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ABSTRACT
Isogeometric analysis (IGA) is a computational technique

that integrates computer-aided design (CAD) with finite element
analysis (FEA) by employing the same basis functions for both
geometry representation and solution approximation. While IGA
offers numerous advantages, such as improved accuracy and ef-
ficiency, it also presents several challenges related to geometric
modeling. Some of these challenges include accurately repre-
senting complex geometries with NURBS (Non-Uniform Rational
B-Splines) or other basis functions used in IGA and generating
high-quality meshes that conform to the complex geometry rep-
resented by NURBS curves/surfaces. This paper introduces an
analytical framework to provide a more efficient and theoretically
grounded method for generating curvilinear configurations and
its analytical solution in IGA, bridging the gap between generated
data and its physical representations. This innovative approach
is distinguished by integrating the NURBS parameterization in
curve generation and providing a corresponding framework to
achieve a broader and more accurate explanation of meshes and
properties, especially constructing new coordinates and calcu-
lating the physical displacements under these conditions. Our
model enables the analytical understanding of complex curves
from the UIUC airfoil and superformula datasets, demonstrat-
ing a deeper dive into simulations. This study signifies a pivotal
juncture wherein machine-learning-based complex geometrical
formulations are synergistically combined with actual isogeo-
metric analysis.

Keywords: Shape Synthesis, Non-Uniform Rational B-
Splines, Isogeometric Analysis, Generative Model

1. INTRODUCTION
In the field of mechanical engineering and physics-based de-

sign generation [1], the integration and application of NURBS
(Non-Uniform Rational B-Splines) [2] have emerged as a pivotal
enhancement over conventional geometric modeling techniques

†Joint first authors
∗Corresponding author: jwang22@scu.edu

such as B-Splines [3] and Bezier Curves [4]. Unlike B-Splines
and Bezier Curves, which are predominantly linear and offer lim-
ited flexibility, NURBS provide a more advanced framework that
allows for the representation of both standard geometric shapes
and more complex figures with a higher degree of accuracy and
control [5, 6]. This inherent versatility makes NURBS particu-
larly suitable for intricate design tasks in mechanical engineering,
where precision and adaptability are paramount [7]. The transi-
tion from B-Splines and Bezier to NURBS marks a significant
evolution in design capabilities, enabling engineers to craft more
sophisticated and nuanced models [8].

Isogeometric Analysis (IGA) [9] has marked a significant
advancement in mechanical engineering [10], particularly in the
realms of analysis and simulation [11]. By employing NURBS-
based geometric models directly from the design phase into var-
ious analytical studies, including structural, fluid dynamics, and
thermal assessments, IGA fosters a harmonious integration of
design and analysis [12]. This methodology circumvents the tra-
ditional need for geometry simplification and extensive meshing
typical in Finite Element Analysis (FEA) [13], thereby maintain-
ing the integrity of the original design and elevating simulation
precision [14].

Despite these strides, bridging the gap between deep-
learning-based models and the IGA framework presents a notable
challenge [15]. Machine learning integration is transforming in-
dustrial and mechanical engineering [16, 17], leading to smarter
system designs and improved predictive analytics in manufactur-
ing and maintenance [18–21]. Existing tools like BSplineGAN
[4] and BezierGAN [3], despite their innovation in employing
adversarial generative networks (GAN) [22] for design genera-
tion, primarily yield data at the point level, which falls short
of the comprehensive, simulation-ready models required for de-
tailed IGA analysis [9]. Furthermore, their focus on Bezier and
B-Splines generation needs to satisfactorily cater to the intricate
requirements of NURBS configurations essential for effective
IGA implementation [23]. Addressing these issues head-on, our
framework endeavors to connect AI-driven NURBS modeling
with IGA, promising advancement in the analytical capabilities
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within mechanical engineering.
However, a significant gap exists in bridging the deep-

learning-based NURBS models with the IGA framework ef-
ficiently. While advancements such as BSplineGAN [3] and
BezierGAN [4] have facilitated automated design generation with
adversarial generative network (GAN), which is commonly ap-
plied in physics-based modeling [18, 24]. these are primarily
focused on data-point level outputs, limiting their direct applica-
bility in systematic simulations required for comprehensive anal-
ysis. Additionally, the specific generation of curves for Bezier and
B-Splines does not fully address the complex needs of NURBS
configurations, which are essential for IGA applications.

Our contribution can be summarized as follows:

• We propose a framework to bridge the gap between gener-
ated data with a deep learning model and the isogeometric
analysis.

• We introduce an interpolation strategy to automatically map
the data points into IGA-suitable coordinates.

