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Abstract—We investigate federated self-supervised rep-
resentation learning (FedSSRL) and federated clustering
(FedCl), aiming to derive low-dimensional representations
of datasets distributed across multiple clients, potentially
in a heterogeneous manner. Our proposed solutions for
both FedSSRL and FedCl involves a comparative analysis
from a broad learning context. In particular, we show that
a two-stage model, beginning with representation learning
and followed by clustering, is an effective learning strategy
for both tasks. Notably, integrating a contrastive loss as
regularizer significantly boosts performance, even if the
task is representation learning. Moreover, for FedCl, a
contrastive loss is most effective in both stages, whereas
FedSSRL benefits more from a non-contrastive loss. These
findings are corroborated by extensive experiments on
various image datasets.

Index Terms—Federated learning, representation learn-
ing, clustering.

I. INTRODUCTION
A. Federated Learning and Representation Learning

Federated learning involves training a global machine
learning model across multiple decentralized devices
or servers. In each round, local models on individual
devices are trained on their own datasets, and then
the models’ parameters are aggregated and averaged to
update the global model. In the server aggregation stage
of federated learning, a central server collects all local
updates from clients to obtain a global model, generally
through weighted averaging of the local models. It has
various applications in areas such as finance, health-
care, and autonomous vehicles, particularly in scenarios
where considerations of privacy, data decentralization,
and computational capacity are crucial. There are numer-
ous algorithms [1]-[4] designed for federated learning,
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such as federated averaging [3]. However, the existing
literature primarily concentrates on supervised learning,
while we shall focus on unsupervised learning.

Self-supervised representation learning [5]-[8] aims
to create meaningful representations of data without
requiring labels for training, which can then be applied
to downstream tasks such as linear classification, ob-
ject detection, semi-supervised learning and clustering.
The representation space typically has much smaller
dimension than the data space. Two main approaches
include contrastive [5] and non-contrastive [6] learning.
The contrastive loss leverages large negative samples
to encourage representations of similar data augmenta-
tions to be close. In contrastive learning, two identical
networks process two different augmented views of the
same input. In contrast, non-contrastive learning utilizes
a mean squared error (MSE) loss in a dual-network
architecture with online and target networks, eliminating
the need for explicit negatives. However, whether using
contrastive or non-contrastice learning, most state-of-the-
art methods assume a centralized data setting, making
them unsuitable for distributed data scenarios.

B. Federated Self-Supervised Representation Learning
(FedSSRL) and Federated Clustering (FedCl)

Recently, several works have studied the FedSSRL
problem [9]-[12], where each local model is trained
on unlabeled data using contrastive or non-contrastive
loss functions, as described above [13]. The objective
is to obtain a global model that produces meaningful
representations for downstream tasks, such as linear
evaluation and semi-supervised learning. In our study,
we focus not only on FedSSRL, but also on the particular
downstream task of clustering. In this Federated Cluster-
ing (FedCl) framework, the global model is specifically
trained to directly produce the clustering assignments.

Clustering is a machine learning and data analysis
technique wherein data points are grouped together based
on certain similarities or patterns in an unsupervised
manner. The problem is intimately related to represen-
tation learning. In fact, representation learning aims to
obtain a lower-dimensional representation of a higher-
dimensional input via a continuous mapping. Clustering



can be thought as an extreme form of representation
learning where the mapping is discrete and the input
should thus be represented by only finitely many points.
A fundamental problem that we will address in the
present work is how optimal deep learning algorithms
will change as we transition from federated unsupervised
representation learning (continuous mappings) to feder-
ated clustering (finite discrete mappings).

Clustering has been applied in various domains, in-
cluding anomaly detection, data compression, social
network analysis, and recommendation systems [14]. K-
Means [15], a conventional clustering algorithm, pro-
vides efficient performance in many data clustering tasks.
However, it struggles to effectively differentiate between
clusters in high-dimensional, real-world datasets.

With the advancement of deep learning techniques,
deep clustering [16]-[19] has emerged as a trend for
jointly optimizing clustering assignments and learning
data representations, allowing for more effective clus-
tering in high-dimensional spaces. For example, Deep
Embedded Clustering (DEC) [18] optimizes the cluster
centers and determines the clustering assignment for
each sample by evaluating the similarity between the
data representation and each cluster center. However,
the effectiveness of DEC is constrained to relatively
simple datasets and does not extend well to large-scale
and complex ones. Moreover, an increasing number of
deep clustering frameworks are constructed upon SSRL.
For instance, contrastive clustering (CC) [16] generates
soft labels from the feature matrix by incorporating a
cluster-level contrastive loss. However, the majority of
state-of-the-art deep clustering approaches are currently
centralized [20]. Surprisingly, despite being a research
problem of fundamental importance, the FedCl task
has not been thoroughly investigated in the literature,
with only a few studies focusing on specific datasets,
such as medical datasets [21], or on data with simple
features [22]-[25].

The goal of federated clustering is to learn a global
model that generates clustering assignments. Applica-
tions of clustering can serve as practical scenarios for
our proposed model. For example, clustering can be
used in market research to segment customers based
on their purchasing behaviors and preferences, assisting
businesses in adjusting marketing strategies and products
to different customers. However, the data is distributed
across multiple sources, such as mobile applications, so
that it is important to keep the data private and train the
model locally. Thus, federated clustering helps in provid-
ing personalized experiences and recommendations by
local training while maintaining the user privacy.

C. Contributions of the Paper

The primary questions we aim to address in this paper
are as follows: Q1: Which learning approach, contrastive
or non-contrastive, is most appropriate for FedSSRL and
FedCI? Q2: Building on Q1’s exploration, how do we
precisely configure the chosen approach to maximize its
effectiveness in each respective federated paradigm?

At this juncture, elaborating on Q1 becomes insight-
ful: The downstream characteristic of deep clustering
tasks indicates that contemporary methods encompass
two distinct phases — an initial representation learning
stage followed by clustering. For a comprehensive view,
we also examine two-stage methodologies for FedSSRL,
where the clustering phase serves as a regularizer.

Addressing Q1, our main finding in this paper is
that two-stage methodologies are most effective for both
FedSSRL and FedCl. Specifically, employing a non-
contrastive learning strategy at both stages yields the
best results for FedSSRL, whereas a contrastive learning
approach at each stage is found to be ideal for FedCIl. An
intuitive explanation, which is further substantiated by
numerous numerical simulations in our study, is as fol-
lows: Contrastive learning excels in generating a uniform
distribution of representations, owing to its extensive
use of negative samples. However, it often encounters
the challenge of class collision, where samples from
the same class within a batch are mistakenly treated as
negative samples. Conversely, non-contrastive learning
adeptly circumvents the class collision problem. Never-
theless, it tends to produce non-uniform representations,
which often leads to the disproportionate assignment of
the majority of samples to a limited number of clusters.
This issue undermines the clustering process, as it results
in a highly non-uniform distribution of samples across
different clusters.

After establishing the broadly optimal learning ap-
proach through Q1, our attention in Q2 turns to the
design of the learning scheme, taking into account
whether a non-contrastive or contrastive learning method
is utilized. First, for the FedSSRL problem, where a non-
contrastive approach is optimal, we introduce Federated
Representation Learning through Clustering (FedRLC).
The key novelty of FedRLC is to utilize a clustering
loss as a regularizer to boost the representation learning
performance. In addition, we consider a data selection
strategy for training; not all samples are considered in
the clustering loss function. Specifically, we use an input
data for training when its predicted labels from the online
network and the target network are the same, as they are
expected to output similar embeddings. This increases
the likelihood of selecting data with more accurate soft
labels for training. FedRLC also incorporates a new
dynamic controller to update the cluster centers in server
to client communications. Next, we focus on the FedCl



problem, and introduce Federated Clustering through
Past Negatives Pool (FedPNP), based on contrastive
learning. The key novelty of FedPNP is to use the nega-
tives pool from the past versions of local models to avoid
the client drift and class collision problems in federated
learning. We show through numerical simulations that
both FedRLC and FedPNP schemes achieve state-of-the-
art results in various image datasets.

