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Abstract—Consider the setting of multiple random walks
(RWs) on a graph executing a certain computational task. For
instance, in decentralized learning via RWs, a model is updated
at each iteration based on the local data of the visited node and
then passed to a randomly chosen neighbor. RWs can fail due to
node or link failures. The goal is to maintain a desired number
of RWs to ensure failure resilience. Achieving this is challenging
due to the lack of a central entity to track which RWs have failed
to replace them with new ones by forking (duplicating) surviving
ones. Without duplications, the number of RWs will eventually go
to zero, causing a catastrophic failure of the system. We propose
a decentralized algorithm called DECAFORK that can maintain
the number of RWs in the graph around a desired value even
in the presence of arbitrary RW failures. Nodes continuously
estimate the number of surviving RWs by estimating their return
time distribution and fork the RWs when failures are likely to
happen. We present extensive numerical simulations that show
the performance of DECAFORK regarding fast detection and
reaction to failures. We further present theoretical guarantees
on the performance of this algorithm.

I. INTRODUCTION

Decentralized settings consist of a collection of users who
cooperate to accomplish a given task. Users are modeled by
vertices on a graph. Each pair of users that can communicate
are connected by an edge. Since there is no central node
coordinating the cooperation, the system functions as follows.
A virtual token decides which user can run computations.
The user holding the token runs local computation, updates
the task, and passes the task and the token to one of its
neighbors chosen randomly. This repeats until the task is
declared accomplished. An example is decentralized learning
[1]-[4]. The computational task is training a neural network on
the union of the users’ data. The user holding the token runs
local iterations, updates the model, and passes it to a neighbor
until some convergence criterion is met. When moving, the
token draws a random walk (RW) over the graph.

Despite the various applications of RWs on graphs, e.g., au-
tonomous vehicles and network crawlers, our main motivation
for studying RWs stems from their application in decentralized
learning. RW-based learning algorithms are proposed as a
communication-efficient alternative to Gossip algorithms [5]-
[11] that requires every node to run local computations and
broadcast its updated model to all its neighbors. RW-based
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learning algorithms are key in distributed communication [12],
[13], notably for decentralized model updates in distributed
learning [1], [2], [14]. Research on decentralized algorithms
with RWs has primarily addressed common anomalies like
delays [15]. A trade-off between the advantages of RWs and
Gossip-approaches is studied recently in [16].

Despite recent progress on RW-based learning algorithms,
the challenging task of guaranteeing resilience to failures is, to
the extent of our knowledge, not yet studied in the literature.
It is enough for the node, or communication link, holding
the token (RW) to fail to cause a catastrophic failure, losing
all progress made thus far. Guaranteeing resilience against
catastrophic failures is, hence, paramount to decentralized
settings using RWs.

The main challenge in guaranteeing resilience to failures is
the absence of a central entity orchestrating the process. A
naive solution is to run multiple RWs in parallel. However,
since no central entity is tracking the RWs, after certain
failures occur, all RWs may fail, leading to a catastrophic
failure. Hence, a decentralized mechanism allowing the nodes
to dynamically and independently adjust the number of RWs
in the system is needed. This motivates us to pose the question
of how to devise decentralized algorithms that can maintain at
any time a desired level of redundancy (multiple RWs running
in parallel) in the system, by quickly reacting to failures and
dynamically creating RWs, all this without making any a priori
assumptions about the statistics of failures.

The designed algorithms must satisfy the following rules:

Rule 1: No central entity can observe and communicate
with all the nodes in the graph. Moreover, nodes can only
communicate with their neighbors.
Rule 2: RWs cannot directly communicate with each other!.
Rule 3: A RW can be forked or terminated by the currently
visited node. When forked, an independent duplicate copy of
the RW is created.

