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Abstract—Consider the setting of multiple random walks
(RWs) on a graph executing a certain computational task. For
instance, in decentralized learning via RWs, a model is updated
at each iteration based on the local data of the visited node and
then passed to a randomly chosen neighbor. RWs can fail due to
node or link failures. The goal is to maintain a desired number
of RWs to ensure failure resilience. Achieving this is challenging
due to the lack of a central entity to track which RWs have failed
to replace them with new ones by forking (duplicating) surviving
ones. Without duplications, the number of RWs will eventually go
to zero, causing a catastrophic failure of the system. We propose
a decentralized algorithm called DECAFORK that can maintain
the number of RWs in the graph around a desired value even
in the presence of arbitrary RW failures. Nodes continuously
estimate the number of surviving RWs by estimating their return
time distribution and fork the RWs when failures are likely to
happen. We present extensive numerical simulations that show
the performance of DECAFORK regarding fast detection and
reaction to failures. We further present theoretical guarantees
on the performance of this algorithm.

I. INTRODUCTION

Decentralized settings consist of a collection of users who

cooperate to accomplish a given task. Users are modeled by

vertices on a graph. Each pair of users that can communicate

are connected by an edge. Since there is no central node

coordinating the cooperation, the system functions as follows.

A virtual token decides which user can run computations.

The user holding the token runs local computation, updates

the task, and passes the task and the token to one of its

neighbors chosen randomly. This repeats until the task is

declared accomplished. An example is decentralized learning

[1]–[4]. The computational task is training a neural network on

the union of the users’ data. The user holding the token runs

local iterations, updates the model, and passes it to a neighbor

until some convergence criterion is met. When moving, the

token draws a random walk (RW) over the graph.

Despite the various applications of RWs on graphs, e.g., au-

tonomous vehicles and network crawlers, our main motivation

for studying RWs stems from their application in decentralized

learning. RW-based learning algorithms are proposed as a

communication-efficient alternative to Gossip algorithms [5]–

[11] that requires every node to run local computations and

broadcast its updated model to all its neighbors. RW-based
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learning algorithms are key in distributed communication [12],

[13], notably for decentralized model updates in distributed

learning [1], [2], [14]. Research on decentralized algorithms

with RWs has primarily addressed common anomalies like

delays [15]. A trade-off between the advantages of RWs and

Gossip-approaches is studied recently in [16].

Despite recent progress on RW-based learning algorithms,

the challenging task of guaranteeing resilience to failures is, to

the extent of our knowledge, not yet studied in the literature.

It is enough for the node, or communication link, holding

the token (RW) to fail to cause a catastrophic failure, losing

all progress made thus far. Guaranteeing resilience against

catastrophic failures is, hence, paramount to decentralized

settings using RWs.

The main challenge in guaranteeing resilience to failures is

the absence of a central entity orchestrating the process. A

naive solution is to run multiple RWs in parallel. However,

since no central entity is tracking the RWs, after certain

failures occur, all RWs may fail, leading to a catastrophic

failure. Hence, a decentralized mechanism allowing the nodes

to dynamically and independently adjust the number of RWs

in the system is needed. This motivates us to pose the question

of how to devise decentralized algorithms that can maintain at

any time a desired level of redundancy (multiple RWs running

in parallel) in the system, by quickly reacting to failures and

dynamically creating RWs, all this without making any a priori

assumptions about the statistics of failures.

The designed algorithms must satisfy the following rules:

Rule 1: No central entity can observe and communicate

with all the nodes in the graph. Moreover, nodes can only

communicate with their neighbors.

Rule 2: RWs cannot directly communicate with each other1.

Rule 3: A RW can be forked or terminated by the currently

visited node. When forked, an independent duplicate copy of

the RW is created.

A straightforward solution here can be to let each node

independently fork (create a duplicate copy of) an RW after a

prescribed time T to replace any possible failure that may have

occurred. While such an algorithm satisfies our three rules

above, it has the following undesired drawback that we want

to avoid: either the network is flooded with an ever increasing

number of RWs (for small T ) or all the RWs eventually fail

1I.e., the currently visited nodes by the RWs cannot directly communicate
with each other outside the graph. Otherwise, the problem can be easily solved
by letting the RWs regularly ping each other to indicate that they are still alive.
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Fig. 1: Performance of DECAFORK in maintaining the number of
random walks (RWs) Zt around a desired value Z0 = 10. The
graph is a random 8-degree regular graph with numbers of nodes
n ∈ {50, 100, 200}. RWs can fail arbitrarily and simultaneously. We
induce two failure events at t = 2000 and t = 6000. DECAFORK

immediately reacts to failures and starts creating new RWs by forking
surviving ones until Zt stabilizes around Z0. Standard deviations over
50 simulation runs are depicted by shaded areas.