• We create an improved isogeometric analysis framework to
facilitate the force / location / mesh / displacements analysis.

2. METHODOLOGY
The general pipeline of our proposed framework is shown in

Fig. 1. In this section, we will discuss 1) Non-Uniform Ratio-
nal B-Splines with Deep Learning, 2) Preprocessing of NURBS
Parameters for Isogeometric Analysis, 3) NURBS Surface Gener-
ation, 4) Refinement Strategy for Knot Vectors in NURBS-based
Plane Stress Simulations, 5) Material Constitutive Relations.

2.1 Non-Uniform Rational B-Splines with Deep Learning
To cooperate with the isogeometric analysis approach frame-

work, we apply Non-Uniform Rational B-Splines parameteriza-
tion with the same generator as BezierGAN [4]. Specifically, we
deploy the generator to generate weights and control points, as
well as features extracted through the MLP layer [25].

1. Initialization: The initialization sets up the parameters nec-
essary for NURBS computations: Number of input features:
[𝐿𝑎𝑡𝑒𝑛𝑡 : 3, 𝑁𝑜𝑖𝑠𝑒 : 10], Number of control points: 32,
Number of data points (output dimensionality): 192, Degree
of the NURBS curve: 𝑑𝑒𝑔𝑟𝑒𝑒 = 3, Small constant to prevent
division by zero: 𝜖 = 1𝑒 − 7, Knot vector: 𝑘𝑛𝑜𝑡𝑠, computed
as follows:

𝑘𝑛𝑜𝑡𝑠 = [ 0, . . . , 0⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
degree + 1

,

1
𝑛𝑐𝑝 − degree

, . . . ,
𝑛𝑐𝑝 − degree − 1
𝑛𝑐𝑝 − degree⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑝𝑜𝑖𝑛𝑡−degree

, 1, . . . , 1⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
degree + 1

] .

(1)

2. Intervals Generation: The intervals are generated by trans-
forming the input features through a neural network se-
quence:

1) Linear Transformation (L): first layer: R𝑖𝑛_ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 →
R𝑛_𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑠−1 and rest layers: R𝑛_𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑠−1 →
R𝑛_𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑠−1 to bring in more accurate projection.

2) Activation (S:Softmax): Normalizes the outputs across
the dimension.

3) This process is repeated, ending with a padding oper-
ation to ensure the correct dimensionality:

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = (𝑆(𝐿 (𝑆(𝐿 (𝑆(𝐿 (𝑖𝑛𝑝𝑢𝑡))))))),
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑃𝑎𝑑1𝑑 ( [1, 0], 0).

(2)

3. Basis Function Computation: The basis functions, 𝑁𝑖, 𝑝 (𝑡),
are defined recursively. For a knot vector {𝑘𝑛𝑜𝑡𝑠} and a
degree 𝑝:

1) For 𝑝 = 0 (base case):

𝑁𝑖,0 (𝑡) =
{︄

1 if 𝑘𝑛𝑜𝑡𝑠𝑖 ≤ 𝑡 < 𝑘𝑛𝑜𝑡𝑠𝑖+1,
0 otherwise.

(3)

2) For 𝑝 > 0 (recursive case):

𝑁𝑖, 𝑝 (𝑡) =
𝑡 − 𝑘𝑛𝑜𝑡𝑠𝑖

𝑘𝑛𝑜𝑡𝑠𝑖+𝑝 − 𝑘𝑛𝑜𝑡𝑠𝑖 + 𝜖
𝑁𝑖, 𝑝−1 (𝑡)+

𝑘𝑛𝑜𝑡𝑠𝑖+𝑝+1 − 𝑡
𝑘𝑛𝑜𝑡𝑠𝑖+𝑝+1 − 𝑘𝑛𝑜𝑡𝑠𝑖+1 + 𝜖

𝑁𝑖+1, 𝑝−1 (𝑡).
(4)

4. Forward Pass: During the forward pass, the NURBS curve
is computed from the input tensor and control points:

1) Compute the parameter intervals from the input fea-
tures.

2) Calculate the upper bounds (ub) by cumulatively sum-
ming the intervals and clamping the result between 0
and 1.

3) Compute the NURBS basis functions for each control
point across all parameter values:

𝑁 = [𝑁0, 𝑝 (𝑢𝑏), 𝑁1, 𝑝 (𝑢𝑏), . . . ,
𝑁𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑖𝑛𝑡𝑠−1, 𝑝 (𝑢𝑏)] .