A straightforward solution here can be to let each node
independently fork (create a duplicate copy of) an RW after a
prescribed time T to replace any possible failure that may have
occurred. While such an algorithm satisfies our three rules
above, it has the following undesired drawback that we want
to avoid: either the network is flooded with an ever increasing
number of RWs (for small 7T") or all the RWs eventually fail

ILe., the currently visited nodes by the RWs cannot directly communicate
with each other outside the graph. Otherwise, the problem can be easily solved
by letting the RWs regularly ping each other to indicate that they are still alive.
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Fig. 1: Performance of DECAFORK in maintaining the number of
random walks (RWs) Z; around a desired value Zp; = 10. The
graph is a random 8-degree regular graph with numbers of nodes
n € {50,100, 200}. RWs can fail arbitrarily and simultaneously. We
induce two failure events at ¢ = 2000 and ¢ = 6000. DECAFORK
immediately reacts to failures and starts creating new RWs by forking
surviving ones until Z; stabilizes around Z. Standard deviations over
50 simulation runs are depicted by shaded areas.

(for large T'). That is because the failures are arbitrary with no
assumption on their statistics that could help with designing 7.
Our objective is to design a decentralized algorithm that avoids
these two extreme cases> and guarantees over time a constant
number of RWs in the graph (see Fig. 1). While decentralized
learning is the main motivation of this work, we abstract
this aspect and focus on the robustness to failures. Learning
aspects, such as the convergence speedup from multiple RWs,
are deferred to future work.

Contributions: In this paper, we propose DECAFORK, a
novel decentralized (randomized) algorithm forking RWs, ca-
pable of detecting RW failures and replacing them through
forking. DECAFORK satisfies Rules 1-3 and does not assume
any specific failure model. The number of RWs in the graph is
maintained around a desired value. The main intuition is that
nodes continuously estimate the current number of surviving
RWs by estimating their return time distribution, i.e., the time
it takes for an RW to return to a certain node after having
left it, and forking the RWs when failures are likely to have
happened. An important figure of merit is the reaction time
representing the time the algorithm takes to bring the system
back to the desired number of RWs after failures occur (see
Fig. 1). We prove a bound on the reaction time of DECAFORK,
derive guarantees that our algorithm will not flood the network,
and study the tension between these objectives. Our numerical
results confirm our theoretical findings. We defer the reader
to the appendix for all proofs and additional experiments.

II. SYSTEM MODEL

Graph: We consider a system of n nodes collaborating in a
decentralized fashion to run a certain compute task. Each node
possesses local data and can communicate only with a subset
of the other nodes. We model this system by an undirected
graph G = (V, ) with n vertices V = {1,...,n} representing
the nodes and the set of edges (links) & comprising of all
pairs of nodes (4, j), (j,¢) that can share information. We will

2Evidently, if all the RWs fail at the same time, this would be a catastrophic
event that no algorithm can recover from.

assume that graph G is connected® making the resulting RW's
irreducible [17]. The degree deg(%) of a node i € V is defined
as the number of its neighbors, i.e., deg(i) = [{(7,7) € £}

Random Walks: We are interested in tasks that can be
accomplished by an RW carrying a token message on the
graph. At discrete time steps, only the node holding the token
(the currently visited node) may run some computation and
update the message. Then, it passes the updated token message
to one of its neighbors chosen randomly according to a fixed
transition matrix P. We consider simple random walks, where
the node to whom a node sends the token is selected uniformly
at random from all neighbors. This is repeated until certain
stopping criteria are met. We abuse nomenclature and refer to
the token as the Random Walk RW. Since we consider multiple
RWs, each RW, indexed by k, is distinguishable by the nodes
they visit through a unique identifier.

Failures of Random Walks: Random walks on the graph
may fail arbitrarily. Potential reasons include the nodes or links
being temporarily down leading to the loss of the token when
being passed to the next node. Similarly, a random walk can
fail due to queue or buffer overflows, or the node currently
holding the token may face processing issues, making it
impossible to pass on the token. We want an algorithm that
can dynamically adapt to any number of failures occurring
over time. Therefore, we do not make any assumptions on the
probabilistic model of the failures. In particular, multiple RWs
can also fail simultaneously.