(for large T ). That is because the failures are arbitrary with no

assumption on their statistics that could help with designing T .

Our objective is to design a decentralized algorithm that avoids

these two extreme cases2 and guarantees over time a constant

number of RWs in the graph (see Fig. 1). While decentralized

learning is the main motivation of this work, we abstract

this aspect and focus on the robustness to failures. Learning

aspects, such as the convergence speedup from multiple RWs,

are deferred to future work.

Contributions: In this paper, we propose DECAFORK, a

novel decentralized (randomized) algorithm forking RWs, ca-

pable of detecting RW failures and replacing them through

forking. DECAFORK satisfies Rules 1-3 and does not assume

any specific failure model. The number of RWs in the graph is

maintained around a desired value. The main intuition is that

nodes continuously estimate the current number of surviving

RWs by estimating their return time distribution, i.e., the time

it takes for an RW to return to a certain node after having

left it, and forking the RWs when failures are likely to have

happened. An important figure of merit is the reaction time

representing the time the algorithm takes to bring the system

back to the desired number of RWs after failures occur (see

Fig. 1). We prove a bound on the reaction time of DECAFORK,

derive guarantees that our algorithm will not flood the network,

and study the tension between these objectives. Our numerical

results confirm our theoretical findings. We defer the reader

to the appendix for all proofs and additional experiments.

II. SYSTEM MODEL

Graph: We consider a system of n nodes collaborating in a

decentralized fashion to run a certain compute task. Each node

possesses local data and can communicate only with a subset

of the other nodes. We model this system by an undirected

graph G = (V, E) with n vertices V = {1, . . . , n} representing

the nodes and the set of edges (links) E comprising of all

pairs of nodes (i, j), (j, i) that can share information. We will

2Evidently, if all the RWs fail at the same time, this would be a catastrophic
event that no algorithm can recover from.

assume that graph G is connected3 making the resulting RWs

irreducible [17]. The degree deg(i) of a node i ∈ V is defined

as the number of its neighbors, i.e., deg(i) = |{(i, j) ∈ E}|.
Random Walks: We are interested in tasks that can be

accomplished by an RW carrying a token message on the

graph. At discrete time steps, only the node holding the token

(the currently visited node) may run some computation and

update the message. Then, it passes the updated token message

to one of its neighbors chosen randomly according to a fixed

transition matrix P . We consider simple random walks, where

the node to whom a node sends the token is selected uniformly

at random from all neighbors. This is repeated until certain

stopping criteria are met. We abuse nomenclature and refer to

the token as the Random Walk RW. Since we consider multiple

RWs, each RW, indexed by k, is distinguishable by the nodes

they visit through a unique identifier.

Failures of Random Walks: Random walks on the graph

may fail arbitrarily. Potential reasons include the nodes or links

being temporarily down leading to the loss of the token when

being passed to the next node. Similarly, a random walk can

fail due to queue or buffer overflows, or the node currently

holding the token may face processing issues, making it

impossible to pass on the token. We want an algorithm that

can dynamically adapt to any number of failures occurring

over time. Therefore, we do not make any assumptions on the

probabilistic model of the failures. In particular, multiple RWs

can also fail simultaneously.

Forking: To avoid catastrophic failures (i.e., losing all the

RWs), an RW is allowed to be duplicated in the following way.

After updating the RW, the currently visited node will make a

duplicated copy of the RW that walks on the graph according

to the transition matrix P independently of the original one.

The number of random walks Zt at time t is a random variable,

whose realization is subsequently referred to as Zt.

Definition 1 (Forking an RW). A forking event occurs when

a node decides to create an identical copy of the RW it holds

and propagates both RWs in the network independently.

The objective is to design a fully decentralized algorithm

that abides by Rules 1-3 and maintains Zt around a desired

target Z0, i.e., Pr(|Zt−Z0| < x) ≈ 1 for a small x g 0, even

after failures occur. The challenge is to achieve a trade-off

between frequently forking RWs and flooding the network,

or seldomly forking RWs and risking a catastrophic failure.

