
1

Approximate Quantum Array Multiplier
Aden Crimmins∗, Sonia Lopez Alarcon†

KGCOE Department of Computer Engineering, Rochester Institute of Technology

Rochester, New York

Email: ∗abc8255@rit.edu, †slaeec@rit.edu

Abstract—Multiplication is a frequent computation in many
algorithms, classical and quantum. This paper targets the im-
plementation of quantum integer multiplication. Quantum array
multipliers take inspiration from classical array multipliers, with
the result of reduced circuit depth. They take advantage of the
quantum phase domain, through rotations controlled by the mul-
tiplier’s qubits. This work further explores this implementation
by applying approximate rotations. Although this approach can
have an impact on the accuracy of the result, the reduction in
depth can result in better outcomes when noise is involved.

Index Terms—Qubit, Quantum Entanglement, Multiplication,
Fourier Transform, Approximation, Control Gates, Phase Do-
main, Basis, O-Time Complexity, Array Multiplication.

I. INTRODUCTION

The design of quantum circuits faces a race against time

to beat decoherence and the impact of noise. The depth of

a quantum circuit, characterized by the number of compu-

tational steps or gate layers, is the key design metric that

is proportional to execution time. Therefore, finding designs

that minimize depth is critical to reaching meaningful results

that are as protected from noise, decoherence, and, in sum,

quantum error as possible.

Much like classical computing, quantum circuits can make

use of basic circuit designs that act as building blocks for

large-scale algorithms. This work focuses on one of these

basic operations, the multiplication of integers implemented

as quantum information. Improvements made to a quantum

multiplication algorithm could prove useful for different ap-

plications, such as modular multiplication in Shor’s algorithm

[1], or could play a role in the implementation of oracles

for Grover’s search algorithm [2]. In previous work, quantum

array multipliers showed a significant reduction in depth

against other naı̈ve implementations [3]. Reducing depth is

based on the efficiency of the computations as well as on how

parallelism is exploited through them. One other advantage

of the quantum array multiplier is that its implementation

is valid for any integer multiplication value, acting as an

insertable module that encodes the multiplicand and multiplier

in two corresponding quantum registers. This is opposed to

other designs [4] that vary the implementation dependent on

intermediate measurements.

In this paper we will show one additional advantage of the

quantum array multiplier, proposing the approximate quantum

array multiplier. In the quantum array multiplier, the mul-

tiplication is performed through rotations controlled by the

This material is based upon work supported by the National Science
Foundation under Award No. 2300476

qubits of the multiplier and multiplicand. The magnitude of

these rotations decreases with the significance of the control

qubits. Just like with any other computation, there is a choice

to be made on the precision of the computation. It is possible

to implement the design discarding the smaller rotations for

being insignificant in the greater scheme of the results. This

work looks at this approach to find that the depth of the quan-

tum array multiplier particularly benefits from this simplified

design, with little impact on the accuracy of the resulting

product. Further, when noise is considered, the reduction in

depth results in more accurate results in the approximate case

than in the exact case.

II. RELATED WORK

Quantum arithmetic has been developing for a few decades,

with new algorithms and techniques being proposed for effi-

cient and fast operations on qubits. The arithmetic operation

focused on within this paper is multiplication, as it is a

fundamental building block for a wide range of applications

in many different algorithms and calculations.

Adders are relevant to this discussion on multiplication,

as in most cases, multipliers involve additions in one way

or another. The implementation of quantum addition using a

full adder is given precisely by Sohel et al. [5]. A basic full

adder can be described with CNOT and Toffoli quantum gates.

The n-qubit design requires an n quantum register and an n

classical register to hold the values for input and output in

the quantum domain and the measured value in the classical

domain. The paper demonstrated the complete implementation

of the full adder truth table, with multiple intermediate steps

in which the qubits are used to store the intermediate values

that are not required at the end. The ripple carry adder circuit

proposed by Vedral et al. [6] demonstrates the addition of

two n-bit numbers as input and outputs a single bit, the most

significant bit of the sum. These circuits require n−1 ancillae

qubits, with 4n + 1 CNOT gates and 4n + 1 Toffoli (doubly

controlled-NOT) gates, resulting in limited parallelism. The

circuit was improved and was reduced to one ancilla qubit

proposed by Cuccaro et al. [7] with 2n + 1 Toffoli gates,

5n+O(1) CNOT gates, and 2n+ 1 negations; the estimated

depth is 2n+1. A different approach was taken by Draper [8]

in which the quantum fourier transform is applied to perform

addition using phase rotations in the quantum phase domain.