Forking: To avoid catastrophic failures (i.e., losing all the
RWs), an RW is allowed to be duplicated in the following way.
After updating the RW, the currently visited node will make a
duplicated copy of the RW that walks on the graph according
to the transition matrix P independently of the original one.
The number of random walks Z; at time ¢ is a random variable,
whose realization is subsequently referred to as Z;.

Definition 1 (Forking an RW). A forking event occurs when
a node decides to create an identical copy of the RW it holds
and propagates both RWs in the network independently.

The objective is to design a fully decentralized algorithm
that abides by Rules 1-3 and maintains Z; around a desired
target Z, i.e., Pr(|Z; — Zo| < ) ~ 1 for a small x > 0, even
after failures occur. The challenge is to achieve a trade-off
between frequently forking RWs and flooding the network,
or seldomly forking RWs and risking a catastrophic failure.
Hence, the forking strategy must ensure that: the redundancy
does not significantly exceed Zj; and at least one RW main-
tains activity after a failure event. This is accomplished by
rapid detection and reaction times to failure events.

For the optimal functioning of our algorithm and the validity
of our theoretical results, all Z; random walks should have
been active for long enough to have visited each node at least
once before the first failure of an RW. Apart from this assump-
tion, our algorithm does not rely on any assumptions about the
graph structure. For a tractable theoretical analysis, we will
later introduce some required assumptions in Assumption 1.

3If the graph is not connected, our study can be applied separately to each
connected component.
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III. DECAFORK

We introduce DECAFORK, a decentralized algorithm that
forks RWs probabilistically to avoid catastrophic failures
without flooding the network with RWs. DECAFORK works
as follows. The network starts with a target number Z; of
RWs*. At every time instance, when a node receives an RW,
it estimates the number of active RWs in the network. If
this number is too low, the node forks the visiting RW with
probability p = 1/Z; so that, on average, at most one RW is
forked at a given time.

To estimate the number of RWs in the system, we rely
on an RW’s hitting time and return time. The hitting time
H, ;(k) of an RW k at node ¢ is the random variable that
denotes the first time the RW gets to node 7 starting from
node j. Let vt(k) be the node visited by RW k at time ¢, we
can define the hitting time as H; j(k) = min{t € N, v§’“) =
i|vék> = j,vik),...7vﬁ)l # i}. Furthermore, the random
variable R;(k) = H,; (k) describes the first return time of
a random walk to node % after leaving node 1.

We assume that RWs walk on the graph independently.
Hence, they have independent and identically distributed hit-
ting and return times. Therefore, we focus on one random
variable R; and drop the dependency on k. We do the same
for H; ;. To have a refined estimate for I?; and its distribution,
every empirically observed return time for every RW will
contribute to the estimate of the random variable R;. Hence,
the algorithm requires an initialization phase without RW
failures so that the Zj initial RWs have circulated the graph
sufficiently for the nodes to have reasonable estimates of the
return time distribution, at least until each RW visited each
node at least once.

To measure the empirical distribution of the return time
R;, each node ¢ keeps track of the time it has last seen RW
k, denoted by the random variable L, j(t). This variable is
created as L; 1 (t) = t1 at time ¢; when RW £ first hits node
i. Then, at time ¢, L; ;(¢) is updated as L; ;(t) = t if and
only if RW £k visits node 7 at time {. When an RW £k visits
at time ¢, before updating Li,k(t), each node ¢ measures a
sample of R; by computing ¢t — L; (¢) to build an empirical
distribution of R;. Let Eg, () be the established empirical
cumulative distribution function (CDF) of the return time of
an RW at node 7 on the graph G. We call survival function the
distribution f(t — L; x(t)) := 1 — Fr,(t — L; x(t)) denoting
the estimated probability of RWs returning after time ¢, i.e.,
Pr(R; >t — Lix(t)).

Since L;j(t) is a random variable, the function f(¢t —
L; 1.(t)) representing the survival probability is also a random
variable. Using R;, each node ¢ maintains an estimate of Z;.