The main goal of the proposed schemes is to max-
imize the eventual classification or clustering accuracy
of schemes. Of course, it is also desirable to minimize
the convergence time of the learning process. In this
context, we note that our proposed schemes can be
combined with other complementary techniques that
improve convergence such as dataset pruning [26], [27]
or model-distributed learning [28], [29].

Parts of this work was presented in [30]-[32]. In
comparison to these works, this paper focuses on the
joint study of FedRL and FedCl, with a particular focus
on Q1. In other words, we first seek to determine the spe-
cific learning approach (contrastive or non-contrastive)
that is suitable for the particular task. The rest of this
paper is organized as follows: Section II provides an in-
depth review of the related work. The preliminaries of
our work are presented in Section III. We optimize our
schemes over the contrastive/non-contrastive learning
space in Section IV. Section V introduces our proposed
scheme for represenation learning, FedRLC. Section VI
details our novel federated clustering scheme, FedPNP.
Evaluation and ablation of the proposed models are
provided in Sections VII and VIII, respectively. Finally,
we conclude the paper in Section IX.

II. RELATED WORK

A. Federated Learning

Federated learning proves to be valuable in situa-
tions where the data sharing is constrained, and the
computational capacity is restricted. Meanwhile, it in-
troduces challenges such as communication overhead
during model transmission and client drift caused by
non-iid data. Many federated learning algorithms [1]-
[4], [33]-[35] have been developed to address these
issues. For example, the classical federated averaging [3]
aggregates model updates from decentralized client de-
vices, and FedProx [2] modifies federated averaging by
including a regularization term to enhance convergence
and improve global model performance. However, most
algorithms are designed for supervised learning, where
labeled data is necessary for training, which may not
always be practical. In this study, we investigate how
to achieve high-quality low-dimensional embeddings of
distributed unlabeled data through federated learning.

B. Centralized and Federated SSRL and Clustering

Recently, SSRL has garnered significant attention for
its ability to learn representations without relying on
label information [5]-[8], [36], [37]. In the realm of
SSRL, contrastive and non-contrastive loss functions
have become the favored choices for learning instance
representations. Concurrently, there is a growing trend
in the development of deep clustering techniques, as ev-
idenced by various studies like those by [38]-[41]. These
techniques primarily utilize either contrastive or non-
contrastive loss functions, paving the way for clustering
methods that are grounded in SSRL such as [16], [42].

Contrastive learning has been well-studied in SSRL
[5], [6], [43] and deep clustering [19], [44], [45], but
it suffers from class collision, where positive samples
from the same class with the given input are still viewed
as negatives in contrastive loss. Two main directions
of study are sampling positives [19], [44] and select-
ing negatives [46], [47]. For example, GCC [19] and
WCL [45] expand positive samples by building graphs.
MoCHi [47] chooses the hardest negatives by sorting the
instance similarity with the given query based on the dot
product similarity. However, sorting high dimensional
instance embeddings and constructing graphs [19], [48]
consume time and computational resources. Moreover,
these strategies assume that the data is central.

The main challenges in federated learning that we
seek to overcome are as follows: First, we wish to
learn from distributed data as opposed to centralized
data subject to limited communication rates between
the clients and the server. Second, we assume that the
data across multiple clients is not an independent and
identically distributed (IID) random variable in general.
This Non-IID assumption leads to significant divergence
between local and global models, which is commonly
referred to as the client drift problem. Also, the clients
do not have enough representatives of different classes,
significantly complicating the local as well as the global
learning processes.

Different techniques have been proposed to remedy
the client drift problem caused by Non-IID data. For
example, SCAFFOLD [1] introduces a control variate for
client updates. However, it is mainly used in supervised
federated learning, and thus not directly applicable in
our settings. FedGrEM [49], which was submitted after
earlier versions of this work had been published, focuses
on theoretical results on federated unsupervised learning
on Non-IID data with experiments on simple datasets
such as MNIST and Fashion MNIST. Here, we focus on
practical aspects of both federated self-supervised learn-
ing and deep clustering on more complex datasets such
as CIFAR-100. To address the significant performance
drop in Non-IID data, FedRLC updates cluster centers
based on the KL divergence between probabilities from



global and local networks, while FedPNP introduces a
past negative pool to select data from previous iterations.
Experimental results demonstrate that our proposed mod-
els effectively handle Non-IID scenarios in practice.

C. Federated SSRL and Clustering

In recent years, many works [9]-[11] have studied
SSRL in the context of federated learning. For example,
FedEMA [10] incorporates a non-contrastive loss in its
local federated learning and adopts a weight divergence
strategy for updating the encoder and predictor of the
BYOL [6] network. It should be noted that although
several papers address federated clustering, they predom-
inantly concentrate on the clustering of clients [50]-
[52]. In contrast to these studies, our work is exclu-
sively focused on the clustering of data rather than
clients. For instance, the recently introduced FeatARC
[11] implements an additional loss function in local
training phases and deploys a client clustering strategy
to improve the performance of FedSSRL. Specifically,
clients are grouped into clusters, and local models are
updated based on the model of their respective cluster
instead of a single global model. In our study, we explic-
itly consider clustering data, with the goal of learning
a global model that automatically generates clustering
assignments. While certain studies employ traditional
K-means for data clustering in federated learning, this
method is typically constrained to simpler datasets like
MNIST and often struggles with more complex datasets.
In this study, we explore the performance of SSRL-based
deep clustering methods when applied to distributed
datasets within the federated learning paradigm.

III. PRELIMINARIES

The primary objective of FedSSRL is to obtain a
global model that is able to generate meaningful data
embeddings. These are subsequently employed in down-
stream tasks such as linear evaluation. On the other hand,
FedCl aims to training a global model that assigns data
points to appropriate clusters. Both methods essentially
aim to learn low dimensional embeddings.

Suppose there are K clients, where Client k£ has its
local unlabeled data Dj. Our goal is to learn a model
over the dataset D = Ule Dy, on a central server. We
learn a global model by training and aggregating models
trained at each client with local data. In this section, we
consider the SSRL loss as serving for instance represen-
tation learning, while the clustering loss is specifically
utilized for clustering assignments. First, we present the
contrastive and the non-contrastive loss functions that are
commonly utilized in the context of SSRL.

A. Self-supervised Representation Learning

Contrastive loss [5]: We first introduce the contrastive
loss function, as considered in SimCLR [5]. Each in-
put example is transformed into multiple augmented
views through data augmentation techniques. The model
then learns to bring positive representations closer to-
gether while pushing negative representations apart in
the learned feature space. Specifically, we consider a
dataset D = {x1,...,zp|}. Given an input z; € D, the
SimCLR scheme first creates two samples z¢ = t%(x;)
and 22 = t’(x;) through transformations t* and ¢,
respectively. We use the variable o € {a,b} to repre-
sent the sample index so that the transformations are
succinctly expressed as 27 = t7(x;), 0 € {a,b}. The
transformations are sampled uniformly at random from a
family 7 of augmentations, which may include rotations,
noise, etc. The samples then pass through the same
encoder f, creating feature vectors h £ f(x7), 0 €
{a,b}. An instance-level multi-layer perceptron (MLP)
gr projects h¢ and h? to obtain instance-level repre-
sentations 27 = gr(h?) € R" o € {a,b}, where d;
represents the dimension of the obtained representations.

