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ABSTRACT

Canonical correlation analysis (CCA) is a classical statistical tool

that enables processing of multiview data in a plethora signal pro-

cessing, machine learning and data mining applications, by identify-

ing a common linear subspace from the available data views. Most

algorithms tackling the CCA task require all the data per view to

be available. Nevertheless, in many cases, data are not available in

batch form and may arrive in streaming fashion. This work puts

forth a novel, computationally efficient, projection based method for

identifying and updating the common subspace on-the-fly, as new

data arrive, while retaining its’ fidelity. Preliminary numerical tests,

on synthetic and real data benchmarks, showcase the potential of the

proposed method.

Index Terms— Canonical Correlation Analysis, Online Analy-

sis, Rayleigh-Ritz Projection

1. INTRODUCTION

Every single day, data are collected from multitudes of heteroge-

neous sensors, and generated by networked devices with different

capabilities. While these sensors or devices may be observing the

same physical phenomenon, the data they generate may not be im-

mediately compatible, due to the differences of these devices. Pro-

cessing, learning, and drawing inference, in such a scenario, calls

for approaches that are able to capitalize on the multimodal nature

of the data.

Canonical Correlation Analysis (CCA) is a powerful statistical

tool that seeks a low-dimensional representation of two random vec-

tors that maximizes their correlation coefficient [1, 2]. From an al-

gebraic perspective, CCA extracts a common latent structure of a set

of entities observed in two different feature domains, which are usu-

ally referred as the ‘views’ of the entities [3]. For example, the ob-

served data may consist of video recordings of a phenomenon, in one

view, and textual semantic descriptions of the same phenomenon, in

another view. CCA finds applications in various fields, including

but not limited to signal processing [4, 5, 6, 7, 8], machine learn-

ing [9, 10, 11, 12], natural language processing [13], data mining

[14, 15], and bioinformatics [16].

CCA can be optimally solved via generalized eigenvalue de-

composition [2]. However, this solution computes the square root

decomposition of the matrix-views, which in general has cubic

complexity and is computationally intensive for multi-dimensional

data. Furthermore, CCA updates necessitate storing dense inverse-

covariance matrices, leading to impractical memory requirements

in various real-world scenarios. When dealing with data that arrive
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in a streaming fashion, the aforementioned complexity and memory

issues are exacerbated, as the common latent representation has to

be computed from scratch with every new datum.

Most approaches tackling the computational issues of CCA,

both in batch and online scenaria, are gradient-based [17, 18, 19].

More recently, methods based on stochastic approximation and

stochastic optimization methods were advocated in [20] and [21],

respectively. In addition, an online and distributed version of CCA,

with sparsity constraints was presented in [22].

In this paper, we capitalize on the algebraic perspective of CCA

and propose a novel method to perform CCA in an online fash-

ion. Leveraging the Rayleigh-Ritz approximation procedure, the

proposed algorithm can dynamically update the canonical compo-

nents and common subspace between two views of data. Besides

data arriving online, the proposed method readily applies to scenaria

where the data matrices do not fit in memory and have to be fetched

in small batches. Compared to the prior art, the proposed algorithm

deals with the eigendecomposition of the CCA objective directly,

instead of relying on (inexact) gradient computations.

Notation: Lowercase bold letters, x, denote vectors, uppercase bold

letters, X, represent matrices, and calligraphic uppercase letters, X ,

stand for sets. The (i, j)-th entry of matrix X is denoted by [X]i,j .

’¦’ denotes matrix or vector transpose, and Ran(X) and Rank(X)
denote the rangespace and rank of X, respectively, and |X | denotes

the cardinality of set X . I and 0 the identity and all-zeroes matrices

of appropriate dimension, respectively. Finally, the term “i-th lead-

ing eigenpair” of a matrix X will refer to its i-th algebraically largest

eigenvalue and its corresponding (normalized) eigenvector.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data that is provided in two views,

with x
(1)
i denoting the i-th d1 × 1 vector orresponding to the first

view, and x
(2)
i denoting the i-th d2 × 1 vector corresponding to the

second view. We collect all N vectors from the first and second view

in the N ×d1 matrix X(1) = [x
(1)¦
1 , . . . ,x

(1)¦
N ] and N ×d2 matrix

X(2) = [x
(2)¦
1 , . . . ,x

(2)¦
N ], respectively.

