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ABSTRACT

Canonical correlation analysis (CCA) is a classical statistical tool
that enables processing of multiview data in a plethora signal pro-
cessing, machine learning and data mining applications, by identify-
ing a common linear subspace from the available data views. Most
algorithms tackling the CCA task require all the data per view to
be available. Nevertheless, in many cases, data are not available in
batch form and may arrive in streaming fashion. This work puts
forth a novel, computationally efficient, projection based method for
identifying and updating the common subspace on-the-fly, as new
data arrive, while retaining its’ fidelity. Preliminary numerical tests,
on synthetic and real data benchmarks, showcase the potential of the
proposed method.

Index Terms— Canonical Correlation Analysis, Online Analy-
sis, Rayleigh-Ritz Projection

1. INTRODUCTION

Every single day, data are collected from multitudes of heteroge-
neous sensors, and generated by networked devices with different
capabilities. While these sensors or devices may be observing the
same physical phenomenon, the data they generate may not be im-
mediately compatible, due to the differences of these devices. Pro-
cessing, learning, and drawing inference, in such a scenario, calls
for approaches that are able to capitalize on the multimodal nature
of the data.

Canonical Correlation Analysis (CCA) is a powerful statistical
tool that seeks a low-dimensional representation of two random vec-
tors that maximizes their correlation coefficient [1, 2]. From an al-
gebraic perspective, CCA extracts a common latent structure of a set
of entities observed in two different feature domains, which are usu-
ally referred as the ‘views’ of the entities [3]. For example, the ob-
served data may consist of video recordings of a phenomenon, in one
view, and textual semantic descriptions of the same phenomenon, in
another view. CCA finds applications in various fields, including
but not limited to signal processing [4, 5, 6, 7, 8], machine learn-
ing [9, 10, 11, 12], natural language processing [13], data mining
[14, 15], and bioinformatics [16].

CCA can be optimally solved via generalized eigenvalue de-
composition [2]. However, this solution computes the square root
decomposition of the matrix-views, which in general has cubic
complexity and is computationally intensive for multi-dimensional
data. Furthermore, CCA updates necessitate storing dense inverse-
covariance matrices, leading to impractical memory requirements
in various real-world scenarios. When dealing with data that arrive
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in a streaming fashion, the aforementioned complexity and memory
issues are exacerbated, as the common latent representation has to
be computed from scratch with every new datum.

Most approaches tackling the computational issues of CCA,
both in batch and online scenaria, are gradient-based [17, 18, 19].
More recently, methods based on stochastic approximation and
stochastic optimization methods were advocated in [20] and [21],
respectively. In addition, an online and distributed version of CCA,
with sparsity constraints was presented in [22].

In this paper, we capitalize on the algebraic perspective of CCA
and propose a novel method to perform CCA in an online fash-
ion. Leveraging the Rayleigh-Ritz approximation procedure, the
proposed algorithm can dynamically update the canonical compo-
nents and common subspace between two views of data. Besides
data arriving online, the proposed method readily applies to scenaria
where the data matrices do not fit in memory and have to be fetched
in small batches. Compared to the prior art, the proposed algorithm
deals with the eigendecomposition of the CCA objective directly,
instead of relying on (inexact) gradient computations.

Notation: Lowercase bold letters, x, denote vectors, uppercase bold
letters, X, represent matrices, and calligraphic uppercase letters, X,
stand for sets. The (i, 7)-th entry of matrix X is denoted by [X];,;.
> T denotes matrix or vector transpose, and Ran(X) and Rank(X)
denote the rangespace and rank of X, respectively, and | X'| denotes
the cardinality of set X'. I and O the identity and all-zeroes matrices
of appropriate dimension, respectively. Finally, the term “i-th lead-
ing eigenpair” of a matrix X will refer to its ¢-th algebraically largest
eigenvalue and its corresponding (normalized) eigenvector.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of NV data that is provided in two views,
with xl(-l) denoting the i-th d; x 1 vector orresponding to the first
view, and ng) denoting the i-th d2 x 1 vector corresponding to the
second view. We collect all N vectors from the first and second view
in the N x d; matrix X(*) = [x§1>T, .. ,XE\})T] and N X d2 matrix

X® = [xf”, o xg\?)T], respectively.