This approach has an estimated depth of n+1 in the presence

of parallel computation, as well as no ancillary qubits required

to calculate the result.

One technique used in classical computing is to limit

the accuracy of the calculation in order to reduce power



2

consumption, area, and delay of hardware incurred. While

this makes for faster circuits that consume less power, the

downside of this is that the results in the end are not guaranteed

to be exact, rather, they are within a certain range of error

defined by the amount of approximation used. This type of

computation is often used in image filtering, data mining, and

pattern recognition as they often do not require exact results,

but ”good enough” results, due to the error resilience built

into those applications. Research that took this approach on

quantum computers was performed by Sajadimanesh et al. [9].

They propose four different approximate circuits combined

to perform multiplication, showing the different trade-offs of

each design in terms of accuracy and circuit complexity. This

approach was based on binary implementation of the integer

multiplication using Toffoli gates, and its approximate version.

Binary implementations are however highly inefficient and

approximate Toffoli gates in this case incur into high error

on the overall calculation’s result, since the solution is only

guaranteed to be within a certain range of the actual solution

and not exact at any point due to dropped terms.

Taking a different approach to approximation, we focus on

the controlled application of phase shifts within the phase

domain within this work. This technique was introduced by

Barenco et. al. [10] and focused specifically on the application

of the quantum fourier transform. It was shown that by

removing rotations below a certain threshold, an approximate

quantum fourier transform was able to achieve better perfor-

mance than its non-approximate counterpart in the presence of

decoherence. This is due to the fact that, for especially small

phase rotation applications, the accuracy added to the circuit is

outweighed by the decoherence accumulated in the application

of the rotation. By removing these extremely small rotations,

it is possible to increase the final accuracy when decoherence

is present in the system. This idea was taken a step further by

Draper [8], in which he proposed an addition circuit that took

advantage of both the quantum phase domain and the same

approximation technique utilized in the approximate QFT. By

setting a limit to the phase shifts taking place in the addition

circuit, one can significantly reduce the depth of the addition

circuit.

The focus of this paper is on the application of this phase

approximation technique to perform efficient multiplication of

two integers in a quantum environment. In order to apply this

technique, multipliers that operate within the quantum phase

domain are considered.

A. Quantum Array Multiplier, Repeated Addition and Quan-

tum Fourier Multiplier

The quantum array multiplier (QAM) was proposed in pre-

vious work [3], and it is inspired by classical array multipliers.

In the classical design, each full adder takes in both the result

of the current row and the previous row. In the quantum case,

the phase shift is directly passed on to the product naturally

taking care of carry dependencies. The design is summarized

in Figure 1. The quantum array multiplier goes through four

main steps: (i) The multiplicand and multipliers are initialized

to the corresponding binary value (via X gates) (ii) the product

register is placed in the phase domain (via Quantum Fourier

Transform block) (iii) double-controlled rotations of decreas-

ing magnitude are applied, and (iv) the product is converted

back to the computational basis (via Inverse Quantum Fourier

Transform).

A more naı̈ve quantum multiplier design in the phase basis

[4] is based on the repeated addition (RA) of the multiplicand

in an accumulator, as many times as the multiplier indicates.

This repeated addition also takes place in the phase domain.

The basic functionality of this multiplier is as follows: The

initial state of the accumulator is encoded in the phase domain

through a Quantum Fourier Transform (QFT), so the multipli-

cand can control rotations of the qubits’ phases depending on

the significance of the qubit upon which the rotation is acting.

The multiplier is then decremented by 1 and measured. This

cycle is repeated until the multiplier is measured to be 0. Last,

the accumulator is returned to encoding in the computational

basis through an inverse QFT to extract the result of the

multiplication. An example of this design is shown in Figure

2. Previous work [3] demonstrated the better overall depth

performance of QAM over RA.

