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Abstract—We investigate federated self-supervised rep-
resentation learning (FedSSRL) and federated clustering
(FedCl), aiming to derive low-dimensional representations
of datasets distributed across multiple clients, potentially
in a heterogeneous manner. Our proposed solutions for
both FedSSRL and FedCl involves a comparative analysis
from a broad learning context. In particular, we show that
a two-stage model, beginning with representation learning
and followed by clustering, is an effective learning strategy
for both tasks. Notably, integrating a contrastive loss as
regularizer significantly boosts performance, even if the
task is representation learning. Moreover, for FedCl, a
contrastive loss is most effective in both stages, whereas
FedSSRL benefits more from a non-contrastive loss. These
findings are corroborated by extensive experiments on
various image datasets.

Index Terms—Federated learning, representation learn-
ing, clustering.

I. INTRODUCTION

A. Federated Learning and Representation Learning

Federated learning involves training a global machine

learning model across multiple decentralized devices

or servers. In each round, local models on individual

devices are trained on their own datasets, and then

the models’ parameters are aggregated and averaged to

update the global model. In the server aggregation stage

of federated learning, a central server collects all local

updates from clients to obtain a global model, generally

through weighted averaging of the local models. It has

various applications in areas such as finance, health-

care, and autonomous vehicles, particularly in scenarios

where considerations of privacy, data decentralization,

and computational capacity are crucial. There are numer-

ous algorithms [1]–[4] designed for federated learning,
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such as federated averaging [3]. However, the existing

literature primarily concentrates on supervised learning,

while we shall focus on unsupervised learning.

Self-supervised representation learning [5]–[8] aims

to create meaningful representations of data without

requiring labels for training, which can then be applied

to downstream tasks such as linear classification, ob-

ject detection, semi-supervised learning and clustering.

The representation space typically has much smaller

dimension than the data space. Two main approaches

include contrastive [5] and non-contrastive [6] learning.

The contrastive loss leverages large negative samples

to encourage representations of similar data augmenta-

tions to be close. In contrastive learning, two identical

networks process two different augmented views of the

same input. In contrast, non-contrastive learning utilizes

a mean squared error (MSE) loss in a dual-network

architecture with online and target networks, eliminating

the need for explicit negatives. However, whether using

contrastive or non-contrastice learning, most state-of-the-

art methods assume a centralized data setting, making

them unsuitable for distributed data scenarios.

B. Federated Self-Supervised Representation Learning

(FedSSRL) and Federated Clustering (FedCl)

Recently, several works have studied the FedSSRL

problem [9]–[12], where each local model is trained

on unlabeled data using contrastive or non-contrastive

loss functions, as described above [13]. The objective

is to obtain a global model that produces meaningful

representations for downstream tasks, such as linear

evaluation and semi-supervised learning. In our study,

we focus not only on FedSSRL, but also on the particular

downstream task of clustering. In this Federated Cluster-

ing (FedCl) framework, the global model is specifically

trained to directly produce the clustering assignments.

Clustering is a machine learning and data analysis

technique wherein data points are grouped together based

on certain similarities or patterns in an unsupervised

manner. The problem is intimately related to represen-

tation learning. In fact, representation learning aims to

obtain a lower-dimensional representation of a higher-

dimensional input via a continuous mapping. Clustering
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can be thought as an extreme form of representation

learning where the mapping is discrete and the input

should thus be represented by only finitely many points.

A fundamental problem that we will address in the

present work is how optimal deep learning algorithms

will change as we transition from federated unsupervised

representation learning (continuous mappings) to feder-

ated clustering (finite discrete mappings).

Clustering has been applied in various domains, in-

cluding anomaly detection, data compression, social

network analysis, and recommendation systems [14]. K-

Means [15], a conventional clustering algorithm, pro-

vides efficient performance in many data clustering tasks.

However, it struggles to effectively differentiate between

clusters in high-dimensional, real-world datasets.

With the advancement of deep learning techniques,

deep clustering [16]–[19] has emerged as a trend for

jointly optimizing clustering assignments and learning

data representations, allowing for more effective clus-

tering in high-dimensional spaces. For example, Deep

Embedded Clustering (DEC) [18] optimizes the cluster

centers and determines the clustering assignment for

each sample by evaluating the similarity between the

data representation and each cluster center. However,

the effectiveness of DEC is constrained to relatively

simple datasets and does not extend well to large-scale

and complex ones. Moreover, an increasing number of

deep clustering frameworks are constructed upon SSRL.

For instance, contrastive clustering (CC) [16] generates

soft labels from the feature matrix by incorporating a

cluster-level contrastive loss. However, the majority of

state-of-the-art deep clustering approaches are currently

centralized [20]. Surprisingly, despite being a research

problem of fundamental importance, the FedCl task

has not been thoroughly investigated in the literature,

with only a few studies focusing on specific datasets,

such as medical datasets [21], or on data with simple

features [22]–[25].

The goal of federated clustering is to learn a global

model that generates clustering assignments. Applica-

tions of clustering can serve as practical scenarios for

our proposed model. For example, clustering can be

used in market research to segment customers based

on their purchasing behaviors and preferences, assisting

businesses in adjusting marketing strategies and products

to different customers. However, the data is distributed

across multiple sources, such as mobile applications, so

that it is important to keep the data private and train the

model locally. Thus, federated clustering helps in provid-

ing personalized experiences and recommendations by

local training while maintaining the user privacy.

C. Contributions of the Paper

The primary questions we aim to address in this paper

are as follows: Q1: Which learning approach, contrastive

or non-contrastive, is most appropriate for FedSSRL and

FedCl? Q2: Building on Q1’s exploration, how do we

precisely configure the chosen approach to maximize its

effectiveness in each respective federated paradigm?

At this juncture, elaborating on Q1 becomes insight-

ful: The downstream characteristic of deep clustering

tasks indicates that contemporary methods encompass

two distinct phases – an initial representation learning

stage followed by clustering. For a comprehensive view,

we also examine two-stage methodologies for FedSSRL,

where the clustering phase serves as a regularizer.

Addressing Q1, our main finding in this paper is

that two-stage methodologies are most effective for both

FedSSRL and FedCl. Specifically, employing a non-

contrastive learning strategy at both stages yields the

best results for FedSSRL, whereas a contrastive learning

approach at each stage is found to be ideal for FedCl. An

intuitive explanation, which is further substantiated by

numerous numerical simulations in our study, is as fol-

lows: Contrastive learning excels in generating a uniform

distribution of representations, owing to its extensive

use of negative samples. However, it often encounters

the challenge of class collision, where samples from

the same class within a batch are mistakenly treated as

negative samples. Conversely, non-contrastive learning

adeptly circumvents the class collision problem. Never-

theless, it tends to produce non-uniform representations,

which often leads to the disproportionate assignment of

the majority of samples to a limited number of clusters.

This issue undermines the clustering process, as it results

in a highly non-uniform distribution of samples across

different clusters.

After establishing the broadly optimal learning ap-

proach through Q1, our attention in Q2 turns to the

design of the learning scheme, taking into account

whether a non-contrastive or contrastive learning method

is utilized. First, for the FedSSRL problem, where a non-

contrastive approach is optimal, we introduce Federated

Representation Learning through Clustering (FedRLC).

The key novelty of FedRLC is to utilize a clustering

loss as a regularizer to boost the representation learning

performance. In addition, we consider a data selection

strategy for training; not all samples are considered in

the clustering loss function. Specifically, we use an input

data for training when its predicted labels from the online

network and the target network are the same, as they are

expected to output similar embeddings. This increases

the likelihood of selecting data with more accurate soft

labels for training. FedRLC also incorporates a new

dynamic controller to update the cluster centers in server

to client communications. Next, we focus on the FedCl
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problem, and introduce Federated Clustering through

Past Negatives Pool (FedPNP), based on contrastive

learning. The key novelty of FedPNP is to use the nega-

tives pool from the past versions of local models to avoid

the client drift and class collision problems in federated

learning. We show through numerical simulations that

both FedRLC and FedPNP schemes achieve state-of-the-

art results in various image datasets.