Forking strategy: In DECAFORK, only nodes visited by an
RW can fork the visiting RW>. Let node i be visited by RW
k at time t. Let £;(t) be the set of indices of RWs that have

4This can be instantiated by one node creating Zg RWs in the beginning.
SIf multiple RWs visit a node, the node chooses one of them and follows
the detailed steps.

DECAFORK: Executed when RW £ visits node ¢ at time ¢

Require: ¢, Zy, k, t, L;(t), VL € L;(t) - L; o(t),
if k € £;(t) then
Add t — L; ,(t) as sample for the distribution of R;
Update L; (t) <t
else Create L; ;(t) =t
Li(t) + L;(t) U{k}
end if
Create 0;(t) = 1, an estimate of the number of RWs
for £ € L;(t)\ {k} do
Calculate the survival probability f(t — L; ¢(t))
of the return timg R;
Update Qz(t) — 91 (t) + f(t — Lz,g(t))
end for
if 0;(t) < € then
Fork RW k with probability p = Z%)
end if

visited node ¢ until time ¢. To estimate Z;, node ¢+ computes

Yo flt=Liet).

eeLi(t)\{k}

As we show in the sequel, the value of 0;(¢) serves as an
estimate of Z;/2. For a predetermined parameter ¢ > 0, if
él(t) < &, the node declares that Z; < Z;. To avoid flooding
the network, i.e., avoiding that all nodes fork simultaneously,
node i forks® RW k with probability p = 1/Z,. To distinguish
the random walks, each RW, even the forked one, is given its
own unique identifier.”

The difficulty lies in designing the parameters ¢ and p,
which should facilitate both (i) early detection of failures and
consequently forking of RWs; and (ii) avoiding forking when
the number of walks is Z; or above.

DECAFORK is summarized in the algorithm above, and its
performance on a random regular graph is depicted in Fig. 1.
For the 50 numerical simulations, we generated 8-degree regu-
lar graphs, for different numbers of nodes n € {50, 100,200}
and Zy = 10 desired RWs on the graph. At time ¢ = 2000
and ¢ = 6000, we impose failure events that deterministically
result in the failure of 5 and 6 RWs, respectively. The value of
e € {1.85,2,2.1} is well-tuned for the respective number n.
We observe the desired behavior of forking RWs after the
failure events. Even though several RWs fail, the recovery
process, on average, does not lead to an undesired increase
beyond Z,. Without forking, the second perturbation would
lead to a catastrophic failure. Intuitively, the smaller the graph,
measured by n, the faster the reaction time to failure events.
This is because Fi, (t) is confined to a smaller support.

Fig. 2 depicts the performance of DECAFORK for different
values of € and n = 100 nodes through numerical experiments.
Different choices for ¢ illustrate the trade-off between reaction

0:(t) =1/2 +

SForked RWs behave immediately like active ones leaving the forking node.

7Such an identifier can be the index of the original random walk, i.e.,
k € [Zo], at the beginning. When a node 4 forks a random walk at time T,
it appends its own identifier and the time 7. of forking.
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Fig. 2: Average simulation results for 50 runs on a 8-degree random
regular graph with n = 100, and two perturbation events at ¢ = 2000
and ¢ = 6000. Shaded areas depict standard deviations. Different
choices for ¢ show the trade-off between reaction time and undesired
forks beyond Zy = 10.

time and undesired forks beyond Z, = 10, i.e., objectives (i)
and (ii), respectively.

Note that DECAFORK can be run on any connected graph
and does not make any assumption on the distribution of the
return time R;, which is estimated on the fly. We verified
this fact through numerical simulations® on other families of
graphs, such as Erdos Rényi and Power Law graphs.

We have also tested simpler forking policies where a node
compares the time since a random walk visited last to a
threshold above which a new RW is forked probabilistically.
The challenge in such algorithms is that the distribution of
the return time depends on the graph and on the location of
the nodes within the graph, making finding a good threshold
for each node a challenging task. Our proposed approach in
DECAFORK is less sensitive to the actual return time distribu-
tion, thus simplifying the parameter selection and improving
the stability of the approach to different graph topologies. In all
experiments, DECAFORK significantly outperformed alterna-
tive forking decision rules. Other algorithms we investigated
either led to a massive blow-up of Z;, hence to a network
overload, or were unable to cope with arbitrary failure events.