A Quantum Fourier Multiplier (QFM) has been incorporated

into the Qiskit toolset [11][12]. This multiplier works similarly

to QAM but has two drawbacks when compared to the first

one in this section: on one hand, it does include 2nπ rotations,

which is pointless since they bring the phase to the same prac-

tical point, and on the other, only allows for multiplications in

which multiplicand and multiplier have the same width, which

results in reduced versatility as an insertable component when

compared to QAM. This implementation was not compared

against in previous work [3], but as it will be shown in this

work, it is less efficient depth-wise while following similar

trends.

These three multipliers have one main feature in common,

which is that the multiplication is performed in the phase

domain. As the multiplier, multiplicand, and product registers

grow in size, there are increasingly small rotations to perform.

This work discusses the benefits and drawbacks of discarding

some of these rotations in the same manner as the previous

approximation technique discussed. The method for applying

this approximation and how it will impact depth will be shown

next.

III. APPROXIMATE QUANTUM ARRAY MULTIPLIER

When the multiplication is performed in the phase domain,

the minimum phase shift gets increasingly small as the input

operands’ size increases. Due to technology limitations, one

may not be able to perform rotations of a magnitude below a

certain threshold. In addition, since every gate inherently adds

some amount of noise to the circuit, applying such rotations

may contribute to noise more than to the accuracy of the

calculation. There is a threshold under which the rotation

is not worth applying. Barenco, et. al. showed that in the

case of the QFT an approximate version, the Approximate

QFT (AQFT), could be more accurate than the full QFT [10].

The implications are that the QFT and IQFT stages of the

multiplier are able to be reduced by limiting the phase shifts



3

Multiplier0 X

Multiplier1 X

Multiplicand0 X

Multiplicand1 X

Product0

QFT

π

IQFT
Product1

π

2
π π

Product2
π

4

π

2

π

2
π

Product3
π

8

π

4

π

4

π

2

Fig. 1: Quantum Array Multiplier(QAM) with each stage included starting with the Initialization of the inputs, followed by

the QFT stage, each of the row additions, and finally the IQFT.

accumulator

H π H

H π/2 π/2 −π/2 H

multiplier x H −π H

multiplicand x

classical register

Init. QFT Acc. Addition Decrement IQFT Acc.

Fig. 2: Full 1x1 repeated addition multiplication circuit post improvements. Each stage outlined and labelled underneath the

circuit.

to roughly N = +Log2(Product width)+2, where the phase

shift applied is represented by R = π

2N
. This approximation

is applied to the QFT, multiplication, and IQFT blocks of the

implementation. For example, in the case of a five-qubit input

multiplicand and multiplier, the product register is ten qubits

wide. In that case, N = +Log2(Product width) + 2, =
+(Log2(10) + 2), = 6 . The minimum rotation that can be

applied then would be R = π

26
= π

64
. Any rotations below

this value will not be implemented in this approximate circuit

example.

Approximation in the phase domain does not affect to output

like it would when precision is dropped in the classical setting.

To better illustrate the effects of approximation, a one-qubit

example is shown in Figure 3. Through this example, we

intend to show how small rotations in the phase domain

(whether added or removed) have a small impact on the

measured outcome of the qubits, when the outcome is basis-

encoded, as it is in the binary representation of the integer

multiplication. In this case, the rotation is added rather than

removed. As shown in Figure 3, the qubit is initially in state

|0ð. After applying a Hadamard gate, it will evolve to the

|+ð state, now placed in the phase domain. To simulate the

impact of the approximate phase shifting technique a (“small”)

phase of π/8 is applied, taking it out of the |+ð state. After

the small rotation, a Hadamard gate is once again applied to

return the qubit to the computational basis. If there were no

approximation, then the Hadamard would take it directly back

to the |0ð state, but with the small additional rotation, the

final state is not exactly set to |0ð. Still, a measurement on the

computational basis will project this state to the |0ð state “most

of the time” (pc = 0.96) this case with probability and only

sometimes it will wrongly measure the |1ð (pw = 0.04). This

is the reason why even when rotations are removed, it is still

possible to measure the correct output with high probability.