The main goal of the proposed schemes is to max-

imize the eventual classification or clustering accuracy

of schemes. Of course, it is also desirable to minimize

the convergence time of the learning process. In this

context, we note that our proposed schemes can be

combined with other complementary techniques that

improve convergence such as dataset pruning [26], [27]

or model-distributed learning [28], [29].

Parts of this work was presented in [30]–[32]. In

comparison to these works, this paper focuses on the

joint study of FedRL and FedCl, with a particular focus

on Q1. In other words, we first seek to determine the spe-

cific learning approach (contrastive or non-contrastive)

that is suitable for the particular task. The rest of this

paper is organized as follows: Section II provides an in-

depth review of the related work. The preliminaries of

our work are presented in Section III. We optimize our

schemes over the contrastive/non-contrastive learning

space in Section IV. Section V introduces our proposed

scheme for represenation learning, FedRLC. Section VI

details our novel federated clustering scheme, FedPNP.

Evaluation and ablation of the proposed models are

provided in Sections VII and VIII, respectively. Finally,

we conclude the paper in Section IX.

II. RELATED WORK

A. Federated Learning

Federated learning proves to be valuable in situa-

tions where the data sharing is constrained, and the

computational capacity is restricted. Meanwhile, it in-

troduces challenges such as communication overhead

during model transmission and client drift caused by

non-iid data. Many federated learning algorithms [1]–

[4], [33]–[35] have been developed to address these

issues. For example, the classical federated averaging [3]

aggregates model updates from decentralized client de-

vices, and FedProx [2] modifies federated averaging by

including a regularization term to enhance convergence

and improve global model performance. However, most

algorithms are designed for supervised learning, where

labeled data is necessary for training, which may not

always be practical. In this study, we investigate how

to achieve high-quality low-dimensional embeddings of

distributed unlabeled data through federated learning.

B. Centralized and Federated SSRL and Clustering

Recently, SSRL has garnered significant attention for

its ability to learn representations without relying on

label information [5]–[8], [36], [37]. In the realm of

SSRL, contrastive and non-contrastive loss functions

have become the favored choices for learning instance

representations. Concurrently, there is a growing trend

in the development of deep clustering techniques, as ev-

idenced by various studies like those by [38]–[41]. These

techniques primarily utilize either contrastive or non-

contrastive loss functions, paving the way for clustering

methods that are grounded in SSRL such as [16], [42].

Contrastive learning has been well-studied in SSRL

[5], [6], [43] and deep clustering [19], [44], [45], but

it suffers from class collision, where positive samples

from the same class with the given input are still viewed

as negatives in contrastive loss. Two main directions

of study are sampling positives [19], [44] and select-

ing negatives [46], [47]. For example, GCC [19] and

WCL [45] expand positive samples by building graphs.

MoCHi [47] chooses the hardest negatives by sorting the

instance similarity with the given query based on the dot

product similarity. However, sorting high dimensional

instance embeddings and constructing graphs [19], [48]

consume time and computational resources. Moreover,

these strategies assume that the data is central.

The main challenges in federated learning that we

seek to overcome are as follows: First, we wish to

learn from distributed data as opposed to centralized

data subject to limited communication rates between

the clients and the server. Second, we assume that the

data across multiple clients is not an independent and

identically distributed (IID) random variable in general.

This Non-IID assumption leads to significant divergence

between local and global models, which is commonly

referred to as the client drift problem. Also, the clients

do not have enough representatives of different classes,

significantly complicating the local as well as the global

learning processes.

Different techniques have been proposed to remedy

the client drift problem caused by Non-IID data. For

example, SCAFFOLD [1] introduces a control variate for

client updates. However, it is mainly used in supervised

federated learning, and thus not directly applicable in

our settings. FedGrEM [49], which was submitted after

earlier versions of this work had been published, focuses

on theoretical results on federated unsupervised learning

on Non-IID data with experiments on simple datasets

such as MNIST and Fashion MNIST. Here, we focus on

practical aspects of both federated self-supervised learn-

ing and deep clustering on more complex datasets such

as CIFAR-100. To address the significant performance

drop in Non-IID data, FedRLC updates cluster centers

based on the KL divergence between probabilities from
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global and local networks, while FedPNP introduces a

past negative pool to select data from previous iterations.

Experimental results demonstrate that our proposed mod-

els effectively handle Non-IID scenarios in practice.

C. Federated SSRL and Clustering

In recent years, many works [9]–[11] have studied

SSRL in the context of federated learning. For example,

FedEMA [10] incorporates a non-contrastive loss in its

local federated learning and adopts a weight divergence

strategy for updating the encoder and predictor of the

BYOL [6] network. It should be noted that although

several papers address federated clustering, they predom-

inantly concentrate on the clustering of clients [50]–

[52]. In contrast to these studies, our work is exclu-

sively focused on the clustering of data rather than

clients. For instance, the recently introduced FeatARC

[11] implements an additional loss function in local

training phases and deploys a client clustering strategy

to improve the performance of FedSSRL. Specifically,

clients are grouped into clusters, and local models are

updated based on the model of their respective cluster

instead of a single global model. In our study, we explic-

itly consider clustering data, with the goal of learning

a global model that automatically generates clustering

assignments. While certain studies employ traditional

K-means for data clustering in federated learning, this

method is typically constrained to simpler datasets like

MNIST and often struggles with more complex datasets.

In this study, we explore the performance of SSRL-based

deep clustering methods when applied to distributed

datasets within the federated learning paradigm.

III. PRELIMINARIES

The primary objective of FedSSRL is to obtain a

global model that is able to generate meaningful data

embeddings. These are subsequently employed in down-

stream tasks such as linear evaluation. On the other hand,

FedCl aims to training a global model that assigns data

points to appropriate clusters. Both methods essentially

aim to learn low dimensional embeddings.

Suppose there are K clients, where Client k has its

local unlabeled data Dk. Our goal is to learn a model

over the dataset D ≜
⋃K

k=1
Dk on a central server. We

learn a global model by training and aggregating models

trained at each client with local data. In this section, we

consider the SSRL loss as serving for instance represen-

tation learning, while the clustering loss is specifically

utilized for clustering assignments. First, we present the

contrastive and the non-contrastive loss functions that are

commonly utilized in the context of SSRL.

A. Self-supervised Representation Learning

Contrastive loss [5]: We first introduce the contrastive

loss function, as considered in SimCLR [5]. Each in-

put example is transformed into multiple augmented

views through data augmentation techniques. The model

then learns to bring positive representations closer to-

gether while pushing negative representations apart in

the learned feature space. Specifically, we consider a

dataset D = {x1, . . . , x|D|}. Given an input xi ∈ D, the

SimCLR scheme first creates two samples xa
i ≜ ta(xi)

and xb
i ≜ tb(xi) through transformations ta and tb,

respectively. We use the variable Ã ∈ {a, b} to repre-

sent the sample index so that the transformations are

succinctly expressed as xÃ
i ≜ tÃ(xi), Ã ∈ {a, b}. The

transformations are sampled uniformly at random from a

family T of augmentations, which may include rotations,

noise, etc. The samples then pass through the same

encoder f , creating feature vectors hÃ
i ≜ f(xÃ

i ), Ã ∈
{a, b}. An instance-level multi-layer perceptron (MLP)

gI projects ha
i and hb

i to obtain instance-level repre-

sentations zÃi ≜ gI(h
Ã
i ) ∈ R

d1 , Ã ∈ {a, b}, where d1
represents the dimension of the obtained representations.

The similarity of any two representations is com-

pared via the cosine similarity measure s(u, v) ≜

u v/(∥u∥∥v∥). To define the loss functions, we need the

following definitions. Given matrices u = [u1 · · ·un] ∈
R

d×n and v = [v1 · · · vn] ∈ R
d×n constructed via

the indicated column vectors, we define the ordinary

contrastive loss function

(f, gI) 7→ L(u,v; Ä) ≜

1

n

n
∑

i=1

− log
exp

(

1

Ä
s(ui, vi)

)

∑n
j=1

j ̸=i

[

exp
(

1

Ä
s(ui, uj)

)

+exp
(

1

Ä
s(ui, vj)

)] .