CCA seeks di x k and d2 X k projection matrices P® and
P® | respectively, such that the resulting projected data yﬁzl) =
P(l)xg) and y,(f) = P(Q)xg) are maximally correlated, with re-
spect to (w.r.t.) the Pearson correlation coefficient, for all n =
1,...,N.

The classical CCA formulation [23, 24] can be cast as the fol-
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lowing optimization problem
max Tr (P<1)TX“>TX(2>P<2>) (1
P p(2)

st POTXOTXOPpO — 1, j =1 2

where X(™ e CN*9 is the i-th view containing N entities mea-
sured in a d;-dimensional feature space, P® ¢ C%** is a matrix
that projects X (¥ into a subspace of dimension k and I, represents
the £ x k identity matrix. Indeed one can observe that (1) maxi-
mizes the correlation between the two views of the data, under the
constraint POTXOTXOp®) — I, which ensures that no trivial
solutions are obtained.

To solve the aforementioned optimization problem consider the
covariance matrices Cx, = XMTX®W and Cx, = XPTX®
and assume that Rank(Cx,) = Rank(Cx,) = N. Letting
X® = UOn@OVOT denote the Singular Value Decomposition
(SVD) of X, we define the matrix

7 _ (XwTX(i)) V2pe) _ ysiyOTp) ()
Solving (2) with respect to P®, leads to
. . L\ —1/2 . . N1 . .
P — (X(Z)Tx(l)) 7D — vOn@  y@OT g () 3)
Using (3) the optimization problem in (1) can then be written as

st.20TZY =1, i=1,2,

where Cx,x, = XOTx@ — Cx2x1T is the cross-covariance
matrix. The problem in (4) is equivalent to

max Tr (Z(1>Tv(1)U(l)TU(2)V(2)Tz(2>) (5)
z(1) 7(2)

st. 20Tz =1, i=1,2.

One way to solve this problem is to compute the top k singular vec-
tors of the so-called normalized cross-covariance

T = CX171/2CX1XZCX271/2 _ V(DU(I)TU(Z)V(?)T.

Alternatively, invoking the Cauchy-Schwarz inequality, we observe
that the problem in (4) is maximized when the columns of the matri-
ces Z and TZ® are co-linear, i.e.,

Z(l) — CX1_1/20X1X2CX2_1/2Z(2)
= vOuLTy@yv@Tg(2)

Using this fact, the canonical components can be recovered via

max Tr (Z(Q)Tv(2)U(2>TU(1)U(l)TU(2)V(2)TZ(2)) )
Z(2)

st. Z3Tz3? — 1,

which can be solved by setting yAS equal to the matrix formed by
the k principal eigenvectors of the matrix

M = Cx271/20x2x1 Cx, 'Cx;xs Cx271/2 7
—vOUuTyOyOTy@ AT

These k eigenvectors can be computed via a matrix-free, sym-
metric eigenvalue solver such as the Lanczos method [25]. Let
now MV (X) denote the computational cost to multiply a matrix
X with a vector of conforming size. Then, applying the Lanczos
method to the matrix M yields an asymptotic computational cost

o ([MV(U(U) +MV(U®) 4+ MV(V(2>)] k+ dgsz) [26].

Finally, the N x k& common subspace G can then be recovered
using Z® as

G - X®p® _x® (X@)TX(Q))J/Q 7 ®)

— U(2)V(2)TZ<2).

3. ONLINE CCA

Consider now a setting where the data from the two views are dy-
namically updated with the addition of new data samples or features.
In this case, as the data matrices change, so does the respective ma-
trix M in (7). A naive approach to update the canonical components
is to recompute the k£ dominant eigenvectors of M from scratch,
e.g., by applying the Lanczos scheme. This approach, however, does
not take advantage of previous computational efforts. In this section
we consider a method to update the canonical components subject
to periodic augmentation of an initial set of data while re-using the
previously computed canonical components. The proposed scheme
is based on the Rayleigh-Ritz (RR) procedure, discussed next.

3.1. The Rayleigh-Ritz approximation procedure

The RR procedure aims to approximate a portion of the eigenval-
ues and eigenvectors of a matrix M via projection onto a carefully
chosen ansatz subspace O, which, ideally, contains the invariant sub-
space associated with the eigenvalues of interest [27]. The RR pro-
cedure is effectively a dimensionality reduction technique which in
lieu of computing eigenpairs of M instead computes eigenpairs of
the matrix QT MQ. Here the matrix Q represents a basis of the
low-dimensional subspace Q. The eigenpairs of M can then be ap-
proximated by linear combinations of the columns of Q.