Two things must be noted in the case of quantum array mul-

tipliers, —or more generally, phase multipliers or adders.—

First, removing multiple small rotations can potentially add

up enough to take the final state “far” (phase-wise) from the

computational basis, resulting in other basis states being mea-

sured with significant probability, and consequently lowering

the probability of the correct solution. And second, the qubits

that contribute with smaller rotations, and hence are more



4

likely to benefit from approximation are the most significant

qubits of the product quantum register. If we were faced

with a significant enough transformation of the probability

distribution to result in other states having similar probability

to the correct output, the new value(s) would not be in the

vicinity of the correct value.

|0ð

|+ð

x y

|ψð

(a) Initial State

|0ð

|+ð

x y
|ψð

(b) Hadamard Applied

|0ð

|+ð

x y
|ψð

(c) π/8 rotation

|0ð

|+ð

x y

|ψð

(d) Second Hadamard

Fig. 3: Example Bloch diagram transformations showing the

impact of approximation in the quantum phase basis. Starting

in (a) with the initial state of |0ð a Hadamard is applied

transitioning to |+ð as shown in (b). Once in the phase basis, a

sample rotation of π/8 is applied, (c), followed by a Hadamard

gate application returning the state almost to |0ð as shown in

(d).

The idea of the Approximate Quantum Fourier Transform

(AQFT) was then advanced by Draper [8], in which he

proposes using the same technique as the approximation of

the QFT, but this time applied to the phase rotations of the

quantum addition being performed. By eliminating the phase

additions that fall below a certain threshold a reduced number

of gates can be added, and using the same logic as the AQFT,

in the presence of noise or decoherence, there is a potential

increase in the accuracy of the circuit. Additionally highlighted

by Draper was a method for parallelizing the execution of the

addition operations in which each addition may be performed

in log2n time slices.

Both of these techniques were utilized within this work in

the design of the AQAM. This design follows the same struc-

ture as the original QAM but includes a phase limit determined

using the qubit size of the product register. Rotations below a

threshold defined by +Log2(Product width)+2, are dropped

out of the calculation. Since the RA and QFM algorithms

are also based on the phase domain, the same approximation

technique applies to those two algorithms as well.

IV. RESULTS

In this result section, the following algorithms are com-

pared:

• Quantum Array Multiplier (QAM)

• Approximate Quantum Array Multiplier (AQAM)

• Repeated Addition (RA)

• Approximate Repeated Addition (ARA)

• Quantum Fourier Multiplier (QFM)

Each algorithm which computed in the phase domain and

their approximate variations were compared, except QFM,

which implements almost the same algorithm as QAM, just

slightly less efficiently. Due to time constraints, the approx-

imate behavior of this approach was estimated based on the

behavior of AQAM.

The Qiskit [11] toolset was used to simulate and obtain

metrics for these implementations. The main metrics used

were the depth of each of the circuits as provided by Qiskit

after undergoing decomposition and optimization as well as

accuracy. The accuracy was assessed by providing the number

of shots that resulted in the correct product.

A. Depth

The depth of these implementations depends on the numbers

being multiplied specifically for the repeated addition imple-

mentations since it repeats the addition as many times as the

multiplier requires. For that reason, two extreme cases were

tested: n×n square multiplication and identity multiplication

nx1.

1) Square Multiplication: multiplies each number n with

bit widths from 1 to 20 having every bit initialized to 1.

The resulting depths of each of the different multiplication

algorithms can be seen in Figure 4. AQFM is estimated based

on the behavior of the QAM since the same gates are removed

in both cases. RA has the worst behavior in terms of depth.

The exponential increase in depth comes from the number of

repeated additions doubling each time the bit length of the

inputs increases by 1. In addition, it is interesting to see that

the approximation results in no savings in depth in the RA

case. This is due to the structure of RA. Looking back at

Figure 2, the addition step is followed by a decrement step in

the multiplier. In the figure, this is only for a 1x1 case, but

in a larger case, these two are interleaved. In addition, both

blocks can be performed in parallel or partially in parallel. The

addition also gets partially collapsed, to a lower depth than the

decrement most of the time, since a fair number of rotations

can be performed in parallel, which is not the case with

the decrement step. For that reason, the decrement dominates

the depth of the circuit in each pair addition-decrement, and

therefore, dropping rotations in the addition portion saves no

overall depth. For the QAM, AQAM shows a reduction in

depth, as expected. It will be shown that AQAM’s accuracy

does not suffer significantly from this simplification. QFM

performs worse than QAM and AQAM in terms of depth

and the predicted behavior is that AQFM would still have

higher depth than QAM for all the tested cases. The QFM



5

algorithm utilizes phase shifts of (2π, 4π, 8π, etc.) when

performing the addition, which both does not fundamentally

change the resulting values on the qubit being operated on and

adds unnecessary gate layers.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
·104

Input Qubits

D
ep

th

RA

ARA

QFM

AQFM

QAM

AQAM

Fig. 4: Depth results for the square multiplication n × n of

each of the algorithms being compared. AQFM is estimated

based on the behavior of AQAM since it cancels the same

gates in both cases.

