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ABSTRACT: Microplastics (MPs) and nanoplastics (NPs) in water pose a global
threat to human health and the environment. To develop efficient removal strategies,
it is crucial to understand how these particles behave as they aggregate. However, our
knowledge of the process of aggregate formation from primary particles of different
sizes is limited. In this study, we analyzed the growth kinetics and structures of
aggregates formed by polystyrene MPs in mono- and bidisperse systems using in situ
microscopy and image analysis. Our findings show that the scaling behavior of
aggregate growth remains unaffected by the primary particle size distribution, but it
does delay the onset of rapid aggregation. We also performed a structural analysis that
reveals the power law dependence of aggregate fractal dimension (df) in both mono-
and bidisperse systems, with mean df consistent with diffusion-limited cluster
aggregation (DLCA) aggregates. Our results also suggest that the df of aggregates is
insensitive to the shape anisotropy. We simulated molecular forces driving aggregation of polystyrene NPs of different sizes under
high ionic strength conditions. These conditions represent salt concentration in ocean water and wastewater, where the DLVO
theory does not apply. Our simulation results show that the aggregation tendency of the NPs increases with the ionic strength. The
increase in the aggregation is caused by the depletion of clusters of ions from the NPs surface.

■ INTRODUCTION
Microplastics (MPs) and nanoplastics (NPs) have become a
major environmental concern globally due to their extensive
presence in aquatic systems. Once they enter water bodies, they
undergo various transformations like degradation and aggrega-
tion, which affect their fate and transport, as well as removal from
natural water bodies.1−3 Thus, the aggregation of MPs and NPs
in water significantly influences different natural and engineered
processes, including environmental impact assessment and
water/wastewater treatment. Therefore, it is crucial to gather
and analyze quantitative data related to the dynamics and
morphology of these aggregates in water.
In the existing literature, aggregation ofMPs andNPs refers to

the process by which primary particles assemble into large
aggregates with a self-similar, fractal morphology.4−6 Aggrega-
tion kinetics display two limiting regimes: (i) diffusion-limited
cluster aggregation (DLCA),7 in which particles associate upon
collision, resulting in fast aggregation kinetics, and (ii) reaction-
limited cluster aggregation (RLCA),8 in which only collisions
that overcome an energy barrier result in irreversible association.
Each regime has different rate-limiting physics, aggregation
dynamics, and cluster-mass distributions. The fractal structure of
aggregates has been frequently expressed in terms of a single
exponent, the fractal dimension df, which reflects the scaling of
mass of an aggregate (m) with its linear size, radius of gyration

(Rg), m ∝ Rg
df.8 DLCA generates loose and ramified aggregates

with a df of about 1.7, and RLCA produces more compact
aggregates with a df of about 2.1, setting general limits on the df
of 1.7 ≪ df ≪ 2.1 primarily determined by 3D scattering (light,
X-ray or neutron) techniques.9−11 Studies on the growth and
morphology of aggregates have mainly focused on homoge-
neous and monodisperse particles despite reports of hetero-
aggregation of particles of different chemical compositions.12−17

This is because the equations for aggregation are complex and
difficult to solve rigorously, leading to the assumption of a
monodisperse suspension, which has persisted over time.18,19

Moreover, from an experimental perspective, these studies focus
on either measuring aggregation kinetics using light scattering
spectroscopy or visualizing aggregate morphology using tradi-
tional and cryogenic transmission electron microscopy (TEM)
techniques.20−25 The former can discern time-dependent
aggregate ensemble properties based on the assumption of a
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homogeneous system. However, it poses challenges in
interpreting results from polydisperse systems. The latter can
allow for the visualization of aggregate structure and
morphology down to the nanoscale. However, it cannot measure
real-time aggregate growth. Therefore, the mechanisms for
growth can only be inferred from the size and morphology of
MPs/NPs ex situ. It is important to note that in situ TEM has
shown promise as an effective approach to observing aggregate
growth and structure at improved temporal and spatial
resolutions.26−28 However, it has limitations for particles that
exhibit low contrast in liquid samples, such as plastic
nanoparticles. Nevertheless, these studies have significantly
improved our understanding of the homoaggregation behavior
of MPs and NPs in aquatic systems.
A comprehensive understanding of the aggregation behavior

of MPs and NPs with varying sizes is still lacking, although this
knowledge is crucial from both a practical and realistic
perspective. For instance, it has been observed that in natural
aquatic environments, MPs and NPs can range from 30 to 2000
nm in size.2,3,29,30 This suggests that particles of different sizes
are more likely to aggregate than particles of the same size. The
information is crucial for predicting the behavior of MPs and
NPs in the environment.Moreover, coagulation and flocculation
processes are vital in water and wastewater treatment, but their
models based on uniform particle size are only applicable in
initial stages. The impact of primary particle distribution on
coagulation and flocculation behavior is not well understood,
making it important to study aggregating suspensions with
different sizes to inform engineering aspects of these processes.
In the field of fractal physics, some attention has been given to

the effects of polydispersity of primary particles on aggregate
structure.31−35 However, further understanding of its role in
both aggregate growth kinetics and morphology is needed.
Specifically, Eggersdorfer and Pratsinis36 showed that colloidal
suspensions exhibiting large polydispersity form open aggregates
with df = 1.5, which is smaller than the typical df for DLCA,
underlining the strong impact of particle size distribution on
aggregate structure. Interestingly, by performing DLCA
simulations with multiple primary particle sizes, Bushell and
Amal37 showed that the fractal structure and the form of the
cutoff functions that describe the shape of aggregates are
unaffected by the details of the primary particle size distribution,
while the partial structure factor depends on the primary particle
size distribution. Tence et al.38 also showed that polydispersity
does not affect the fractal dimension. The experimental result for
the fractal dimension is consistent with the cluster−cluster
model with linear trajectories. There is still debate over how the
primary particle size distribution influences the formation of
their aggregates, including both kinetics and structure.
Furthermore, aggregates often exhibit complex morphologies,
including anisotropy in shape.6,39,40 These characteristics have
implications on the physical and transport properties of the
aggregates, such as mechanical strength, density, and fluid drag

