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Context-free language reachability (CFL-reachability) is a prominent model for formulating program analysis

problems. Almost all CFL-reachability algorithms are based on the Reps-Horwitz-Sagiv (RHS) tabulation. In

essence, the RHS tabulation, based on normalized context-free grammars, is similar to the CYK algorithm for

CFL-parsing. Consider a normalized rule �푆 ::= �퐴 �퐵 and a CFL-reachability problem instance of computing

�푆-edges in the input graph. The RHS tabulation obtains all summary edges (i.e., �푆-, �퐴-, and �퐵-edges) based on

the grammar rules. However, many�퐴- and �퐵-edges are wasted because only a subset of those edges eventually

contributes to generating �푆-edges in the input graph.

This paper proposes a new tabulation strategy for speeding up CFL-reachability by eliminating wasted and

unnecessary summary edges. We particularly focus on recursive nonterminals. Our key technical insight is

that the wasted edge generations and insertions caused by recursive nonterminals can be avoided by modifying

the parse trees either statically (by transforming the grammar) or dynamically (using a specialized online

CFL-reachability solver). For example, if a recursive nonterminal �퐵, generated by a rule �퐵 ::= �퐵 �푋 , appears

on the right-hand side of a rule �푆 ::= �퐴 �퐵, we can make �푆 recursive (by introducing a new rule �푆 ::= �푆 �푋 )

and eliminate the original recursive rule (�퐵 ::= �퐵 �푋 ). Due to the rule �푆 ::= �푆 �푋 , the shapes of the parse trees

associated with the left-hand-side nonterminal �푆 become more “skewed”. Thus, we name our approach skewed

tabulation for CFL-reachability.

Skewed tabulation can significantly improve the scalability of CFL-reachability by reducing wasted and

unnecessary summary edges. We have implemented skewed tabulation and applied the corresponding CFL-

reachability algorithm to an alias analysis, a value-flow analysis, and a taint analysis. Our extensive evaluation

based on SPEC 2017 benchmarks yields promising results. For the three client analyses, CFL-reachability based

on skewed tabulation can achieve 3.34×, 1.13× and 2.05× speedup over the state-of-the-art RHS-tabulation-

based CFL-reachability solver and consume 60.05%, 20.38% and 63.06% less memory, respectively. Furthermore,

the cost of grammar transformation for skewed tabulation is negligible, typically taking less than one second.
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1 INTRODUCTION

Context-free language reachability (CFL-reachability) is a fundamental framework for program
analysis [Reps 1998]. A CFL-reachability problem instance contains an edge-labeled digraph �퐺 and
a context-free grammar CFG. Two nodes �푢 and �푣 in �퐺 are reachable iff there exists a path between
them, and the string spelled out by the path is accepted by the CFG. A variety of program-analysis
problems, such as interprocedural data-flow analysis [Reps et al. 1995], program slicing [Clarke
et al. 1999], shape analysis [Rehof and Fähndrich 2001], taint analysis [Kodumal and Aiken 2004],
type-based flow analysis [Naeem and Lhoták 2008], and pointer analysis [Zheng and Rugina 2008],
have been formulated as CFL-reachability problems.1

The standard CFL-reachability algorithm [Melski and Reps 2000; Reps 1998] is based on tabulation
due to Reps et al. [1995]. To facilitate the Reps-Horwitz-Sagiv (RHS) tabulation [Reps et al. 1995], a
preliminary step in CFL-reachability is to convert input grammars to a normal form in which the
right-hand side of each rule has at most two symbols [Melski and Reps 2000; Reps 1998]. Then,
for each nonterminal �퐴 in the grammar, the RHS tabulation computes summary edges (�퐴-edges)
according to each normalized rule �퐴 ::= �퐵 �퐶 . Note that the RHS tabulation is a generalization of
the CYK algorithm [Younger 1967], a bottom-up method for CFL-parsing [Chatterjee et al. 2018;
Pavlogiannis 2022; Reps 1998]. When processing a normalized rule of the form �퐴 ::= �퐵 �퐶 , the
RHS tabulation needs to compute all �퐵- and �퐶-edges to generate �퐴-edges. If one of the right-hand
side nonterminals �퐵 or �퐶 is recursive, those recursive summary edges are computed nonetheless,
although, arguably, only some edges eventually contribute to the generation of �퐴-edges.
This paper proposes a general technique for speeding up CFL-reachability by improving the