The similarity of any two representations is com-
pared via the cosine similarity measure s(u,v) =
ufv/(||lul||[v])). To define the loss functions, we need the
following definitions. Given matrices u = [ug - - - u,] €
R>" and v = [v;---v,] € RIX™ constructed via
the indicated column vectors, we define the ordinary
contrastive loss function

(fi91) = L(u,v;7) £
1 « exp(Ls(ui, v;))
— —1 T .
n ; og Z;::él [exp(%s(’u,i,’u,j))—‘rexp(%S(’U/i,'Uj))}
e

(1

Given a batch size n, the contrastive loss in SimCLR
Lc is then defined via the instance-level representations
27 & [27--29] € RM*" o € {a,b} as L(z%, 2% 11),
where 77 > 0 is the instance-level temperature parameter

Lo £ L(22,2%; 7). 2)

Non-contrastive loss [6]: The non-contrastive loss
function is widely used in many frameworks, such as
BYOL [6] and SimSiam [7]. The main differences be-
tween the contrastive and non-contrastive frameworks
are that there are no negative samples while utilizing
non-contrastive learning, and two augmented data in-
stances are passed to two different networks: one referred
to as the online network and the other as the target
network. In detail, the online network consists of an
online encoder f© and an online predictor g©, which are
trained by gradient descent. We refer to the composition
of the encoder and the projector in the original BYOL
work as simply the “encoder” in this paper. The target



network only consists of a target encoder f”. The
weights of f7 are updated via the exponential moving
average (EMA) of the online encoder f©, as will be
explained in the following. Given o e {a,b} represent-
ing two augmentations, let 277 £ ¢© (fO(t7(x;))) and
ZJT 2 fT(t7(x;)) denote the d-dlmensional represen-
tations that one would obtain from the online and the
target networks, respectively. Deﬁmng the scaled cosine
similarity loss function as §(z,y) = 2—2 H;:Hl\yl\’ BYOL
uses the symmetrized loss

YT +6(200 20T, (3)
The non-contrastive loss can then be defined as

(f2,9%) = Lnc 2 ) Luse(:), “4)
z; €D

XTi > LMSE(«TZ) £ (S(Zg’

which signifies that only the online networks f©,g®
are updated via gradient descent. The target network

parameters are instead updated through the EMA
frecfm+-0r°, 5)
where ¢ € [0,1].

B. Deep clustering

We now consider the existing contrastive and non-
contrastive-based clustering approaches; namely Deep
Embedded Clustering (DEC) [18] and Contrastive Clus-
tering (CC) [16]. Note that DEC is a non-contrastive
algorithm, while CC is a contrastive clustering algorithm.
The extension of these methods to the federated learning
setting is elaborated in the next Section IV.

CC [16]: CC incorporates an instance-level con-
trastive loss and a cluster-level contrastive loss on the
row and column space of the feature matrix, respec-
tively. The primary idea of clustering in CC involves
interpreting each row of the feature matrix as the soft
labels of the instance, which are optimized concurrently
by both the instance-level and cluster-level contrastive
losses. The instance-level representation loss is the same
as the SimCLR loss (2). Here, we provide their cluster-
level contrastive loss. Similar to the instance-level MLP
gr in SimCLR, a cluster-level MLP g produces cluster-
level representations y¢ = go(h?) € R%, o € {a,b},
where h{ is the data embedding from the same encoder
fin SimCLR. In particular, in a deterministic assignment
of inputs to clusters, all rows would be one-hot encoded
vectors. On the other hand, given ¢ £ [yf ---y2]T €
R"*4 o ¢ {a,b}, the cluster-level contrastive loss
is defined by Lc(c? c’ 7o), where 7 > 0 is the
cluster-level temperature. In the CC scheme, the output
dimensionality do of the cluster-level representations is
chosen to be equal to the number of clusters one wishes
to find in the dataset. In many cases, the instance-level

output dimensionality d; is chosen to be much larger
than dy. On the other hand, rows of ¢ and c® (i.e. y7s)
correspond to the soft labels of samples. In precise form,
the cluster-level of CC loss function is given by

LCl £ L(Cavcb;TC)+H(ca)+H(cb)a (6)

where, for any matrix u = [uj---ug] € R"¥9, the
entropy is defined as
Z sl o Jlh
||UH1 ® s

As discussed in [16], entropy regularization helps avoid
the trivial solution where all samples are assigned to the
same cluster.

DEC [18]: The original DEC [18] scheme consists
of two stages. In the first stage, a stacked auto-encoder
is pre-trained to produce data embeddings utilizing a
reconstruction loss, specifically the least squares loss,
which in our approach is substituted by the SSRL loss.
In this paper, we focus on the second stage of the
DEC work, namely the clustering assignment stage.
Specifically, let i1, . ..,y € R denote cluster centers,
given the data x; and its representation z; € R4, Qi,m
denotes the probability that the representation z; belongs
to cluster m with center u,,. Following DEC [18],
we model these cluster assignment probabilities with a
student ¢-distribution with one degree of freedom

NmH2)_7

+ 1
Ap(z, {Mn 5\1471 L+ ]z= 1 ¥

Zn(l + ||Z - lu’n” ) 5
Specifically, we set
Gim = D (zi, {pn M), m € {1,..., M}, Vi. (9)

Effectively, each representation is assigned a probability
distribution. According to (8), the closer the representa-
tion to a cluster center with index (say) m, the higher the
belief/probability that the corresponding sample should
belong to Cluster m. We now define a target distribution
of the probabilities ¢; ,, following [18], and we set

N (AN 0 S P
T X (@in)?/ 325 ain]

The target distribution is computed by squaring the
probability and normalizing it by the frequency of each
class. The motivation of squaring is to “harden” the soft
assignments, while frequency normalization penalizes
imbalanced clusters. The KL divergence loss is defined
to compare the probability distributions. Letting

KL(pllg) £ pm log =

m
the non-contrastive clustering loss is typically a KL
divergence loss, which can be defined as

Z KL (pi|g:)-

B

(10)

Y

Lnc, = (12)



IV. AN OPTIMIZATION OVER THE LEARNING SPACE
A. The Two Stage Approach to Learning

In the previous section, we have presented two
instance-level loss functions, (2) and (4), along with
two cluster-level clustering loss functions, (6) and (12).
For the purposes of representation learning, utilizing
either a contrastive loss function as in (2) or a non-
contrastive loss as in (4) is adequate. However, since
clustering is typically considered a downstream task of
representation learning, the initial step involves select-
ing a network for representation learning, followed by
choosing a network for the downstream task that converts
these representations into clusters. Given that there are
two options available for both networks—contrastive
and non-contrastive—we have four total combinations
to consider. In fact, a novelty of the current work is
that we also consider a second clustering stage for
representation learning that will act as a regularizer,
which will be thrown away once the training is complete.
In the following, we describe the four possibilities that
we optimize over:

Contrastive+Contrastive (C+C): As described in
Section III, CC regularizes the representation contrastive
loss (2) with a cluster-level contrastive loss (6). Thus, the
overall CC loss is the sum of the two losses

Leyc = Le + Lc,- (13)

This is, in fact, the loss function utilized in the CC
framework [16].