CCA seeks d1 × k and d2 × k projection matrices P(1) and

P(2), respectively, such that the resulting projected data y
(1)
n =

P(1)x
(1)
n and y

(2)
n = P(2)x

(2)
n are maximally correlated, with re-

spect to (w.r.t.) the Pearson correlation coefficient, for all n =
1, . . . , N .

The classical CCA formulation [23, 24] can be cast as the fol-
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lowing optimization problem

max
P(1),P(2)

Tr
(

P
(1)T

X
(1)T

X
(2)

P
(2)

)

(1)

s.t. P(i)T
X

(i)T
X

(i)
P

(i) = Ik, i = 1, 2,

where X(n) ∈ C
N×di is the i-th view containing N entities mea-

sured in a di-dimensional feature space, P(i) ∈ C
di×k is a matrix

that projects X(i) into a subspace of dimension k and Ik represents

the k × k identity matrix. Indeed one can observe that (1) maxi-

mizes the correlation between the two views of the data, under the

constraint P(i)TX(i)TX(i)P(i) = Ik, which ensures that no trivial

solutions are obtained.

To solve the aforementioned optimization problem consider the

covariance matrices CX1
= X(1)TX(1) and CX2

= X(2)TX(2)

and assume that Rank(CX1
) = Rank(CX2

) = N . Letting

X(i) = U(i)Σ(i)V(i)T denote the Singular Value Decomposition

(SVD) of X(i), we define the matrix

Z
(i) =

(

X
(i)T

X
(i)
)1/2

P
(i) = V

(i)
Σ

(i)
V

(i)T
P

(i)
. (2)

Solving (2) with respect to P(i), leads to

P
(i) =

(

X
(i)T

X
(i)
)−1/2

Z
(i) = V

(i)
Σ

(i)−1

V
(i)T

Z
(i)
. (3)

Using (3) the optimization problem in (1) can then be written as

max
Z(1),Z(2)

Tr
(

Z
(1)¦

CX1

−1/2
CX1X2

CX2

−1/2
Z

(2)
)

(4)

s.t. Z(i)¦
Z

(i) = Ik, i = 1, 2,

where CX1X2
= X(1)¦X(2) = CX2X1

¦ is the cross-covariance

matrix. The problem in (4) is equivalent to

max
Z(1),Z(2)

Tr
(

Z
(1)T

V
(1)

U
(1)T

U
(2)

V
(2)T

Z
(2)

)

(5)

s.t. Z(i)T
Z

(i) = Ik, i = 1, 2.

One way to solve this problem is to compute the top k singular vec-

tors of the so-called normalized cross-covariance

T = CX1

−1/2
CX1X2

CX2

−1/2 = V
(1)

U
(1)T

U
(2)

V
(2)T

.

Alternatively, invoking the Cauchy-Schwarz inequality, we observe

that the problem in (4) is maximized when the columns of the matri-

ces Z(1) and TZ(2) are co-linear, i.e.,

Z
(1) = CX1

−1/2
CX1X2

CX2

−1/2
Z

(2)

= V
(1)

U
(1)T

U
(2)

V
(2)T

Z
(2)

.

Using this fact, the canonical components can be recovered via

max
Z(2)

Tr
(

Z
(2)T

V
(2)

U
(2)T

U
(1)

U
(1)T

U
(2)

V
(2)T

Z
(2)

)

(6)

s.t. Z(2)T
Z

(2) = Ik,

which can be solved by setting Z(2) equal to the matrix formed by

the k principal eigenvectors of the matrix

M = CX2

−1/2
CX2X1

CX1

−1
CX1X2

CX2

−1/2
(7)

= V
(2)

U
(2)T

U
(1)

U
(1)T

U
(2)

V
(2)T

.