(5)

4) Combine the control points CP with their correspond-
ing weights W and apply the NURBS basis functions
to compute the curve:

DP =

∑︁𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑖𝑛𝑡𝑠−1
𝑗=0 𝑁𝑗 , 𝑝 (𝑢𝑏) × (CP𝑗 ×W𝑗 )∑︁𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑝𝑜𝑖𝑛𝑡𝑠−1

𝑗=0 𝑁𝑗 , 𝑝 (𝑢𝑏) ×W𝑗 + 𝜖
.

(6)
where DP represents the data points of the NURBS
curve, which are the output of this layer. The weights
W are applied to control points CP, and the result-
ing weighted points are combined according to the
NURBS basis functions 𝑁𝑗 , 𝑝 (𝑢𝑏) to form the curve.
The generated samples are shown in Fig. 2.
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FIGURE 1: Pipeline of overall framework

FIGURE 2: Generated samples of Airfoil/Superformula.

2.2 Preprocessing of NURBS Parameters for Isogeometric
Analysis
The preprocessing phase in the isogeometric analysis is in-

strumental for transitioning raw NURBS parameters, including
control points and associated weights, into a sophisticated matrix
configuration, vital for further analytical evaluations [9, 12]. Be-
low, we delineate this procedure through a more quantitative and
mathematical lens.

1. Initial Configuration and Sorting: Consider the preliminary
set of control points and their respective weights denoted by:

{(𝑥𝑖 , 𝑦𝑖) |𝑖 = 1, 2, ..., 𝑛}, (7)

{𝑤𝑖 |𝑖 = 1, 2, ..., 𝑛}. (8)

where 𝑛 symbolizes the total number of points. The pre-
liminary step involves organizing these points based on as-
cending 𝑦−coordinates, which is mathematically depicted
as sorting the set {(𝑥𝑖 , 𝑦𝑖)} based on the values of 𝑦𝑖 .

2. Enhanced Interpolation Mechanism: The interpolation
strategy is elaborated through the following mathematical
formulations:

1) Evaluation of Required Points: For adjacent control
points 𝑃𝑖 and 𝑃𝑖+1, the necessity for intermediate
points is assessed based on disparities in their coor-
dinates and weights.

2) Computational Differences: These differences are
mathematically quantified as:

Y-coordinate disparity: Δ𝑦 = 𝑦𝑖+1 − 𝑦𝑖 . (9)

X-coordinate disparity: Δ𝑥 = 𝑥𝑖+1 − 𝑥𝑖 . (10)

Mean weight formulation: 𝑤𝑎𝑣𝑔 =
𝑤𝑖 + 𝑤𝑖+1

2
. (11)

3) Actual Interpolation Sequence: The program will first
identify the gaps in 𝑦 coordinates. For each gap, the
program will iterate through its length, adding 𝑦 values
and interpolating 𝑥 and 𝑤 values. For example, if
there is a gap of 5 between the second and third 𝑦

coordinates, then the interpolation for the third variable
is computed as follows:

𝑦𝑛𝑒𝑤 = 𝑦1[3 + 𝑖], (12)

𝑥new = 𝑥𝑖 + (Δ𝑥)×,
3
5

(13)

𝑤𝑛𝑒𝑤 = 𝑤𝑎𝑣𝑔 . (14)

3. Detailed Construction of NURBS Matrix (B): The assembly
of matrix 𝐵 is formulated as follows:

1) Initial Matrix Setup:

𝐵𝑖 𝑗 = [𝑥, 𝑦, 𝑧, 𝑤] for 𝑖, 𝑗 = 1, 2, ..., 𝑛, (15)

where typically z = 0 for planar surfaces.
2) Boundary Determination: At the lower boundary (first

row of 𝐵):

𝐵[0, 𝑗] = [𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 0, 𝑤𝑚𝑖𝑛] . (16)

At the upper boundary (last row of 𝐵):

𝐵[𝑛 − 1, 𝑗] = [𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 0, 𝑤𝑚𝑎𝑥] . (17)
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3) Matrix Population: Intermediate entries of 𝐵 for each
distinct y-coordinate 𝑦𝑖:

𝐵[𝑖, 𝑗] = [𝑥𝑖 , 𝑦𝑖 , 0, 1] . (18)

ensuring linear variation in 𝑥 from 𝑥𝑚𝑖𝑛 to 𝑥𝑚𝑎𝑥 across
each row.

4) Normalization and Adaptation: Final adjustments to
weights and coordinates based on defined criteria to
ensure uniformity and adherence to NURBS standards.

Post-processing adjustments ensure the refined matrix 𝐵mir-
rors the NURBS surface precisely, suitable for isogeometric appli-
cations. This entails confirming the orderly alignment of control
points and standardizing weights to uphold geometric authentic-
ity.