Contrastive+Non-Contrastive (C+NC): Here, we si-
multaneously train the neural network and optimize the
cluster centers by employing both the contrastive loss (2)
and the non-contrastive KL divergence loss (12). Given
the data z; and the representation z7, o € {a, b} from the
SimCLR encoder f, let ¢7,,, = A, (27, {un}hL,), m €
{1,..., M}, Vi, denote the probability that the represen-
tation z{ belongs to cluster m with center . Then, the
target distribution

o o (qgm)2/ Zz qgm (14)
@) i agn]
Similar to (12), the KL divergence objective for two
augmented views can be defined as

Lxe, 25 S [KLGA la?) + KLl

K2

15)

The instance-level loss remains consistent with the con-
trastive loss (2), so that the local loss of C+NC is

Leyne = Lo + Lye,- (16)

Non-Contrastive+Contrastive (NC+C): We include
an additional cluster-level projector g¢ following the on-
line encoder f© to get y7° 2 go(fO(x9)) e R%, 0 €

{a,b} and 7 £ [y70 ... y2O)f € R"¥d2, o € {a,b}.
With (6), the cluster-level contrastive loss becomes

Lo, 2 Le(c®©, "9 m0) + H(c®9)+H(c"9). (17)
Hence, the final loss of NC+C is defined as
Lncyc = Lnc + Le,- (18)

Non-Contrastive+Non-Contrastive (NC+NC): We
utilize the non-contrastive (4) as the instance-level loss
and the KL divergence (12) for clustering. Due to the
structure of the two networks processing two augmented
data in BYOL, we only consider the representation from
the online network f©. Therefore, given o € {a, b}, qZ ;701
is the probability that the representation z; 0 belongs to
cluster m with center p,,, and pgﬁ defines the target
distribution. The KL divergence loss in BYOL is

Lye, 2 % [KL@ Ul ?) + KLpr ¢ )] 19)

Hence, the final local loss for NC+NC is

Lnc+nc = Lnc + Lncs,.- (20)

B. Federated Extensions of the Two Stages

In FedSSRL, local training can be trained using ei-
ther a single contrastive or a non-contrastive loss. This
entails training each local model with a single SimCLR
framework or a BYOL scheme in a FL setting, which
are named as FedSimCLR and FedBYOL, respectively,
in some literature [9]-[11]. In this paper, we adopt the
notation ‘FedC’ to denote a single-stage FedSimCLR
and ‘FedNC’ to denote a single-stage FedBYOL. TO
perform federated clustering, a two-stage training pro-
cess is necessary, comprising an instance-level represen-
tation stage followed by a clustering stage. Our idea
is to extend the centralized loss functions (13), (16),
(18) and (20) to the federated setting, resulting in our
so-called models FedC+C, FedC+NC, FedNC+C, and
FedNC+NC, respectively. Each of these four schemes
is able to learn representations and generate clustering
assignments jointly.

Let Dy, = {214, .. Tk )y B = 1,..., K repre-
sent the local datasets of the users. At Client k£ with
local data Dy, the local training optimizes the loss:

Ly = Z L(xi ),

;i 1k €Dk

21

where L(z; ) can be any of the losses from L¢ (2),
Lne 4), Leqc (13), Logne (16), Lyctc (18), and
Lyc+ne (20). Then, both FedSSRL and FedCl aim to
optimize the objective

K
iny | Dy
min _—
= DI

> L)

;i K€Dy

(22)



C. Empirical Study

To assess the performance of various loss functions
Ly, in federated learning, we implemented two evaluation
tasks: a linear evaluation to evaluate the effectiveness of
learned representation from FedSSRL, and a clustering
analysis to determine the performance of FedCl. In the
linear evaluation, we train a classifier on top of the frozen
representations obtained from the global encoder. For the
clustering task, we employ the global model’s clustering
assignments and evaluate the clustering accuracy. A
more detailed description of our experimental setup can
be found in Section VII.

The results on CIFAR-10 are summarized in Table I,
with the best result highlighted in bold and the second-
best in italics. In the linear evaluation process, we
have the option of a single-stage representation learning
utilizing either the non-contrastive loss or the contrastive
loss. Alternatively, a two-stage training approach can be
employed, with the first stage applying self-supervised
learning loss and the second involving clustering loss.
Table I indicates that representation learning based on
non-contrastive loss surpasses methods based on con-
trastive loss in FL, with FedNC+NC yielding the highest
accuracy, achieving 86.01% in IID settings and 83.46%
in Non-IID scenarios. Meanwhile, a two-stage training
approach using FedNC+NC outperforms a single-stage
FedNC by margins of 1.72% for IID and 4.02% for Non-
IID scenarios, respectively.

For clustering tasks, a two-stage training process is re-
quired to produce the clustering assignments. As shown
in Table I, cluster-level contrastive loss is more effective
compared to the non-contrastive loss during the cluster-
ing stage. Specifically, the FedC+C configuration attains
the highest clustering accuracies, achieving 64.90% in
IID scenarios and 24.35% in Non-IID scenarios. The
FedNC+C method emerges as the second-best approach,
yielding accuracies of 62.70% for IID and 23.89% for
Non-IID, respectively. On the other hand, clustering loss
based on non-contrastive results in poor performance in
federated deep clustering tasks.

Our experiments in this section rely on very basic,
but fundamental, base schemes for contrastive and non-
contrastive learning. We have used these base schemes to
optimize over the specific strategy of contrastive or non-
contrastive learning for the specific task of FedSSRL
or FedCl. In the next two sections, we introduce 1)
The FedSSRL model, which leverages a clustering-
guided federated representation learning (FedRLC) strat-
egy to improve the quality of representations built upon
FedNC+NC, and 2) the federated clustering with Past
Negatives Pool (FedPNP) scheme, specifically designed
to optimize federated deep clustering tasks based on
FedC+C framework.

TABLE I
STUDY ON FEDSSRL AND FEDERATED CLUSTERING.IID &
DATA-SPLIT NON-IID.

Dataset Linear Evaluation Clustering Accuracy
Method IID | Non-IID IID [ Non-IID
FedC 82.15 |  78.09 - -
FedNC 84.29 \ 79.44 - \ -
FedC+NC 8257 | 7828 2358 | 21.95
FedC+C 8350 | 77.83 64.90 | 24.35
FedNC+NC  86.01 | 83.46 21.54 | 15.59
FedNC+C 83.90 \ 78.84 62.70 \ 23.89

V. FEDRLC: CLUSTERING-GUIDED FEDERATED
LEARNING OF REPRESENTATIONS

A. Motivation

From the empirical study in Section IV, our findings
indicate that optimizing cluster centers helps with learn-
ing representations. Thus, we develop FedRLC, which
incorporates a crossed KL divergence loss with a data
selection strategy during local training, and introduces
a novel dynamic controller designed to update cluster
centers during federated communication.

B. Local Training in FedRLC

The block diagram of the FedRLC framework is
illustrated in Fig. 1 for local training at a certain Client
k. In the following, we shall describe each stage in the
figure in detail. The first stages to obtain the instance
representations (until LN9) apply verbatim from the
BYOL scheme. We now describe the next steps.

In FedRLC, we define a novel crossed KL divergence
loss (CKL) to learn a well-separated representation. CKL
aims at optimizing M cluster centers by a crossed
divergence between probabilities calculated from the
online network and the target distribution from the target
network. Specifically, given the input data x;; € Dy,
a € {a,b} and v € {O,T}, the qj, , and pj. ",
is defined by (9) and (10). We can now compare the
probabilities qf_;g « induced by the online networks with
the probabilities p;’;: i of the target networks. By (11),
the crossed KL divéréence objective can be defined as

1
CKL b,T
LKt 2 = N IKL(p) ]

lafO HKL(pE ) |- (23)

where N represents the batch size. The crossed KL
objective (23) intends to optimize the local cluster cen-
ters by incorporating information from both augmented
views of the input. The two augmented samples are
supposed to share similar probabilities because they are
derived from the same data.
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Fig. 1. The FedRLC framework during local training. sg means stop gradient. In the figure, we illustrate the construction of the first terms of

the symmetric loss function in (24); the second terms are similar.