2) Identity Multiplication: The second case for comparison

between the different implementations is identity multiplica-

tion shown in Figure 5. In this test set the QFM was not

included as, per limitations of its implementation in Qiskit,

it cannot be used in cases where the bit widths of the two

operands are different.

When the addition does not have to be repeated but once,

RA excels in depth. In this simplest case, the dropped terms do

save some gate layers, starting in the 8-qubit size experiment.

This is due to the fact that, in this trivial multiplication

case, the subtraction stage is smaller than the additions being

performed. The difference, however, is so small that it is

almost negligible. AQAM does save depth significantly when

compared to the QAM, both of them being higher than RA.

AQAM takes on a stepping form, not following a smooth

curve. The rise in depth between the 16 and 17 qubit case

comes from the logarithmic nature of the rotation terms

dropped. When calculating the phase the minimum is π/2N

where N is calculated with +Log2(Product width) + 2,. In

the 16 input qubit case the product register has 32 qubits

resulting in +log
2
(32) + 2, = 7, whereas in the 17 input qubit

case it is calculated to be +log
2
(34) + 2, = 8, thus allowing

for a larger number of phase shifts to be included in the circuit.

3) Multiplier value sweep: In order to better visualize how

the depth changes between the trivial and square multiplication

an additional set of tests was run. The third set of tests

simulated how the depth of each circuit grows depending on

varied input sizes. In all of the simulations, the multiplicand

used as an input was 12 bits long, each of which was initialized

to ’1’ corresponding to a decimal value of 4095. The multiplier

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1,000

Input Qubits

D
ep

th

RA

ARA

QAM

AQAM

Fig. 5: Depth results for the identity multiplication n × 1.

Identity multiplication is not implementable in the QFM case,

and therefore, it is not included in this plot.

was then varied from 1 to 4095 by left shifting the input

and inserting a 1 into the least significant bit. The results of

which are shown in Figure 6. Due to their structure not being

influenced by the decimal values of the operands the QFM,

QAM, and AQAM have a constant depth.

1 3 7

1
5

3
1

6
3

1
2

7

2
5

5

5
1

1

1
0

2
3

2
0

4
7

4
0

9
5

0

0.5

1

1.5

2
·105

Multiplier Value

D
ep

th

RA

ARA

QFM

AQFM

QAM

AQAM

Fig. 6: Depth of each algorithm given a multiplicand value

of 4095 and a multiplier value scaling from 1 to 4095. RA

roughly doubles in depth at each interval as the number of

times it needs to repeat has been doubled.

In the cases where the value of the multiplier is guaranteed

or known to be small relative to the multiplicand, the RA

algorithm has better depth. At an input value of 63, 127, and

255 it begins to perform depth-wise worse than the AQAM,

QAM, and QFM respectively. This shows that the repeated

addition is only the desired choice for 1.5% (63/4095) of the



6

possible input combinations when compared to AQAM, or

3.1% (127/4095) and 6.2% (255/4095) for QAM and QFM.

When the input value is not known or is guaranteed to be

fairly large, the ideal algorithms would be either the QAM or

AQAM. As will be shown next, noise also has an impact on

this decision.

B. Simulated Accuracy

Noiseless simulations as well as two different noisy simula-

tions were tested in these comparisons. The noisy simulations

include simulated noise from each of the primary sources

as part of the Qiskit Aer simulation package. The specific

model used to simulate noise in this work came from the

GenericBackendV2. This was selected because it allowed for

a variable number of input qubits rather than being limited

to a small sample of qubits like those based on real devices.

The downside of this is that it has a high default noise model,

so noise accrues rather quickly in each of the simulations.

The noise values are 10−5 and 5 · 10−4 for single qubit and

two qubit gates respectively. A second model was created to

show potential future performance on systems with lower noise

levels. Specifically the noise values for gate applications were

reduced to 10−6 and 10−5 for single qubit and two qubit

gates respectively. All simulations were performed with at

least 1024 shots for the experiments that measure accuracy.

