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Abstract. This study advances the security of swarm robotics by exam-
ining the resilience of stigmergic communication in foraging robot swarms
against deceptive strategies. We specifically investigate the swarm’s vul-
nerability to attacks via misleading pheromone trails laid by detractor
robots, which significantly hinder foraging performance. Through simula-
tions, we evaluated the adverse effects of such attacks on resource collec-
tion and forager capture rates, highlighting a notable decline as the per-
centage of detractors increases. To counter these threats, we implement
a robust defense mechanism utilizing DBSCAN for density-based clus-
tering of pheromone trails, complemented by a cluster grouping method
that effectively isolates batches of detractors early in the simulation.
This approach incorporates an adaptive timing mechanism to discern
and counteract misleading trails, substantially mitigating forager cap-
tures and enhancing swarm foraging efficiency. Furthermore, we extend
our analysis by introducing obstacles in the simulation environment to
test the defense’s robustness under varied and complex conditions. These
experiments demonstrate that our defense strategy remains effective,
maintaining operational stability even when faced with additional envi-
ronmental challenges. This research not only underscores critical security
vulnerabilities in pheromone-based foraging algorithms but also sets the
foundation for developing more secure and resilient swarm robotics sys-
tems for real-world applications where robustness against both deceptive
strategies and environmental complexities is essential.
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1 Introduction
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Drawing inspiration from natural systems like ants, termites, and birds, current
research in swarm robotics spans behaviors such as self-organization [13,19],
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aggregation [3,4], object sorting [31,32], and foraging [14,15,18,21,25]. How-
ever, these tasks are all optimized for benign environments, assuming no mali-
cious activity. This paper aims to address the less explored aspects of security
and reliability [16], particularly focusing on the vulnerabilities of pheromone-
based foraging robot swarms to security threats like the ant mill phenomenon
[8,9] and intrusion attacks that exploit virtual pheromone trails to deceive
robots [5,27]. These vulnerabilities are crucial as they impact real-world appli-
cations in environmental monitoring, search and rescue, disaster recovery, and
military operations, demanding more robust and reliable swarm robotics tech-
nologies [2,20,22,36]. Our research dives into stigmergic communication, where
the environment is a medium for interaction, enhancing collective adaptabil-
ity but also exposing inherent vulnerabilities [5,27,29,35]. We investigate the
impact of detractors-hijacked robots laying misleading pheromone trails leading
to forager capture and removal, which hampers foraging efficiency. Our proposed
defense employs an enhanced Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) alongside an isolation strategy to effectively remove mul-
tiple detractors from the environment at once [12]. This novel application of
DBSCAN not only mitigates specific vulnerabilities but also broadens the secu-
rity protocols in swarm robotics and stigmergic communication.

The paper proceeds to detail past work on swarm robotics vulnerabili-
ties (Sect.2), the central-placed foraging model (Sect.3), the methodology for
addressing pheromone trail exploits (Sect.4), our experimental setup (Sect. 5),
and the evaluation of our experiments (Sect.6). We conclude with a summary
of our contributions and directions for future work (Sect. 7).

2 Related Work

Insect colonies utilize pheromone-based communication for coordination, which,
while effective, has vulnerabilities that various organisms exploit, leading to evo-
lutionary arms races [1,6,7,11,17,30,35]. A notable example is the “ant mill”
or “army ant syndrome,” where ants are trapped in a deadly loop [8]. Despite
evolved defensive strategies, ants remain susceptible due to their inability to
override instinctual responses to pheromone trails, highlighting inherent fragili-
ties in stigmergic communication [26,28,33].

Similarly, virtual pheromone trails in robotic swarms facilitate efficient coor-
dination but introduce vulnerabilities exploitable through signal manipulation
[14,15,18,21,23,25|. Emergent behaviors like the ant mill can undermine forag-
ing algorithms, suggesting that current systems are prone to dysfunction and
manipulation by malicious entities, known as “detractors,” who mislead robots
with indistinguishable false trails [5,9,27].

This paper builds on previous work by exploring how malicious robots may
disrupt stigmergic communication, assessing the broader implications for swarm
robotics security and proposing strategies to mitigate these risks. This focus
addresses the gap in research where the resilience of pheromone trails and their
susceptibility to interference in artificial systems have been minimally explored.
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3 Central-Placed Foraging

Central-placed foraging (CPF) is a well-established model where a nest acts as
a central collection zone within the search space, and robots exhibit four major
behavioral states [14]:

Departing: Robots leave the center, searching randomly or returning to pre-
viously successful locations using site fidelity or pheromone waypoints. Upon
reaching a target, robots transition to Searching.

Searching: Robots search using random walk [10]. Successful searches lead to
Surveying, while unsuccessful ones may end with a return to the center, deter-
mined by a probability p,-.