Another novelty that we incorporate in FedRLC is to
make sure that the augmentations that are involved in the
crossed KL objective in (23) are not too far. Indeed, intu-
itively, completely irrelevant augmentations would harm,
instead of benefit the overall performance. This is why
we only incorporate pairs whose hard decisions match in
the KL divergence losses. Let [j'};" = argmax,, (g, ;)
denote the hard clustering decisions of the online and
target networks with different augmentations. Ties are
broken in favor of the smallest index.

The data is chosen to contribute to the crossed KL
divergence loss only when the predicted label from the
online and the target networks are the same. We thus
modify the loss in (23) to work with

1 a
= Z{KL ol
= Z{KL llaid) 1

As shown in Figure 1, we jointly optimize the clus-
ter centers and the online/target networks during local
training. Therefore, the overall loss function is given by

LOKL & 150} +

lbO

)l =

(24)

LCKL + LINS

LredqrLc = (25)

where L'™S recalls the classical instance-level NC loss

defined in (4). Usually, a hyperparameter can be incor-
porated to the loss function to control the relative weight
of the losses LEX and LS, In our experiments, equal
weights on the losses already provided a good perfor-
mance. We thus leave a detailed study on hyperparameter
tuning as future work.

C. Updates After Server-to-Client Communications

We describe the cluster center and online network
update mechanisms during the server-to-client communi-
cations. We use subscript *x to denote the global models,
the subscript k to be the local model, and the superscript
O to be the online networks. Let r represent the current
training round. During the communication update, only
the cluster centers and the online network are updated.
We now introduce a novel rule to update the centers.

Specifically, given centers {u/~} € R¥}M_, in local
user k with local data Dy, at round r — 1, global centers
i, « at round r, the centers of Client & at round r are
updated according to

) F e

€ r—1 €r
1+€7»Mm’k+< 1+e€,
where €, is updated progressively by the KL divergence
between the probability generated from the local and
global centers. Specifically, letting f] and fko "1 denote
the global encoder in round r and the local encoder
in round r — 1 at Client k, respectively, we define
Pz £ ST @)+

e 2= 5 (FL (@) +fL (2}
© ’r_l(as’i” »)) as the mean representations of data x;
under different augmentations and with global and local
networks. We now evaluate the soft class probabili-
ties for the data of Client £ according to the global
model at Round r as quim.k = Ap(2aik, {0 A1)
Likewise, we can evaluate the class probabilities ac-
cording the local model at Round r — 1 as g; m £
A (Zigos {H 5 1M ). We can now compute the mo-

mentum parameter €, Via

:u’:n,k‘ = (26)

| Dy |
= |D|ZKL (s iz {aimabnz)- @D

In order to keep the features extracted from local data,
it is important to the preserve the local model especially
when the distance of the local model to the global
model is large. This was also observed in previous work
[10], [11]. In FedRLC, when ¢, is large, the divergence
between probabilities generated from global and local
networks is large, so that the cluster centers inherit
more local knowledge. Otherwise, a smaller €, gathers
more information from global cluster centers. Figure 2
illustrates the rule for updating cluster centers during
each communication round.

Finally, we discuss how to update the client online
networks. We follow the EMA scheme [10]. Specifically,
the online networks at Round r are updated as

( O,r O,r—1 O,rfl)

' Ik
+(1_’Y>( Orvg* )

7gk )<_'7(

(28)
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Fig. 2. Cluster centers update during communication round.

In (28), the parameter v is used to control the weight
between the global model and the local model. An
explicit formula for +y is given by [10] v = min(\g|| f] —
,?’Tle, 1) where A\, = Hfl+f”H is a customized
magnitude, 7 is a hyperparamet*er, and f is the encoder.
In EMA [10], A\ is only calculated once at the first
round. Thus, €, is used to update the cluster centers
o, 1> While -y is applied to the update of the local online
networks, including an encoder f© and a predictor g©.
Algorithm 1 shows the overall FedRLC scheme.

Algorithm 1 FedRLC

Input: Number of communication rounds R, Number
of clients K, Number of local epochs F.

Output: Global encoder f, and predictor g,.

1: Server executes: Initialize server’s network param-
eters f,, g., and i n,. Have the clients initialize
local parameters fC, g<, and juy .,

2:. forr=1,...,R do

33 for k=1,2,..., K in parallel do

4: Send global encoder f,, predictor gy, and clus-

ter centers (i, ., to client k.
5 f2. 92, < ClientTraining(f., g.. fum).
6: end for
T FedAvg: (f?) g?, U*,'r?n)(_Zkl\DDk\'(flg gl?? .Um,k)‘
8
9

: end for
: Return global encoder f, and predictor g,.
10: ClientTraining(f", 9<, f1k.m)
11: Update the online networks and cluster centers via
global parameters by (28) and (26), respectively.
12: for epochs = 1,..., E and size-N batch learning
within each epoch over dataset D do
13:  Update online networks and cluster centers via
global parameters by descending the gradient of
the local cost function in (25).
14 Update the target network parameters f; via (5).
15: end for
16: Return the online networks f,? and g,?.

VI. FEDPNP: FEDERATED CLUSTERING WITH PAST
NEGATIVES PooL

A. Motivation

As discussed in Section IV, the FedRLC does not
perform well on clustering tasks, while the cluster-level
contrastive loss based on C+C yields better clustering
performance. Based on C+C, we propose a federated
clustering framework with a novel past negatives pool
(PNP) for intelligently selecting positive and negative
samples for contrastive learning. PNP benefits FL. and
contrastive learning simultaneously, specifically, alleviat-
ing class collision for contrastive learning and reducing
client-drift in FL.

B. FedPNP: Overall Framework

In FedPNP, we aggregate several local models trained
in a fully unsupervised federated way to obtain a global
model that outputs the cluster information directly. The
overall block diagram of the FedPNP architecture is
shown in Fig. 3. The central server contains global
networks f, gr ., and gc ., representing a base encoder,
an instance-level projector, and a cluster-level projec-
tor, respectively. Let fi,gc k. gr,x denote the network
elements at user k. In each communication round, the
central server sends global networks to local clients.
Each local device updates the local model using its own
local data and sends the updated model to the sever. The
server updates the global networks by a weighted average
of the local models. Finally, the clustering assignments
can be obtained from the global cluster-level projector.

> Server (4Model Aggregation

(®Model Upload

Cluster
A Assignment
(D Model UpdV ¢ \
Client 1 Client 2 Client K
@ Local
Training

Fig. 3. The federated clustering scheme. At the client k, fy, 91,k>
gc, . represent base encoder, instance-level projector, and cluster-level
projector, respectively.

C. PNP and PNP loss

The proposed FedPNP relies on contrastive represen-
tation learning [5], [16], and specifically CC [16], as
outlined in Section III. Simply extending the CC scheme
to a federated setting results in poor performance we
show in Section IV. This is because: 1) The Non-IID



data over multiple users causes the client-drift during
local training. 2) FedSSRL needs to store more local
information that may lose during fast aggregation in FL,
which leads to poor representations. 3) Negative samples
in contrastive loss causes class collision. In contrastive
learning, the loss function (1) relies on a large number
of so-called negative samples, which typically consist
of all samples in a batch, excluding the input and its
augmented version. The model is trained to distance
these negatives far away from the input data. However,
the negatives often contain data from the same category
as the input, leading to what is known as class collision
issue in contrastive learning.

We introduce the PNP for intelligently selecting neg-
ative samples in CL. Intuitively, in terms of the above
issues 1) and 2), reducing client-drift contradicts with
keeping more local data features. The PNP is designed
to optimize the trade-off between these two demands.
The idea is that we remove the potential positive samples
by comparing soft labels produced from the past local
models. We utilize features learned from the past to
retain more local knowledge and avoid the client-drift
during the current local training. Moreover, we compare
the similarity between soft labels to select potential
positives with the given input image and remove it
from the large set of negatives in contrastive loss to
alleviate class collision issue. Given data x; ;, € Dy, two
augmented samples pass through not only local models
in current communication but also through the local
models in the previous round as shown in Fig. 4.