The implementation is tested again in the two extreme cases,

n× n and n× 1.

The accuracy in this work comes from the probability dis-

tribution of the final state. Out of each simulation, the correct

output is obtained with probability pc. Design approximation

and noise contribute to all the other outcomes with probability

1− pc across all other states. In these results, pc is also used

as the accuracy metric of the computation. These results are

limited to seven input qubits due to the hardware-intensive

nature of executing each simulation.Approximate algorithm

results are shown only for the comparison of QAM and AQAM

since RA had hardly any benefit from approximation, and

QFM will follow the same trends as QAM but with slightly

higher depth numbers.

1) Noiseless Simulation: The first set of tests used the

ideal (noiseless) simulation to assess the impact of removed

rotations in the final outcome of the multiplication algorithm.

Since RA and QFM exact implementations have 100% accu-

racy, and their approximate implementations show no relevant

information in this case as explained above, they are not

included in this discussion. The expected result is that AQAM

will display reduced accuracy as the size of the operands

increases due to circuit simplifications. The results of these

simulations for square multiplication can be seen in Figure

7. Under ideal conditions, the QAM remains 100% accurate

regardless of bit width while the accuracy of the AQAM begins

to decline as more qubits are added. When the inputs reach

a qubit size of seven, the accuracy is 74%. This accuracy

loss will be less pronounced in cases where not every bit

in the input is high, so this case can be seen as the worst

case accuracy for the given AQAM implementation. Still, it

should be noted that this means the correct output had a 74%

probability in the histogram, being the most probable outcome

by far when compared to all other outputs —all of them adding

up to the remainder of 26% for all the other outputs that are not

correct (214−1 possible outputs in the 7×7)—. If the reduction

in ideal accuracy becomes too large, the approximation scheme

can be adjusted to allow smaller phase shifts to occur. This

will bring the AQAM closer to the performance of the QAM.

A comparison of the accuracy of QAM and AQAM imple-

mentations in the trivial n× 1 multiplication case is shown in

Figure8. While there is still a reduced accuracy in the AQAM,

it has a noticeably lower loss than the square multiplication.

This can be attributed to the fact that the identity cases have

lower depth, and to the lower number of phase shift activations

that are performed in the trivial multiplication.

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

QAM AQAM

Fig. 7: Noiseless simulation of square (n × n) multiplication

with QAM and AQAM. As with all of the other algorithms,

when in a noiseless environment, QAM has 100% accuracy

for any given input width. AQAM sees a reduction in accuracy

as the input size increases since it is removing an increasingly

large number of phase shifts from being executed. AQAM’s

lowest accuracy is 74%.

2) Noisy Simulation: Each of the different multiplication

algorithms were run under noisy simulated environments to

observe changes in accuracy with increasing input width. The

first set of simulations for the square (n×n) case, performed

with the default GenericBackendV2 noise model, is shown

in Figure 9. The loss of accuracy is dramatic in this case.

It can be seen that, while RA implementation starts with the

most accuracy, it is the first to reach near 0% accuracy at

four qubits. The trend aligns with the depth graph in Figure 4,

starting better than QAM and QFM, but quickly deteriorating.

QFM does eventually perform better than RA, but it remains

worse than both QAM and AQAM implementations. Finally,

comparing the performance of QAM and AQAM, they are

almost identical in accuracy, with AQAM having slightly

better accuracy once the input’s width surpasses three qubits.

Despite the loss in precision due to the design simplifications

in the approximate case, the accuracy of AQAM still surpasses



7

1 2 3 4 5 6 7

0.9

0.92

0.94

0.96

0.98

1
A

cc
u

ra
cy

QAM AQAM

Fig. 8: Trivial n × 1 QAM vs AQAM accuracy simulation

results in a noiseless environment. As in the square multi-

plication case, the QAM remains 100% accurate while the

AQAM begins to fall, but in this case, the accuracy reduction

of the AQAM is less pronounced due to its lower count of

gates removed.