Hence, the forking strategy must ensure that: the redundancy

does not significantly exceed Z0; and at least one RW main-

tains activity after a failure event. This is accomplished by

rapid detection and reaction times to failure events.

For the optimal functioning of our algorithm and the validity

of our theoretical results, all Z0 random walks should have

been active for long enough to have visited each node at least

once before the first failure of an RW. Apart from this assump-

tion, our algorithm does not rely on any assumptions about the

graph structure. For a tractable theoretical analysis, we will

later introduce some required assumptions in Assumption 1.

3If the graph is not connected, our study can be applied separately to each
connected component.
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III. DECAFORK

We introduce DECAFORK, a decentralized algorithm that

forks RWs probabilistically to avoid catastrophic failures

without flooding the network with RWs. DECAFORK works

as follows. The network starts with a target number Z0 of

RWs4. At every time instance, when a node receives an RW,

it estimates the number of active RWs in the network. If

this number is too low, the node forks the visiting RW with

probability p = 1/Z0 so that, on average, at most one RW is

forked at a given time.

To estimate the number of RWs in the system, we rely

on an RW’s hitting time and return time. The hitting time

Hi,j(k) of an RW k at node i is the random variable that

denotes the first time the RW gets to node i starting from

node j. Let v
(k)
t be the node visited by RW k at time t, we

can define the hitting time as Hi,j(k) = min{t ∈ N, v
(k)
t =

i | v
(k)
0 = j, v

(k)
1 , . . . , v

(k)
t−1 ̸= i}. Furthermore, the random

variable Ri(k) = Hi,i(k) describes the first return time of

a random walk to node i after leaving node i.

We assume that RWs walk on the graph independently.

Hence, they have independent and identically distributed hit-

ting and return times. Therefore, we focus on one random

variable Ri and drop the dependency on k. We do the same

for Hi,j . To have a refined estimate for Ri and its distribution,

every empirically observed return time for every RW will

contribute to the estimate of the random variable Ri. Hence,

the algorithm requires an initialization phase without RW

failures so that the Z0 initial RWs have circulated the graph

sufficiently for the nodes to have reasonable estimates of the

return time distribution, at least until each RW visited each

node at least once.

To measure the empirical distribution of the return time

Ri, each node i keeps track of the time it has last seen RW

k, denoted by the random variable Li,k(t). This variable is

created as Li,k(t) = t1 at time t1 when RW k first hits node

i. Then, at time t, Li,k(t) is updated as Li,k(t) = t if and

only if RW k visits node i at time t. When an RW k visits

at time t, before updating Li,k(t), each node i measures a

sample of Ri by computing t− Li,k(t) to build an empirical

distribution of Ri. Let F̂Ri
(t) be the established empirical

cumulative distribution function (CDF) of the return time of

an RW at node i on the graph G. We call survival function the

distribution f(t − Li,k(t)) := 1 − F̂Ri
(t − Li,k(t)) denoting

the estimated probability of RWs returning after time t, i.e.,

P̂r(Ri > t− Li,k(t)).

Since Li,k(t) is a random variable, the function f(t −
Li,k(t)) representing the survival probability is also a random

variable. Using Ri, each node i maintains an estimate of Zt.

Forking strategy: In DECAFORK, only nodes visited by an

RW can fork the visiting RW5. Let node i be visited by RW

k at time t. Let Li(t) be the set of indices of RWs that have

4This can be instantiated by one node creating Z0 RWs in the beginning.
5If multiple RWs visit a node, the node chooses one of them and follows

the detailed steps.

DECAFORK: Executed when RW k visits node i at time t

Require: ε, Z0, k, t, Li(t), ∀ℓ ∈ Li(t) : Li,ℓ(t),
if k ∈ Li(t) then

Add t− Li,k(t) as sample for the distribution of Ri

Update Li,k(t)← t
else Create Li,k(t) = t
Li(t)← Li(t) ∪ {k}

end if

Create ¹̂i(t) ≜
1
2 , an estimate of the number of RWs

for ℓ ∈ Li(t) \ {k} do

Calculate the survival probability f(t− Li,ℓ(t))
of the return time Ri

Update ¹̂i(t)← ¹̂i(t) + f(t− Li,ℓ(t))
end for

if ¹̂i(t) < ε then

Fork RW k with probability p = 1
Z0

end if

visited node i until time t. To estimate Zt, node i computes

¹̂i(t) = 1/2 +
∑

ℓ∈Li(t)\{k}

f(t− Li,ℓ(t)).