traditional RHS tabulation strategy. Our key idea is to analyze the input grammar and improve
the summary edge generation statically and dynamically. Statically, we rearrange the recursions
incurred in the RHS tabulation from a right-hand side nonterminal to a left-hand side nonterminal
in the same grammar rule. Specifically, consider a rule of the form �푆 ::= �퐴 �퐵. Assume that �퐵 is
recursive and can be generated by �퐵 ::= �퐵 �푋 . The traditional RHS tabulation needs to compute all
recursive �퐵-edges in order to generate �푆-edges. In the CFL-parsing terminology, the parse tree of �푆
is more “balanced” because it needs to combine the �퐴-subtree and the �퐵-subtree. Our approach
rewrites the grammar by eliminating the recursive rule �퐵 ::= �퐵 �푋 and produces an equivalent
grammar �푆 ::= �퐴 �퐵 and �푆 ::= �푆 �푋 , i.e., for �푆 ::= �퐴 �퐵, we promote the recursive behavior of �퐵 on the
right-hand side to �푆 on the left-hand side. Such promotion makes the parse tree of �푆 more skewed.
Dynamically, the tabulation algorithm can skip inserting some edges in the skewed grammar.
For example, consider a nonterminal �푌 in a grammar after promoting recursive behaviors. If for
all productions �푋 ::= �푌 �푍 , whenever a �푌 -edge is generated, the �푍 -edges required for generating
�푋 -edges are already in the graph, then the �푌 -edge does not need to be inserted into the graph.
It only needs to be added to the worklist for further processing. We name our approach skewed
tabulation due to the skewed shape of the parse-tree structure that our approach induces.

The principal benefit of skewed tabulation is that it computes and inserts fewer summary edges
than the traditional RHS tabulation. Thus, it reduces both CFL-reachability solving time and
memory consumption. The challenge is to ensure that (1) in static skewing, the skewed grammar
accepts the same language as the original grammar and (2) in dynamic skewing, the reachability
algorithm correctly skips inserting unnecessary summary edges. To address these challenges, in
static skewing, we propose a grammar transformation that utilizes the properties of recursive
productions. We introduce a notation of summary-degree to measure the reduction of unnecessary
recursive behaviors of non-�푆 nonterminals while preserving grammar equivalence. In dynamic
skewing, we analyze the productions of nonterminals and the solving process to identify propagating

1This paper focuses on all-pairs CFL-reachability problems.
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�푆 ::= �퐴 �퐵

�퐵 ::= �퐵 �퐵 | �푏

�퐴 ::= �푐 �푑

(a) Input grammar CFG.

s u
c b

v w x
bd t

b

(b) Input graph �퐺 .

�푆 ::= �퐴 �퐵 | �푆 �퐵

�퐵 ::= �푏

�퐴 ::= �푐 �푑

(c)CFG′ for skewed tabulation.

Fig. 1. Motivating example of CFL-reachability. The start symbol in both CFG and CFG
′ is �푆 , and CFL-

reachability computes all �푆-edges in �퐺 .

edges, i.e., edges not need to be inserted into the graph, and propose a new method for reachability
propagation without inserting those propagating summary edges. By combining both static and
dynamic skewing, we guarantee that skewed tabulation can reduce the number of summary edges
in CFL-reachability.

We have implemented our skewed tabulation on top of a state-of-the-art CFL-reachability solver
POCR [Lei et al. 2022b] and applied it to three C/C++ practical client analyses, a field-sensitive alias
analysis [Zheng and Rugina 2008], a context-sensitive value-flow analysis [Sui et al. 2014] and a
taint analysis [Kodumal and Aiken 2004]. We compared the skewed tabulation with the default RHS
tabulation implemented in POCR [Lei et al. 2022b] and a popular Datalog solver Soufflé [Scholz
et al. 2016]. The empirical evaluation based on SPEC CPU 2017 benchmarks yields promising
results. For the three client analyses, the skewed tabulation can achieve 3.34×, 1.13× and 2.05×
speedup over the RHS tabulation and consume 60.05%, 20.38% and 63.06% less memory, respectively.
Moreover, the CFL-reachability solver based on skewed tabulation is 3.16×, 1.85× and 2.28× faster
than the 8-thread Soufflé and consumes 61.45%, 16.47% and 56.56% less memory in the three client
analyses. The running time for grammar transformation is less than one second, which is negligible.
To sum up, this paper makes the following contributions.