QAM thanks to the reduced depth and consequent reduced

overall noise. This confirms that in the presence of noise,

there can be a benefit in sacrificing algorithmic precision for

the sake of depth and overall accuracy. The overall accuracy

is, in any case, extremely poor. For example, measuring the

correct multiplier outcome for the four qubit input case results

in only 0.077 probability for the best case (AQAM) and 0.021

for the worst (RA), and 0.69 QAM. AQAM is 7× better

than RA. Despite approximations, AQAM is 1.1 × better

than QAM. It should be noted that the individual probabilities

under uniform superposition of an output with 4 + 4 = 8
qubits are 1

28
≈ 0.016, which makes these probabilities still

higher than uniform superposition values, but inconclusive in

the real setting. As it will be shown in Figure 11, when noise

is reduced, this accuracy can scale to show better results.

Using the same noise model, the trivial n×1 case was tested

for accuracy, in order to get the other side of the spectrum,

where a lower number of small rotations are removed from

the design. Figure 10 depicts these results. RA has the best

accuracy. Since only one addition is required, the positive

impact in depth reduces the impact of noise on the final state,

as expected. QAM and AQAM are both extremely similar

as they have nearly the same depth for small input sizes,

with AQAM having higher accuracy once it reaches an input

width of five qubits. This is concurrent with the depth results

shown previously in Figure 5. Again, the removed rotations

pay off, thanks to the better depth behavior. For seven qubits,

the probabilities of the correct outcome being measured are

0.46 (RA), 0.30 (AQAM) and 0.24 (QAM).

To demonstrate the benefits of approximate implementations

as devices evolve towards lower noise levels, Figure 11 dis-

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

RA QFM QAM AQAM

Fig. 9: Square (n×n) noisy simulation showing the accuracy

of each algorithm given an increasingly large input size. While

initially the most accurate for an input width of one, the RA

quickly falls below the others. In the larger input cases, it

follows the sequence QFM, QAM, and AQAM from less to

most accurate. In any case, the loss of accuracy is dramatic

and the results are inconclusive for four or more input qubits.

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

RA QAM AQAM

Fig. 10: Trivial (n × 1) multiplication accuracy on a noisy

system for RA, QAM, and AQAM. RA outperforms both the

QAM and AQAM in all cases. (QFM cannot be tested when

the two inputs are not equal in size.)

plays the behavior of higher-quality simulated devices with

reduced noise levels. It is easier to see the potential benefit

of the approximation technique in these results as the AQAM

performs noticeably better than the original implementation

of QAM. Both the QAM and AQAM outperform the other

two algorithms when more than four qubits are utilized in

the input qubit size. For the largest input (7 qubits), RA



8

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
A

cc
u

ra
cy

RA QFM QAM AQAM

Fig. 11: Square (n × n) reduced noise simulation which

uses lower noise than the default backend. In this case, the

distinction between the algorithms is more apparent, with the

RA still falling at a faster rate than the others even though

it starts at the highest accuracy. Of the other algorithms, in

terms of worst-to-best accuracy, they appear as QFM, QAM,

and AQAM.

did not produce the correct output (0 probability), while the

others showed probabilities 0.07 (QFM), 0.11 (QAM), and

0.16 (AQAM). One thing to note is that the relative accuracy

when comparing QAM and AQAM grows from one size to

the next: 1.01, 1.09. 1.2 and 1.5 for four, five, six and seven

qubit inputs respectively. The square noisy test case shown

in Figure 9 showed a similar trend but with much lower

accuracy. Approximation shows higher benefit as the problem

size grows, from the higher benefit in depth reduction (Figure

4).

In this same setting, the trivial (n × 1) multiplication was

tested. Figure 12 reflects these results. The accuracy of these

simulations is much higher than all the other noisy cases, due

to the reduced depth of small-size multiplications and reduced

noise levels. In accordance with the depth numbers depicted

in Figure 5, RA results in more accurate outcomes for all

input cases. Again, the benefits of AQAM begin to show at

an input size of five, where QAM is just slightly less accurate

than AQAM. At no point does the accuracy cross the 80%

boundary for any of these final sets of experiments: for the

seven qubit case, results were 0.88, 0.81 and 0.83 for RA,

QAM, and AQAM respectively.

V. CONCLUSION

In this paper, we discuss the implementation of the Ap-

proximate Quantum Array Multiplier (AQAM) and compare

it against other quantum array multipliers. Efficient quantum

multipliers take advantage of the ability to encode information

in the phase domain and operate with it through rotations.