2.3 Detailed Mathematical and Algorithmic Approach for
NURBS Surface Generation
The generation of NURBS surfaces forms the foundation of

our computational framework, the original model was outlined in
[26], which was initially intended for analyzing object deforma-
tions, this base model has been adapted to develop an enhanced
Isogeometric Analysis (IGA) framework. This section elaborates
on each step involved in this process, utilizing equations to elu-
cidate the methodologies employed. The framework is shown in
Fig. 3.

The NURBS surface, 𝑆(𝑢, 𝑣), is defined by the equation:

𝑆(𝑢, 𝑣) =
∑︁𝑛

𝑖=1
∑︁𝑚

𝑗=1 𝑁𝑖, 𝑝 (𝑢)𝑀𝑗 ,𝑞 (𝑣)𝑤𝑖 𝑗𝑃𝑖 𝑗∑︁𝑛
𝑖=1

∑︁𝑚
𝑗=1 𝑁𝑖, 𝑝 (𝑢)𝑀𝑗 ,𝑞 (𝑣)𝑤𝑖 𝑗

, (19)

where 𝑁𝑖, 𝑝 (𝑢) and 𝑀𝑗 ,𝑞 (𝑣) are the B-spline basis functions of
degrees 𝑝 and 𝑞, respectively. 𝑤𝑖 𝑗 are the weights associated with
each control point. 𝑃𝑖 𝑗 are the control points. 𝑛 and 𝑚 are the
numbers of control points in the 𝑢 and 𝑣 directions, respectively.

2.3.1 B-Spline Basis Functions. The zero-degree B-spline
basis functions [27] are defined as:

𝑁𝑖,0 (𝑢) =
{︄

1 if𝑈𝑖 ≤ 𝑢 < 𝑈𝑖+1
0 otherwise

(20)

The higher-degree basis functions are constructed using the re-
currence relation:

𝑁𝑖,𝑘 (𝑢) =
𝑢 −𝑈𝑖

𝑈𝑖+𝑘 −𝑈𝑖

𝑁𝑖,𝑘−1 (𝑢) +
𝑈𝑖+𝑘+1 − 𝑢
𝑈𝑖+𝑘+1 −𝑈𝑖+1

𝑁𝑖+1,𝑘−1 (𝑢),
(21)

where𝑈 is the knot vector.

2.3.2 FindSpan Algorithm. This algorithm locates the span
𝑖 within the knot vector 𝑈 that contains the parameter value 𝑢,
essential for evaluating the basis functions:

𝐹𝑖𝑛𝑑𝑆𝑝𝑎𝑛(𝑛, 𝑝, 𝑢,𝑈) =
{︄
𝑛 − 1 𝑖 𝑓 𝑢 = 𝑈𝑛+1
𝑏𝑖𝑛𝑎𝑟𝑦𝑠𝑒𝑎𝑟𝑐ℎ𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(22)
The FindSpan algorithm employs a binary search to identify the
correct knot span index for a given parameter value 𝑢 within the

knot vector 𝑈. The search iteratively narrows down the range
by comparing 𝑢 against the midpoint values of the knot vector.
Initially set with boundaries 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ, the algorithm recal-
culates the midpoint, 𝑚𝑖𝑑 =

⌊︂
ℎ𝑖𝑔ℎ+𝑙𝑜𝑤

2

⌋︂
, in each iteration. If 𝑢 is

less than the midpoint value𝑈 [𝑚𝑖𝑑], the search range narrows to
the lower half by setting ℎ𝑖𝑔ℎ = 𝑚𝑖𝑑; otherwise, it narrows to the
upper half by setting 𝑙𝑜𝑤 = 𝑚𝑖𝑑. This process repeats until the
high and low indices converge, at which point 𝑚𝑖𝑑 represents the
span index that encloses 𝑢, which is then returned as the result.

2.3.3 BasisFun Algorithm. The BasisFun algorithm is de-
signed to compute the non-zero B-spline basis functions corre-
sponding to a given parameter value 𝑢 and a specific knot span 𝑖.
This is integral for the evaluation of NURBS surfaces at any given
point in their domain. The procedure is detailed in Algorithm 1.