characteristics.41 In addition to the fractal dimension, under-
standing the anisotropy of aggregates is critical to fully
describing their morphology and mobility in water. Further
investigation is needed to understand how anisotropy and other
structural characteristics, such as df, are related.
In this work, we investigate how the bimodal primary particle

size distribution affects the formation of aggregates by nano- and
microparticles in both mono- and bidisperse systems.
Polystyrene microplastic spheres are selected due to their
widespread presence in the environment and their use as a
model for MPs and NPs in laboratory work. For the
microparticle system, we conducted customized in situ micro-
scopic experiments focusing on the growth kinetics of colloidal
aggregates while simultaneously tracking their morphological
changes. The study involved analyzing the growth curve, cluster
size distribution, fractal dimension, and anisotropy to examine
the aggregate kinetics, structural evolution, and morphologies.
This information is typically difficult to obtain through
traditional bulk measurements, such as dynamic light scattering
(DLS), especially when primary particle size varies. For the
nanoparticle system, our focus is on investigating how NPs of
two different sizes form aggregates under varying high salt
conditions. This information is crucial in understanding the
behavior of NPs aggregation in aquatic environments like ocean
water and wastewater with high ionic strengths such as
hypersaline hydrofracturing brines.42−44 However, this area of
research has been limited in the past because most studies have
focused on NP aggregation under low salt concentrations
(<1M) in a monodisperse system which can be qualitatively
described by the classic Derjaguin − Landau − Vervey −
Overbeek (DLVO) theory.2 However, recent evidence shows
that DLVO theory breaks down at high salt concentrations. In
such conditions, hydration effects, steric interactions among
ions, and ion−ion correlations cannot be ignored.45 To gain a
molecular-level perspective, we conducted molecular simula-
tions of polystyrene NPs of two different sizes under various
high ionic strength conditions. We have discussed the results on
the radial distribution function and aggregate size distribution
obtained from these simulations.

■ EXPERIMENTAL SECTION
Mono- and Bidisperse Microparticle Suspension. Approx-

imately spherical Carboxylate-functionalized polystyrene microspheres
(MS) (Polyscience, Inc.) of two sizes were used as the primary particles
to prepare the mono- and bidisperse microparticle suspension. We
chose polystyrene microplastic spheres because they are commonly
found in the environment and are used as a model for microplastics and
nanoparticles in laboratory research. Additionally, the carboxylate
functional group provides enough surface charge to keep theMPs stable
without ionic strength, while adjusting the ionic strength can easily
control different aggregation regimes. The diameters of smaller and
larger MS were measured to be 0.50 ± 0.01 μm and 1.0 ± 0.02 μm,
respectively. Analytical-grade NaCl electrolyte solutions were used to
create different ionic strength conditions for the aggregation experi-

Table 1. Representative Experimental Conditions for In Situ Microscopic Aggregation Experiments in This Study

IS (mM)a

MS suspension Size (μm) Concentration (mg/L) RLCA DLCA

Monodisperse 0.5 50 ± 8 50 500
Monodisperse 1.0 200 ± 25 50 500
Bidisperse 0.5 (50%) + 1.0 (50%) by vol. 125 ± 15 50 500

aPlease note that the IS used for RLCA and DLCA experiments are below and above the critical coagulation concentration (CCC) determined for
each system in the pre-experiments, respectively.
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ments. NaOH (1M) and HCl (1M) were used to adjust the pH in all
experiments. The details of the mono- and bidisperse MS suspensions
used in this study are provided in Table 1. The bidisperse MS system
wasmade up of 50% (vol.) dp = 0.50 μmand 50% (vol.) dp = 1.0 μmMS.
In order to determine the surface charge properties of MS under
different experimental conditions, we used the Zetasizer Nano
(Malvern Panalytical Ltd.) to measure the electrokinetic properties,
including zeta potential and electrophoretic mobility of MS in water.
Each experimental condition was measured in triplicate. The
Supporting Information (SI) contains Figure S1, presenting all zeta
potential and electrophoretic mobility measurements.
In Situ Microscopic Experiments. We conducted aggregation

