
pay off, thanks to the better depth behavior. For seven qubits,
the probabilities of the correct outcome being measured are
0.46 (RA), 0.30 (AQAM) and 0.24 (QAM).

To demonstrate the benefits of approximate implementations
as devices evolve towards lower noise levels, Figure 11 dis-

| | | |

1 — | | | _
0.8} 8
? 0.6 - .
=
3 041 B
< .
0.2 || =
ol T
T T T T T T T T
1 2 3 4 5 6 7

RA 2 QFM InQAaM Bl AQAM

Fig. 9: Square (n X n) noisy simulation showing the accuracy
of each algorithm given an increasingly large input size. While
initially the most accurate for an input width of one, the RA
quickly falls below the others. In the larger input cases, it
follows the sequence QFM, QAM, and AQAM from less to
most accurate. In any case, the loss of accuracy is dramatic
and the results are inconclusive for four or more input qubits.

| | | |

| | | |
0.8 |
0.6 |
0.4 |
O [|
T T T T T T T T
1 2 3 4 5 6 7T

RATIQAMENAQAM |

Accuracy

Fig. 10: Trivial (n x 1) multiplication accuracy on a noisy
system for RA, QAM, and AQAM. RA outperforms both the
QAM and AQAM in all cases. (QFM cannot be tested when
the two inputs are not equal in size.)

plays the behavior of higher-quality simulated devices with
reduced noise levels. It is easier to see the potential benefit
of the approximation technique in these results as the AQAM
performs noticeably better than the original implementation
of QAM. Both the QAM and AQAM outperform the other
two algorithms when more than four qubits are utilized in
the input qubit size. For the largest input (7 qubits), RA

Accuracy

0.8 B
0.6 - B
0.4

“ I
| il

1 2 3 4 5 6 7T
RA QFMIuQAMllAQAM\

Fig. 11: Square (n x m) reduced noise simulation which
uses lower noise than the default backend. In this case, the
distinction between the algorithms is more apparent, with the
RA still falling at a faster rate than the others even though
it starts at the highest accuracy. Of the other algorithms, in
terms of worst-to-best accuracy, they appear as QFM, QAM,
and AQAM.

did not produce the correct output (0 probability), while the
others showed probabilities 0.07 (QFM), 0.11 (QAM), and
0.16 (AQAM). One thing to note is that the relative accuracy
when comparing QAM and AQAM grows from one size to
the next: 1.01, 1.09. 1.2 and 1.5 for four, five, six and seven
qubit inputs respectively. The square noisy test case shown
in Figure 9 showed a similar trend but with much lower
accuracy. Approximation shows higher benefit as the problem
size grows, from the higher benefit in depth reduction (Figure
4).

In this same setting, the trivial (n X 1) multiplication was
tested. Figure 12 reflects these results. The accuracy of these
simulations is much higher than all the other noisy cases, due
to the reduced depth of small-size multiplications and reduced
noise levels. In accordance with the depth numbers depicted
in Figure 5, RA results in more accurate outcomes for all
input cases. Again, the benefits of AQAM begin to show at
an input size of five, where QAM is just slightly less accurate
than AQAM. At no point does the accuracy cross the 80%
boundary for any of these final sets of experiments: for the
seven qubit case, results were 0.88, 0.81 and 0.83 for RA,
QAM, and AQAM respectively.