As we show in the sequel, the value of ¹̂i(t) serves as an

estimate of Zt/2. For a predetermined parameter ε > 0, if

¹̂i(t) < ε, the node declares that Zt < Z0. To avoid flooding

the network, i.e., avoiding that all nodes fork simultaneously,

node i forks6 RW k with probability p = 1/Z0. To distinguish

the random walks, each RW, even the forked one, is given its

own unique identifier.7

The difficulty lies in designing the parameters ε and p,

which should facilitate both (i) early detection of failures and

consequently forking of RWs; and (ii) avoiding forking when

the number of walks is Z0 or above.

DECAFORK is summarized in the algorithm above, and its

performance on a random regular graph is depicted in Fig. 1.

For the 50 numerical simulations, we generated 8-degree regu-

lar graphs, for different numbers of nodes n ∈ {50, 100, 200}
and Z0 = 10 desired RWs on the graph. At time t = 2000
and t = 6000, we impose failure events that deterministically

result in the failure of 5 and 6 RWs, respectively. The value of

ε ∈ {1.85, 2, 2.1} is well-tuned for the respective number n.

We observe the desired behavior of forking RWs after the

failure events. Even though several RWs fail, the recovery

process, on average, does not lead to an undesired increase

beyond Z0. Without forking, the second perturbation would

lead to a catastrophic failure. Intuitively, the smaller the graph,

measured by n, the faster the reaction time to failure events.

This is because F̂Ri
(t) is confined to a smaller support.

Fig. 2 depicts the performance of DECAFORK for different

values of ε and n = 100 nodes through numerical experiments.

Different choices for ε illustrate the trade-off between reaction

6Forked RWs behave immediately like active ones leaving the forking node.
7Such an identifier can be the index of the original random walk, i.e.,

k ∈ [Z0], at the beginning. When a node i forks a random walk at time Tc,
it appends its own identifier and the time Tc of forking.
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Fig. 2: Average simulation results for 50 runs on a 8-degree random
regular graph with n = 100, and two perturbation events at t = 2000

and t = 6000. Shaded areas depict standard deviations. Different
choices for ε show the trade-off between reaction time and undesired
forks beyond Z0 = 10.

time and undesired forks beyond Z0 = 10, i.e., objectives (i)

and (ii), respectively.

Note that DECAFORK can be run on any connected graph

and does not make any assumption on the distribution of the

return time Ri, which is estimated on the fly. We verified

this fact through numerical simulations8 on other families of

graphs, such as Erdos Rényi and Power Law graphs.

We have also tested simpler forking policies where a node

compares the time since a random walk visited last to a

threshold above which a new RW is forked probabilistically.

The challenge in such algorithms is that the distribution of

the return time depends on the graph and on the location of

the nodes within the graph, making finding a good threshold

for each node a challenging task. Our proposed approach in

DECAFORK is less sensitive to the actual return time distribu-

tion, thus simplifying the parameter selection and improving

the stability of the approach to different graph topologies. In all

experiments, DECAFORK significantly outperformed alterna-

tive forking decision rules. Other algorithms we investigated

either led to a massive blow-up of Zt, hence to a network

overload, or were unable to cope with arbitrary failure events.

Remark 1. To speed up the initialization phase and the

algorithm’s precision, the empirical distribution f(t−Li,k(t))
can be replaced with the analytical survival function. Such

results are known, e.g., for random regular graphs [18]. In

this case, it is sufficient that each RW has visited each node

at least once ahead of the first failure.

IV. TRADING REACTION TIME VS. UNDESIRED FORKING

DECAFORK exhibits good performance regarding the re-

action to failure events with an appropriate choice of ε.

We analytically analyze the behavior of the algorithm in

the sequel. We first investigate the average of the estimation

f(t−Li,k(t)) in the case of a stable number of active random

walks K on the graph, and then show the tension between

the reaction time to failures and the probability of reaching

Zt > Z0 for any t > 0 immediately after the start of the

algorithm.

8The additional simulations and the proofs required in the next Section are
omitted for brevity. They will be provided in an extended version.