These k eigenvectors can be computed via a matrix-free, sym-

metric eigenvalue solver such as the Lanczos method [25]. Let

now MV(X) denote the computational cost to multiply a matrix

X with a vector of conforming size. Then, applying the Lanczos

method to the matrix M yields an asymptotic computational cost

O
([

MV(U(1)) +MV(U(2)) +MV(V(2))
]

k + d2k
2
)

[26].

Finally, the N × k common subspace G can then be recovered

using Z(2) as

G = X
(2)

P
(2) = X

(2)
(

X
(2)T

X
(2)

)−1/2

Z
(2)

(8)

= U
(2)

V
(2)T

Z
(2)

.

3. ONLINE CCA

Consider now a setting where the data from the two views are dy-

namically updated with the addition of new data samples or features.

In this case, as the data matrices change, so does the respective ma-

trix M in (7). A naive approach to update the canonical components

is to recompute the k dominant eigenvectors of M from scratch,

e.g., by applying the Lanczos scheme. This approach, however, does

not take advantage of previous computational efforts. In this section

we consider a method to update the canonical components subject

to periodic augmentation of an initial set of data while re-using the

previously computed canonical components. The proposed scheme

is based on the Rayleigh-Ritz (RR) procedure, discussed next.

3.1. The Rayleigh-Ritz approximation procedure

The RR procedure aims to approximate a portion of the eigenval-

ues and eigenvectors of a matrix M via projection onto a carefully

chosen ansatz subspaceQ, which, ideally, contains the invariant sub-

space associated with the eigenvalues of interest [27]. The RR pro-

cedure is effectively a dimensionality reduction technique which in

lieu of computing eigenpairs of M instead computes eigenpairs of

the matrix QTMQ. Here the matrix Q represents a basis of the

low-dimensional subspace Q. The eigenpairs of M can then be ap-

proximated by linear combinations of the columns of Q.

Specifically, let {(Äi,hi)}
k
i=1, denote the k leading eigenpairs

of the matrix QTMQ, where Äi are the eigenvalues and hi the cor-

responding eigenvectors. Then, the the i-th leading eigenpair of the

matrix M is approximated by the so-called i-th leading Ritz pair

(Äi,Qhi). In fact, when the subspace Q contains an invariant sub-

space associated with the k dominant eigenvalues of M, the Ritz

pairs are equal, up to roundoff error, to the true k dominant eigen-

pairs of M [28, Section 11].

3.2. A scheme for updating the canonical components

Suppose that at time-step ‘t’ the data X
(1)
t ,X

(2)
t are available and

consequently the k dominant eigenvectors of the matrix Mt form the

canonical components of the two views [see Sec. 2]. Then at time-

step ‘t + 1’, nt+1 new data arrive. The new data are similarly split

into two views X̃
(1)
t+1 and X̃

(2)
t+1 respectively. Then in each view the

matrices X
(1)
t and X

(2)
t become submatrices of the matrices X

(1)
t+1

and X
(2)
t+1, i.e.

X
(1)
t+1 =

[

X
(1)
t

X̃
(1)
t+1

]

, X
(2)
t+1 =

[

X
(2)
t

X̃
(2)
t+1

]

.
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Following the computations of Section 2 yields a new matrix

Mt+1 whose k dominant eigenvectors now form the canonical com-

ponents of the augmented views.

Algorithm 1 Online CCA (at least one update occurs).

1: Input: X
(1)
1 ,X

(2)
1

2: Output: k leading eigenpairs of the matrix Mt+1

3: ▷ Set t← 1 and construct the projection matrix Qt

4: do

5: ▷ Update X
(1)
t ,X

(2)
t to X

(1)
t+1,X

(2)
t+1

6: ▷ Build the projection matrix Qt+1 [See Sec.3.3]

7: ▷ Compute the eigenpairs {(Ät+1,i,ht+1,i)}
k
i=1 of

QT
t+1Mt+1Qt+1

8: ▷ Set Z
(2)
t+1 = [Qt+1ht+1,1, . . . ,Qt+1ht+1,k]

9: ▷ Update t← t+ 1
10: while there exist updates

Algorithm 1 summarizes the proposed framework. Upon arrival

of the new data and formation of X
(1)
t+1 and X

(2)
t+1, the thin SVD

X
(i)
t+1 = U

(i)
t+1Σ

(i)
t+1V

(i)¦
t+1 , i = 1, 2 is computed. The thin SVD

of X
(i)
t+1 does not have to be computed from scratch; instead, the

SVD of the matrix X
(i)
t can be used as a warm-start mechanism

[29, 30, 31].