Remark 1. To speed up the initialization phase and the
algorithm’s precision, the empirical distribution f(t— L; j(t))
can be replaced with the analytical survival function. Such
results are known, e.g., for random regular graphs [18]. In
this case, it is sufficient that each RW has visited each node
at least once ahead of the first failure.

IV. TRADING REACTION TIME VS. UNDESIRED FORKING

DECAFORK exhibits good performance regarding the re-
action to failure events with an appropriate choice of e.
We analytically analyze the behavior of the algorithm in
the sequel. We first investigate the average of the estimation
f(t—L; k(t)) in the case of a stable number of active random
walks K on the graph, and then show the tension between
the reaction time to failures and the probability of reaching
Zy > Zy for any t > 0 immediately after the start of the
algorithm.

8The additional simulations and the proofs required in the next Section are
omitted for brevity. They will be provided in an extended version.

For our analysis, we require knowledge of the full distri-
bution of the return time R; and the first hitting time H; ; of
RWs. The literature on such distributions is rare, with some
exceptions. In fact, our assumptions’ are justified by recent
results on the distribution of first return and hitting times of
RWs on random regular graphs [18], [19]. It is shown that both
R; and H; ; exhibit a behavior similar to a geometric distri-
bution. For R;, retroceeding trajectories, i.e., those that return
to node ¢ the same way they left, affect the distribution for
small realizations of I?;. This relies on combinatoric arguments
that we will neglect for tractability purposes. The dominating
part of the distribution stems from non-retroceding trajectories,
which provably yield an exponential behavior [18]. This is
underlined by our experiments, where random regular graphs
exhibit a distribution that can be well-approximated by a
properly parameterized geometric distribution.

For the theoretical analysis, we study a continuous re-
laxation thereof, which serves as a proxy for the actually
discrete random variables due to the nature of the discrete
time steps. With this assumption, we can precisely describe the
distribution of the estimation 6;(¢). We choose an exponential
distribution since it facilitates a rigorous and tractable analysis
of the performance of the algorithm while being the continuous
analog to the geometric distribution. However, it is worth
noting that our analysis does not rely on the memoryless
property of the exponential distribution and can hence be
generalized to different types of distributions, whose CDF is
invertible, following the same methodology.

Assumption 1. Based on the discussion above, we make the
following assumptions for our theoretical analysis:

o The return time of RWs are independently and identically
distributed according to R; ~ exp(\,.)."°

o The first hitting time H; ; for random nodes i and j of a
forked RW k is distributed according to H; ; ~ exp(A,).

Knowing the analytical survival function, for the following
analysis we replace f(t — L; ;(t)) =1 — Fr,(t — L; x(t)) by
the exact distribution, i.e., 1 — Fg, (t — L; 1(¢)).

A. The Average of the Estimator 0;(t)

We first verify how the estimator 0;(¢) resembles the actual
number of active random walks Z; at time ¢ in the absence of
terminations and forks, i.e., when Z; is deterministic.

Proposition 1. For a constant number Z; of RWs active for
an infinitely long time, under Assumption 1 and replacing the
empirical distribution of R; by its analytical counterpart, the
estimator 0;(t) satisfies 2E[0;(t)] = Z,.

Proof. For any RW ¢ and any ¢, let r; := ¢ — L; ¢(t) be the
time passed since RW ¢ was last seen at node ¢. Hence, we
have f(t — L; ¢(t)) = Pr(R; >t — L; ¢(t)) = Pr(R; > ry).
Since the RWs are independent, we can assume that a node ¢
evaluates the survival function of RW ¢ at a random point ¢ in

Note that with minor adaptation, our analysis can similarly be carried out
for other types of return and first-hitting time distributions.