The approximate implementation relies on the fact that the

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

RA QAM AQAM

Fig. 12: Trivial (n× 1) multiplication accuracy in the reduced

noise setting for RA, QAM and AQAM. Similar to the noisy

simulation, RA remains the best-case algorithm for trivial

multiplication taking advantage of having only one iteration

required for the multiplication. (QFM cannot be tested when

the two inputs are not equal in size.)

outcome expressed as a probability distribution has tolerance

to removing small rotations, under a certain threshold. This

was mathematically justified in the previous work by Barenco

et al. [10]. The end goal of this approach is to reduce the depth

of the design. This paper applied this approach to Repeated

Addition (RA) and Quantum Array Multiplier (QAM). The

Quantum Fourier Multiplier (QFM), implemented within the

Qiskit toolset, is also checked for reference, but not tested

under approximation. One interesting takeaway is exposed by

RA and its poor behavior under approximation. From a depth

perspective, ARA does not show any advantage. It is important

to notice that if the removed rotation steps occur in parallel

with other non-reducible steps, then no overall reduction in

gate-layers is observed, as it is the case for ARA. AQAM on

the other hand shows a reduction in the number of gate-layers

significant enough to improve the accuracy of the computation

under noisy conditions, despite the approximation. As the

depth of the problem increases, so does the benefit in accuracy

compared to QAM.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM J. Comput.,
vol. 26, no. 5, pp. 1484–1509, Oct. 1997. [Online]. Available:
http://dx.doi.org/10.1137/S0097539795293172

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Annual ACM Symposium on Theory of Computing. ACM,
1996, pp. 212–219.

[3] A. Crimmins, S. L. Alarcon, M. Klein, M. Krebs, and S. Kate,
“Quantum array multiplier,” in 2023 IEEE International Conference

on Rebooting Computing (ICRC), 2023, pp. 1–9. [Online]. Available:
https://ieeexplore.ieee.org/document/10386449

[4] S. Anagolum. Arithmetic on quantum computers: Multiplica-
tion. [Online]. Available: https://medium.com/@sashwat.anagolum/
arithmetic-on-quantum-computers-multiplication-4482cdc2d83b



9

[5] M. Sohel, N. Zia, M. Ali, and N. Zia, “Quantum computing based
implementation of full adder,” 11 2020, pp. 1–4.

[6] V. Vedral, A. Barenco, and A. Ekert, “Quantum networks for elementary
arithmetic operations,” Phys. Rev. A, vol. 54, pp. 147–153, Jul 1996.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.54.147

[7] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A
new quantum ripple-carry addition circuit,” 2004. [Online]. Available:
https://arxiv.org/abs/quant-ph/0410184

[8] T. G. Draper, “Addition on a quantum computer.” [Online]. Available:
http://arxiv.org/abs/quant-ph/0008033

[9] S. Sajadimanesh, J. P. L. Faye, and E. Atoofian, “Practical approximate
quantum multipliers for NISQ devices,” in Proceedings of the 19th

ACM International Conference on Computing Frontiers, ser. CF
’22. Association for Computing Machinery, pp. 121–130. [Online].
Available: https://dl.acm.org/doi/10.1145/3528416.3530244

[10] A. Barenco, A. Ekert, K.-A. Suominen, and P. Törmä, “Approximate
quantum fourier transform and decoherence,” Physical Review A,
vol. 54, no. 1, pp. 139–146, 1996. [Online]. Available: http:
//arxiv.org/abs/quant-ph/9601018

[11] “Qiskit: An open-source framework for quantum computing,” 2021.
[Online]. Available: https://qiskit.org/

[12] L. Ruiz-Perez and J. C. Garcia-Escartin, “Quantum arithmetic with
the Quantum Fourier Transform,” vol. 16, no. 6, p. 152. [Online].
Available: http://arxiv.org/abs/1411.5949


	Introduction
	Related Work
	Quantum Array Multiplier, Repeated Addition and Quantum Fourier Multiplier

	Approximate Quantum Array Multiplier
	Results
	Depth
	Square Multiplication
	Identity Multiplication
	Multiplier value sweep

	Simulated Accuracy
	Noiseless Simulation
	Noisy Simulation


	Conclusion
	References