(1)

Given a batch size n, the contrastive loss in SimCLR

LC is then defined via the instance-level representations

z
Ã ≜ [zÃ1 · · · z

Ã
n ] ∈ R

d1×n, Ã ∈ {a, b} as L(za, zb; ÄI),
where ÄI > 0 is the instance-level temperature parameter

LC ≜ L(za, zb; ÄI). (2)

Non-contrastive loss [6]: The non-contrastive loss

function is widely used in many frameworks, such as

BYOL [6] and SimSiam [7]. The main differences be-

tween the contrastive and non-contrastive frameworks

are that there are no negative samples while utilizing

non-contrastive learning, and two augmented data in-

stances are passed to two different networks: one referred

to as the online network and the other as the target

network. In detail, the online network consists of an

online encoder fO and an online predictor gO, which are

trained by gradient descent. We refer to the composition

of the encoder and the projector in the original BYOL

work as simply the “encoder” in this paper. The target
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network only consists of a target encoder fT . The

weights of fT are updated via the exponential moving

average (EMA) of the online encoder fO, as will be

explained in the following. Given Ã ∈ {a, b} represent-

ing two augmentations, let zÃ,Oi ≜ gO
(

fO(tÃ(xi))
)

and

zÃ,Ti ≜ fT (tÃ(xi)) denote the d-dimensional represen-

tations that one would obtain from the online and the

target networks, respectively. Defining the scaled cosine

similarity loss function as ¶(x, y) ≜ 2−2 xT y
∥x∥∥y∥ , BYOL

uses the symmetrized loss

xi 7→ LMSE(xi) ≜ ¶(za,Oi , zb,Ti ) + ¶(zb,Oi , za,Ti ). (3)

The non-contrastive loss can then be defined as

(fO, gO) 7→ LNC ≜
∑

xi∈D

LMSE(xi), (4)

which signifies that only the online networks fO, gO

are updated via gradient descent. The target network

parameters are instead updated through the EMA

fT ← ·fT + (1− ·)fO, (5)

where · ∈ [0, 1].

B. Deep clustering

We now consider the existing contrastive and non-

contrastive-based clustering approaches; namely Deep

Embedded Clustering (DEC) [18] and Contrastive Clus-

tering (CC) [16]. Note that DEC is a non-contrastive

algorithm, while CC is a contrastive clustering algorithm.

The extension of these methods to the federated learning

setting is elaborated in the next Section IV.

CC [16]: CC incorporates an instance-level con-

trastive loss and a cluster-level contrastive loss on the

row and column space of the feature matrix, respec-

tively. The primary idea of clustering in CC involves

interpreting each row of the feature matrix as the soft

labels of the instance, which are optimized concurrently

by both the instance-level and cluster-level contrastive

losses. The instance-level representation loss is the same

as the SimCLR loss (2). Here, we provide their cluster-

level contrastive loss. Similar to the instance-level MLP

gI in SimCLR, a cluster-level MLP gC produces cluster-

level representations yÃi ≜ gC(h
Ã
i ) ∈ R

d2 , Ã ∈ {a, b},
where hÃ

i is the data embedding from the same encoder

f in SimCLR. In particular, in a deterministic assignment

of inputs to clusters, all rows would be one-hot encoded

vectors. On the other hand, given c
Ã ≜ [yÃ1 · · · y

Ã
n]

 ∈
R

n×d2 , Ã ∈ {a, b}, the cluster-level contrastive loss

is defined by LC(c
a, cb; ÄC), where ÄC > 0 is the

cluster-level temperature. In the CC scheme, the output

dimensionality d2 of the cluster-level representations is

chosen to be equal to the number of clusters one wishes

to find in the dataset. In many cases, the instance-level

output dimensionality d1 is chosen to be much larger

than d2. On the other hand, rows of ca and c
b (i.e. yÃi s)

correspond to the soft labels of samples. In precise form,

the cluster-level of CC loss function is given by

LC1
≜ L(ca, cb; ÄC)+H(ca)+H(cb), (6)

where, for any matrix u = [u1 · · ·ud] ∈ R
n×d, the

entropy is defined as

H(u) ≜ −
d

∑

i=1

∥ui∥1
∥u∥1

log
∥ui∥1
∥u∥1

. (7)

As discussed in [16], entropy regularization helps avoid

the trivial solution where all samples are assigned to the

same cluster.

DEC [18]: The original DEC [18] scheme consists

of two stages. In the first stage, a stacked auto-encoder

is pre-trained to produce data embeddings utilizing a

reconstruction loss, specifically the least squares loss,

which in our approach is substituted by the SSRL loss.

In this paper, we focus on the second stage of the

DEC work, namely the clustering assignment stage.

Specifically, let µ1, . . . , µM ∈ R
d denote cluster centers,

given the data xi and its representation zi ∈ R
d, qi,m

denotes the probability that the representation zi belongs

to cluster m with center µm. Following DEC [18],

we model these cluster assignment probabilities with a

student t-distribution with one degree of freedom

∆m(z, {µn}
M
n=1) ≜

(1 + ∥z − µm∥
2)−

1

2

∑

n(1 + ∥z − µn∥2)−
1

2

. (8)

Specifically, we set

qi,m = ∆m(zi, {µn}
M
n=1), m ∈ {1, . . . ,M}, ∀i. (9)

Effectively, each representation is assigned a probability

distribution. According to (8), the closer the representa-

tion to a cluster center with index (say) m, the higher the

belief/probability that the corresponding sample should

belong to Cluster m. We now define a target distribution

of the probabilities qi,m following [18], and we set

pi,m =
(qi,m)2/

∑

i qi,m
∑

n [(qi,n)
2/

∑

i qi,n]
. (10)

The target distribution is computed by squaring the

probability and normalizing it by the frequency of each

class. The motivation of squaring is to “harden” the soft

assignments, while frequency normalization penalizes

imbalanced clusters. The KL divergence loss is defined

to compare the probability distributions. Letting

KL(p||q) ≜
∑

m

pm log
pm
qm

, (11)

the non-contrastive clustering loss is typically a KL

divergence loss, which can be defined as

LNC1
≜

1

N

∑

i

KL(pi||qi). (12)
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IV. AN OPTIMIZATION OVER THE LEARNING SPACE

A. The Two Stage Approach to Learning

In the previous section, we have presented two

instance-level loss functions, (2) and (4), along with

two cluster-level clustering loss functions, (6) and (12).

For the purposes of representation learning, utilizing

either a contrastive loss function as in (2) or a non-

contrastive loss as in (4) is adequate. However, since

clustering is typically considered a downstream task of

representation learning, the initial step involves select-

ing a network for representation learning, followed by

choosing a network for the downstream task that converts

these representations into clusters. Given that there are

two options available for both networks—contrastive

and non-contrastive—we have four total combinations

to consider. In fact, a novelty of the current work is

that we also consider a second clustering stage for

representation learning that will act as a regularizer,

which will be thrown away once the training is complete.

In the following, we describe the four possibilities that

we optimize over:

Contrastive+Contrastive (C+C): As described in

Section III, CC regularizes the representation contrastive

loss (2) with a cluster-level contrastive loss (6). Thus, the

overall CC loss is the sum of the two losses

LC+C = LC + LC1
. (13)

This is, in fact, the loss function utilized in the CC

framework [16].