• We introduce a novel concept called skewed tabulation for improving the scalability of
CFL-reachability algorithms. Skewed tabulation rearranges recursive grammar rules to more
effectively reuse summary edges and gets rid of unusable summary edges.

• We present a formal analysis to demonstrate that skewed tabulation can reduce the number
of summary edges obtained in the traditional RHS tabulation.

• We apply CFL-reachability via skewed tabulation to three client analyses [Sui et al. 2014;
Zheng and Rugina 2008]. The evaluation based on SPEC 2017 benchmarks and real-world
programs illustrates significant scalability advantages of the skewed tabulation.

The rest of the paper is structured as follows. Section 2 motivates skewed tabulation. Section 3
presents preliminaries. Section 4 discusses our skewed tabulation. Section 5 describes the evaluation
setup and results. Finally, Section 6 surveys related work, and Section 7 concludes.

2 MOTIVATING EXAMPLE

This section motivates skewed tabulation for CFL-reachability using a concrete example. Consider
a context-free grammar CFG and an input graph �퐺 in Figures 1a and 1b, respectively. Nonterminal
�푆 is the start symbol, and the CFL-reachability problem is to compute the �푆-reachability relations
for all node pairs in �퐺 . The CFL-reachability tabulation is similar to the process of bottom-up
CFL-parsing [Chatterjee et al. 2018; Pavlogiannis 2022; Reps 1998]. Therefore, we employ parse
trees to demonstrate the tabulation results.

RHS tabulation. Traditional RHS tabulation [Reps et al. 1995] generates a new edge from two
consecutive edges in the graph based on a normalized grammar, i.e., every production contains at

most two symbols on the right-hand side. Figure 2a gives a parse tree for generating �푠
�푆
−→ �푡 based

on the grammar in Figure 1a and the graph in Figure 1b. Figure 2b gives all possible parse trees
generated by RHS tabulation for the input graph.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.
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(a) Parse tree for �푠
�푆
−→ �푡 under RHS

tabulation.
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(b) Forest consisting of the parse
trees for all inserted edges under
RHS tabulation.
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(c) Parse tree for �푠
�푆
−→ �푡 under

skewed tabulation.

Fig. 2. Tabulation steps for computing the summary edge �푠
�푆
−→ �푥 , which form parse trees for recognizing the

path string “�푐 �푑 �푏 �푏 �푏” in Figure 1b.

Skewed tabulation and its benefits. Skewed tabulation skews the parse trees for nonterminals
with recursive behaviors. By this means, it reduces unnecessary and unused summary edges in

CFL-reachability. Figure 2c shows the parse tree for generating �푠
�푆
−→ �푡 (as well as �푠

�푆
−→ �푤 and �푠

�푆
−→ �푥 )

based on the skewed grammar in Figure 1c. The input grammar in Figure 1a was transformed
such that the recursive behavior of non-�푆 nonterminals, i.e., �퐵 ::= �퐵 �퐵, was promoted to be the
recursive behavior of the start symbol as a new production �푆 ::= �푆 �퐵. Comparing Figures 2a and 2c,
we see that the parse tree in Figure 2c is more skewed, which means that it only computes the

left sub-tree for �푠
�퐴
−→ �푣 , without the right sub-tree for �푣

�퐵
−→ �푡 in Figure 2a, to obtain �푠

�푆
−→ �푡 . We

call the tabulation in Figure 2c skewed tabulation. Moreover, comparing Figures 2b and 2c, we see
that skewed tabulation generates much fewer intermediate summary edges to compute the three

�푆-summaries. Specifically, it reduces unnecessary summary edges �푣
�퐵
−→ �푥 , �푤

�퐵
−→ �푡 and �푣

�퐵
−→ �푡 . To

sum up, skewed tabulation achieves the reduction by “reusing” existing �푆-summaries.

Challenges. The essence of skewed tabulation includes a grammar transformation (to produce
the CFG

′ in Figure 1c) and a tabulation algorithm (to skew the summary edge propagation).
It is challenging to (1) preserve the grammar equivalence and (2) reduce the summary edges
simultaneously. Our skewed tabulation utilizes static skewing and dynamic skewing to tackle the
two challenges. In particular, static skewing promotes recursions in the input grammar by adding
new equivalent grammar rules utilizing only nonterminals from the original grammar. In this
example, we transfer the recursive behavior of �퐵 from �퐵 ::= �퐵 �퐵 to �푆 by adding a new rule �푆 ::= �푆 �퐵.
This restructure reduces some summary edges. While rewriting the grammar, static skewing
also computes a set of propagating nonterminals that resemble nonterminals in a linear grammar.
Dynamic skewing avoids inserting propagating nonterminals during the reachability propagation.
In summary, static and dynamic skewing reduce summary edges by skewing the grammar and the
tabulation, respectively.