measurements using a custom-made liquid cell mounted on an inverted
optical microscope (Eclipse Ti-E, Nikon Instruments Inc. USA). We
used a 100× oil immersion magnification objective and an Andor iXon3
EMCCD camera that was controlled by NIS Elements software (Nikon
Instruments Inc., USA). We have previously described more details of
this experimental setup in our earlier work.46 In brief, to prepare a
suspension with MPs at the targeted concentration, we mixed particles
in water, dispersed them using a sonicator, and adjusted the pH by
titration with HCl. Next, we added NaCl to induce the aggregation
process. To avoid insufficient mixing, we introduced NaCl to the
suspension before injecting it into the cell. Finally, we delivered/
injected the mixed suspension to the cell, which was sealed and
mounted onto the microscope stage. The injection procedure for
suspension usually lasted for around 1 min. Therefore, the beginning of
microscopy observations at t = 0 corresponded to approximately 1 min
after the suspension was dispersed. Images with a resolution of 0.04
μm/pixel were captured every 10 s until the aggregates reached
maturity. After each experiment, a larger final image, 3 × 3 times larger
than the image with a normal field of view, was captured to collect
extensive data on the size and shape of saturated aggregates in a steady
state. This study investigated two different aggregation regimes, RLCA
and DLCA, regulated by varying ionic strengths. The aggregation of
MPs in water was carried out at room temperature and a pH of 6 in all
cases. Mass concentrations of mono- and bidisperse microplastic (MP)
suspensions were prepared at 50± 8 ppm, 200± 25 ppm, and 125± 15
ppm for dp = 0.50 μm (monodisperse), dp = 1.0 μm (monodisperse),
and dp = 0.50 and 1.0 μm (bidisperse), respectively. Our preliminary
results indicate that these concentrations result in comparable surface
concentrations of MPs in each setting, with approximately 1 × 103
particles visible in the field of view. It is worth mentioning that these
mass concentrations are higher than those observed in the environ-
ment. The justification for selecting these high concentrations is as
follows: a recent study on the mass concentration of microplastics in
wastewater treatment plants estimated the mass concentration of total
MPs in the influent to be 26.23 μg/L.47 However, this low
concentration is insufficient for studying the aggregation behavior of
microplastics in a small-volume device such as a liquid cell, as there are
not enough particles to form aggregates under a typical field of view. In
the current practice, microplastics are included as part of total
suspension solids (TSS), which are reported to range from 50 to 400
ppm in the influent.48 An important study in the literature suggests that
diffusion-limited cluster aggregation (DLCA), which is the focus of our
study as well, follows a universal aggregation regime.49 This suggests
that it is independent of the specific chemical nature of the colloids.
Therefore, the results we derived from biodisperse MPs can be
applicable to describe the aggregation of MPs with other natural
colloids that have comparable size and surface properties used in our
study. This is likely to occur in reality. Details of these in situ
microscopic experiments are provided in Table 1.
Image Analysis. The acquired images were processed using image

processing algorithms in MATLAB. The following steps were taken:
First, the background noise was subtracted from each image. Next,
image segmentation was performed using Otsu’s thresholding method
to generate binary images. These images were then used for subsequent
analysis of aggregate growth. To determine the characteristic length of
aggregates, a customized autocorrelation function based on fast Fourier
transforms was used. The error was estimated using the bootstrap
resampling method. Processing of the large 3 × 3 image for aggregate

structural analysis was initiated by applying a global thresholding
method to obtain binary images. Figure S4 shows the steps involved in
the processing and analysis of a large image. All objects (including single
particles and aggregates) were identified and characterized by
MATLAB bwlabel function and regionprops function, respectively.
The procedure used to identify particles and aggregates is described in
the Supporting Information (SI) section S2. The acceptable criteria
used in our study to identify single particles and aggregates are
illustrated in Figure S5. More detailed information about the
autocorrelation function and structural analysis of aggregates are
presented in the following section. It is important to note that our image
analysis focused on 2D slices in the plane parallel to the coverslip of the
liquid cell. Therefore, our results only reflect the structure of the
aggregates in two dimensions and do not account for the complete 3D
structure of the aggregates.

Determination of Characteristic Length. A customized
autocorrelation function via fast Fourier transforms using the Wiener-
Khinchin theorem was used to determine the characteristic length of
aggregates.

= | [ ]|S I I x y( ) ( , ) 2 (1)

= [ ]G a b S I( , ) ( )1 (2)

where I(x,y) is the source image with intensities at positions (x,y), S(I)
is the power spectrum of the image,G(a,b) is the autocorrelation image
with spatial coordinates (a,b), F and F−1 denote the Fourier transform
and the inverse Fourier transform, respectively. In brief, the microscopy
source images were used to generate a 2D spatial autocorrelation image,
which was then used to plot a radially averaged distribution. It has been
demonstrated that this distribution can be fitted by an exponential
function (SI Equation S5) to determine the characteristic length, λ,
which is directly proportional to the radius of each aggregate, r,
estimated by measuring the aggregate area in real dimensions, Aa .
More details can be found in the Supporting Information (SI) section
S1, Figure S3, and our previous work.46,50

Determination of Structural Properties. Self-similar aggregates
form via aggregation and exhibit a scale-invariant nature described by
the fractal dimension (df), following the relation

37,51

=N k R a( / )g
df (3)

whereN is the number of monomers/primary particles in an aggregate,
determined by counting the number of pixels within each identified
cluster and converting to real dimensions, k is the fractal prefactor or
structure factor, a is the monomer radius and Rg is the radius of gyration
of the aggregate. The Rg was calculated as

= [ + ]
=

R x x y y n( ) ( ) /( 1)g
n

i

i c i c

1
2 2

(4)

where xc and yc are the x−y coordinates of the centroid of each cluster, xi
and yi are the x−y coordinates of the ith pixel in an aggregate, and n is the
number of pixels in each aggregate.

For a 2D aggregate, the anisotropy (A) is the ratio of the squares of its
principal radii

=A
R
R

1
2

2
2 (5)

where R1 and R2 represent the principal radii of an aggregate and R1 ≥
R2. More details regarding three length-based parameters, such as
characteristic length, radius of gyration, and aggregate size, can be found
in section S3.