Contrastive+Non-Contrastive (C+NC): Here, we si-

multaneously train the neural network and optimize the

cluster centers by employing both the contrastive loss (2)

and the non-contrastive KL divergence loss (12). Given

the data xi and the representation zÃi , Ã ∈ {a, b} from the

SimCLR encoder f , let qÃi,m = ∆m(zÃi , {µn}
M
n=1), m ∈

{1, . . . ,M}, ∀i, denote the probability that the represen-

tation zÃi belongs to cluster m with center µm. Then, the

target distribution

pÃi,m =
(qÃi,m)2/

∑

i q
Ã
i,m

∑

n

[

(qÃi,n)
2/

∑

i q
Ã
i,n

] . (14)

Similar to (12), the KL divergence objective for two

augmented views can be defined as

LNC2
≜ 1

n

∑

i

[

KL(pai ||q
a
i ) + KL(pbi ||q

b
i )
]

, (15)

The instance-level loss remains consistent with the con-

trastive loss (2), so that the local loss of C+NC is

LC+NC = LC + LNC2
. (16)

Non-Contrastive+Contrastive (NC+C): We include

an additional cluster-level projector gC following the on-

line encoder fO to get yÃ,Oi ≜ gC(f
O(xÃ

i )) ∈ R
d2 , Ã ∈

{a, b} and c
Ã,O ≜ [yÃ,O1 · · · yÃ,On ] ∈ R

n×d2 , Ã ∈ {a, b}.
With (6), the cluster-level contrastive loss becomes

LC2
≜ LC(c

a,O, cb,O; ÄC)+H(ca,O)+H(cb,O). (17)

Hence, the final loss of NC+C is defined as

LNC+C = LNC + LC2
. (18)

Non-Contrastive+Non-Contrastive (NC+NC): We

utilize the non-contrastive (4) as the instance-level loss

and the KL divergence (12) for clustering. Due to the

structure of the two networks processing two augmented

data in BYOL, we only consider the representation from

the online network fO. Therefore, given Ã ∈ {a, b}, qÃ,Oi,m

is the probability that the representation zÃ,Oi belongs to

cluster m with center µm, and pÃ,Oi,m defines the target

distribution. The KL divergence loss in BYOL is

LNC3
≜ 1

N

∑

i

[

KL(pa,Oi ||q
a,O
i ) + KL(pb,Oi ||q

b,O
i )

]

. (19)

Hence, the final local loss for NC+NC is

LNC+NC = LNC + LNC3
. (20)

B. Federated Extensions of the Two Stages

In FedSSRL, local training can be trained using ei-

ther a single contrastive or a non-contrastive loss. This

entails training each local model with a single SimCLR

framework or a BYOL scheme in a FL setting, which

are named as FedSimCLR and FedBYOL, respectively,

in some literature [9]–[11]. In this paper, we adopt the

notation ‘FedC’ to denote a single-stage FedSimCLR

and ‘FedNC’ to denote a single-stage FedBYOL. TO

perform federated clustering, a two-stage training pro-

cess is necessary, comprising an instance-level represen-

tation stage followed by a clustering stage. Our idea

is to extend the centralized loss functions (13), (16),

(18) and (20) to the federated setting, resulting in our

so-called models FedC+C, FedC+NC, FedNC+C, and

FedNC+NC, respectively. Each of these four schemes

is able to learn representations and generate clustering

assignments jointly.

Let Dk ≜ {x1,k, . . . , x|Dk|,k}, k = 1, . . . ,K repre-

sent the local datasets of the users. At Client k with

local data Dk, the local training optimizes the loss:

Lk ≜
∑

xi,k∈Dk

L(xi,k), (21)

where L(xi,k) can be any of the losses from LC (2),

LNC (4), LC+C (13), LC+NC (16), LNC+C (18), and

LNC+NC (20). Then, both FedSSRL and FedCl aim to

optimize the objective

min
K
∑

k=1

|Dk|

|D|

∑

xi,k∈Dk

L(xi,k). (22)
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C. Empirical Study

To assess the performance of various loss functions

Lk in federated learning, we implemented two evaluation

tasks: a linear evaluation to evaluate the effectiveness of

learned representation from FedSSRL, and a clustering

analysis to determine the performance of FedCl. In the

linear evaluation, we train a classifier on top of the frozen

representations obtained from the global encoder. For the

clustering task, we employ the global model’s clustering

assignments and evaluate the clustering accuracy. A

more detailed description of our experimental setup can

be found in Section VII.

The results on CIFAR-10 are summarized in Table I,

with the best result highlighted in bold and the second-

best in italics. In the linear evaluation process, we

have the option of a single-stage representation learning

utilizing either the non-contrastive loss or the contrastive

loss. Alternatively, a two-stage training approach can be

employed, with the first stage applying self-supervised

learning loss and the second involving clustering loss.

Table I indicates that representation learning based on

non-contrastive loss surpasses methods based on con-

trastive loss in FL, with FedNC+NC yielding the highest

accuracy, achieving 86.01% in IID settings and 83.46%
in Non-IID scenarios. Meanwhile, a two-stage training

approach using FedNC+NC outperforms a single-stage

FedNC by margins of 1.72% for IID and 4.02% for Non-

IID scenarios, respectively.

For clustering tasks, a two-stage training process is re-

quired to produce the clustering assignments. As shown

in Table I, cluster-level contrastive loss is more effective

compared to the non-contrastive loss during the cluster-

ing stage. Specifically, the FedC+C configuration attains

the highest clustering accuracies, achieving 64.90% in

IID scenarios and 24.35% in Non-IID scenarios. The

FedNC+C method emerges as the second-best approach,

yielding accuracies of 62.70% for IID and 23.89% for

Non-IID, respectively. On the other hand, clustering loss

based on non-contrastive results in poor performance in

federated deep clustering tasks.

Our experiments in this section rely on very basic,

but fundamental, base schemes for contrastive and non-

contrastive learning. We have used these base schemes to

optimize over the specific strategy of contrastive or non-

contrastive learning for the specific task of FedSSRL

or FedCl. In the next two sections, we introduce 1)

The FedSSRL model, which leverages a clustering-

guided federated representation learning (FedRLC) strat-

egy to improve the quality of representations built upon

FedNC+NC, and 2) the federated clustering with Past

Negatives Pool (FedPNP) scheme, specifically designed

to optimize federated deep clustering tasks based on

FedC+C framework.

TABLE I
STUDY ON FEDSSRL AND FEDERATED CLUSTERING. IID &

DATA-SPLIT NON-IID.

Dataset Linear Evaluation Clustering Accuracy

Method IID Non-IID IID Non-IID

FedC 82.15 78.09 - -

FedNC 84.29 79.44 - -

FedC+NC 82.57 78.28 23.58 21.95

FedC+C 83.50 77.83 64.90 24.35

FedNC+NC 86.01 83.46 21.54 15.59

FedNC+C 83.90 78.84 62.70 23.89

V. FEDRLC: CLUSTERING-GUIDED FEDERATED

LEARNING OF REPRESENTATIONS

A. Motivation

From the empirical study in Section IV, our findings

indicate that optimizing cluster centers helps with learn-

ing representations. Thus, we develop FedRLC, which

incorporates a crossed KL divergence loss with a data

selection strategy during local training, and introduces

a novel dynamic controller designed to update cluster

centers during federated communication.

B. Local Training in FedRLC

The block diagram of the FedRLC framework is

illustrated in Fig. 1 for local training at a certain Client

k. In the following, we shall describe each stage in the

figure in detail. The first stages to obtain the instance

representations (until LINS) apply verbatim from the

BYOL scheme. We now describe the next steps.

In FedRLC, we define a novel crossed KL divergence

loss (CKL) to learn a well-separated representation. CKL

aims at optimizing M cluster centers by a crossed

divergence between probabilities calculated from the

online network and the target distribution from the target

network. Specifically, given the input data xi,k ∈ Dk,

³ ∈ {a, b} and ¿ ∈ {O, T}, the q³,¿i,m,k and p³,¿i,m,k

is defined by (9) and (10). We can now compare the

probabilities q³,Oi,m,k induced by the online networks with

the probabilities p³,Ti,m,k of the target networks. By (11),

the crossed KL divergence objective can be defined as

LCKL0 ≜
1

n

∑

i

[

KL(pb,Ti,k ||q
a,O
i,k )+KL(pa,Ti,k ||q

b,O
i,k )

]

, (23)

where N represents the batch size. The crossed KL

objective (23) intends to optimize the local cluster cen-

ters by incorporating information from both augmented

views of the input. The two augmented samples are

supposed to share similar probabilities because they are

derived from the same data.
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Online Network

EMA

sg

KL
If equal

Target Network Cluster Centers

Fig. 1. The FedRLC framework during local training. sg means stop gradient. In the figure, we illustrate the construction of the first terms of
the symmetric loss function in (24); the second terms are similar.