Local Client k
in communication

Local Client k
in communication

a,r—1

Yik

)

b,r—1
i,k

PNP

Fig. 4. The local training at client k£ for FedPNP

To construct the PNP, we compute the Gaussian sim-
ilarity between the soft labels extracted from the past
local model in communication round 7 —1. The Gaussian
similarity measure is defined as s(u,v) £ exp (ufv).
The PNP for a given augmented data z7, is created by

Pi={j#i: sy Lyl ) < Voe{a,b}}, (29)

where p is the threshold to select negative and positive
samples, yf’,:_l represents the soft label extracted from
the cluster-level MLP in the previous round r—1. Hence,

sufficiently close samples form positive pairs while far
samples are negatives. The key idea is that the indices
P; for negative pairs are obtained from the past model
in FedPNP. This allows preserving local information, a
key requirement in FedSSRL.

In particular, the decision whether a given sample is
positive or negative is done according to the current
model weights. To preserve more local information, we
use the idea of PNP, and choose the negative samples
over the indices described by the set (29) instead. With
the PNP, we modify the traditional contrastive loss (1)
to get PNP-contrastive loss
LPNP(g, v r) 2 1 i:—log 57 (g, v;) .

3 V3 (et > [sr(ui ug)+ 57 (us, ;)]
JEP;
(30)

For FedSSRL, the PNP selects negatives from the past
local models, which alleviates the client-drift during the
current local update and maintains more local knowledge
that is forgotten during the model aggregation. For
contrastive representation learning, the PNP computes
similarity between soft labels extracted from the past
and removes samples that may have the same class
category with the given input, which alleviates the class
collision issue in traditional contrastive loss. In short,
the PNP is beneficial in three aspects. 1) It avoids the
large divergence of Non-IID networks updated locally
in current communication round. 2) It keeps more local
knowledge, which can be lost during model aggregation,
benefiting FedSSRL. 3) It helps the class collision issue
in traditional CL by removing potential positives from
negative samples.

D. Local training in FedPNP

We now describe the training procedure at each client.
We minimize the PNP-contrastive loss (30) on instance
representation and ordinary contrastive loss (1) on both
past and current cluster features. Formally, given a batch
size n, the instance-level PNP-contrastive loss at user k

is defined via the instance-level representations z;" =
o,r o,r d
[sz . znk] e R“*" g € {a,b} as
PNP & yPNP/_a,r _b,r,
L™ =2 L7 (2,20 711)s (31)

where 77 > 0 is the instance-level temperature.

On the other hand, given ¢” = [y -y, ]T €
R"*42 o € {a,b}, we define the cluster-level con-
trastive loss at round r via (6) as

& & Lo(ep” ¢ 7e) + H(ep") + H(ey"), (32)

where 7¢ > 0 is the cluster-level temperature param-
eter. We combine the different performance measures
described above into the overall loss function

Lreapnp 2 LENP 4oL, (33)



where « is the hyperparameter used to control the weight
of the loss. The dependencies between the different
losses are illustrated in Fig 4. Note that the first term
in (33) depends on the parameters of both the current
and the past network, while the second term depends
only on the current parameters. To minimize the loss
(33) in practice, we select the negatives from the current
models only for » = 1 as there is no previous models in
the first round. In the first round, the PNP is defined as

Pi - {.] 7é i S(y?’}:ay;j:) < p, T = la Vo € {aab}}
VII. EXPERIMENTS

A. Experiment Setup

Evaluation Metrics: We divide our experiments into
two parts: representation learning and clustering. We
use benchmark datasets including CIFAR-10, CIFAR-
100, where CIFAR10 has 10 classes, and CIFAR-100
has 100 classes. For CIFAR-10 and CIFAR-100, the
training set contains 50,000 images and the testing
set contains 10,000 data. For federated representation
learning, we evaluate the learned representation from the
global model using linear evaluation and semi-supervised
learning, following the evaluation methods from recent
FedSSRL works [9], [10]. For testing the clustering
performance, we obtain the clustering assignment from
the global model and evaluate it in terms of clustering
accuracy (ACC), normalized mutual information (NMI),
and adjusted rand index (ARI), which is also followed
by the recent clustering works [16], [17], [42]. For a
fair comparison, for all experiments trained in federated
learning, we train the model for 100 communication
rounds for K = 5 clients. For each communication
round, each client is trained for £ = 5 local epochs. We
will make all computer codes for training and evaluation
publicly available in the final version of the paper.

Data Spliting: We follow the same setup of FedU [9]
and FedEMA [10], for a fair comparison. Namely, to
simulate data heterogeneity in federated learning, each
user only consists of samples from M /K classes, where
M is the number of classes, and K is the number of
clients. This is referred to as the data-split scenario. For
independent and identically distributed (IID) data, each
user has the same number of samples from M classes.
In addition to the data-split non-IID scenario, to evaluate
on different non-IID scenarios, we sample a specific
proportion of the data from class m to client k, where
the proportion is followed by the Dirichlet distribution
with parameter 3, which is also a widely-used method to
simulate non-IID data distribution. A smaller [ indicates
a more heterogeneous distribution.

B. Representation Learning

Baselines: We evaluate FedRLC on linear evalua-
tion and semi-supervised learning. Our baselines include

FedU [9] and FedEMA [10], which are current state-of-
the-art FedSSRL methods. We also evaluate FedBYOL,
which refers to combining BYOL [6] with federated
averaging. Single-Training refers to training each client
independently, and the accuracy is calculated by the
average of all clients. We also include results for the
schemes discussed in Section IV, including FedSimDEC,
FedCC, FedBYDEC, and FedBYCC.

Implementation Details: For FedSSRL, we adopt
the SGD optimizer with a 0.032 initial learning rate.
The learning rate is decayed by cosine annealing. The
batch size is 128, and the input size is 32 x 32. We
use ResNetl8 to be the encoder, and the predictor is a
two-layer multiplayer perceptron (MLP) with the output
dimension 2048. The o of EMA is 0.99, and the 7 = 0.7
is directly followed by [10] without tuning.

Visualization of Representations: To analyze the
data features visually, we plot the t-SNE visualization
of the CIFAR-10 learned from FedBYOL and FedRLC
in Fig 5, where different colors indicate different classes.
From the comparison between FedBYOL and FedRLC,
we observe that the data representations obtained from
FedRLC are separated more clearly. The following lin-
ear and semi-supervised evaluations further verify the
effectiveness of FedRLC.

(a) IID FedBYOL (b) IID FedRLC

(c) Non-IID FedBYOL

(d) Non-IID FedRLC

Fig. 5. t-SNE data visualization on CIFAR-10.

Linear Evaluation: To validate the quality of learned
representations, a linear classifier is trained on top of the
frozen representations learned from different FedSSRL
methods. For linear evaluation training, the AdamW
optimizer is adopted with a learning rate of 0.022. The
results are shown in Table II and III. FedRLC constantly
outperforms other methods, especially for CIFAR-100
with a large number of classes, where it improves by
2.77% and 1.62% on IID and non-IID data, respectively.

Semi-supervised Learning: We compare our model
with state-of-the-art works on semi-supervised learning
tasks. A new MLP is added on the top of the encoder



TABLE 11
LINEAR EVALUATION:IID & DATA-SPLIT NON-IID.

TABLE IV
SEMI-SUPERVISED LEARNING:IID & DATA-SPLIT NON-IID.