Molecular Simulation Methodology. We performed molecular
simulations of spherical polystyrene nanoparticles of different sizes and
at different ionic strengths to understand their aggregation behavior.
We utilized coarse-grained (CG) Wet Martini force field (v2.2) to
model polystyrene particles, water, Na+, and Cl−.12 We considered
spherical polystyrene particles of two sizes: small styrene (radius = 0.8
nm) and large styrene (radius = 1.6 nm) (Figure 7A). The spherical
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nanoparticles were constructed by assembling polystyrene beads of
diameter 0.41 nm on the surface of a sphere of radius r (= 0.8 nm for
small and 1.6 nm for large nanoparticles).52 The Lennard-Jones energy
parameter, ε of the polystyrene beads was taken as 2.4 kJ/mol.52 We
performed molecular dynamics simulations of 82 small nanoparticles;
20 large nanoparticles; and a mixture of 41 small and 10 large
nanoparticles in three different NaCl salt molarities (0.5, 1, 2 M). This
range covers a wide variety of ionic strengths found in typical seawater
and wastewater with high salt concentrations.53,54 The simulation box
was considered periodic in the three directions with the average size of
25 × 25× 25 nm3. Styrene particles interact with other styrene particles
as well as water and ions via Lennard-Jones interactions. We used a
spherical cutoff of 1.4 nm for the Lennard-Jones interactions.
Coulombic interactions were modeled using Reaction-Field-zero
(RF-zero) with a spherical cutoff of 1.4 nm, and the relative dielectric
constant was set at 2.5. Both Lennard-Jones and Coulombic
interactions were smoothly shifted to zero beyond the cutoff. To
regulate the temperature and pressure, we utilized the Bussi et al.
velocity-rescaling thermostat and the Parrinello−Rahman barostat with
isotropic coupling and a coupling time constant of 12 ps.3 The
isothermal compressibility and reference pressure were set to 3 × 10−4

bar−1 and 1.0 bar, respectively. All simulations were performed using
the GROMACS/5.1.2 molecular simulation package.4 The results were
postprocessed using Python scripts.

The initial configuration of the system was energy minimized using
the steepest descent algorithm with a maximum force tolerance of
1000.0 kJ mol−1 nm−1, followed by a 100 ns canonical ensemble
(constant number of particles N, volume V, and temperature T)
simulation with a 10 fs time step for pre-equilibration. Three
independent isothermal−isobaric (constantN, pressure P,T) ensemble
simulations were then performed for each condition for 800 ns with a 10
fs time step. Simulation data was collected for the last 300 ns. This
duration of the production runs was adequate to ensure a robust
statistical analysis of the molecular configurations of the systems.

We determined the size distribution of the nanoparticle aggregates
that formed in different conditions in the simulations. Two polystyrene
particles were assigned to the same aggregate if the distance between

the center of mass of any of the constituent polystyrene beads in the two
nanoparticles was less than 3 Å. We also calculated their radial
distribution function, g(r). The g(r) is a measure of the probability of
finding a particle at a specific distance from a reference particle. The g(r)
is useful for studying the structure of particle aggregates.

■ RESULTS AND DISCUSSION
In SituMicroscopy of Diffusion- and Reaction-Limited

Cluster Aggregation. Aggregate Growth Curve. The
characteristic length (λ), determined from the autocorrelation
function, was utilized to study the aggregation kinetics of
micron-sized particles in both mono- and bidisperse systems.
Figures 1 and S2 depict the growth of the average cluster/
aggregate size (λ) over time under typical DLCA and RLCA
aggregation conditions, respectively. Throughout our experi-
ments, we notice that regardless of the molarity, there is a
noticeable delay in the aggregation process before it rapidly
accelerates (early stage). During this initial stage, the kinetics of
our experiments share similarities with the RLCA process. In the
following growth period (middle stage), the size of the
aggregates increases nearly linearly with time on a semilog
plot, indicating a power-law growth behavior. In the late stage,
the characteristic length (λ) reaches a saturated value due to a
finite supply of particles, consistent with prior research.49,50 In
both mono- and bidisperse systems, it is observed that there is a
transition from slow to fast aggregation. This can be explained by
the increased contact points between larger clusters, which leads
to a greater probability of cluster−cluster sticking as the clusters
grow. Despite the small probability of irreversible reactions
during the first contact, the phenomenon persists. Previous
studies have shown that the rate at which clusters grow can be
linked to the diffusion coefficient of individual clusters when the
growth process is dominated by cluster diffusion.55 Specifically,
if the particles are assumed to be 2D clusters diffusing by