Another novelty that we incorporate in FedRLC is to

make sure that the augmentations that are involved in the

crossed KL objective in (23) are not too far. Indeed, intu-

itively, completely irrelevant augmentations would harm,

instead of benefit the overall performance. This is why

we only incorporate pairs whose hard decisions match in

the KL divergence losses. Let l³,¿i,k = argmaxm(q³,¿i,m,k)
denote the hard clustering decisions of the online and

target networks with different augmentations. Ties are

broken in favor of the smallest index.

The data is chosen to contribute to the crossed KL

divergence loss only when the predicted label from the

online and the target networks are the same. We thus

modify the loss in (23) to work with

LCKL ≜
1

n

∑

{

KL(pb,Ti,k ||q
a,O
i,k ) : lb,Ti,k = la,Oi,k

}

+

1

n

∑

{

KL(pa,Ti,k ||q
b,O
i,k ) : la,Ti,k = lb,Oi,k

}

. (24)

As shown in Figure 1, we jointly optimize the clus-

ter centers and the online/target networks during local

training. Therefore, the overall loss function is given by

LFedRLC = LCKL + LINS, (25)

where LINS recalls the classical instance-level NC loss

defined in (4). Usually, a hyperparameter can be incor-

porated to the loss function to control the relative weight

of the losses LCKL and LINS. In our experiments, equal

weights on the losses already provided a good perfor-

mance. We thus leave a detailed study on hyperparameter

tuning as future work.

C. Updates After Server-to-Client Communications

We describe the cluster center and online network

update mechanisms during the server-to-client communi-

cations. We use subscript ⋆ to denote the global models,

the subscript k to be the local model, and the superscript

O to be the online networks. Let r represent the current

training round. During the communication update, only

the cluster centers and the online network are updated.

We now introduce a novel rule to update the centers.

Specifically, given centers {µr−1

m,k ∈ R
d}Mm=1 in local

user k with local data Dk at round r− 1, global centers

µr
m,⋆ at round r, the centers of Client k at round r are

updated according to

µr
m,k =

ϵr
1 + ϵr

µr−1

m,k +
(

1−
ϵr

1 + ϵr

)

µr
m,⋆, (26)

where ϵr is updated progressively by the KL divergence

between the probability generated from the local and

global centers. Specifically, letting fr
⋆ and fO,r−1

k denote

the global encoder in round r and the local encoder

in round r − 1 at Client k, respectively, we define

z⋆,i,k ≜ 1

2
(fr

⋆ (x
a
i,k)+fr

⋆ (x
b
i,k)), zi,k ≜ 1

2
(fO,r−1

k (xa
i,k)+

fO,r−1

k (xb
i,k)) as the mean representations of data xi,k

under different augmentations and with global and local

networks. We now evaluate the soft class probabili-

ties for the data of Client k according to the global

model at Round r as q⋆,i,m,k ≜ ∆m(z⋆,i,k, {µ
r
n,⋆}

M
n=1).

Likewise, we can evaluate the class probabilities ac-

cording the local model at Round r − 1 as qi,m,k ≜

∆m(zi,k, {µ
r−1

n,k }
M
n=1). We can now compute the mo-

mentum parameter ϵr via

ϵr=
1

|Dk|

|Dk|
∑

i=1

KL
(

{q⋆,i,m,k}
M
m=1∥{qi,m,k}

M
m=1

)

. (27)

In order to keep the features extracted from local data,

it is important to the preserve the local model especially

when the distance of the local model to the global

model is large. This was also observed in previous work

[10], [11]. In FedRLC, when ϵr is large, the divergence

between probabilities generated from global and local

networks is large, so that the cluster centers inherit

more local knowledge. Otherwise, a smaller ϵr gathers

more information from global cluster centers. Figure 2

illustrates the rule for updating cluster centers during

each communication round.

Finally, we discuss how to update the client online

networks. We follow the EMA scheme [10]. Specifically,

the online networks at Round r are updated as

(fO,r
k , gO,r

k )← µ(fO,r−1

k , gO,r−1

k )

+ (1− µ)(fO,r
⋆ , gO,r

⋆ ). (28)
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Fig. 2. Cluster centers update during communication round.

In (28), the parameter µ is used to control the weight

between the global model and the local model. An

explicit formula for µ is given by [10] µ = min(¼k||f
r
⋆−

fO,r−1

k ||, 1) where ¼k = Ä
||f1

⋆
−f0

k
||

is a customized

magnitude, Ä is a hyperparameter, and f is the encoder.

In EMA [10], ¼k is only calculated once at the first

round. Thus, ϵr is used to update the cluster centers

µr
m,k, while µ is applied to the update of the local online

networks, including an encoder fO and a predictor gO.

Algorithm 1 shows the overall FedRLC scheme.

Algorithm 1 FedRLC

Input: Number of communication rounds R, Number

of clients K, Number of local epochs E.

Output: Global encoder f⋆ and predictor g⋆.

1: Server executes: Initialize server’s network param-

eters f⋆, g⋆, and µ⋆,m. Have the clients initialize

local parameters fO
k , gOk , and µk,m

2: for r = 1, . . . , R do

3: for k = 1, 2, . . . ,K in parallel do

4: Send global encoder f⋆, predictor g⋆, and clus-

ter centers µ⋆,m to client k.

5: fO
k , gOk , µm,k ← ClientTraining(f⋆, g⋆, µ⋆,m).

6: end for

7: FedAvg: (fO
⋆ , g

O
⋆ , µ⋆,m)←

∑
k
|Dk|
|D| (f

O
k , g

O
k , µm,k).

8: end for

9: Return global encoder f⋆ and predictor g⋆.

10: ClientTraining(fO
k , gOk , µk,m)

11: Update the online networks and cluster centers via

global parameters by (28) and (26), respectively.

12: for epochs = 1, . . . , E and size-N batch learning

within each epoch over dataset Dk do

13: Update online networks and cluster centers via

global parameters by descending the gradient of

the local cost function in (25).

14: Update the target network parameters fT
k via (5).

15: end for

16: Return the online networks fO
k and gOk .

VI. FEDPNP: FEDERATED CLUSTERING WITH PAST

NEGATIVES POOL

A. Motivation

As discussed in Section IV, the FedRLC does not

perform well on clustering tasks, while the cluster-level

contrastive loss based on C+C yields better clustering

performance. Based on C+C, we propose a federated

clustering framework with a novel past negatives pool

(PNP) for intelligently selecting positive and negative

samples for contrastive learning. PNP benefits FL and

contrastive learning simultaneously, specifically, alleviat-

ing class collision for contrastive learning and reducing

client-drift in FL.

B. FedPNP: Overall Framework

In FedPNP, we aggregate several local models trained

in a fully unsupervised federated way to obtain a global

model that outputs the cluster information directly. The

overall block diagram of the FedPNP architecture is

shown in Fig. 3. The central server contains global

networks f⋆, gI,⋆, and gC,⋆, representing a base encoder,

an instance-level projector, and a cluster-level projec-

tor, respectively. Let fk, gC,k, gI,k denote the network

elements at user k. In each communication round, the

central server sends global networks to local clients.

Each local device updates the local model using its own

local data and sends the updated model to the sever. The

server updates the global networks by a weighted average

of the local models. Finally, the clustering assignments

can be obtained from the global cluster-level projector.

Cluster 

Assignment

Server Model Aggregation

Model Upload

Model Update

Client 1 Client 2 Client K

1

3

Local 

Training

2

4

Fig. 3. The federated clustering scheme. At the client k, fk , gI,k ,
gC,k represent base encoder, instance-level projector, and cluster-level
projector, respectively.

C. PNP and PNP loss

The proposed FedPNP relies on contrastive represen-

tation learning [5], [16], and specifically CC [16], as

outlined in Section III. Simply extending the CC scheme

to a federated setting results in poor performance we

show in Section IV. This is because: 1) The Non-IID
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data over multiple users causes the client-drift during

local training. 2) FedSSRL needs to store more local

information that may lose during fast aggregation in FL,

which leads to poor representations. 3) Negative samples

in contrastive loss causes class collision. In contrastive

learning, the loss function (1) relies on a large number

of so-called negative samples, which typically consist

of all samples in a batch, excluding the input and its

augmented version. The model is trained to distance

these negatives far away from the input data. However,

the negatives often contain data from the same category

as the input, leading to what is known as class collision

issue in contrastive learning.