Specifically, let {(7;, h;)}¥_,, denote the k leading eigenpairs
of the matrix QTMQ, where 7; are the eigenvalues and h, the cor-
responding eigenvectors. Then, the the ¢-th leading eigenpair of the
matrix M is approximated by the so-called ¢-th leading Ritz pair
(75, Qhy;). In fact, when the subspace Q contains an invariant sub-
space associated with the k£ dominant eigenvalues of M, the Ritz
pairs are equal, up to roundoff error, to the true k£ dominant eigen-
pairs of M [28, Section 11].

3.2. A scheme for updating the canonical components

Suppose that at time-step ‘¢’ the data Xgl) , X?) are available and
consequently the & dominant eigenvectors of the matrix M form the
canonical components of the two views [see Sec. 2]. Then at time-
step ‘¢ + 1°, ny41 new data arrive. The new data are similarly split
into two views Xg)l and Xgl respectively. Then in each view the
matrices Xil) and ng) become submatrices of the matrices Xilﬁl

and Xgi)l, ie.
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Following the computations of Section 2 yields a new matrix
M +1 whose k£ dominant eigenvectors now form the canonical com-
ponents of the augmented views.

Algorithm 1 Online CCA (at least one update occurs).

: Input: Xgl),X?)
: Output: k leading eigenpairs of the matrix M1
: > Set t < 1 and construct the projection matrix Qs
do
> Update X{V, X{* 1o X{2, X2,
> Build the projection matrix Q41 [See Sec.3.3]
> Compute the eigenpairs {(7¢+1,s, ht+1,i)}f:1 of
QY 1 Mi11Qet1
> Set Zii)l B [Qt+1ht+1,l7 .
9: >Updatet <t +1
10: while there exist updates

A SR ey

®

, Qt+1ht+1,k}

Algorithm 1 summarizes the proposed framework. Upon arrival
of the new data and formation of Xg_)l and Xg_)l, the thin SVD

X, =0l = vOT i = 1,2 is computed. The thin SVD

of Xii+)1 does not have to be computed from scratch; instead, the
SVD of the matrix X,(f) can be used as a warm-start mechanism
[29, 30, 31].

With the SVD of Xgl and Xfﬁl at hand, the scheme proceeds
with the approximation of the k dominant eigenvectors of the matrix

2 2)T 1 1T 2 2)T
Mt = VE,URTUD, UL U, VT

Rather than naively applying the Lanczos method to M4 1, the nov-
elty of Algorithm 1 lies on applying a Rayleigh-Ritz approximation
mechanism which exploits the previously computed eigenvectors of
the matrix M. The next section derives the projection subspace
when the number of samples increases dynamically.

3.3. Setting up the projection subspace

A starting point to set the projection matrix Q:41 is to consider
the k£ dominant Ritz vectors of the matrix M, i.e.,, Qir1 =
[Q¢the1, ..., Qihy k). This choice can be efficient when M; =
M1, however it ignores any information introduced during time-
step ‘¢t + 1°. To overcome this limitation, one can consider enriching
the canonical components obtained at time-step ‘¢’ with informa-

tion obtained from the newly added samples in matrices Xg}l and

Xgi)l. The following proposition outlines the conditions for exactly
recovering the eigenvectors of M4 via the RR procedure.

Proposition 3.1. Ler k < Rank(M1) and
Ran(Q2) = R (VL UETULY,).
Then, the min(k, Rank(M¢41)) dominant Ritz pairs (74, Qehy )

are equal to the min(k, Rank(M1)) dominant eigenpairs of the
matrix My41.

Proof. The proof follows directly by noticing that
Ran (VU U, ) = Ran(Moso),

and recalling that any eigenvector associated with a non-zero eigen-
value must lie in the matrix column space. O

Invoking Prop. 3.1 and noting that Ran (VfglUng Ug}gl) C
Ran(Vgr)l), yields the following corollary.

Corollary 1. Let k < da. Then, if Qi1 = Vgi)l, the k dominant
Ritz pairs (Te41,5, Qe+1hey1 ;) are equal to the k dominant eigen-
pairs of the matrix My 1.