Figure 1. A: Characteristic length λ of clusters as a function of time in bothmono- and bidisperse polystyrenemicrosphere (PS-MS) systems under fast
aggregation (DLCA) conditions with IS = 0.500 M. dp = 0.5 μm, 1.0 μm, and 0.5−1.0 μm are open squares, crosses, and spheres, respectively. A
bootstrap method was used to evaluate the error in experimental data. Data in growth phases were fitted with a power law in the form of ⟨λ⟩ = Ktβ,
where β is the growth exponent. Reflecting points τ1, τ2, and τ3 represent characteristic half aggregation times for experiments with dp = 0.5 μm, 1.0 μm,
and 0.5−1.0 μm, respectively. B: Data from (A) where time has been normalized, t/τi; growth phase collapse or in parallel indicates the similarity of
growth curves for both mono- and bidisperse PS-MS systems. C: A proposed mechanism of aggregation in a system with bimodal particle sizes.
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Brownian motion, a scaling analysis of the Stokes−Einstein
diffusivity equation yields a Smoluchowski growth exponent (β)
of 1/3 by β = 1/2(σ + 1), where σ is the 2D diffusion scaling
exponent, which equals to 1/2.55,56 These findings are consistent
with the mean growth exponent of 0.32 observed in both mono-
and bidisperse DLCA aggregation experiments, despite a slightly
higher growth exponent in the bidisperse system, as shown in
Figure 1. The results also indicate that the bimodal particle size
distribution shifts the growth curves, thus delaying the onset of
rapid aggregation in the bidisperse systems (Figure 1A).
However, normalizing the aggregation time (t) using a
characteristic aggregation time (t50) shows that the growth
curves either collapse onto each other or have the same slope
(Figure 1B), indicating similar aggregate growthmechanisms for
both mono- and bidisperse systems. This evidence suggests that
the primary particle size distribution has little effect on the
kinetics of the scaling behavior of aggregate growth but
significantly delays the onset of rapid aggregation. We propose
the following mechanism for how bimodal particle size affects
fast aggregation onset in bidisperse systems (Figure 1C): In the
initial stage (T0 ≈ 0), particles in both mono- and bidisperse
systems undergo Brownian motion. Due to the size-dependent
diffusion coefficients, small particles diffuse faster than large
particles. When particles come close to each other, they collide
and form aggregates. In the early T1 stage (T1 ∝ τ1 or τ2), which
corresponds to the onset of fast aggregation for monodisperse
particles, aggregates with fractal structure begin forming in the
system. However, in the bidisperse system, simultaneously
formed aggregates exhibit a wide range of morphologies,
including relatively small but compact aggregates formed by
large particles scavenging small particles and relatively large but
open aggregates composed of a large number of small particles
and a small number of large particles and with a structure close
to fractal nature (fractal-like). This broad variation in aggregate
structures is not so prominent in the monodisperse system,
resulting in the aggregates in the bidisperse system at this stage
not exhibiting a well-characterized fractal structure as an
ensemble. These aggregates with a broad range of morphologies
collide further and form larger aggregates. At the later stage T2
(T2 ∝ τ3), which corresponds to the onset of fast aggregation for
bidisperse particles, large aggregates with fractal structures are
finally formed. In other words, in the bidisperse system, it takes a
longer time or requires more primary particles to form
aggregates with DLCA structure. While the proposed
mechanism discussed above matches our experimental findings,
we acknowledge that more work needs to be done to firmly
establish the aggregation mechanism in bidisperse systems.
Moreover, in this study, aggregation processes for RLCA and
DLCA were initiated by adding IS at 50 mM and 500 mM,
respectively. It is important to note that these values are below
and above the Critical Coagulation Concentration (CCC)
determined for each system in the pre-experiments, respectively.
In the DLCA regime, we observed that the aggregate growth
follows a power-law behavior, with a growth exponent of 0.32,
which aligns well with the classic DLCA kinetics in the
literature.57,58 On the other hand, in the RLCA regime,
understanding aggregate growth kinetics is challenging. At low
IS in the RLCA regime, the average aggregate size grows
exponentially with time,55 whereas at relatively high IS in the
RLCA regime (also referred to as the intermediate regime
between RLCA and DLCA in the literature), the aggregate
grows according to a power law with an exponent varying
continuously within the range of IS.59 Due to the limited IS

scenarios used in this study, we cannot confidently fit the growth
curve to quantitatively test these relations. Further investigations
are needed to fully understand the RLCA kinetics.

Aggregate Structure and Morphology. Aggregate Aniso-
tropy. The time evolution of the aggregate anisotropy for typical
RLCA and DLCA aggregation experiments in both mono- and
bidisperse systems is presented in Figure 2A−B. The results

indicate that there is no systematic change in the anisotropy over
time as the aggregation proceeds, despite the different
mechanisms of aggregation. Therefore, it is justifiable to average
the measured anisotropy during the entire aggregate growth
under given experimental conditions to evaluate the effects of
aggregation mechanisms on the aggregate anisotropy. The
results indicate that the averaged anisotropy is influenced by the
mechanisms that control aggregation. The averaged anisotropy
determined in the DLCA regime is slightly larger than that in the
RLCA regime (Figure 2A−B). The results also indicate that the
anisotropy values of aggregates formed in the bidisperse system
are slightly smaller than those formed in the monodisperse
systems, particularly in DLCA aggregation experiments.
However, this difference is not significant compared to the
measured error. The results of the probability density function
(PDF) of the anisotropy (Figure 2C−D) measured at the late
stage of aggregation indicate that the anisotropy of aggregates
varies widely in both mono- and bidisperse systems.

Aggregate Fractal Dimension. Figure 3 shows typical
double-logarithmic plots of N = k(Rg/a)df (eq 3) for aggregates
investigated in this work. Aggregates exhibit scale invariance for
the large aggregates investigated in this study. However, small
aggregates appear to differ from the asymptotic scale invariance
of the larger ones with slopes larger than 2. This suggests that
small aggregates are dense and compact, and eq 3 cannot be used
to estimate the true df of these aggregates. Instead, we calculated
a perimeter-based fractal dimension (dpf) by A P d2/ pf ,60 where
A is the area of aggregate and P is the perimeter of aggregate. The