Algorithm 1 Calculate the B-spline basis functions
Input: 𝑖, 𝑢, 𝑝,𝑈
Output: 𝑁 (array of size 𝑝 + 1)
Initialize 𝑁 [0] ← 1
Initialize 𝑙𝑒 𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡 arrays of size 𝑝 + 1 with zeros
for 𝑗 = 1 to 𝑝 do

𝑙𝑒 𝑓 𝑡 [ 𝑗 + 1] ← 𝑢 −𝑈 [𝑖 + 1 − 𝑗]
𝑟𝑖𝑔ℎ𝑡 [ 𝑗 + 1] ← 𝑈 [𝑖 + 𝑗] − 𝑢
𝑠𝑎𝑣𝑒𝑑 ← 0
for 𝑟 = 0 to 𝑗 − 1 do

𝑡𝑒𝑚𝑝 ← 𝑁 [𝑟+1]
𝑟𝑖𝑔ℎ𝑡 [𝑟+2]+𝑙𝑒 𝑓 𝑡 [ 𝑗−𝑟+1]

𝑁 [𝑟 + 1] ← 𝑠𝑎𝑣𝑒𝑑 + 𝑟𝑖𝑔ℎ𝑡 [𝑟 + 2] × 𝑡𝑒𝑚𝑝
𝑠𝑎𝑣𝑒𝑑 ← 𝑙𝑒 𝑓 𝑡 [ 𝑗 − 𝑟 + 1] × 𝑡𝑒𝑚𝑝

end for
𝑁 [ 𝑗 + 1] ← 𝑠𝑎𝑣𝑒𝑑

end for

2.3.4 Final Evaluation of the NURBS Surface Point. With
the FindSpan and BasisFun algorithms, we compute the NURBS
surface point 𝑆(𝑢, 𝑣) for each parameter pair (𝑢, 𝑣) as follows:

𝑆(𝑢, 𝑣) =
∑︁𝑛

𝑖=1
∑︁𝑚

𝑗=1 𝑁𝑖, 𝑝 (𝑢) · 𝑀𝑗 ,𝑞 (𝑣) · 𝑤𝑖 𝑗 · 𝑃𝑖 𝑗∑︁𝑛
𝑖=1

∑︁𝑚
𝑗=1 𝑁𝑖, 𝑝 (𝑢) · 𝑀𝑗 ,𝑞 (𝑣) · 𝑤𝑖 𝑗

. (23)

This comprehensive mathematical framework and the accompa-
nying algorithmic procedures are the cornerstone for generating
and evaluating NURBS surfaces, integral to numerous engineer-
ing and graphics applications. The NURBS generation is shown
in Fig. 4.

2.4 Refinement Strategy for Knot Vectors in NURBS-based
Plane Stress Simulations
Refining the knot vector (𝜉) is crucial for enhancing the res-

olution of a NURBS model, particularly relevant in plane stress
simulations, as detailed by the recent research [28]. This process,
depicted in Fig. 5 and Fig. 6, involves calculating and incorporat-
ing new knot values to improve the model’s granularity. Specif-
ically, we enrich the NURBS model by computing intermediate
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FIGURE 3: Pipeline of IGA framework

FIGURE 4: NURBS curve generated

values 𝜉 (𝑖)+𝜉 (𝑖+1)
2 for each consecutive pair of knots within the

vector, as defined by the equation:

𝐹inter =

{︃
𝜉 (𝑖) + 𝜉 (𝑖 + 1)

2
| 𝑖 = 1, . . . , length(𝜉) − 1

}︃
− {𝜉}, (24)

where we ensure that each new value added is unique by excluding
those already existing in the knot vector, thereby enhancing the
detail and analytical capabilities of the NURBS model without
introducing redundant information.

2.4.1 Algorithmic Steps for Refinement.

1. Initialization: Start by calculating midpoints between con-

FIGURE 5: IGA before knot refinement and with 32×32 interpolation

secutive knots to divide segments:

𝑋div = 𝐹inter (𝜉), (25)

where 𝐹inter calculates midpoints, omitting existing knots to
ensure enhancement.

2. Subdivision Values: If multiple subdivisions are needed
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(𝑠𝐷𝑖𝑣𝑠 > 1), refine iteratively:

while 𝑠𝐷𝑖𝑣𝑠 > 1 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋𝑡𝑒𝑚𝑝 = 𝐹inter (sort( [𝜉, 𝑋𝑑𝑖𝑣])),
𝑋𝑑𝑖𝑣 = [𝑋𝑑𝑖𝑣, 𝑋𝑡𝑒𝑚𝑝],
𝑠𝐷𝑖𝑣𝑠 = 𝑠𝐷𝑖𝑣𝑠 − 1.