Based on Corollary 1 the projection matrix Q1 can be chosen
as the do x Rank(M¢1) matrix VS-)1 that contains the right sin-

gular vectors of Xg_)l. Nevertheless, using Vg_)l directly does not
reduce the dimension of the projection subspace as it is equivalent to
a similarity transformation. Instead, the idea considered in this work
is to extend the projection subspace from the previous time-step by

adding k dominant right singular vectors of the matrix ng_)l, ie.,

Q:¢+1 = Orth ([cht,h oo Qihy g, Vii)l,l:k]) )

where VS:M; % 18 the d2 X k matrix containing the right singular

vectors associated with the k£ dominant singular values of X,(i)l, and
Orth(-) is a matrix operator that orthogonalizes its argument, via
e.g. the Gram-Schmidt procedure. Using Q¢+1, one can obtain the
k dominant eigenpairs {(T¢+14, hey16) Y5, of QLlMtHQtH,
and the matrix of interest Zg_)l = [Qet1het1,1, -0, Qeprhiyi k)
Upon computing zﬁi’l, ZSF)I can be recovered via (6). The common
subspace between the two views at time 't + 1’ is given by (8). This
procedure is repeated as more new data arrive. The performance of

Alg. 1 will be evaluated in the next section.

4. NUMERICAL TESTS

The proposed approach is benchmarked using synthetically gener-
ated and real data, all tests were conducted using MATLAB, and re-
sults represent averages over 10 independent Monte Carlo runs. The
synthetic data were created using the generative model in [3], where
each noiseless view is given by X = [AB®]C™T, with A be-
ing the N x k common subspace between the two views, and B®) ¢
CV*tn and € e ¢4 *F+n matrices, for some ¢, € N pertain-
ing to each view. Here, N = 2,000, k = 15, di = d2 = 1015,
and the entries of A, B(i), C® are drawn from the standard normal
distribution. After generating the noiseless matrices X® for each
view, additive white Gaussian noise is added, i.e. X® =X 4 N,
where [N];,; ~ N(0,0?) for all 4, j. The variance o2 is chosen so
that the signal-to-noise ratio is approximately 15dB.

The real dataset considered is the Mediamill dataset [32], which
consists of N = 10,000 observations of videos with paired com-
mentary. One view of the data consists of di = 120 features ex-
tracted from the videos, while the second view consists of da = 100
textual features representing semantics of what is portrayed in the
video.

Figures 1-2 plot the angle formed per dominant eigenvector of
M, i.e. columns of Z<2), computed with the entire dataset, and the
output 73 of Alg. 1 at the end of the final time-step as k varies, i.e.

angle(Z'?, Z2%)) = ||[W — W2

where W and W are the projections onto Z® and 2, respec-
tively. In Fig. 1 we consider only one time-step, where for each
dataset we hide a percentage of 7 € R bottom rows of the matri-
ces X and X®. These rows are then introduced as new data.
Naturally, introducing fewer rows leads to a better accuracy of our
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Fig. 1. Angle between the ¢-th dominant eigenvector and the invariant subspace returned by Algorithm 1 (single time-step case). Top row:

Mediamill dataset [32]. Bottom row: synthetic dataset.
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Fig. 2. Angle between the i-th dominant eigenvector and the invariant subspace returned by Algorithm 1, for the case where 2,4,6 and 8
time-steps are considered. Top row: Mediamill dataset [32]. Bottom row: synthetic dataset.

scheme since the invariant subspace computed at the initial stage is
more similar to that obtained after a single update. This is true both
for the Mediamill and synthetic datasets. Fig. 2 extends the pre-
vious experiment by introducing multiple time-steps. This time we
hide exactly half of the rows of the matrices X® and X@, and
the hidden rows are introduced in 2, 4, 6 and 8 time-steps, with each
time-step introducing approximately 24%, 12%, 8%, and 6%, of
the total dataset rows. As in the previous experiment, updates with
fewer data lead to higher overall accuracy. On the other hand, more
updates indicate that more SVD updates are required, and thus there
is an accuracy-speed trade-off.

5. CONCLUSIONS

This work introduced a novel method for performing canonical
correlation analysis when data arrive in a streaming fashion. The
proposed algorithm capitalizes on the Rayleigh-Ritz approximation
method to efficiently and accurately update the canonical compo-
nents. Future work will include extending the proposed algorithm
to more than two views, extensive tests on real data and compar-
isons with competing alternatives, as well as a rigorous performance
analysis.
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