3 PRELIMINARIES

This section introduces the preliminaries of our work, including CFL-reachability in Section 3.1
and its correspondence with CFL-parsing in Section 3.2. Section 3.3 gives our problem formulation.

3.1 CFL-Reachability

A context-free language (CFL) is a set of strings derived via a context-free grammar (CFG). In general,
a context-free grammar CFG = ⟨Σ, �푁 ,�푇 , �푃, �푆⟩ is comprised of five components where Σ is an
alphabet that contains a set of symbols, �푁 ⊂ Σ is a set of nonterminal symbols (i.e., nonterminals),
�푇 = Σ\�푁 is a set of terminal symbols (i.e., terminals), �푃 is a set of production rules (i.e., productions),
and �푆 ∈ �푁 is the start symbol. In a CFG, each production of �푃 shows how the nonterminal on the
left-hand side derives the string on the right-hand side. A string �푠 ∈ �푇 ∗ is accepted by CFG iff �푠

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.
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Algorithm 1: CFL-reachability via RHS Tabulation.

Input :Edge-labeled directed graph�퐺 = ⟨�푉 , �퐸⟩, normalized CFG = ⟨Σ, �푁 ,�푇 , �푃, �푆 ⟩

Output :The set { (�푢, �푣) | �푢
(
−→ �푣 ∈ �퐺 }

1 �푊 ← �퐸
2 foreach �푋 ::= �휀 ∈ �푃 do

3 foreach �푣 ∈ �푉 do add �푣
-
−→ �푣 to �퐸 and to�푊

4 while�푊 ≠ ∅ do

5 select and remove an edge �푢
.
−→ �푣 from�푊

6 foreach �푋 ::= �푌 ∈ �푃 do

7 if �푢
-
−→ �푣 ∉ �퐸 then add �푢

-
−→ �푣 to �퐸 and to�푊

8 foreach �푋 ::= �푌 �푍 ∈ �푃 do

9 foreach �푣
/
−→ �푤 ∈ �퐸 do

10 if �푢
-
−→ �푤 ∉ �퐸 then add �푢

-
−→ �푤 to �퐸 and to�푊

11 foreach �푋 ::= �푍 �푌 ∈ �푃 do

12 foreach �푤
/
−→ �푢 ∈ �퐸 do

13 if �푤
-
−→ �푣 ∉ �퐸 then add �푤

-
−→ �푣 to �퐸 and to�푊

can be derived from �푆 via one or more productions in �푃 . Such a string is also called an �푆-string
of CFG. Given a context-free grammar CFG and an edge-labeled digraph �퐺 = ⟨�푉 , �퐸⟩, for a path

�푝 = �푣0
�푡0
−→ �푣1

�푡1
−→ �푣2

�푡2
−→ · · ·

�푡<−1
−−−→ �푣�푚 in �퐺 , the path string of �푝 is the ordered concatenation of

its edge labels, denoted by �푅(�푝) = �푡0�푡1�푡2 · · · �푡�푚−1. Consider a nonterminal �푋 ∈ �푁 and two nodes

�푣�푖 , �푣 �푗 ∈ �푉 . We say there is an �푋 -edge �푢
�푋
−→ �푣 iff there is a path �푝 from �푣�푖 to �푣 �푗 such that �푅(�푝) can be

derived from �푋 . If, for some �푋 -edge, �푋 is a nonterminal symbol, we call this a summary edge. A
context-free language reachability (CFL-reachability) problem is to determine in�퐺 the node pairs
connected by a path whose edge labels form an �푆-string.

Definition 3.1 (CFL-reachability). Given a context-free grammar CFG = ⟨Σ, �푁 ,�푇 , �푃, �푆⟩, and an
edge-labeled digraph �퐺 = ⟨�푉 , �퐸⟩, a CFL-reachability problem is to determine all the node pairs
(�푣�푖 , �푣 �푗 ) ∈ �푉 ×�푉 such that there is an �푆-edge from �푣�푖 to �푣 �푗 .