(26)

3. Knot Refinement: Knot refinement involves integrating the
subdivision values into the existing knot vector. Following
this, the control points and knot vector are updated while
carefully maintaining the curve’s continuity and smoothness,
despite the addition of new knots. The procedure for knot
insertion for a NURBS curve is outlined below:
Consider a NURBS curve defined by control points 𝑃 with
associated weights 𝑤 and a knot vector 𝑈 of degree 𝑝. We
aim to discuss the process of knot insertion, a fundamental
operation in NURBS curve manipulation.
Knot insertion involves introducing a new knot 𝑢 into the
existing knot vector 𝑈, thereby affecting the curve’s shape.
Let 𝑈′ represent the updated knot vector after insertion,
which can be mathematically defined as:

𝑈′ = (𝑈1,𝑈2, . . . ,𝑈𝑖 , 𝑢,𝑈𝑖+1, . . . ,𝑈𝑛). (27)

Here, 𝑖 denotes the index satisfying 𝑈𝑖 < 𝑢 < 𝑈𝑖+1. Fol-
lowing knot insertion, adjustments to the control points and
weights are necessary to preserve the curve’s integrity. The
updated control points 𝑃′ and weights 𝑤′ can be expressed
as:

𝑃′ = (𝑃′1, 𝑃
′
2, . . . , 𝑃

′
𝑚), (28)

𝑤′ = (𝑤′1, 𝑤
′
2, . . . , 𝑤

′
𝑚). (29)

The formulas for 𝑃′
𝑗

and 𝑤′
𝑗

ensure a smooth transition and
continuity in the curve:

𝑃′𝑗 =
𝑈𝑖+𝑝+1 − 𝑢
𝑈𝑖+𝑝+1 −𝑈𝑗

𝑃𝑗 +
𝑢 −𝑈𝑗

𝑈𝑖+𝑝+1 −𝑈𝑗

𝑃𝑗−1, (30)

𝑤′𝑗 =
𝑈𝑖+𝑝+1 − 𝑢
𝑈𝑖+𝑝+1 −𝑈𝑗

𝑤𝑗 +
𝑢 −𝑈𝑗

𝑈𝑖+𝑝+1 −𝑈𝑗

𝑤𝑗−1. (31)

Here, the index 𝑗 will iterate 𝑝 times for each knot inserted,
where 𝑝 denotes the degree of the curve. This multiplicity
of control point insertion will ensure the continuity of the
curve. These calculations adhere to de Boor’s algorithm
for knot insertion, ensuring smooth curve transitions while
accommodating the new knot 𝑢. The IGA result after knot
refinement is shown in Fig. 6.
2.4.2 Connectivity Matrix Construction. Connectivity

matrices map local element coordinates to the global domain:

1. Establish the number of elements (nel), total basis functions
(nnp), and local basis functions (nen):

𝑛𝑒𝑙 = (𝑛 − deg.𝑝) × (𝑚 − deg.𝑞),
𝑛𝑛𝑝 = 𝑛 × 𝑚,
𝑛𝑒𝑛 = (deg.𝑝 + 1) × (deg.𝑞 + 1).

(32)

FIGURE 6: IGA after knot refinement

2. Construct INN (Index of Node Numbers) and IEN (Index
of Element Numbers) for the element-to-global mapping.
The Index of Node Numbers (INN) and the Index of Ele-
ment Numbers (IEN) play significant roles in finite element
analysis. They help in mapping between local and global
structures. In the context of NURBS (Non-Uniform Rational
B-Splines), we typically use the Index NURBS Coordinates
(INC) instead of the traditional INN. INC is specifically
designed to map a global basis function number to its corre-
sponding coordinates in the NURBS parameter space. For a
given global basis function number 𝐴, INC maps 𝐴 to a pair
of coordinates (𝜉, 𝜂). These coordinates define the position
of the basis function in the NURBS parameter space. The
mathematical representation of this mapping is:

INC(𝐴, :) = (𝜉coord (𝐴), 𝜂coord (𝐴)) , (33)

where 𝜉coord (𝐴) represents the 𝜉-coordinate of the global
basis function 𝐴, and 𝜂coord (𝐴) represents the 𝜂-coordinate
of the global basis function 𝐴. The Index of Element Num-
bers (IEN), on the other hand, is used to relate global basis
function numbers to their local orderings within each finite
element. This mapping is crucial for assembling the global
matrix from local elements, as it dictates how each local
basis function (or shape function) contributes to the global
solution.

2.5 Defining Material Constitutive Relations for NURBS
Simulations
The constitutive relationship of a material under mechanical

stress is crucial for accurate simulations. In NURBS-based plane
stress analysis, this relationship is encapsulated within the mate-
rial matrix 𝐷, which is derived based on the material’s elasticity
properties.