We introduce the PNP for intelligently selecting neg-

ative samples in CL. Intuitively, in terms of the above

issues 1) and 2), reducing client-drift contradicts with

keeping more local data features. The PNP is designed

to optimize the trade-off between these two demands.

The idea is that we remove the potential positive samples

by comparing soft labels produced from the past local

models. We utilize features learned from the past to

retain more local knowledge and avoid the client-drift

during the current local training. Moreover, we compare

the similarity between soft labels to select potential

positives with the given input image and remove it

from the large set of negatives in contrastive loss to

alleviate class collision issue. Given data xi,k ∈ Dk, two

augmented samples pass through not only local models

in current communication but also through the local

models in the previous round as shown in Fig. 4.

Loss: Loss: Similarity

PNP

Local Client    

in communication 

round   -   

Local Client    

in communication 

round        

Fig. 4. The local training at client k for FedPNP

To construct the PNP, we compute the Gaussian sim-

ilarity between the soft labels extracted from the past

local model in communication round r−1. The Gaussian

similarity measure is defined as s(u, v) ≜ exp (u†v).
The PNP for a given augmented data xa

i,k is created by

Pi={j ̸= i : s(ya,r−1

i,k , yÃ,r−1

j,k ) < µ, ∀Ã∈{a, b}}, (29)

where µ is the threshold to select negative and positive

samples, yÃ,r−1

i,k represents the soft label extracted from

the cluster-level MLP in the previous round r−1. Hence,

sufficiently close samples form positive pairs while far

samples are negatives. The key idea is that the indices

Pi for negative pairs are obtained from the past model

in FedPNP. This allows preserving local information, a

key requirement in FedSSRL.

In particular, the decision whether a given sample is

positive or negative is done according to the current

model weights. To preserve more local information, we

use the idea of PNP, and choose the negative samples

over the indices described by the set (29) instead. With

the PNP, we modify the traditional contrastive loss (1)

to get PNP-contrastive loss

LPNP(u,v; Ä)≜
1

n

n∑

i=1

−log
sÄ (ui, vi)∑

j∈Pi

[sÄ (ui, uj)+sÄ (ui, vj)]
.

(30)

For FedSSRL, the PNP selects negatives from the past

local models, which alleviates the client-drift during the

current local update and maintains more local knowledge

that is forgotten during the model aggregation. For

contrastive representation learning, the PNP computes

similarity between soft labels extracted from the past

and removes samples that may have the same class

category with the given input, which alleviates the class

collision issue in traditional contrastive loss. In short,

the PNP is beneficial in three aspects. 1) It avoids the

large divergence of Non-IID networks updated locally

in current communication round. 2) It keeps more local

knowledge, which can be lost during model aggregation,

benefiting FedSSRL. 3) It helps the class collision issue

in traditional CL by removing potential positives from

negative samples.

D. Local training in FedPNP

We now describe the training procedure at each client.

We minimize the PNP-contrastive loss (30) on instance

representation and ordinary contrastive loss (1) on both

past and current cluster features. Formally, given a batch

size n, the instance-level PNP-contrastive loss at user k
is defined via the instance-level representations z

Ã,r
k ≜

[zÃ,r
1,k · · · z

Ã,r
n,k] ∈ R

d1×n, Ã ∈ {a, b} as

LPNP

I ≜ LPNP(za,rk , zb,rk ; ÄI), (31)

where ÄI > 0 is the instance-level temperature.

On the other hand, given c
Ã,r
k ≜ [yÃ,r

1,k · · · y
Ã,r
n,k]

† ∈

R
n×d2 , Ã ∈ {a, b}, we define the cluster-level con-

trastive loss at round r via (6) as

Lr
C ≜ LC(c

a,r
k , cb,rk ; ÄC) +H(ca,rk ) +H(cb,rk ), (32)

where ÄC > 0 is the cluster-level temperature param-

eter. We combine the different performance measures

described above into the overall loss function

LFedPNP ≜ LPNP

I + ³Lr
C , (33)
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where ³ is the hyperparameter used to control the weight

of the loss. The dependencies between the different

losses are illustrated in Fig 4. Note that the first term

in (33) depends on the parameters of both the current

and the past network, while the second term depends

only on the current parameters. To minimize the loss

(33) in practice, we select the negatives from the current

models only for r = 1 as there is no previous models in

the first round. In the first round, the PNP is defined as

Pi = {j ̸= i : s(ya,ri,k , y
Ã,r
j,k ) < µ, r = 1, ∀Ã ∈ {a, b}}.

VII. EXPERIMENTS

A. Experiment Setup

Evaluation Metrics: We divide our experiments into

two parts: representation learning and clustering. We

use benchmark datasets including CIFAR-10, CIFAR-

100, where CIFAR10 has 10 classes, and CIFAR-100

has 100 classes. For CIFAR-10 and CIFAR-100, the

training set contains 50,000 images and the testing

set contains 10,000 data. For federated representation

learning, we evaluate the learned representation from the

global model using linear evaluation and semi-supervised

learning, following the evaluation methods from recent

FedSSRL works [9], [10]. For testing the clustering

performance, we obtain the clustering assignment from

the global model and evaluate it in terms of clustering

accuracy (ACC), normalized mutual information (NMI),

and adjusted rand index (ARI), which is also followed

by the recent clustering works [16], [17], [42]. For a

fair comparison, for all experiments trained in federated

learning, we train the model for 100 communication

rounds for K = 5 clients. For each communication

round, each client is trained for E = 5 local epochs. We

will make all computer codes for training and evaluation

publicly available in the final version of the paper.

Data Spliting: We follow the same setup of FedU [9]

and FedEMA [10], for a fair comparison. Namely, to

simulate data heterogeneity in federated learning, each

user only consists of samples from M/K classes, where

M is the number of classes, and K is the number of

clients. This is referred to as the data-split scenario. For

independent and identically distributed (IID) data, each

user has the same number of samples from M classes.

In addition to the data-split non-IID scenario, to evaluate

on different non-IID scenarios, we sample a specific

proportion of the data from class m to client k, where

the proportion is followed by the Dirichlet distribution

with parameter ´, which is also a widely-used method to

simulate non-IID data distribution. A smaller ´ indicates

a more heterogeneous distribution.

B. Representation Learning

Baselines: We evaluate FedRLC on linear evalua-

tion and semi-supervised learning. Our baselines include

FedU [9] and FedEMA [10], which are current state-of-

the-art FedSSRL methods. We also evaluate FedBYOL,

which refers to combining BYOL [6] with federated

averaging. Single-Training refers to training each client

independently, and the accuracy is calculated by the

average of all clients. We also include results for the

schemes discussed in Section IV, including FedSimDEC,

FedCC, FedBYDEC, and FedBYCC.

Implementation Details: For FedSSRL, we adopt

the SGD optimizer with a 0.032 initial learning rate.

The learning rate is decayed by cosine annealing. The

batch size is 128, and the input size is 32 × 32. We

use ResNet18 to be the encoder, and the predictor is a

two-layer multiplayer perceptron (MLP) with the output

dimension 2048. The Ã of EMA is 0.99, and the Ä = 0.7
is directly followed by [10] without tuning.

Visualization of Representations: To analyze the

data features visually, we plot the t-SNE visualization

of the CIFAR-10 learned from FedBYOL and FedRLC

in Fig 5, where different colors indicate different classes.

From the comparison between FedBYOL and FedRLC,

we observe that the data representations obtained from

FedRLC are separated more clearly. The following lin-

ear and semi-supervised evaluations further verify the

effectiveness of FedRLC.

(a) IID FedBYOL (b) IID FedRLC

(c) Non-IID FedBYOL (d) Non-IID FedRLC

Fig. 5. t-SNE data visualization on CIFAR-10.