For our analysis, we require knowledge of the full distri-

bution of the return time Ri and the first hitting time Hi,j of

RWs. The literature on such distributions is rare, with some

exceptions. In fact, our assumptions9 are justified by recent

results on the distribution of first return and hitting times of

RWs on random regular graphs [18], [19]. It is shown that both

Ri and Hi,j exhibit a behavior similar to a geometric distri-

bution. For Ri, retroceeding trajectories, i.e., those that return

to node i the same way they left, affect the distribution for

small realizations of Ri. This relies on combinatoric arguments

that we will neglect for tractability purposes. The dominating

part of the distribution stems from non-retroceding trajectories,

which provably yield an exponential behavior [18]. This is

underlined by our experiments, where random regular graphs

exhibit a distribution that can be well-approximated by a

properly parameterized geometric distribution.

For the theoretical analysis, we study a continuous re-

laxation thereof, which serves as a proxy for the actually

discrete random variables due to the nature of the discrete

time steps. With this assumption, we can precisely describe the

distribution of the estimation ¹̂i(t). We choose an exponential

distribution since it facilitates a rigorous and tractable analysis

of the performance of the algorithm while being the continuous

analog to the geometric distribution. However, it is worth

noting that our analysis does not rely on the memoryless

property of the exponential distribution and can hence be

generalized to different types of distributions, whose CDF is

invertible, following the same methodology.

Assumption 1. Based on the discussion above, we make the

following assumptions for our theoretical analysis:

• The return time of RWs are independently and identically

distributed according to Ri ∼ exp(¼r).
10

• The first hitting time Hi,j for random nodes i and j of a

forked RW k is distributed according to Hi,j ∼ exp(¼a).

Knowing the analytical survival function, for the following

analysis we replace f(t− Li,k(t)) = 1− F̂Ri
(t− Li,k(t)) by

the exact distribution, i.e., 1− FRi
(t− Li,k(t)).

A. The Average of the Estimator ¹̂i(t)

We first verify how the estimator ¹̂i(t) resembles the actual

number of active random walks Zt at time t in the absence of

terminations and forks, i.e., when Zt is deterministic.

Proposition 1. For a constant number Zt of RWs active for

an infinitely long time, under Assumption 1 and replacing the

empirical distribution of Ri by its analytical counterpart, the

estimator ¹̂i(t) satisfies 2E[¹̂i(t)] = Zt.

Proof. For any RW ℓ and any t, let ri := t − Li,ℓ(t) be the

time passed since RW ℓ was last seen at node i. Hence, we

have f(t − Li,ℓ(t)) = Pr(Ri > t − Li,ℓ(t)) = Pr(Ri > ri).
Since the RWs are independent, we can assume that a node i
evaluates the survival function of RW ℓ at a random point t in

9Note that with minor adaptation, our analysis can similarly be carried out
for other types of return and first-hitting time distributions.

10This assumption can be relaxed to capture different distributions for
different nodes.
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time. This point in time is when a random walk k ̸= ℓ visits

node i, which is random and independent of ℓ. Hence, the

observed ri is a random sample itself following the distribution

of Ri. Consider now K RWs that have been active for an

infinitely long time such that each has visited each node

i ∈ [n] at least once with probability 1. The expectation of the

estimation f(ri) over the randomness of ri ∼ Ri at time t for a

single active random walk is E[f(ri)] =
1
2 . This follows from

the probability integral transform [20], which states that the

CDF of any random variable with invertible CDF evaluated at

the random variable itself is uniformly distributed on U(0, 1).
By a symmetry argument, this equivalently holds for the

survival function. Thus, its mean is 1
2 . In DECAFORK, this

fact motivates the addition of 1/2 to ¹̂i(t) for the visiting RW

k, which is known to be active. Similarly, for the remaining

K − 1 RWs, we have
∑

ℓ∈Li(t)\k
E[f(ri)] = (K − 1)/2.

Note that Proposition 1 holds under Assumption 1 and for

any continuous return time distribution with invertible CDF.

Proposition 1 justifies the use of the offset 1
2 in DECAFORK.