2.5.1 Material Matrix Construction. The function com-
putes the material matrix 𝐷 for a linear elastic and isotropic
material based on the specified problem type, Young’s modulus
𝐸 , and Poisson’s ratio 𝜈:
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1. Plane Stress (ptype = 1): For simulations assuming that
out-of-plane stresses are negligible:

𝐷 =
𝐸

1 − 𝜈2

⎡⎢⎢⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥⎥⎥⎥⎦ . (34)

2. Plane Strain and Axisymmetry (ptype = 2 or 3): For cases
with deformations restricted in one dimension or symmetric
about an axis:

𝐷 =
𝐸

(1 + 𝜈) (1 − 2𝜈)

⎡⎢⎢⎢⎢⎢⎢⎣
1 − 𝜈 𝜈 𝜈 0
𝜈 1 − 𝜈 𝜈 0
𝜈 𝜈 1 − 𝜈 0
0 0 0 1−2𝜈

2

⎤⎥⎥⎥⎥⎥⎥⎦ .
(35)

3. Three-Dimensional Stress (ptype = 4): For comprehensive
3D simulations:

𝐷 =
𝐸

(1 + 𝜈) (1 − 2𝜈)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1−2𝜈

2 0 0
0 0 0 0 1−2𝜈

2 0
0 0 0 0 0 1−2𝜈

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(36)
Within the NURBS-based simulation framework, the stiff-
ness matrix 𝐷 is assigned by invoking 𝐸𝑌 , 𝜈𝑃 , where 𝐸𝑌 is
Young’s modulus and 𝜈𝑃 is Poisson’s ratio.

In NURBS-based simulations for plane stress analysis, the
precision of numerical integration is crucial, achieved effectively
through Gauss-Legendre quadrature tailored to the NURBS basis
functions’ polynomial order. We compute the necessary Gauss
points (𝑔𝑝) and weights (𝑤), crucial for integration, based on the
order 𝑝. This mathematical strategy ensures that the integration
accuracy is commensurate with the degree of polynomial com-
plexity inherent in the NURBS model, which is vital for capturing
the nuanced physical behaviors of the system.

The implementation within the NURBS framework is me-
thodically outlined as follows:

[𝑔𝑝𝑥 , 𝑤𝑥] = Gaussian Points(𝑝), (37)
[𝑔𝑝𝑦 , 𝑤𝑦] = Gaussian Points(𝑞), (38)

where 𝑝 and 𝑞 are the degrees in two directions. Inside the
function, the input degree is increased by 1 to obtain the order
of the NURBS curve. Then, the function simply returns the
corresponding Gauss points (𝑔𝑝𝑥 , 𝑔𝑝𝑦) and weights (𝑤𝑥 , 𝑤𝑦),
enabling precise integration over the NURBS geometry.

In the framework of NURBS-based simulations for mechan-
ical engineering analysis, the computation of the stiffness matrix
(𝐾) and load vector (𝐹) is integral to understanding material re-
sponses and structural behaviors. We apply the following function
to calculate the local stiffness matrix contribution (𝐾𝑒) from in-
dividual NURBS elements, utilizing the following mathematical
formulation:

𝐾𝑒 = 𝐵𝑇𝐷𝐵𝐽mod, (39)

where 𝐵 is the strain-displacement matrix formed from NURBS
basis function derivatives (𝑑𝑅𝑑𝑥), 𝐷 denotes the material’s con-
stitutive matrix embodying its physical properties, and 𝐽mod signi-
fies the modified Jacobian determinant that integrates the weights
from Gauss-Legendre quadrature.

The assembly process in NURBS-based simulations is piv-
otal for merging local element contributions into a global con-
text, crucial for forming the global stiffness matrix (𝐾) and load
vector (𝐹). This ensures that individual element properties are
cohesively integrated into the entire system per NURBS mesh
connectivity.

Initially, 𝐾 and 𝐹 are set to zero, sized [𝑛𝑑𝑜 𝑓 × 𝑛𝑑𝑜 𝑓 ] and
[𝑛𝑑𝑜 𝑓 × 1] respectively, with 𝑛𝑑𝑜 𝑓 representing the system’s to-
tal degrees of freedom. Each element contributes through a loop
where 1) the local stiffness matrix𝐾𝑒 and load vector 𝐹𝑒 are com-
puted based on material properties, geometric traits, and NURBS
basis functions, often utilizing Gauss-Legendre quadrature for
integration; 2) contributions are mapped from local to global
systems via connectivity arrays, with local degrees of freedom
linked to global indices through an 𝐼𝐷 mapping. The assembly
transitions local matrices to global using:

𝐾𝑔𝑙𝑜𝑏𝑎𝑙 (𝐼𝐷 (𝑖), 𝐼𝐷 ( 𝑗))+ = 𝐾𝑒𝑙𝑜𝑐𝑎𝑙 (𝑖, 𝑗), (40)
𝐹𝑔𝑙𝑜𝑏𝑎𝑙 (𝐼𝐷 (𝑖))+ = 𝐹𝑒𝑙𝑜𝑐𝑎𝑙 (𝑖), (41)

Following this, boundary conditions are applied, modifying 𝐾
and 𝐹 for any fixed displacements or specific loads. This stream-
lined process results in a comprehensive global matrix represen-
tation that is foundational for displacement solutions and subse-
quent stress and strain evaluations, encapsulating the mechanical
properties within the unified NURBS framework.