10This assumption can be relaxed to capture different distributions for
different nodes.
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time. This point in time is when a random walk k # ¢ visits
node ¢, which is random and independent of ¢. Hence, the
observed 7; is a random sample itself following the distribution
of R;. Consider now K RWs that have been active for an
infinitely long time such that each has visited each node
i € [n] at least once with probability 1. The expectation of the
estimation f(r;) over the randomness of r; ~ R; at time ¢ for a
single active random walk is E[f(r;)] = 3. This follows from
the probability integral transform [20], which states that the
CDF of any random variable with invertible CDF evaluated at
the random variable itself is uniformly distributed on 2/(0, 1).
By a symmetry argument, this equivalently holds for the
survival function. Thus, its mean is % In DECAFORK, this
fact motivates the addition of 1/2 to ;(t) for the visiting RW
k, which is known to be active. Similarly, for the remaining
K —1RWs, we have 3,0 )\ E[f(ri)] = (K —1)/2. O

Note that Proposition 1 holds under Assumption 1 and for
any continuous return time distribution with invertible CDF.
Proposition 1 justifies the use of the offset % in DECAFORK.
Hence, we investigate the error made by the continuous
approximation of the return time distributions using the PMF
and CDF of the discrete geometric distribution supported
on r; € {1,2,...,00} with parameter ¢, probability mass
function Pr(R; = r;) = (1 — ¢)"""!q and survival function
f(r;) = (1 —¢q)™. For an active random walk k, the expected
value of E[f(r;)] for R; distributed according to a geometric
distribution with parameter g reads as

E[f(rl)] :Z PI'(RZ = ’I“i)f(ri) :Z(l _ q)2n‘—1q _ ﬂ

= 2 —
’l“iil ’I“iil q

Hence, for small values of ¢, such as those expected for ran-
dom regular graphs [18], the expectation is close to 0.5 (as for
the analytical counterpart), but a non-zero error remains. While
this did not affect the algorithm’s performance negatively in
our experiments, the constant offset % can be replaced by
the actual expectation using the empirical distribution of R;

established at all the nodes.

B. On the Distribution of the Estimator 0;(t)

We study the exact probability of forking based on 0, (t) to
provide worst-case guarantees on the reaction time to failure
events and to bound the undesired increase of the number of
RWs in the graph beyond Z. To that end, instead of relying
on concentration bounds of 6;(t) around its average, we derive
its probability distribution in the sequel.

Proposition 2. Under Assumption 1 and assuming that Fr, (t)
is continuous and invertible, for K active random walks in the
system, the estimation él(t) is a random variable that can be
described by the CDF Fy,,._, (o), where

o]
B (0) = gy (1) (K - 1) (01,
7=0

In fact, Fx, (o) is known as the Irwin-Hall distribution
and represents the sum of K — 1 uniform distributions 2/(0, 1).
The parameter € in DECAFORK can be conveniently chosen
based on this result. Let Fx;, _, (¢ — 3) be the probability of

T

estimating at most € active RWs assuming that Z; RWs are
active. Intuitively, this reflects the likelihood of the assumption
of Zy active RWs being accurate. We chose the value of € such
that the probability of forking with Z;, active RWs is negligi-
ble. Let ¢’ := Fy, _, (¢ —3). According to DECAFORK, with
Zy active RWs, a node forks with probability pgo = p - 0’
If p = 1, a node deterministically forks once it encounters a
large deviation from the expected value of 6;(t), exhibiting a
fast reaction to failures. The probability of forking vanishes
for more than Z; active RWs, which is a desirable property.

The parameter p is chosen to avoid flooding the network.
In cases where a failure happens and K random walks remain
active, at each time step, K nodes will simultaneously be
able to realize the failures and decide to fork a new random
walk. Scaling the probability of forking at each node by
p = 1/Z, avoids having too many forks. However, this scaling
increases the reaction time to failure events. In preparation of
the following analysis, we consider a single failure event that
occurs at time T, leading to the failure of B RWs.