Hence, we investigate the error made by the continuous

approximation of the return time distributions using the PMF

and CDF of the discrete geometric distribution supported

on ri ∈ {1, 2, . . . ,∞} with parameter q, probability mass

function Pr(Ri = ri) = (1 − q)ri−1q and survival function

f(ri) = (1− q)ri . For an active random walk k, the expected

value of E[f(ri)] for Ri distributed according to a geometric

distribution with parameter q reads as

E[f(ri)] =

∞
∑

ri=1

Pr(Ri = ri)f(ri) =

∞
∑

ri=1

(1− q)2ri−1q =
1− q

2− q
.

Hence, for small values of q, such as those expected for ran-

dom regular graphs [18], the expectation is close to 0.5 (as for

the analytical counterpart), but a non-zero error remains. While

this did not affect the algorithm’s performance negatively in

our experiments, the constant offset 1
2 can be replaced by

the actual expectation using the empirical distribution of Ri

established at all the nodes.

B. On the Distribution of the Estimator ¹̂i(t)

We study the exact probability of forking based on ¹̂i(t) to

provide worst-case guarantees on the reaction time to failure

events and to bound the undesired increase of the number of

RWs in the graph beyond Z0. To that end, instead of relying

on concentration bounds of ¹̂i(t) around its average, we derive

its probability distribution in the sequel.

Proposition 2. Under Assumption 1 and assuming that FRi
(t)

is continuous and invertible, for K active random walks in the

system, the estimation ¹̂i(t) is a random variable that can be

described by the CDF FΣK−1
(Ã), where

FΣK−1
(Ã) =

1

(K − 1)!

+Ã,
∑

Ä=0

(−1)Ä
(

K − 1

Ä

)

(Ã − Ä)K−1.

In fact, FΣK−1
(Ã) is known as the Irwin-Hall distribution

and represents the sum of K−1 uniform distributions U(0, 1).
The parameter ε in DECAFORK can be conveniently chosen

based on this result. Let FΣZ0−1
(ε− 1

2 ) be the probability of

estimating at most ε active RWs assuming that Z0 RWs are

active. Intuitively, this reflects the likelihood of the assumption

of Z0 active RWs being accurate. We chose the value of ε such

that the probability of forking with Z0 active RWs is negligi-

ble. Let ¶′ := FΣZ0−1
(ε− 1

2 ). According to DECAFORK, with

Z0 active RWs, a node forks with probability pfork = p · ¶′.
If p = 1, a node deterministically forks once it encounters a

large deviation from the expected value of ¹̂i(t), exhibiting a

fast reaction to failures. The probability of forking vanishes

for more than Z0 active RWs, which is a desirable property.

The parameter p is chosen to avoid flooding the network.

In cases where a failure happens and K random walks remain

active, at each time step, K nodes will simultaneously be

able to realize the failures and decide to fork a new random

walk. Scaling the probability of forking at each node by

p = 1/Z0 avoids having too many forks. However, this scaling

increases the reaction time to failure events. In preparation of

the following analysis, we consider a single failure event that

occurs at time Tf , leading to the failure of B RWs.

Proposition 3. Under Assumption 1 and assuming that FRi
(t)

is continuous and invertible, for B random walks indexed by

B terminated at time Tf , the part of ¹̂i(t) corresponding to

B ¢ Li(t) can be described by the CDF FΣB
(Ãe¼r(t−Tf )).

C. A Bound on the Reaction Time to Failure Events

We derive worst-case guarantees on the reaction time as a

response to the failure of B RWs at time Tf . In Section IV-D,

we show that improving the reaction time increases the like-

lihood of having more than Z0 active RWs. We assume that

K ′ RWs have been active for long enough to visit all nodes at

least once. Let B RWs fail at time Tf due to a failure event.

After the failure, K = K ′ −B RWs remain active.

We bound the time TR′

B spent until at least R′ f B RWs

are forked with a certain probability. The main ingredient

is to bound the time TB−R elapsed until at least one node

forks an RW after B RWs failed and R forks took place,

with probability 1 − ¶B−R, for some 0 f R < B and

0 < ¶B−R < 1. This result is given in Theorem 1.

Theorem 1. Consider the setting explained above and the

event where B RWs fail and R forks happen afterward. For

any choice of 0 < ε′ < ε − 1
2 and T > 0, let the quantity

¶B−R(T ) be bounded by

¶B−R(T )f

T
∏

t=Tf

[

1−pFΣK+R−1
(ε′)FΣB−R

(

ε− ε′ − 1
2

exp(−¼r(t− Tf ))

)]

.