Figure 2. Evolution of anisotropy (A) as a function of time in both
monodisperse (dp = 1.0 μm) and bidisperse (dp = 0.5 and 1.0 μm)
systems under RLCA (A) and DLCA (B) regimes. Each point displays
the average A of all aggregates in an image captured at time t. C and D
represent the probability density function (PDF) of the anisotropy of
aggregates in mono- and bidisperse systems in the late stage of
aggregation, under RLCA and DLCA regimes, respectively. To
determine the PDF of A, for the RLCA monodisperse system,
approximately 686 aggregates were analyzed, while around 703
aggregates were analyzed for the bidisperse system. Similarly, for the
DLCA monodisperse system, nearly 514 aggregates were analyzed,
while roughly 504 aggregates were analyzed for the bidisperse system.
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real df (3D) of these compact aggregates can be further
determined through the following correlation: df = −1.5dpf +
4.4.60 Thus, for the RLCA regime, the df of small aggregates in
monodisperse (0.5 μm), monodisperse (1.0 μm), and bidisperse
(0.5 and 1.0 μm) are 2.6, 2.4, and 2.3, respectively. For the
DLCA regime, the df of small aggregates in monodisperse (0.5
μm), monodisperse (1.0 μm), and bidisperse (0.5 and 1.0 μm)
are 2.4, 2.6, and 2.7, respectively. Please note that it is widely
accepted that if the fractal dimension (df) determined from a 2D
projection is less than 2, it can represent the df determined from
a 3D system.11 We have chosen not to use dpf to quantify the
large aggregates because the correlation between dpf and df for
fractal structure is unknown. This prevents us from comparing
our results with the df in the existing literature. After analyzing
the data, it appears that the aggregates formed under the RLCA
regime are more densely packed than those formed under the
DLCA regime in monodisperse systems. The fractal dimensions
of these aggregates are consistent with the theoretical
predictions and experimental evidence available in the literature
for two-dimensional RLCA and DLCA.38,49 However, this trend
is not observed in the bidisperse system. In particular, large
aggregates formed under RLCA and DLCA regimes exhibit

similar fractal structures with df = 1.7. It was also observed that
small aggregates formed under the RLCA and DLCA regimes
exhibit significantly different structures and morphologies. The
df of small aggregates under the RLCA regime is 2.3 (dpf = 1.4),
whereas the df of small aggregates under the DLCA regime is as
high as 2.7 (dpf = 1.1). After closely examining these aggregates,
it was found that the small aggregates under the RLCA regime
are compact and mainly composed of small particles. This is due
to the high energy barrier preventing large particles from
interacting with small ones. On the other hand, the small
aggregates under the DLCA regime are more compact and
mainly comprise large particles that have gathered small particles
on the edge. This is because the significantly reduced energy
barrier in DLCA allows large particles to collide with small ones.
This explains why the small aggregates formed in a bidisperse
system have a larger fractal dimension in the DLCA regime than
that obtained in the RLCA regime. (Figure 3F and 3L). In
addition, based on the aggregation experiments studied in this
work, it appears reasonable to divide the anisotropy results into
two groups based on the fractal dimension. It is observed that for
aggregates there is a consistent decrease in anisotropy as the
fractal dimension increases (Figure 4C). To further investigate

how the anisotropy of large aggregates affects their fractal
dimension, we categorized the aggregates based on their
anisotropy value and calculated the fractal dimension for each
category using the scaling relationship described in eq 3. We
found that the mean fractal dimensions of aggregates in each
anisotropy category are very similar in both mono- and
bidisperse systems. Furthermore, it was observed that the
aggregates with higher anisotropy values tended to be below the
best-fit line for all the aggregates (Figure 4A−B). This results in
smaller values for the prefactor k, indicating that anisotropy does
indeed affect the prefactor k. In other words, for an aggregate

Figure 3. Structural analysis of aggregates in monodisperse and
bidisperse systems. Log−log plots of N as a function of Rg/a for the
aggregates formed under RLCA (A−C) and DLCA (G−I) regimes,
respectively. The results show that large aggregates can be best fitted by
the fractal scaling described by eq 3. However, the small aggregates
cannot be described by eq 3 because the slopes on the log−log plots are
larger than 2. For these small compact aggregates, we estimate a
perimeter-based fractal dimension (dpf) by A P d2/ pf ,60 where A is the
area of the aggregate and P is the perimeter of the aggregate (D−F and
J−L). The real fractal dimension (df) in 3D can be determined by df =
−1.5dpf + 4.4.60 For the RLCA regime, the df values of small aggregates
in monodisperse (0.5 μm), monodisperse (1.0 μm), and bidisperse (0.5
and 1.0 μm) are 2.6, 2.4, and 2.3, respectively. For the DLCA regime,
the df values of small aggregates in monodisperse (0.5 μm),
monodisperse (1.0 μm), and bidisperse (0.5 and 1.0 μm) are 2.4, 2.6,
and 2.7, respectively. Tables S2−S5 show the goodness of these fittings.
It is worth noting that the individual primary particles are excluded from
this analysis.

Figure 4.Number of primary particles, N, versus radius of gyration, Rg,
normalized by primary particle size a, for DLCA large aggregates in (A)
monodisperse and (B) bidisperse systems. The aggregates are classified
by the bins of anisotropy (demonstrated by colors). C: The averaged
anisotropy versus the fractal dimension determined from the aggregates
investigated in this study. The error bar represents the standard
deviations of df and A.D: The prefactor k versus A for individual DLCA
aggregates. The solid line represents the best fit line k = 2.70 × (A)−0.23

when df = 1.7.
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with fixed df, if anisotropy increases, k decreases and vice versa,
suggesting that local structure represented by k has an effect on
large-scale structure represented by anisotropy and vice versa. It
is worth noting that these findings are in agreement with the
importance of the prefactor k as a descriptor of aggregate
morphology, proposed by Heinson et al.51 who argued that
shape anisotropy affects the prefactor, rendering k as a shape
indicator. Moreover, we remark that anisotropies extend over a
large range of values, even for the same (df, k). Our results also
suggest an anticorrelation between A and k quantitatively. This
is demonstrated by the best-fit equation as k = 2.70(A)−0.23. The
average anisotropy of DLCA aggregates was measured to be ⟨A⟩
= 4.0, the equation above or equivalently the solid line in Figure
4D yields ⟨k⟩ = 1.96, in good agreement with previous
results.51,61 We further conducted the uncertainty analysis of
the estimated fractal dimensions, and the results show that the
95% confidence intervals (CI) of df for aggregates with A > 6 are
slightly larger than those of aggregates in the other categories.
This is likely due to the smaller size of aggregates in this category
for a typical DLCA experiment (Figure 5A). To confirm this, we