2.5.2 Boundary Conditions and Solution.

1. The application of boundary conditions is a critical step
in the simulation process. Specifically, we identify and
constrain control points where displacement must be re-
stricted. In the context of our model, control points with an
x-coordinate less than or equal to 0.1 (denoted as 𝑙𝑜𝑐𝑥 = 0.1)
are fixed to prevent movement. This operation is crucial for
mimicking real-world constraints and ensuring the physical
accuracy of the simulation.

2. Following the imposition of boundary conditions, the system
of equations defined by the stiffness matrix 𝐾 and force vec-
tor 𝐹 is solved to find the displacement vector a. The solu-
tion of this equation provides the deformation at each control
point, allowing us to analyze the structural response under
applied loads. This step is fundamental to understanding the
mechanical behavior of the model under investigation.

3. EXPERIMENTS
In this section, we discuss the analytical process of the frame-

work, including 1) the implementation details, 2) the NURBS-
based model and its generation results, and 3) the deforma-
tion/displacement calculated through our isogeometric analysis
framework given certain physical constraints, such as material
properties (Young’s modulus, Poisson’s ratio), force, and its di-
rection.
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Our overall framework can be divided into two aspects. A
deep generative model for NURBS-based design synthesis is first
trained on the superformula I/II [4] and airfoil datasets (i.e., UIUC
airfoil datasets1) with PyTorch 2.0 on Nvidia RTX4090. The gen-
erated samples are then transformed into IGA-friendly samples
via the interpolation strategy proposed, and those interpolated
samples are fed into MATLAB-based IGA framework for further
analysis [26].

As shown in Fig. 2, we first generate samples for pre-
processing of IGA, and then these sample coordinates and weights
are transformed into new coordinates via the interpolation strat-
egy introduced in Section 2.2.

Taking a Superformula sample as an illustration, as shown in
Fig. 3, the coordinates and meshes are re-arranged into IGA ge-
ometry. Given specific material properties and force location and
magnitude, we can analyze the corresponding deformation and
displacements. In this study, we specifically define two groups of
material properties and loading conditions:

1. We apply boundary conditions for all control-points that are
less or equal to 0.1 fixed in x-axis.

2. We define the material to be structural steel (Young’s Modu-
lus (E): 210 GPa, Poisson’s Ratio (v): 0.30), given a negative
force load (3e5) for all knot vectors that is greater than 0.01
in 𝑥 direction, the results are shown in Fig. 7.

3. We define the force load to be consistent, and the material is
changed to aluminum (E: 68.9 GPa, V: 0.33) with a positive
load of 3e5. The deformation is then shown in Fig. 8.

FIGURE 7: Displacement analysis given load -3e5, structural steel.

1https://m-selig.ae.illinois.edu/ads/coord_database.html

FIGURE 8: Displacement analysis given load +3e5, aluminum.

4. CONCLUSION
The innovative framework represents a stride forward in the

realm of isogeometric analysis (IGA), boasting improvements in
both efficiency and accuracy regarding curvilinear configuration
generation and subsequent analysis. By incorporating sophisti-
cated spline parameterization techniques, the framework not only
elevates mesh quality but also deepens our comprehension of
underlying physical properties. Its validation against complex
datasets underscores its efficacy, heralding a pivotal moment in
the fusion of machine learning and IGA. This amalgamation sets
the stage for forthcoming computational breakthroughs aimed at
surmounting the geometric modeling hurdles inherent in IGA.

Limitations and Future Work: Integrating NURBS prepro-
cessing within the deep generative model enhances its compat-
ibility with IGA, streamlining the process and enabling direct
utilization of generated samples for IGA tasks, eliminating the
need for additional data manipulation. Furthermore, the exten-
sion of the existing NURBS curve-based model to a NURBS
surface-based model promises a more accurate and direct learn-
ing approach for NURBS surfaces, optimizing their suitability for
instantaneous IGA applications. Ultimately, this endeavor aims
to revolutionize the automation of intricate 3D geometric mod-
eling for IGA through the powerful assistance of deep learning
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techniques.
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