Surveying: Robots assess local resource density within a search radius rseqrch
(Table 1), recording the count k of resources.

Returning: Robots carry resources back to the center. The density of resources
Aip is taken into account to generate a probability (see Eq.1) of laying a new
pheromone waypoint. The robots then restart the cycle from Departing.

Behavioral parameters like Asy (site fidelity rate) and A, (pheromone way-
point rate) are managed by a Poisson Cumulative Distribution Function (CDF)
[15]:

. [K] \i
Pors(k, \) = e ) o
i=0

Decisions to act are triggered if PoIs(c, As¢) > U(0,1) or Pois(c, Ayp) > U(0,1),
leading to the use of site fidelity or the laying of a new pheromone waypoint.

The pheromone waypoints have an initial strength of 1 and decay exponen-
tially over time by w = e **»¢. Waypoints below a threshold v are removed,
maintaining only the most relevant paths.

(1)

4 Methodology

Attack Strategy. We introduce a scenario where malicious agents, known as
detractors, disrupt the foraging process by distributing misleading pheromone
trails. These trails lead benign foragers to designated capture sites, effectively
removing them from the foraging task as shown in Fig.1. Detractors mimic
benign foragers to avoid detection, but instead of reporting actual resource loca-
tions, they report coordinates within the vicinity of capture sites. This deceptive
strategy is inspired by historical hunting techniques such as buffalo jumping,
where the prey is pushed to fatal traps [34]. The attack’s effectiveness is mea-
sured by tracking the number of foragers misled to capture sites, and the rate
of their capture, providing insights into the impact of these tactics on overall
swarm efficiency.
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Fig. 1. A mid-simulation phase depicting the foraging scenario in ARGoS.

4.1 Defense Strategy

To counteract threats from detractors, our defense employs the DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) algorithm to ana-
lyze and cluster pheromone trails. This method helps identify clusters formed by
similar pheromone trail patterns, distinguishing between those laid by genuine
foragers and detractors.

DBSCAN Implementation: We apply DBSCAN to the spatial coordinates
given by the pheromone trail waypopints. We configure DBSCAN with a search
radius € equal to the robots’ search radius for spatial relevance. The minimum
points threshold minPts is set to 2, due to the expected data sparsity in small-
scale swarm scenarios.

Cluster Grouping: Post-DBSCAN clustering, we construct a graph to link
clusters based on common creator IDs. The nodes represent individual clusters,
and the edges are formed between the nodes if their associated pheromone trails
share at least one common creator ID. Using this graph model depicted in Fig. 2,
we create larger cluster groupings to facilitate the identification robots who are
exhibiting similar trail laying behavior.

Travel Time Estimation and Adjustment: In order to detect and flag mis-
leading trails, we incorporate a travel-time estimation strategy. Each pheromone
trail laid by robots includes an estimated travel time calculated based on the
distance to the destination and the robot’s average speed. When a robot follows
a trail, the actual time taken to travel is recorded and compared against the
estimated time. Significant deviations suggest potential misleading trails, trig-
gering an isolation event for the trail creator and other robot’s associated with
the flagged trail’s cluster group.
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Fig.2. A graphical representation of cluster connectivity based on common creator
IDs.

This strategy involves updating our understanding of trail legitimacy contin-
uously: If the actual travel time consistently exceeds the estimated by a signif-
icant margin, it suggests the presence of a misleading trail. However, obstacles
and collisions can affect travel time and must be taken into account. Therefore,
we update the estimated travel-time using a simple feedback loop taking into
consideration the measured travel time when a robot returns. The estimate is
only updated when a robot returns after the current estimated travel time of
the trail.

Isolation and Reintegration: A ‘strike’ is given to all robots associated with
a cluster group when a robot does not return within the estimated travel time of
one of the trails within the group. Accumulating a predefined threshold of five
strikes (determined empirically) results in the robot’s temporary isolation from
the swarm to prevent further disruption of foraging activities. This threshold
ensures a balance between prompt response to threats and the minimization of
false positives, essential for maintaining swarm integrity.

However, if a forager returns on a trail within a flagged cluster group after
its estimated travel time, the trail creator and other robots associated with the
trail’s cluster group are reintegrated (if isolated) or have a ‘strike’ removed. This
addresses false positives, allowing dynamic adaptation to new information and
maintaining operational efficiency.

5 Experiment Setup

We utilize the ARGoS multi-robot simulator to conduct our experimental stud-
ies [24]. The experiments are designed to evaluate the impact of detractor behav-
iors and the effectiveness of our proposed defense mechanisms under various sce-
narios, with experimental parameters detailed in Table 1. Conducted under con-
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trolled settings with consistent arena sizes, resource clusters, and robot numbers,
our experiments ensure repeatability and reliability. Key assumptions include
uniform robot capabilities, randomized resource distribution, and specific detrac-
tor behaviors to isolate the effects of variable parameters on the foraging effi-
ciency and defense effectiveness.