further resampled the aggregates in each anisotropy category
with a fixed sample size (118 aggregates). The results show that
the 95% CI of df is very close, indicating that the df of aggregates
from each anisotropy category has the same population
characteristics (Figure 5B). It is worth noting that the df of the
aggregate from the ensemble has a narrower confidence interval
than that from different anisotropy, mainly due to the larger
sample size. Furthermore, the PDFs of aggregate shape
anisotropy in both monodisperse and bidisperse systems are
similar, with the majority of aggregates being isotropic or close
to isotropic in shape (Figure 5C−D).
Aggregate Size Distributions. As the growth kinetics are

reflected in the aggregate size distribution, we have conducted
measurements of the size distribution of aggregates in both
mono- and bidisperse systems, along with its time dependence.
To facilitate direct comparison with theoretical predictions

(Figure 6), the cumulative cluster size distribution in both
mono- and bidisperse systems has been normalized by its mean
value as r/⟨r⟩. According to Smoluchowski kinetics, a classical
model that describes the time evolution of an ensemble of
particles as they aggregate, a characteristic analytical solution for
particle size distribution in the long-time limit can be written
as55,56

=
+

+F W W e( )
2

( 1)
( ) a W2 1 ( )2

(6)

= + +
+

W ( 1)
( 3/2)

( 2) (7)

where F(φ) is the analytical particle size distribution scaled to
the average particle size, φ = r/⟨r⟩, Γ is the standard Gamma
function, and σ is the scaling exponent for particle/cluster
diffusion. As we discussed in the growth curve section, we
assumed σ = 1/2 for 2DBrownian aggregates. Figure 6A displays
that the size distribution of the experimental aggregates in the
monodisperse system is in good agreement with the predictions
made by the Smoluchowski model. However, in the bidisperse
system, the aggregate size distribution is not precisely described
by the Smoluchowski model. Specifically, the Smoluchowski
model underestimates the number of aggregates that are smaller
than the average size and overestimates the number of
aggregates that are larger than the average size. Despite these
differences, the Smoluchowski model still provides a relatively
good approximation of the true aggregate size distribution in the
bidisperse system. We have found that these discrepancies are
due to the time-dependent Smoluchowski (collision) kernel.
The original Smoluchowski kernel relies on the spatial
correlations between different-sized aggregates and is under-
stood to be independent of time. However, upon examining the
aggregates of different sizes during various stages of aggregation,
we observe that these distributions are time-dependent (Figure
6B−D). The kinetic results have shown that primary particles
that are monodisperse tend to form aggregates with an
asymptotic fractal structure earlier than those that are bidisperse.
This leads to a reduction in the time dependence of the
Smoluchowski kernel in the monodisperse system, resulting in
good agreement with the model prediction. However, in the
bidisperse system, it takes longer to form aggregates with an
asymptotic fractal structure. Thus, the time effects on the kernel
become non-negligible, resulting in a noticeable discrepancy
between experimental observations and model predictions.
These results suggest that future studies are required to consider
the time-dependent spatial correlations between aggregates of
different sizes when applying the true time-dependent collision
kernel in the Smoluchowski model to predict the size
distribution of aggregates in a bidisperse system.

Simulation Results. We have studied the aggregation
behavior of polystyrene nanoparticles of two different diameters,
1.6 nm (small) and 3.2 nm (large) as well as their bidisperse
system using molecular simulations. In these simulations, we
varied the ionic strength of NaCl to investigate its effect on the
aggregation tendency of the nanoparticles. Figure 8 shows the
size distribution aggregates for the small and the large
nanoparticles in different NaCl salt concentrations. Figure 7C
shows snapshots of the equilibrium configurations of the small,
large and bidisperse systems in different salt concentrations. It is
observed that the aggregation increases with the salt
concentration for both the small and the large nanoparticles.
To understand the effect of salt concentration, we compared the

Figure 5. A: The estimated fractal dimension (df) and 95% confidence
intervals (CI) of large DLCA aggregates in monodisperse and
bidisperse systems. The number of aggregates in each anisotropy (A)
category represents the number of aggregates collected in each system.
B: The estimated df and 95% CI of large DLCA aggregates in
monodisperse and bidisperse systems. In this case, the number of
aggregates is fixed at 118 to eliminate the sample size effects on the 95%
CI of df. C−D: PDF of the A of large aggregates for each category in a
typical monodisperse (C) and bidisperse (D) DLCA experiment.
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radial distribution function, g(r), between the center of mass of
the nanoparticles (COM) with Na+, Cl− and with water (Figure
9). It is observed that both Na+ and Cl− ions are excluded from
the first hydration shell surrounding the nanoparticles. This
occurs because these ions are strongly solvated in water. The

solvation shell gets disrupted if the ions enter the first hydration
shell. Monovalent ions are known to form clusters as the ionic
concentration increases.62 These clusters of ions have much
larger excluded volume as single ions. Therefore, as the ionic
concentration increases, the depletion of these ionic clusters

Figure 6. A: The cumulative probability distribution of DLCA aggregates during the aggregation process in mono- and bidisperse PS-MS systems and
comparison with theoretical Smoluchowski distribution. To facilitate comparison, the aggregate size (r) was normalized by its respective mean size.
The aggregate size distribution at different growth stages was observed in different experiments: (B)monodisperse dp = 0.5 μm, (C) monodisperse dp =
1.0 μm, and (D) bidisperse (dp = 0.5 and 1 μm). It is worth noting that the aggregate size (r) represents the individual aggregate size at different stages,
as determined by Aa , where Aa is the aggregate area measured in real dimensions.