With the SVD of X
(1)
t+1 and X

(2)
t+1 at hand, the scheme proceeds

with the approximation of the k dominant eigenvectors of the matrix

Mt+1 = V
(2)
t+1U

(2)T
t+1 U

(1)
t+1U

(1)T
t+1 U

(2)
t+1V

(2)T
t+1 .

Rather than naively applying the Lanczos method to Mt+1, the nov-

elty of Algorithm 1 lies on applying a Rayleigh-Ritz approximation

mechanism which exploits the previously computed eigenvectors of

the matrix Mt. The next section derives the projection subspace

when the number of samples increases dynamically.

3.3. Setting up the projection subspace

A starting point to set the projection matrix Qt+1 is to consider

the k dominant Ritz vectors of the matrix Mt, i.e., Qt+1 =
[Qtht,1, . . . ,Qtht,k]. This choice can be efficient when Mt ≈
Mt+1, however it ignores any information introduced during time-

step ‘t+1’. To overcome this limitation, one can consider enriching

the canonical components obtained at time-step ‘t’ with informa-

tion obtained from the newly added samples in matrices X
(1)
t+1 and

X
(2)
t+1. The following proposition outlines the conditions for exactly

recovering the eigenvectors of Mt+1 via the RR procedure.

Proposition 3.1. Let k f Rank(Mt+1) and

Ran(Qt+1) = Ran
(

V
(2)
t+1U

(2)T
t+1 U

(1)
t+1

)

.

Then, the min(k,Rank(Mt+1)) dominant Ritz pairs (Ät,i,Qtht,i)
are equal to the min(k,Rank(Mt+1)) dominant eigenpairs of the

matrix Mt+1.

Proof. The proof follows directly by noticing that

Ran
(

V
(2)
t+1U

(2)T
t+1 U

(1)
t+1

)

≡ Ran(Mt+1),

and recalling that any eigenvector associated with a non-zero eigen-

value must lie in the matrix column space.

Invoking Prop. 3.1 and noting that Ran
(

V
(2)
t+1U

(2)T
t+1 U

(1)
t+1

)

¦

Ran(V
(2)
t+1), yields the following corollary.

Corollary 1. Let k f d2. Then, if Qt+1 = V
(2)
t+1, the k dominant

Ritz pairs (Ät+1,i,Qt+1ht+1,i) are equal to the k dominant eigen-

pairs of the matrix Mt+1.

Based on Corollary 1 the projection matrix Qt+1 can be chosen

as the d2 × Rank(Mt+1) matrix V
(2)
t+1 that contains the right sin-

gular vectors of X
(2)
t+1. Nevertheless, using V

(2)
t+1 directly does not

reduce the dimension of the projection subspace as it is equivalent to

a similarity transformation. Instead, the idea considered in this work

is to extend the projection subspace from the previous time-step by

adding k dominant right singular vectors of the matrix V
(2)
t+1, i.e.,

Qt+1 = Orth
([

Qtht,1, . . . ,Qtht,k,V
(2)
t+1,1:k

])

,

where V
(2)
t+1,1:k is the d2 × k matrix containing the right singular

vectors associated with the k dominant singular values of X
(2)
t+1, and

Orth(·) is a matrix operator that orthogonalizes its argument, via

e.g. the Gram-Schmidt procedure. Using Qt+1, one can obtain the

k dominant eigenpairs {(Ät+1,i,ht+1,i)}
k
i=1 of Q¦

t+1Mt+1Qt+1,

and the matrix of interest Z
(2)
t+1 = [Qt+1ht+1,1, . . . ,Qt+1ht+1,k].

Upon computing Z
(2)
t+1, Z

(1)
t+1 can be recovered via (6). The common

subspace between the two views at time ′t+ 1′ is given by (8). This

procedure is repeated as more new data arrive. The performance of

Alg. 1 will be evaluated in the next section.