Dataset CIFAR-10 CIFAR-100
Method IID [ Non-IID IID | Non-IID
Single-Training 8242 | 7495 53.88 | 5237
FedC+NC 82.57 | 7828 5531 | 5443
FedC+C 83.50 | 77.83 5279 | 51.28
FedNC+NC 86.01 | 83.46 60.09 | 61.30
FedNC+C 83.90 | 78.84 45.60 | 49.65
FedBYOL 84.29 | 79.44 5424 | 5751
FedU [9] 83.96 | 80.52 5482 | 5721
FedEMA [10] 86.26 | 8334 5855 | 61.78
FedRLC 87.06 | 84.08 61.32 | 63.40
BYOL (Centralized) 90.46 65.54
TABLE III

LINEAR EVALUATION: DIRICHLET NON-IID.

Dataset CIFAR-10 CIFAR-100
Method IID | Non-IID IID | Non-IID
Single-Training ~ 78.08 | 69.06 4350 | 39.99
FedC+NC 7824 | 7428 41.94 | 4101
FedC+C 78.27 ‘ 72.47 39.63 ‘ 37.43
FedNC+NC 83.44 ‘ 79.12 49.71 ‘ 50.07
FedNC+C 7992 | 71.20 3238 | 35.87
FedBYOL 8324 | 7695 4920 | 47.07
FedU 82.61 ‘ 77.06 47.64 ‘ 46.67
FedEMA 83.38 ‘ 79.49 49.26 ‘ 50.48
FedRLC 83.99 | 79.52 49.67 | 52.16
TABLE V

SEMI-SUPERVISED LEARNING: DIRICHLET NON-IID.

Dataset CIFAR-10 CIFAR-100 Dataset CIFAR-10 CIFAR-100

3 05 ] 01 05 ] 01 3 05 ] 01 05 ] 01

Single-Training ~ 83.42 | 83.08 5845 | 57.20 Single-Training ~ 81.72 | 79.89 48.53 | 49.41
FedC+NC 81.59 | 78.69 56.31 | 57.04 FedC+NC 76.93 | 75.29 42.90 | 43.16
FedC+C 81.14 | 80.66 51.86 | 51.27 FedC+C 76.34 | 74.68 38.86 | 37.80
FedNC+NC 83.33 | 79.64 61.82 | 62.12 FedNC+NC 82.82 | 81.18 49.80 | 49.86
FedNC+C 83.07 | 81.14 46.62 | 47.90 FedNC+C 77.88 | 75.50 33.37 | 35.22
FedBYOL 85.44 | 84.69 59.14 | 59.93 FedBYOL 82.84 | 82.20 50.00 | 50.12
FedU 85.62 | 85.33 59.10 | 58.06 FedU 81.33 | 81.66 49.25 | 49.31
FedEMA 86.12 | 86.00 60.26 | 61.46 FedEMA 83.18 | 82.06 50.11 | 51.07
FedRLC 86.89 | 86.69 62.39 | 63.21 FedRLC 83.41 | 82.73 50.41 | 51.19

in semi-supervised learning, and we fine-tune the entire
model with 10% labeled data. We compare different
federated representation learning methods under IID and
Non-IID setting for CIFAR-10 and CIFAR-100 datasets.
Tables IV and V demonstrate that our scheme achieves
the best results in all cases. In particular, FedRLC im-
proves the performance of CIFAR-100 by 1.68% under
a highly heterogeneous scenario.

C. Clustering Results

Baselines: In Section IV, we have already presented
several federated clustering results. Now, we will provide
additional results for various data distributions and com-
pare the proposed FedPNP with several existing SSRL
methods in the context of federated clustering tasks.
Also, we consider the centralized clustering scheme Pro-
Pos [42] as an upper bound. ProPos [42] only provides
experiments for the 20 super-classes of the CIFAR-100

dataset while we consider the full 100 classes; we thus
omit their results for a fair comparison.
Implementation Details: In this experiment, we use
ResNet-18 [53] as the base encoder. We use Adam
optimizer with an initial learning rate of 0.0003 and
without weight decay. All input images are resized to
224 % 224, and the batch size n is set to 128. The output
dimension of the instance-level MLP is set to 128, and
the feature dimension of the cluster-level MLP is equal to
the number of clusters. The instance-level temperature is
71 = 0.5, and the cluster-level temperature is 7c = 1.0.
In FedPNP, p is set to 0.999 for selecting negatives.
We set the hyper-parameters o = 2 for the first round
r = 1 and a = 0.1 starting from the second round.
For 20 and 50 clients, we set a = 0.5. For the Single-
Training experiment, we train each client 300 epochs
and report the mean clustering accuracy among all 5
clients by K-means. For all other federated clustering



methods, we show the performance based on the cluster
assignment from the global cluster-level MLP or global
cluster centers.

TABLE VI
CLUSTERING ACCURACY (%), IID DATA.
Dataset CIFAR-10 CIFAR-100
Method NMI ACC ARI NMI ACC ARI
Single-Training 457  56.1 331 341 16.3 8.6
FedC+NC 185 236 6.1 166 84 2.3
FedC+C 549 649 463 341 16.3 8.4
FedNC+NC 176~ 202 538 266 119 5.6
FedNC+C 53.8 627 449 332 157 7.9

FedPNP (ours) 568 665 47.1 347 171 9.0
ProPos [42] (Centralized)  88.6 94.3 884 - -

TABLE VII

CLUSTERING ACCURACY (%), NON-IID DATA (8 = 0.5).
Dataset CIFAR-10 CIFAR-100
Method NMI ACC ARI NMI ACC ARI
Single-Training 40.6 464 257 339 162 8.4
FedC+NC 184 206 59 165 1718 2.2
FedC+C 412 447 275 344 165 8.9
FedNC+NC 183 201 55 261 115 4.4
FedNC+C 413 457 283 339 163 8.3
FedPNP (ours) 427 495 305 345 170 8.9
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Fig. 6. Linear evaluation results on Non-IID CIFAR-10 under different
numbers of clients.
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TABLE VIII

CLUSTERING ACCURACY (%), NON-IID DATA (8 = 0.1).
Dataset CIFAR-10 CIFAR-100
Method NMI ACC ARI NMI ACC ARI
Single-Training 348 404 201 338 152 73
FedC+NC 154 254 85 153 69 2.0
FedC+C 332 38.0 203 33.0 15.0 7.3
FedNC+NC 132 215 7.1 277 123 5.7
FedNC+C 355 404 229 319 149 7.2

FedPNP (ours) 364 437 242 341 160 7.9
ProPos [42] (Centralized)  88.6 94.3 884 - - -

Federated Clustering Performance: Table VI shows
the proposed FedPNP constantly outperforms other
methods and achieves the best clustering performance in
all data distribution settings. In IID cases, we improve
the clustering accuracy by 10.4%, 3.7%, and 2% when
comparing with baselines on CIFAR-10. Compared to
simply doing a CC framework in Non-IID setting, we
improve the clustering accuracy by 4.6% and 5.7 %
for 5 = 0.5 and S = 0.1, respectively. For CIFAR-
100 with 100 clusters, FedPNP is still the best ap-
proach for dealing with such large number of classes.
FedPNP outperforms all other methods, achieving higher

T T T T
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The number of Clients

Fig. 7. Clustering performance on Non-IID CIFAR-10 under different
numbers of clients.

accuracy in fewer communication rounds. We note that
fewer rounds translate to fewer amount of computations,
which is an important gain for resource-limited edge
devices. Another byproduct of fewer rounds is reduced
communication latency, especially when the client-to-
server communication rates are low [54], [55]. FedPNP
thus offers significant advantages for both power and
communication-limited edge devices.