Linear Evaluation: To validate the quality of learned

representations, a linear classifier is trained on top of the

frozen representations learned from different FedSSRL

methods. For linear evaluation training, the AdamW

optimizer is adopted with a learning rate of 0.022. The

results are shown in Table II and III. FedRLC constantly

outperforms other methods, especially for CIFAR-100

with a large number of classes, where it improves by

2.77% and 1.62% on IID and non-IID data, respectively.

Semi-supervised Learning: We compare our model

with state-of-the-art works on semi-supervised learning

tasks. A new MLP is added on the top of the encoder
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TABLE II
LINEAR EVALUATION: IID & DATA-SPLIT NON-IID.

Dataset CIFAR-10 CIFAR-100

Method IID Non-IID IID Non-IID

Single-Training 82.42 74.95 53.88 52.37

FedC+NC 82.57 78.28 55.31 54.43

FedC+C 83.50 77.83 52.79 51.28

FedNC+NC 86.01 83.46 60.09 61.30

FedNC+C 83.90 78.84 45.60 49.65

FedBYOL 84.29 79.44 54.24 57.51

FedU [9] 83.96 80.52 54.82 57.21

FedEMA [10] 86.26 83.34 58.55 61.78

FedRLC 87.06 84.08 61.32 63.40

BYOL (Centralized) 90.46 65.54

TABLE III
LINEAR EVALUATION: DIRICHLET NON-IID.

Dataset CIFAR-10 CIFAR-100

β 0.5 0.1 0.5 0.1

Single-Training 83.42 83.08 58.45 57.20

FedC+NC 81.59 78.69 56.31 57.04

FedC+C 81.14 80.66 51.86 51.27

FedNC+NC 83.33 79.64 61.82 62.12

FedNC+C 83.07 81.14 46.62 47.90

FedBYOL 85.44 84.69 59.14 59.93

FedU 85.62 85.33 59.10 58.06

FedEMA 86.12 86.00 60.26 61.46

FedRLC 86.89 86.69 62.39 63.21

in semi-supervised learning, and we fine-tune the entire

model with 10% labeled data. We compare different

federated representation learning methods under IID and

Non-IID setting for CIFAR-10 and CIFAR-100 datasets.

Tables IV and V demonstrate that our scheme achieves

the best results in all cases. In particular, FedRLC im-

proves the performance of CIFAR-100 by 1.68% under

a highly heterogeneous scenario.

C. Clustering Results

Baselines: In Section IV, we have already presented

several federated clustering results. Now, we will provide

additional results for various data distributions and com-

pare the proposed FedPNP with several existing SSRL

methods in the context of federated clustering tasks.

Also, we consider the centralized clustering scheme Pro-

Pos [42] as an upper bound. ProPos [42] only provides

experiments for the 20 super-classes of the CIFAR-100

TABLE IV
SEMI-SUPERVISED LEARNING: IID & DATA-SPLIT NON-IID.

Dataset CIFAR-10 CIFAR-100

Method IID Non-IID IID Non-IID

Single-Training 78.08 69.06 43.50 39.99

FedC+NC 78.24 74.28 41.94 41.01

FedC+C 78.27 72.47 39.63 37.43

FedNC+NC 83.44 79.12 49.71 50.07

FedNC+C 79.92 71.20 32.38 35.87

FedBYOL 83.24 76.95 49.20 47.07

FedU 82.61 77.06 47.64 46.67

FedEMA 83.38 79.49 49.26 50.48

FedRLC 83.99 79.52 49.67 52.16

TABLE V
SEMI-SUPERVISED LEARNING: DIRICHLET NON-IID.

Dataset CIFAR-10 CIFAR-100

β 0.5 0.1 0.5 0.1

Single-Training 81.72 79.89 48.53 49.41

FedC+NC 76.93 75.29 42.90 43.16

FedC+C 76.34 74.68 38.86 37.80

FedNC+NC 82.82 81.18 49.80 49.86

FedNC+C 77.88 75.50 33.37 35.22

FedBYOL 82.84 82.20 50.00 50.12

FedU 81.33 81.66 49.25 49.31

FedEMA 83.18 82.06 50.11 51.07

FedRLC 83.41 82.73 50.41 51.19

dataset while we consider the full 100 classes; we thus

omit their results for a fair comparison.

Implementation Details: In this experiment, we use

ResNet-18 [53] as the base encoder. We use Adam

optimizer with an initial learning rate of 0.0003 and

without weight decay. All input images are resized to

224×224, and the batch size n is set to 128. The output

dimension of the instance-level MLP is set to 128, and

the feature dimension of the cluster-level MLP is equal to

the number of clusters. The instance-level temperature is

ÄI = 0.5, and the cluster-level temperature is ÄC = 1.0.

In FedPNP, µ is set to 0.999 for selecting negatives.

We set the hyper-parameters ³ = 2 for the first round

r = 1 and ³ = 0.1 starting from the second round.

For 20 and 50 clients, we set ³ = 0.5. For the Single-

Training experiment, we train each client 300 epochs

and report the mean clustering accuracy among all 5

clients by K-means. For all other federated clustering
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methods, we show the performance based on the cluster

assignment from the global cluster-level MLP or global

cluster centers.

TABLE VI
CLUSTERING ACCURACY (%), IID DATA.

Dataset CIFAR-10 CIFAR-100
Method NMI ACC ARI NMI ACC ARI

Single-Training 45.7 56.1 33.1 34.1 16.3 8.6

FedC+NC 18.5 23.6 6.1 16.6 8.4 2.3

FedC+C 54.9 64.9 46.3 34.1 16.3 8.4

FedNC+NC 17.6 20.2 5.8 26.6 11.9 5.6

FedNC+C 53.8 62.7 44.9 33.2 15.7 7.9

FedPNP (ours) 56.8 66.5 47.1 34.7 17.1 9.0

ProPos [42] (Centralized) 88.6 94.3 88.4 - - -

TABLE VII
CLUSTERING ACCURACY (%), NON-IID DATA (β = 0.5).

Dataset CIFAR-10 CIFAR-100
Method NMI ACC ARI NMI ACC ARI

Single-Training 40.6 46.4 25.7 33.9 16.2 8.4

FedC+NC 18.4 20.6 5.9 16.5 7.8 2.2

FedC+C 41.2 44.7 27.5 34.4 16.5 8.9

FedNC+NC 18.3 20.1 5.5 26.1 11.5 4.4

FedNC+C 41.3 45.7 28.3 33.9 16.3 8.3

FedPNP (ours) 42.7 49.5 30.5 34.5 17.0 8.9

ProPos [42] (Centralized) 88.6 94.3 88.4 - - -

TABLE VIII
CLUSTERING ACCURACY (%), NON-IID DATA (β = 0.1).

Dataset CIFAR-10 CIFAR-100

Method NMI ACC ARI NMI ACC ARI

Single-Training 34.8 40.4 20.1 33.8 15.2 7.3

FedC+NC 15.4 25.4 8.5 15.3 6.9 2.0

FedC+C 33.2 38.0 20.3 33.0 15.0 7.3

FedNC+NC 13.2 21.5 7.1 27.7 12.3 5.7

FedNC+C 35.5 40.4 22.9 31.9 14.9 7.2

FedPNP (ours) 36.4 43.7 24.2 34.1 16.0 7.9

ProPos [42] (Centralized) 88.6 94.3 88.4 - - -

Federated Clustering Performance: Table VI shows

the proposed FedPNP constantly outperforms other

methods and achieves the best clustering performance in

all data distribution settings. In IID cases, we improve

the clustering accuracy by 10.4%, 3.7%, and 2% when

comparing with baselines on CIFAR-10. Compared to

simply doing a CC framework in Non-IID setting, we

improve the clustering accuracy by 4.6% and 5.7 %

for ´ = 0.5 and ´ = 0.1, respectively. For CIFAR-

100 with 100 clusters, FedPNP is still the best ap-

proach for dealing with such large number of classes.