Figure 7. A: Snapshots of small (radius 0.8 nm) and large (radius 1.6 nm) spherical polystyrene nanoparticles.B: A snapshot of the initial configuration
of small polystyrene nanoparticles in the simulation system.Water molecules and Na+ and Cl− ions are not shown for clarity.C: Equilibrium snapshots
of the polystyrene aggregates as a function of NaCl salt concentration for the small particles (top row), the large particles (middle row), and the
bidisperse system (bottom row).
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from the nanoparticle surface enhances their aggregation.62 The
exclusion of ions from the solvation shell of the nanoparticles is
also observed in the bidisperse system shown in Figure 9. It
should be noted that the g(r) are normalized by the bulk density
of particles. At any distance r, the number of particles is given by
ρg(r), where ρ is the bulk density. This implies that though the
g(r) of Na-COM for the 0.5 and 1.0 M concentrations are
indistinguishable from each other, twice the number of Na+ ions
are excluded from the nanoparticles’ surface at 1 M
concentration as compared to 0.5 M concentration. Figure 10
shows the g(r) between Na+ and Cl− ions at different
concentrations and for the studied systems. A large peak is
observed at a distance of 4.75 Å, which suggests that at these
concentrations, the Na+ and Cl− ions exist as clusters.

■ CONCLUSIONS
This study aims to examine the formation of micro- and
nanosized plastic particle aggregates in aqueous systems with
one or two sizes of primary particles. Our experimental results
generally show that as the ionic strength increases in bothmono-
and bidisperse systems, there is a transition from RLCA to
DLCA-like phenomena in the kinetics of aggregation. The
scaling behavior of aggregate growth is not significantly affected
by the primary particle size distribution, but it does delay the
onset of rapid aggregation. The structural analysis shows that the
structure of aggregates formed in both mono- and bidisperse
systems follows a power law dependence with mean df,
consistent with DLCA aggregate fractal dimensions. This work
also involved usingmolecular simulation to study the interaction
between nanoparticles (NPs) of different sizes in aqueous
solutions containing high concentrations of monovalent salt. We

observe that as the ionic strength of the solution increases, the
aggregation tendency of the polystyrene nanoparticles is
heightened. This strong attraction is not the typical charge-like
electrostatic attraction but rather is due to the depletion effect of
clusters of ions. The results of this study indicate that particle
size distribution primarily influences the kinetics of aggregation
by delaying the start of rapid aggregation. This has potential
implications for water and wastewater treatment, suggesting that
the presence of particles of different sizes may necessitate
adjustments to retention time in order to achieve effective
coagulation and flocculation.
Lastly, it is essential to acknowledge the limitations of our

current study as follows: 1) the in situmicroscopic experimental
approach allowed us to observe aggregate growth and
characterize its structure directly, but it presented technical
challenges in dealing with a wide range of primary particle sizes.
Specifically, it is difficult to capture two particles of significantly
different sizes on the same focal plane when they are diffusing in
a liquid cell due to the effects of sedimentation. To mitigate this
issue, we opted to use two particles with sizes that are not
significantly different to minimize the effects of sedimentation
on the observation of aggregation kinetics. It is important to
note that by simulation, Goudeli et al.33 reported that increasing
the width or polydispersity of the primary size distribution
initially improves the collision frequency, but delays the
attainment of the asymptotic fractal-like structure and self-
preserving size distribution without altering them. These
findings align with our study and indicate that the results from
our study are applicable to systems with a broader particle size
distribution. Nevertheless, further research is encouraged to
validate and extend these findings to a broader range of micron-

Figure 8. Polystyrene aggregate size distribution as a function of NaCl concentration for the small particles (top row), the large particles (middle row),
and the bidisperse system (bottom row). The aggregation tendency increases with the salt concentration.
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and nanosized MP particles; 2) The study aims to determine
how the bimodal particle size distribution affects the formation
of their aggregates. The aggregation of microplastics and
nanoparticles in the real world is a complex process. This
study focused on using model polystyrene microplastic spheres
to exclusively investigate the effects of particle size distribution.
However, further research using naturally aged microplastics
and different conditions is encouraged to validate, modify, and
improve the findings. and 3) we also must mention that we
realized that our simulation system was relatively small, which
prevented us from obtaining a statistically robust description of
the structural features of the nanoaggregates. Thus, we did not

incorporate a structural analysis of the nano aggregates in our
manuscript. Future studies involving a large simulation system
should reveal the structure of nano aggregates formed by bi- or
poly disperse primary particles.
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Autocorrelation function; characterization of image
objects as small and large aggregate clusters; aggregate
size, radius of gyration, and characteristic length; and the

Figure 9. Radial distribution function, g(r), of the small (top row), large (middle row), and bidisperse (bottom row) polystyrene particles’ center of
mass (COM)with water andNa+ and Cl− ions. In each case, Na+ and Cl− ions are excluded from the first solvation shell around the nanoparticles. This
explains the increased aggregation tendency of the nanoparticles with the salt concentration.

Figure 10. Radial distribution function, g(r), between Na+ and Cl− ions at different concentrations and for the small nanoparticle, large nanoparticle,
and bidisperse systems. In all cases, a large peak at a distance of 4.75 Å is observed, which reveals that the Na+ and Cl− ions exist as clusters at these
concentrations.
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