CFL-reachability via RHS tabulation. Solving CFL-reachability is a process that iteratively
generates new summary edges from existing ones according to the productions in the CFG, and
outputs the set of valid �푆-edges. The objective of the algorithm is to generate these �푆-edges. CFL-
reachability can be solved by a dynamic-programming-style algorithm [Melski and Reps 2000; Reps
1998]. The algorithm is based on the Reps-Horwitz-Sagiv tabulation [Reps et al. 1995]. Given a

production �푋 ::= �푌 �푍 ∈ �푃 , two consecutive edges �푢
�푌
−→ �푣 and �푣

�푍
−→ �푤 generate �푢

�푋
−→ �푤 . Usually,

�푢
�푋
−→ �푤 is inserted into the graph to make explicit the �푋 -reachability relation from �푢 to�푤 if it was

not already inserted. Algorithm 1 gives the CFL-reachability algorithm based on RHS tabulation. The
algorithm requires the input CFG to be normalized so that the right-hand side of each production
contains at most two symbols. The standard algorithm maintains a worklist�푊 holding unsolved
new edges. During reachability solving, the algorithm iteratively pops a worklist item, traverses
the edges adjacent to the worklist item, and adds the newly generated edges to the graph and the
worklist based on the grammar. Lines 6–13 show the processes of generating summary edges and
ultimately �푆-edges, with graph/worklist operations. The worklist�푊 also rejects edges already in
the graph to avoid duplicate work and ensure the termination of the algorithm.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 221. Publication date: June 2024.
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3.2 CFL-Reachability and CFL-Parsing

As noted by Reps [1998], the RHS tabulation is a generalization of the CYK algorithm [Younger
1967] for CFL-parsing. The technical description of our skewed tabulation is partially based on
parse trees. Thus, we briefly review the connection between CFL-reachability and CFL-parsing.
Parse trees are a useful abstraction to visualize the effects of grammar structure on tabulation

during CFL-reachability. A parse tree is a rooted tree that represents the syntactic structure of a
string according to some context-free grammar. Specifically, given a context-free language CFL
based on a grammar CFG = ⟨Σ, �푁 ,�푇 , �푃, �푆⟩, a parse tree of CFL is a rooted tree such that

(1) each leaf is a terminal in �푇 , each internal node is a nonterminal of �푁 and the root is the start
symbol �푆 ; and

(2) each internal node and its children form the left-hand side and the right-hand side, respectively,
of a production belonging to �푃 .

Given a parse tree constructed based on a context-free grammar CFG, concatenating the leaves
from the leftmost to the rightmost always forms a string belonging to the language accepted by the
CFG. Parse trees are closely related to CFL-reachability and CFL-parsing. Indeed, when traversing
a parse tree from root to leaves, the tree represents the process of deriving a string from the start
symbol via a series of productions in CFG; when traversing from leaves to root, the tree represents
the process of checking if a string is accepted by CFG.

Example 3.2. Let us revisit our motivating example to illustrate the relationship between parse
trees and tabulation. Figure 2c shows a parse tree for “�푐�푑�푏�푏�푏” based on the grammar in Figure 1c.
When we see the parse tree from a top-down perspective, its a process of deriving the string “�푐�푑�푏�푏�푏”
from the start symbol �푆 , in a process of “�푆” to “�푆�퐵” via �푆 ::= �푆 �퐵 then to “�퐴�퐵�퐵�퐵” via �푆 ::= �퐴 �퐵

and finally to “�푐�푑�푏�푏�푏” via �퐴 ::= �푐 �푑 and �퐵 ::= �푏. When we see the parse tree from a bottom-up
perspective, it is a process of determining whether the string “�푐�푑�푏�푏�푏” can be derived from �푆 , which
is exactly the process of tabulation. Thus, tabulation can be seen as the reverse process of string
derivation. The difference is that in the bottom-up tabulation process, no matter whether a string
belongs to the CFL, nonterminals corresponding to its sub-strings will always be generated first.

This manifests in summary edges in the graph, like �푠
�퐴
−→ �푣 , �푣

�퐵
−→ �푥 , and �푣

�퐵
−→ �푡 in Figure 2a.

Grammar structure and summary edges. Based on different grammar structures (Figure 1), the
corresponding tabulation structures (Figure 2) can differ even for the same path string �푠 . Given a
grammar �퐶�퐹�퐺 , we introduce the notion of summary-degree of a string �푠 to quantify the difference.