For a desired ¶B−R > 0, the time TB−R elapsed until at

least one fork occurs with probability at least 1 − ¶B−R, is

bounded by the smallest T satisfying 1−¶B−R(T ) g 1−¶B−R.

The ε′ can be chosen to minimize TB−R. Applying Theo-

rem 1 for R ∈ {0, . . . , R′−1}, with ¶Σ :=
∑R′−1

R=1 ¶B−R, we

can write Pr
(

TR′

B f
∑R′−1

R=0 TB−R

)

g 1−¶Σ. The parameter

¶Σ can be split into the ¶B−R’s to minimize TR′

B .

An implication of Theorem 1 is that the time to fork

increases with the number of forked RWs.
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D. The Number of Random Walks is Finite

To bound the maximum number of RWs in the system,

we bound the maximum number of forks that occur when

using DECAFORK for a duration T without any failure.

Assume a time t at which Zt = ¿. The probability of

forking is bounded by p¿ f p+¿ := ¿ · p · FΣν−1
(ε − 1

2 ),
where the factor ¿ results from at most ¿ distinct nodes

being visited by an RW. For ε < 1, the forking probability

simplifies to p¿ f p+¿ =
¿p(ε− 1

2
)ν−1

(¿−1)! . For ¿ + 1, we have

p¿+1 f
(¿+1)p(ε− 1

2
)ν

¿! = p+¿
(¿+1)(ε− 1

2
)

¿2 . Hence, for any RW

that gets forked in a system of ¿ random walks, subsequent

forking probabilities decrease by a factor of
(¿+1)(ε− 1

2
)

¿2 in

the long run. However, the forking probability decreases only

when all nodes are aware of all active RWs in the system. This

intuition is the basis of the proof of the following theorem,

which bounds the probability of Zt exceeding the number

z > Z0 in a graph operating for a duration T without failures.

Theorem 2. For i < z, let T¿,1 = 1
¼a

log(¼an

p
+
ν

). After time

T , the probability of having more than z > Z0 walks in the

network is, for some m f z, bounded by

¶ f p+mTm,2 +

m−1
∑

i=Z0

ne−¼aTν,1 + T¿,1p
+
¿ .

The statement holds for m being the largest integer (smaller

than z) so that
∑m−1

i=Z0
T¿,1 < T . The time Tm,2 must then be

chosen as Tm,2 = T −
∑m−1

i=Z0
T¿,1.

Theorem 2 can be inverted to state for any confidence ¶ > 0,

the probability Pr(Zt < z) g 1 − ¶ as long as the algorithm

runs for a time T bounded as in Corollary 1.

Corollary 1. With probability at most ¶, the time T until the

number of RWs grows larger than z is bounded by

T g Tm,2 +

m−1
∑

i=Z0

T¿,1,

where T¿,1 is as above and m is the largest integer such that

¶ < ¶Σ :=
∑m−1

i=Z0
ne−¼aTν,1 + T¿,1p

+
¿ , and Tm,2 = ¶−¶Σ

p
+
m

.

The trade-off between reaction time and the likelihood of

increasing beyond z RWs after the start of DECAFORK is

controlled by the choice of ε and is implicit in Theorems 1

and 2. The smaller ε, the larger the times T¿,1 in Theo-

rem 2, which reflect fewer undesired forks at a given time.

Conversely, smaller values for ε lead to smaller values of

the CDFs in Theorem 1, hence to a slower decrease of the

product and, thus, a larger delay to fork. This trade-off aligns

with numerical experiments for different values of ε, which we

depict in Fig. 2. The larger ε, the larger the average number of

RWs in the system, but the faster the reaction time. Choosing

even smaller values for ε will likely lead to failures of the

system after the second perturbation at time t = 6000.

V. CONCLUSION

We introduced DECAFORK, a novel decentralized and dy-

namic algorithm that adapts to failures of RWs on a graph.

When detecting failures of RWs, DECAFORK allows nodes

to fork new RWs probabilistically, thus maintaining a desired

value of RWs and avoiding catastrophic failures. Through

simulations and theoretical analysis, we showed that a trade-

off exists between the competing objectives of quickly forking

RWs and the undesired event of forking random walks in the

absence of failures. Our findings open up many interesting

research directions that include but are not limited to analyzing

the algorithmic properties in relation to the number of nodes

for general graphs and studying the effect of allowing nodes

to terminate RWs and designing corresponding algorithms.
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