Experiment 1 - Pheromone Trail Dynamics: The first experiment inves-
tigates how the rate of laying pheromone trails, denoted as Ay, for foragers
and Ay for detractors, affects the foraging performance and susceptibility to
attacks. We aim to determine the most impactful settings on resource collection
efficiency and forager capture rates, setting the stage for robust testing of our
defense strategies in subsequent experiments.

Experiment 2 - Detractor Impact Analysis: In Experiment 2, we assess
the resilience of our defense strategy by varying the number of detractors (ng)
and adjusting the pheromone lay rates for both foragers and detractors. This
setup allows us to observe the direct effects of increased detractor presence on
the foraging process and the efficacy of our defense mechanisms under escalated
threat conditions.

Experiment 3 - Obstacle Dynamics: Additionally, a third experiment intro-
duces environmental obstacles to evaluate the robustness of our defense under
more complex and realistic conditions. We manipulate the obstacle density (n,ps)
and distribution patterns (dgps ), either randomly or in an annular configuration,
to test how physical barriers affect the foraging algorithms and the defense sys-
tem’s capability to adapt and maintain effectiveness.

Table 1. Consolidated Experimental Parameters

Parameter/ Exp. 1 ‘Exp. 2 ‘Exp. 3 Description

Darena  (10,10,1) Foraging area dimensions (z,y, 2)
Dejuster (6,6) Resource cluster size (I, w)

Nfg 24 # of foragers

nas 25% 110%,20%,30%,40%,50% 25% # of detractors based on n g

Nel 8 # of resource clusters

Nobs N/A ‘0, 4, 8,12, 16 Density of obstacles

Teenter 0.25 Radius of the center

Tresource |0.05 Radius of resource

Tsearch 4 - Tresource Foot-bot search radius

Tes Teenter /2 Capture site radius

Atg 1, 4, 8, 124 Lay rate of pheromone trails for foragers
Adt 1,4, 8,121 Lay rate of pheromone trails for detractors
dobs N/A Random, Annular/Obstacle & resource distribution

€ T'search DBSCAN cluster neighborhood radius
minPts |2 DBSCAN minimum points per cluster




Misleading Pheromone Trails 313

6 Results

6.1 Experiment 1: Evaluation of Pheromone Trail Dynamics

The first experiment focused on varying the rates of laying pheromone trails,
Afg and Age, and their effects on foraging performance. Figure 3a illustrates the
impact on resource collection efficiency and forager capture rates over 50 runs.
The tested rates were 1, 4, 8, and 12, with the smaller values indicating a higher
frequency of trail laying.

Key findings include: 1) At Ayg, Agz = 1, resource collection was at 61.61%,
and the forager capture rate was high at 88.75%. 2) Increasing the rate to 4
resulted in a slight increase in resource collection to 61.82% and the highest
capture rate of 92.50%. 3) At a rate of 8, the resource collection decreased to 54.
71%, and the forager capture rate decreased to 72.92%. 3) The 12 rate showed
an increase in resource collection to 73.19% and a significant reduction in forager
captures to 14.31%.

These results underscored the risk associated with higher trail laying fre-
quencies, with a rate of 4 selected for further testing in Experiment 2 due to its
pronounced impact on forager captures.
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Fig. 3. (a) The foraging performance and foragers captured across different rates of
laying pheromones while under attack. (b) Detractor Isolation Rates.

6.2 Experiment 2: Evaluation of the Defense Strategy

Experiment 2 assessed the defense strategy against varying levels of detractors,
from 10% to 50% of the swarm. Figure 3b presents the performance of the for-
aging system with and without the defense mechanism.

The findings of Experiment 2 include: 1) Without detractors, the base-
line foraging efficiency was approximately 85%. 2) With detractors, efficiency
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decreased to 57.92% at 10% detractors and further to 43.66% at 50% detractors.
3) The defense improved foraging performance by 16.06% at 10% detractors and
by 12.33% at 50% detractors. 4) Capture rates reduced significantly with the
defense, especially noticeable at higher detractor levels.

The defense showed substantial effectiveness in mitigating detractor impacts,
confirming its capability to adapt and counteract increasing threats.

Forager Capture Dynamics: Figure4a presents the fluctuating rates of for-
ager captures per minute under various detractor levels, highlighting the defense
mechanism’s responsiveness. Notable points include: 1) Forager captures peak
early but reduces to near-zero levels beyond minute 16, indicating effective threat
neutralization. 2) At 10% detractors, the capture rate peaks at 0.866 per minute
by minute 4, then decreases steadily to 0.033 by minute 15. 3) At 50% detrac-
tors, the capture rate reaches a higher peak of 2.6 per minute by minute 4, then
drops sharply to nearly 0.0 by minute 16.
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Fig. 4. Dynamics of foragers captured and detractors isolated over time in Experiment
2.