Proposition 3. Under Assumption 1 and assuming that Fr, (t)
is continuous and invertible, for B random walks indexed by
B terminated at time Ty, the part of 6;(t) corresponding to
B C L;(t) can be described by the CDF Fx,,(oe*(¢=T1)),

C. A Bound on the Reaction Time to Failure Events

We derive worst-case guarantees on the reaction time as a
response to the failure of B RWs at time 7's. In Section IV-D,
we show that improving the reaction time increases the like-
lihood of having more than Z;, active RWs. We assume that
K’ RWs have been active for long enough to visit all nodes at
least once. Let B RWs fail at time Ty due to a failure event.
After the failure, K = K’ — B RWs remain active.

We bound the time T spent until at least R’ < B RWs
are forked with a certain probability. The main ingredient
is to bound the time Tz_pr elapsed until at least one node
forks an RW after B RWs failed and R forks took place,
with probability 1 — dg_pg, for some 0 < R < B and
0 < ég_pr < 1. This result is given in Theorem 1.

Theorem 1. Consider the setting explained above and the
event where B RWs fail and R forks happen afterward. For
any choice of 0 < ¢’ < ¢ — % and T > 0, let the quantity
d0p—r(T) be bounded by

5B—R(T)§tﬁ [1pFEHR—l(EI)FEB‘R(exp(—kr(t _2Tf))>}'

For a desired dg_r > 0, the time Tg_pr elapsed until at
least one fork occurs with probability at least 1 — 0p_pg, is
bounded by the smallest T satisfying 1—0p_gr(T) > 1-dp_g.

The ¢’ can be chosen to minimize Tg_ . Applying Theo-
rem | for R € {0,..., R'—1}, with Jy := g:_ll 0B_R, W€
can write Pr (Tg/ < Zgz_ol Tp_ R) > 1—6yx. The parameter

Js; can be split into the dp_x’s to minimize T .
An implication of Theorem 1 is that the time to fork
increases with the number of forked RWs.
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D. The Number of Random Walks is Finite

To bound the maximum number of RWs in the system,
we bound the maximum number of forks that occur when
using DECAFORK for a duration 7" without any failure.
Assume a time ¢ at which Z; = wv. The probability of
forking is bounded by p, < pf = v-p-Fy, (e — 1),
where the factor v results from at most v distinct nodes
being visited by an RW. For ¢ < 1, the forking probability

vpe—3)" "

simplifies to p, < pf = . For v + 1, we have

v—1)!
_ 1y _1
Po1 < (UH)ZL(.E 2)” _ pF (V+1l),(f 2), Hence, for any RW

that gets forked in a system of v random walks, subsecIluent
) .

forking probabilities decrease by a factor of % in
the long run. However, the forking probability decreases only
when all nodes are aware of all active RWs in the system. This
intuition is the basis of the proof of the following theorem,
which bounds the probability of Z; exceeding the number

z > Zjy in a graph operating for a duration 7" without failures.

Theorem 2. For i < z, let T,,1 = /\—tlog(’;%r"). After time
T, the probability of having more than z > Zo walks in the
network is, for some m < z, bounded by

m—1
8 <pfTma+ Y ne ™ 4T, 1pf.
1=Zo

The statement holds for m being the largest integer (smaller
than z) so that Zﬁ}t T,1 <T. The time T,, o must then be

-1
chosen as Ty, o =T — Z:‘izo Ty1.

Theorem 2 can be inverted to state for any confidence § > 0,
the probability Pr(Z; < z) > 1 — ¢ as long as the algorithm
runs for a time 7" bounded as in Corollary 1.

When detecting failures of RWs, DECAFORK allows nodes
to fork new RWs probabilistically, thus maintaining a desired
value of RWs and avoiding catastrophic failures. Through
simulations and theoretical analysis, we showed that a trade-
off exists between the competing objectives of quickly forking
RWs and the undesired event of forking random walks in the
absence of failures. Our findings open up many interesting
research directions that include but are not limited to analyzing
the algorithmic properties in relation to the number of nodes
for general graphs and studying the effect of allowing nodes
to terminate RWs and designing corresponding algorithms.
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