Definition 3.3 (Summary-degree). Consider a path �푝 and its path string �푠 = �푅(�푝) in a graph �퐺 .
Given a grammar CFG, we call the summary-count SCCFG (�푠) of the path string �푠 the number of
summary edges inserted into �퐺 by summarizing the path �푝 . This number is 0 if no summary edges
corresponding to �푝 are inserted. The summary-degree is the sum of summary-counts for all the
sub-strings of �푠 , including �푠 itself, denoted as SDCFG (�푠). Let the set of all sub-strings of �푠 be sub(�푠),
we have SDCFG (�푠) =

∑
�푠′∈sub(�푠 ) SCCFG (�푠

′).

Example 3.4. We discuss the summary-degree of the string �푠 = �푐�푑�푏�푏�푏 for the grammars in
Figures 1a and 1c, which we call CFG1 and CFG2 respectively. Figures 2b and 2c give all nontermals
related to parsing �푠 based on CFG1 and CFG2, respectively. This is a visual representation of their
summary-degree, which we can compute: �푆�퐷CFG1

(�푠) = 10 and �푆�퐷CFG2
(�푠) = 7, respectively. Thus,

�푆�퐷CFG2
(�푠) < �푆�퐷CFG1

(�푠), indicating that in CFL-reachability the number of summary edges needed
to compute �푠 using CFG2 is less than the number using CFG1.

Summary-degree and skewing.We call the parsing structure of a grammarwith a lower summary-
degree for a string more skewed because of the shape of the parse trees it produces, as shown in
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the parse trees in Figure 2c compared to Figure 2a. In terms of the CFL-reachability algorithm,
measuring the summary-degree SDCFG (�푠) is a way to measure how much work is done computing
and/or inserting the corresponding summary edges. Note that the summary-degree also applies to
all sub-strings of �푠 .

Summary-degree and linear CFL-reachability. Linear grammar rules that contain at least
one terminal on the right-hand side have an advantage: the input graph contains all its terminal
edges from the beginning of the algorithm. If a summary edge labeled by �푋 is generated in CFL-
reachability, we can immediately check if any linear grammar rules containing �푋 can ever be
applied because all terminal edges must be in the input graph at the beginning of the algorithm.
Thus, when using a linear grammar, we only need to iterate over incoming and outgoing terminal
edges. The seminal work of Yannakakis [1990] gives a specialized CFL-reachability algorithm
for linear grammars that runs in �푂 (�푚�푛) time, which takes advantage of this bound on the set of
adjacent edges to be considered for each worklist element. As they are not traversed, summary
edges that have entered the worklist could be tracked in a visited set external to the graph, reducing
the summary-degree dynamically. This would make the summary-degree is 0 for all strings, since
no summary edges are inserted into the graph. We call this case fully skewed as it is the smallest
possible summary-degree for all strings.

3.3 Problem Formulation

Section 3.2 defines the summary-degree SDCFG (�푠) as the number of summary edges that are inserted
in a CFL-reachability algorithm. We call a grammar with a lower summary-degree over all strings
more skewed than one with a higher summary-degree. Indeed, summary-degree can be reduced
both statically (by changing the structure of the grammar �퐶�퐹�퐺) and dynamically (by specializing
the CFL-reachability algorithm itself to the grammar structure).

Ideally, we want to transform the input grammar so that all strings have an summary-degree of 0,
which implies we can obtain an equivalent linear grammar and utilize a CFL-reachability algorithm
that inserts no summary edges. However, not all context-free grammars have a linear form, and
even checking if such a form exists is undecidable [Greibach 1966]. As a result, our approach skewed
tabulation skews the grammar structure as much as possible through static transformation and
dynamic reachability propagation. As the summary-degree is a visual measurement of skewedness,
we state our problem formulation as follows.

Given a grammarCFG and a graph�퐺 , skewed tabulation reduces the summary-degree SDCFG (�푠)

of some path strings �푠 = �푅(�푝) in �퐺 .

Section 4 presents the two steps of skewing: static skewing and dynamic skewing. Static skewing
involves analyzing and transforming the input grammar, and dynamic skewing uses the statically
skewed grammar to further exploit skewed parse trees at runtime.