Detractor Isolation Dynamics: Figure4b shows the frequency of detractor
isolation events per minute, demonstrating the precision and efficiency of the
defense strategy: 1) Isolation events decrease to virtually none after minute 16,
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showcasing the prompt efficacy of the defense. 2) At 10% detractors, isolation
rates are minimal, peaking only at 0.066 at minute 11. 3) Increased percentages
of detractors lead to higher isolation rates, with 20% peaking at 0.133 by minute
7 and 30% reaching a peak of 0.5 by minute 5, indicating a scaled response to
greater threats.

6.3 Experiment 3: Robustness of Defense in Varied Environments

In Experiment 3, the robustness of the defense was challenged by introduc-
ing environmental obstacles, which tested the system’s adaptability to physical
changes that could impact navigation and the effectiveness of pheromone trails.
The defense mechanism proved resilient across various obstacle densities, effec-
tively maintaining foraging efficiency and minimizing forager captures.

The performance in environments with different obstacle densities showed no
significant degradation in the defense’s ability to protect the foragers. This indi-
cates that the system is not only effective under direct attacks but also adaptable
to complex operational conditions that include physical barriers. This resilience
is crucial for real-world applications where environmental unpredictability is
common.

These findings emphasize the defense’s proficiency in maintaining operational
stability and highlight its potential for deployment in dynamic and challenging
real-world scenarios where both security threats and environmental obstacles are
prevalent.

Figure5 shows 1) a peak in “Total Resources Collected” at 66.26% with
a standard deviation of 7.78 when faced with sixteen obstacles, suggesting a
resilient adaptation to navigational challenges. 2) “Total Foragers Captured”
remained relatively stable despite increased obstacle density, with minimal mean
capture rates fluctuating slightly, demonstrating the defense’s effectiveness under
varied conditions. 3) The “False Positives Detected” metric was stable across dif-
ferent obstacle densities, indicating that the defense system maintained accuracy
in threat detection even with environmental complexity. 3) The ‘final Unive-
locity’ exhibited minor variations, reflecting the system’s ability to adapt to
increased navigational challenges posed by obstacles.

These findings underscore the defense mechanism’s robustness, not only in
terms of managing detractor threats but also in handling environmental factors
that might complicate navigation and communication within the swarm. The
detailed results of Experiment 3 provide critical insight into defense capabilities,
strengthening its effectiveness and adaptability under complex and dynamically
changing conditions, confirming the readiness of the system for deployment in
real-world scenarios where natural and artificial obstacles are present.
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effectiveness.

7 Conclusion

This study substantially advances the field of swarm robotics by addressing
vulnerabilities in foraging algorithms exposed to deceptive strategies such as
misleading pheromone trails. Our investigations were articulated through a series
of experiments.

In Experiment 1, we observed that different pheromone trail laying rates
significantly affected foraging efficiency and forager capture rates (Fig. 3a). The
most notable findings were at the lay rates of 4 and 12, which represented the
extremes in forager capture rates and resource collection efficiency, respectively.
Experiment 2 demonstrated the effectiveness of our defense mechanism, which
significantly mitigated the impact of attacks at various detractor levels (Fig. 3b).
The defense strategy effectively improved foraging performance by up to 16.07%
and reduced forager capture rates by up to 65.69%, even as the detractor per-
centage increased. This highlights the defense’s adaptability and robustness in
maintaining swarm functionality under attack scenarios (Fig.4a and Fig. 4b).

Experiment 3 tested the defense’s resilience against environmental challenges
and showed that while obstacles affected foraging efficiency, they did not compro-
mise the defense’s effectiveness (Fig. 5a and Fig. 5b). This indicates the defense
mechanism’s capability to operate effectively in complex environments.

These results not only underline the efficacy of our defense mechanism in
rapidly and efficiently isolating detractors but also emphasize the importance
of designing swarm robotics systems that are secure, resilient, and adaptable
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to various operational threats. The manipulation of virtual pheromone trails
poses significant challenges; however, our approach offers a potent countermea-
sure, establishing a foundational strategy for enhancing the robustness of for-
aging algorithms against pheromone-based attacks. This research contributes
to a broader understanding of the integration of safety and security measures
into swarm robotics at the developmental stage, ensuring that these systems
are prepared to face real-world operational challenges. Future work will focus
on enhancing the scalability and efficiency of our defense mechanisms, exploring
applications in more dynamic environments, and possibly integrating advanced
machine learning techniques to further refine adaptability and threat detection
capabilities.
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