4. NUMERICAL TESTS

The proposed approach is benchmarked using synthetically gener-

ated and real data, all tests were conducted using MATLAB, and re-

sults represent averages over 10 independent Monte Carlo runs. The

synthetic data were created using the generative model in [3], where

each noiseless view is given by X̌(i) = [AB(i)]C(i)¦, with A be-

ing the N×k common subspace between the two views, and B(i) ∈
C

N×ℓn and C(i) ∈ C
d2×k+ℓn matrices, for some ℓn ∈ N pertain-

ing to each view. Here, N = 2, 000 , k = 15, d1 = d2 = 1015,

and the entries of A,B(i),C(i) are drawn from the standard normal

distribution. After generating the noiseless matrices X̌(i) for each

view, additive white Gaussian noise is added, i.e. X(i) = X̌(i) +N,

where [N]i,j ∼ N (0, Ã2) for all i, j. The variance Ã2 is chosen so

that the signal-to-noise ratio is approximately 15dB.

The real dataset considered is the Mediamill dataset [32], which

consists of N = 10, 000 observations of videos with paired com-

mentary. One view of the data consists of d1 = 120 features ex-

tracted from the videos, while the second view consists of d2 = 100
textual features representing semantics of what is portrayed in the

video.

Figures 1-2 plot the angle formed per dominant eigenvector of

M, i.e. columns of Z(2), computed with the entire dataset, and the

output Ẑ(2) of Alg. 1 at the end of the final time-step as k varies, i.e.

angle(Z(2)
, Ẑ

(2)) = ∥W − Ŵ∥2

where W and Ŵ are the projections onto Z(2) and Ẑ(2), respec-

tively. In Fig. 1 we consider only one time-step, where for each

dataset we hide a percentage of Ä ∈ R bottom rows of the matri-

ces X(1) and X(2). These rows are then introduced as new data.

Naturally, introducing fewer rows leads to a better accuracy of our
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Fig. 1. Angle between the i-th dominant eigenvector and the invariant subspace returned by Algorithm 1 (single time-step case). Top row:

Mediamill dataset [32]. Bottom row: synthetic dataset.

1 2 3 4 5

Index

0.05

0.1

0.15

A
n
g
le

s

K=5 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

2 4 6 8 10

Index

10
-1

10
0

A
n

g
le

s

K=10 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

2 4 6 8 10 12 14

Index

10
-1

A
n

g
le

s

K=15 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

5 10 15 20

Index

0.4

0.5

0.6

0.7

0.8

0.9

A
n

g
le

s

K=20 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

5 10 15 20 25 30 35 40

Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
n

g
le

s

K=40 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

10 20 30 40 50 60

Index

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

A
n

g
le

s

K=60 canonical components

 = 6%

 = 8%
 = 12%

 = 25%

Fig. 2. Angle between the i-th dominant eigenvector and the invariant subspace returned by Algorithm 1, for the case where 2, 4, 6 and 8
time-steps are considered. Top row: Mediamill dataset [32]. Bottom row: synthetic dataset.

scheme since the invariant subspace computed at the initial stage is

more similar to that obtained after a single update. This is true both

for the Mediamill and synthetic datasets. Fig. 2 extends the pre-

vious experiment by introducing multiple time-steps. This time we

hide exactly half of the rows of the matrices X(1) and X(2), and

the hidden rows are introduced in 2, 4, 6 and 8 time-steps, with each

time-step introducing approximately 24%, 12%, 8%, and 6%, of

the total dataset rows. As in the previous experiment, updates with

fewer data lead to higher overall accuracy. On the other hand, more

updates indicate that more SVD updates are required, and thus there

is an accuracy-speed trade-off.

5. CONCLUSIONS

This work introduced a novel method for performing canonical

correlation analysis when data arrive in a streaming fashion. The

proposed algorithm capitalizes on the Rayleigh-Ritz approximation

method to efficiently and accurately update the canonical compo-

nents. Future work will include extending the proposed algorithm

to more than two views, extensive tests on real data and compar-

isons with competing alternatives, as well as a rigorous performance

analysis.
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