FedPNP outperforms all other methods, achieving higher
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Fig. 6. Linear evaluation results on Non-IID CIFAR-10 under different
numbers of clients.
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Fig. 7. Clustering performance on Non-IID CIFAR-10 under different
numbers of clients.

accuracy in fewer communication rounds. We note that

fewer rounds translate to fewer amount of computations,

which is an important gain for resource-limited edge

devices. Another byproduct of fewer rounds is reduced

communication latency, especially when the client-to-

server communication rates are low [54], [55]. FedPNP

thus offers significant advantages for both power and

communication-limited edge devices.

VIII. ABLATION STUDIES

In this section, we perform ablation experiments over

various factors, including varying the number of clients,

simulating more Non-IID settings, the impact of data

selection, and conducting experiments on the Tiny-

ImageNet dataset to better understand the performance

of FedRLC and FedPNP under different conditions.

Experiments on Varying the Number of Clients: We

conduct the experiment with different numbers of nodes,

as shown in Fig. 6 for FedRLC and Fig.7 for FedPNP.

We report the linear evaluation accuracy for FedRLC and

clustering accuracy for FedPNP. Compared to FedEMA
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Fig. 8. Linear evaluation results on CIFAR10 with varying β of the
Dirichlet Distribution.
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Fig. 9. Clustering performance on CIFAR10 with varying β of the
Dirichlet Distribution.

and FedBYOL, we observe that all methods demonstrate

a decline in accuracy as the number of clients increases,

while FedRLC consistently performs the best among all

methods.

In Fig. 6, compared to different combinations con-

trastive and non-contrastive strategies at the two stages

of learning, we observe that FedRLC performs the

best, especially when there are 50 clients. Also, as the

number of clients increases, the performance gain also

increases. Fig. 7 shows that our proposed federated

clustering model, FedPNP, consistently performs well

across different number of clients. Our model is either

the best or within 1% of the best in terms of accuracy.

Specifically, when there are 5 clients, FedPNP is over

5% higher in accuracy than the second-best model,

FedNC+C. Moreover, FedPNP remains stable and robust

as the number of clients changes, compared to other

methods. In contrast, FedNC+C experiences a significant

drop in accuracy of more than 10%, and FedCC is about

6% lower in accuracy than our model, FedPNP, when

there are 20 clients.

Simulating More Non-IID Settings: In Fig. 8 and

Fig. 9, we explore the effect of various Non-IID con-

ditions by training the federated model with differing

values of ´ in the Dirichlet distribution. A smaller ´
value indicates a more Non-IID situation. From Fig.

8, we find that FedRLC achieves the highest linear

evaluation accuracy and maintains a relatively stable

performance under different Non-IID conditions. Addi-

tionally, FedEMA outperforms FedBYOL but fluctuates

slightly when varying the data distribution. Therefore,

FedRLC demonstrates robustness in maintaining a rela-

tively high linear evaluation accuracy despite changes in

data distribution. The clustering performance under vary-

ing ´ values of the Dirichlet Non-IID data distribution

for different federated clustering frameworks is shown

in Fig. 9. FedPNP consistently outperforms all other

methods across the range of ´ values, obtaining a 3.2%
accuracy improvement over FedNC+C. Both FedC+NC

and FedNC+NC show relatively low performance in all

Non-IID scenarios, indicating the non-effectiveness of

the non-contrastive method in federated clustering tasks.

Impact of Data Selection: In FedRLC, data selection

is applied when the predicted labels from the online

network and the target network are the same, as they

are expected to output similar embeddings. The intuition

behind this approach is to increase the likelihood of

selecting data with more accurate soft labels for training.

In FedPNP, we select data specifically for contrastive

learning, which carries the challenging class collision

problem. Class collision refers to the fact that contrastive

learning sees all samples in a batch (excluding the input)

as negatives to the input data, which is not always true,

as some samples may belong to the same category as

the input data. Existing works that address this issue

primarily focus on centralized cases. However, FedPNP

tackles the more challenging problem of class collision

in the federated setting. We select data that are more

likely to be a true negative for contrastive loss to alleviate

the issue of class collision. More specifically, the data

selection is based on Gaussian similarity between data

embeddings generated from the previous network.

In TABLE IX, we compare the performance of Fe-

dRLC with and without data selection on CIFAR10 and

CIFAR100 under different Non-IID data distributions,

with ´ = 0.5 and under data-split Non-IID condition. We

observe that the performance decreases after removing

the data selection strategy, especially for the Non-IID

CIFAR-100 dataset with a large number of classes,

showing around a 2% drop in terms of linear evalua-

tion accuracy. Additionally, removing the clustering loss

proposed in FedRLC hurts the performance significantly,

with a decrease of 4.64% and 5.89% for data-split Non-

IID CIFAR-10 and CIFAR-100, respectively. Next, we

evaluate the impact of data selection in FedPNP in TA-
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BLE X. The model without the data selection performs

worse than the proposed model in all settings in terms

of federated clustering accuracy. Specifically, with a

larger number of classes in CIFAR-100, the performance

decreases by 1.5% in accuracy when the number of

classes is 100 after removing the data selection strategy.

Impact of Hyperparameter: In TABLE X, we fine-

tune the hyperparameter µ used for data selection in

FedPNP with values of 0.998 and 0.996, compared to the

original value of 0.999 in our setting shown in Section

VII. The results show that FedPNP achieves optimal

performance with µ = 0.999 on Non-IID CIFAR-10 and

µ = 0.996 on IID CIFAR-10. For CIFAR-100, when

µ = 0.999, we obtain the best performance for Non-

IID with 17.0%, and µ = 0.998 for IID. Generally, we

observe that the hyperparameter µ does not significantly

impact performance, demonstrating that FedPNP is ro-

bust to variations in the hyperparameter when the data

selection strategy is applied.

Experiments on Tiny-ImageNet for Transfer

Learning: For large-scale datasets, we train the FedRLC

on the Tiny-ImageNet dataset and fine-tune it on CIFAR-

10 for linear evaluation. The results are presented in

TABLE XI. Tiny-ImageNet comprises 200 classes and

contains a total of 100, 000 samples, divided into 70%
for the training set and 30% for the testing set. FedRLC

achieves 41.4% linear evaluation accuracy, which is a 2%
improvement compared to the model with some com-

ponents removed. In all Non-IID scenarios, removing

either the data selection or the clustering loss hurts the

performance. These findings demonstrate that our data

selection strategy is effective for large-scale data such

as Tiny-ImageNet, even with its large number of classes,

across various federated learning environments.

TABLE IX
EFFECT OF DATA SELECTION ON FEDRLC.

Dataset CIFAR-10 CIFAR-100

Method Non-IID (β = 0.5) Non-IID Non-IID (β = 0.5) Non-IID

FedRLC (No Data Selection) 86.01 83.51 60.82 63.03

FedRLC (Without Clustering Loss) 85.44 79.44 59.14 57.51

FedRLC 86.89 84.08 62.39 63.40

TABLE X
EFFECT OF DATA SELECTION ON FEDPNP.

Dataset CIFAR-10 CIFAR-100

Method IID Non-IID IID Non-IID

FedPNP (No Data Selection) 64.9 44.7 16.3 16.5

FedPNP (µ = 0.998) 65.9 48.6 17.6 16.7

FedPNP (µ = 0.996) 66.7 48.1 16.2 16.6

FedPNP 66.5 49.5 17.1 17.0

IX. CONCLUSIONS

We studied self-supervised representation learning and

deep clustering algorithms in the federated setting. We

introduced the FedRLC framework, designed to learn

TABLE XI
EXPERIMENTAL RESULTS ON TRANSFER LEARNING.

Dataset Tiny-ImageNet

Method IID Non-IID Non-IID (β = 0.5) Non-IID (β = 0.1)

FedRLC (No Data Selection) 39.1 28.2 37.7 33.2

FedRLC (Without Clustering Loss) 40.4 28.5 38.8 32.6

FedRLC 41.1 30.5 39.2 34.5

high-quality representations, and FedPNP, which au-

tomatically clusters data during training with non-IID

unlabeled data. The experimental results demonstrated

that FedRLC achieves state-of-the-art performance when

evaluated through linear evaluation and semi-supervised

learning. Additionally, FedPNP effectively generated

cluster probabilities and outperformed many other meth-

ods in clustering data.
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