VIII. ABLATION STUDIES

In this section, we perform ablation experiments over
various factors, including varying the number of clients,
simulating more Non-IID settings, the impact of data
selection, and conducting experiments on the Tiny-
ImageNet dataset to better understand the performance
of FedRLC and FedPNP under different conditions.

Experiments on Varying the Number of Clients: We
conduct the experiment with different numbers of nodes,
as shown in Fig. 6 for FedRLC and Fig.7 for FedPNP.
We report the linear evaluation accuracy for FedRLC and
clustering accuracy for FedPNP. Compared to FedEMA
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Fig. 9. Clustering performance on CIFAR10 with varying 8 of the
Dirichlet Distribution.

and FedBYOL, we observe that all methods demonstrate
a decline in accuracy as the number of clients increases,
while FedRLC consistently performs the best among all
methods.

In Fig. 6, compared to different combinations con-
trastive and non-contrastive strategies at the two stages
of learning, we observe that FedRLC performs the
best, especially when there are 50 clients. Also, as the
number of clients increases, the performance gain also
increases. Fig. 7 shows that our proposed federated
clustering model, FedPNP, consistently performs well
across different number of clients. Our model is either
the best or within 1% of the best in terms of accuracy.
Specifically, when there are 5 clients, FedPNP is over
5% higher in accuracy than the second-best model,
FedNC+C. Moreover, FedPNP remains stable and robust
as the number of clients changes, compared to other
methods. In contrast, FedNC+C experiences a significant
drop in accuracy of more than 10%, and FedCC is about
6% lower in accuracy than our model, FedPNP, when
there are 20 clients.

Simulating More Non-IID Settings: In Fig. 8§ and
Fig. 9, we explore the effect of various Non-IID con-
ditions by training the federated model with differing
values of 3 in the Dirichlet distribution. A smaller (£
value indicates a more Non-IID situation. From Fig.
8, we find that FedRLC achieves the highest linear
evaluation accuracy and maintains a relatively stable
performance under different Non-IID conditions. Addi-
tionally, FedEMA outperforms FedBYOL but fluctuates
slightly when varying the data distribution. Therefore,
FedRLC demonstrates robustness in maintaining a rela-
tively high linear evaluation accuracy despite changes in
data distribution. The clustering performance under vary-
ing B values of the Dirichlet Non-IID data distribution
for different federated clustering frameworks is shown
in Fig. 9. FedPNP consistently outperforms all other
methods across the range of 3 values, obtaining a 3.2%
accuracy improvement over FedNC+C. Both FedC+NC
and FedNC+NC show relatively low performance in all
Non-IID scenarios, indicating the non-effectiveness of
the non-contrastive method in federated clustering tasks.

Impact of Data Selection: In FedRLC, data selection
is applied when the predicted labels from the online
network and the target network are the same, as they
are expected to output similar embeddings. The intuition
behind this approach is to increase the likelihood of
selecting data with more accurate soft labels for training.
In FedPNP, we select data specifically for contrastive
learning, which carries the challenging class collision
problem. Class collision refers to the fact that contrastive
learning sees all samples in a batch (excluding the input)
as negatives to the input data, which is not always true,
as some samples may belong to the same category as
the input data. Existing works that address this issue
primarily focus on centralized cases. However, FedPNP
tackles the more challenging problem of class collision
in the federated setting. We select data that are more
likely to be a true negative for contrastive loss to alleviate
the issue of class collision. More specifically, the data
selection is based on Gaussian similarity between data
embeddings generated from the previous network.

In TABLE IX, we compare the performance of Fe-
dRLC with and without data selection on CIFAR10 and
CIFAR100 under different Non-IID data distributions,
with 8 = 0.5 and under data-split Non-IID condition. We
observe that the performance decreases after removing
the data selection strategy, especially for the Non-IID
CIFAR-100 dataset with a large number of classes,
showing around a 2% drop in terms of linear evalua-
tion accuracy. Additionally, removing the clustering loss
proposed in FedRLC hurts the performance significantly,
with a decrease of 4.64% and 5.89% for data-split Non-
IID CIFAR-10 and CIFAR-100, respectively. Next, we
evaluate the impact of data selection in FedPNP in TA-



BLE X. The model without the data selection performs
worse than the proposed model in all settings in terms
of federated clustering accuracy. Specifically, with a
larger number of classes in CIFAR-100, the performance
decreases by 1.5% in accuracy when the number of
classes is 100 after removing the data selection strategy.

Impact of Hyperparameter: In TABLE X, we fine-
tune the hyperparameter p used for data selection in
FedPNP with values of 0.998 and 0.996, compared to the
original value of 0.999 in our setting shown in Section
VII. The results show that FedPNP achieves optimal
performance with ;2 = 0.999 on Non-IID CIFAR-10 and
# = 0.996 on IID CIFAR-10. For CIFAR-100, when
p = 0.999, we obtain the best performance for Non-
IID with 17.0%, and p = 0.998 for IID. Generally, we
observe that the hyperparameter i does not significantly
impact performance, demonstrating that FedPNP is ro-
bust to variations in the hyperparameter when the data
selection strategy is applied.

Experiments on Tiny-ImageNet for Transfer
Learning: For large-scale datasets, we train the FedRLC
on the Tiny-ImageNet dataset and fine-tune it on CIFAR-
10 for linear evaluation. The results are presented in
TABLE XI. Tiny-ImageNet comprises 200 classes and
contains a total of 100,000 samples, divided into 70%
for the training set and 30% for the testing set. FedRLC
achieves 41.4% linear evaluation accuracy, which is a 2%
improvement compared to the model with some com-
ponents removed. In all Non-IID scenarios, removing
either the data selection or the clustering loss hurts the
performance. These findings demonstrate that our data
selection strategy is effective for large-scale data such
as Tiny-ImageNet, even with its large number of classes,
across various federated learning environments.

TABLE IX
EFFECT OF DATA SELECTION ON FEDRLC.

CIFAR-10
Non-IID (8 = 0.5) ‘ Non-IID

Dataset
Method

CIFAR-100
Non-IID (8 = 0.5) ‘ Non-IID

FedRLC (No Data Selection) 86.01 | 8351 60.82 | 63.03

FedRLC (Without Clustering Loss) ~ 85.44 | 79.44 59.14 | 5751

FedRLC 86.89 | 84.08 62.39 | 6340
TABLE X

EFFECT OF DATA SELECTION ON FEDPNP.

Dataset CIFAR-10 CIFAR-100
Method 1ID ‘ Non-IID 1ID ‘ Non-IID
FedPNP (No Data Selection) ~ 64.9 | 447 163 | 165
FedPNP (11 = 0.998) 659 | 486 176 | 167
FedPNP (1 = 0.996) 66.7 ‘ 48.1 16.2 ‘ 16.6
FedPNP 66.5 ‘ 49.5 17.1 ‘ 17.0

IX. CONCLUSIONS

We studied self-supervised representation learning and
deep clustering algorithms in the federated setting. We
introduced the FedRLC framework, designed to learn

TABLE XI
EXPERIMENTAL RESULTS ON TRANSFER LEARNING.

Dataset
Method

Tiny-ImageNet
11D ‘ Non-IID ‘ Non-IID (8 = 0.5) ‘ Non-IID (8 = 0.1)

FedRLC (No Data Selection) 39.0 | 282 | 37.7 | 332
FedRLC (Without Clustering Loss) ~ 40.4 | 285 | 38.8 | 32.6
FedRLC 4t | 305 | 392 \ 345

high-quality representations, and FedPNP, which au-
tomatically clusters data during training with non-IID
unlabeled data. The experimental results demonstrated
that FedRLC achieves state-of-the-art performance when
evaluated through linear evaluation and semi-supervised
learning. Additionally, FedPNP effectively generated
cluster probabilities and outperformed many other meth-
ods in clustering data.
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