V. CONCLUSION

In this paper, we discuss the implementation of the Ap-
proximate Quantum Array Multiplier (AQAM) and compare
it against other quantum array multipliers. Efficient quantum
multipliers take advantage of the ability to encode information
in the phase domain and operate with it through rotations.
The approximate implementation relies on the fact that the

Accuracy

0.8
0.6
0.4 B
0.2 B
ol |
T T T T T T T T

1 2 3 4 5 6 7
RA IRQAM IR AQAM

Fig. 12: Trivial (n x 1) multiplication accuracy in the reduced
noise setting for RA, QAM and AQAM. Similar to the noisy
simulation, RA remains the best-case algorithm for trivial
multiplication taking advantage of having only one iteration
required for the multiplication. (QFM cannot be tested when
the two inputs are not equal in size.)

outcome expressed as a probability distribution has tolerance
to removing small rotations, under a certain threshold. This
was mathematically justified in the previous work by Barenco
et al. [10]. The end goal of this approach is to reduce the depth
of the design. This paper applied this approach to Repeated
Addition (RA) and Quantum Array Multiplier (QAM). The
Quantum Fourier Multiplier (QFM), implemented within the
Qiskit toolset, is also checked for reference, but not tested
under approximation. One interesting takeaway is exposed by
RA and its poor behavior under approximation. From a depth
perspective, ARA does not show any advantage. It is important
to notice that if the removed rotation steps occur in parallel
with other non-reducible steps, then no overall reduction in
gate-layers is observed, as it is the case for ARA. AQAM on
the other hand shows a reduction in the number of gate-layers
significant enough to improve the accuracy of the computation
under noisy conditions, despite the approximation. As the
depth of the problem increases, so does the benefit in accuracy
compared to QAM.

REFERENCES

[11 P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, pp. 1484-1509, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1137/S0097539795293172

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Annual ACM Symposium on Theory of Computing. ACM,
1996, pp. 212-219.

[3] A. Crimmins, S. L. Alarcon, M. Klein, M. Krebs, and S. Kate,
“Quantum array multiplier,” in 2023 IEEE International Conference
on Rebooting Computing (ICRC), 2023, pp. 1-9. [Online]. Available:
https://ieeexplore.ieee.org/document/10386449

[4] S. Anagolum. Arithmetic on quantum computers: Multiplica-
tion. [Online]. Available: https://medium.com/@sashwat.anagolum/
arithmetic-on-quantum-computers- multiplication-4482cdc2d83b

[5]
[6]

[7]

[9]

[10]

(11]

[12]

M. Sohel, N. Zia, M. Ali, and N. Zia, “Quantum computing based
implementation of full adder,” 11 2020, pp. 1-4.

V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary
arithmetic operations,” Phys. Rev. A, vol. 54, pp. 147-153, Jul 1996.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.54.147
S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A
new quantum ripple-carry addition circuit,” 2004. [Online]. Available:
https://arxiv.org/abs/quant-ph/0410184

T. G. Draper, “Addition on a quantum computer.” [Online]. Available:
http://arxiv.org/abs/quant-ph/0008033

S. Sajadimanesh, J. P. L. Faye, and E. Atoofian, “Practical approximate
quantum multipliers for NISQ devices,” in Proceedings of the 19th
ACM International Conference on Computing Frontiers, ser. CF
’22. Association for Computing Machinery, pp. 121-130. [Online].
Available: https://dl.acm.org/doi/10.1145/3528416.3530244

A. Barenco, A. Ekert, K.-A. Suominen, and P. Tormi, “Approximate
quantum fourier transform and decoherence,” Physical Review A,
vol. 54, no. 1, pp. 139-146, 1996. [Online]. Available: http:
//arxiv.org/abs/quant-ph/9601018

“Qiskit: An open-source framework for quantum computing,” 2021.
[Online]. Available: https://qiskit.org/

L. Ruiz-Perez and J. C. Garcia-Escartin, “Quantum arithmetic with
the Quantum Fourier Transform,” vol. 16, no. 6, p. 152. [Online].
Available: http://arxiv.org/abs/1411.5949

	Introduction
	Related Work
	Quantum Array Multiplier, Repeated Addition and Quantum Fourier Multiplier

	Approximate Quantum Array Multiplier
	Results
	Depth
	Square Multiplication
	Identity Multiplication
	Multiplier value sweep

	Simulated Accuracy
	Noiseless Simulation
	Noisy Simulation

	Conclusion
	References