4 CFL-REACHABILITY VIA SKEWED TABULATION

This section introduces skewed tabulation, which is comprised of a static and a dynamic part. Our
key insight is that the parse trees of a given grammar can be skewed statically by equivalently
rearranging their sub-trees through grammar transformation. Using the transformed grammar,
dynamic skewing can be applied by adjusting the CFL-reachability algorithm Sections 4.2 and 4.3
introduce our static and dynamic skewing, respectively.

4.1 Basic Idea

As shown in Section 3.2, skewed tabulation reduces the summary-degree (Definition 3.3) of all
strings under the input grammar. This section discusses two steps in skewed tabulation: (1) static
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trees for grammars CFG and CFG
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respectively. CFG contains a le�-
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(c) Parse forests for�퐴�푋�푋�푋�푋 forCFG
and CFG

′ in Figure 3a.

Fig. 3. Visual representation of the grammar transformations using cyclic nonterminals.

skewing, a grammar transformation in the preprocessing stage, and (2) dynamic skewing, a skewed
CFL-reachability algorithm.

Static skewing. The motivating example shows that we can restructure the input grammar in
Figure 1a to Figure 1c to reduce the summary-degree of a string, as shown by the summary edge
reduction in Figure 2c compared to Figure 2a. Static skewing aims to reduce the summary-degree
for all strings belonging to the language by restructuring the input grammar. We promote recursive
behavior from non-�푆 nonterminals up the parse tree, closer to the root node �푆 . This transformation
reuses previously valid sub-trees in other parse trees, reducing the number of distinct sub-trees
needed, and therefore reducing the number of summary edges generated in CFL-reachability.

Dynamic skewing.When solving CFL-reachability based on a skewed grammar, there are often
summary edges that do not need to be inserted into the graph to obtain the correct set of S-edges.
We call such edges propagating edges. Specifically, a propagating edge �푝 is always generated after
all the relevant adjacent edges, used with �푝 to generate new summary edges, are already in the
graph. Thus, dynamic skewing treats propagating edges differently by only adding them to the
worklist, not the graph. This reduces the summary-degrees of path strings dynamically.

4.2 Static-Skewing: Transforming Context-Free Grammar

Static skewing transforms the input context-free grammar, such that the transformed grammar has
a lower summary-degree over all strings �푠 under RHS tabulation.
Naively rewriting a grammar to reduce the summary-degree on a case-by-case basis does not

necessarily lead to better performance for CFL-reachability overall; restructuring the grammar
to improve summary-degree for one string may have negative repercussions on the summary-
degree of other strings. To reduce the summary-degree of a grammar over all strings, our grammar
transformation reuses sub-trees of parse trees derived from the original grammar to replace sub-
trees of different parse trees also derived from the original grammar. The challenge is rewriting the
grammar to do this while preserving equivalence with the original grammar CFG.

The static skewing transformation contains two phases: grammar transformation and grammar
annotation. The grammar transformation alone produces parse trees with a lower summary-degree
than the original, and grammar annotation collects information for the dynamic skewing approach
presented in Section 4.3. A context-free grammar CFG in CNF has productions of the form�퐴 ::= �퐵 �퐶

that fall into three categories: (1) non-recursive, where �퐴, �퐵, and �퐶 are distinct, (2) left- or right-
recursive, where �퐴 = �퐵 or �퐶 , meaning �퐴 ::= �퐴 �퐶 or �퐴 ::= �퐵 �퐴 respectively, and (3) doubly recursive
a.k.a. transitive, where �퐴 = �퐵 = �퐶 . To reduce the summary-degree of the input CFG for all strings,
we identify nonterminals that recursively generate or append a specific set of nonterminals where
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Algorithm 2: Skewed_Form(CFG).

Input :Context-free grammar CFG, set of target nonterminals�푇
Output :Skewed grammar �푆�퐹 (�퐶�퐹�퐺 ) = {CFG′, �푃�푁 }, where �푃�푁 is the set of propagating nonterminals

1 CFG
′ ← CFG

2 foreach �푆 ′ ∈ �푇 do
3 if ∃�푆 ′ ::= �퐴 �퐵 ∈ �푃 then
4 if isCyclic(�퐵, CFG) and �퐵 ∉ �푇 and all rules for �푆 ′ are of the form �푆 ′ ::= �푋 �퐵 then
5 CFG

′ ← �푆 ′ ::= �푆 ′ �퐵
6 if �퐵 ::= �휖 ∈ �푃 then
7 remove �푆 ′ ::= �푋 �퐵 from CFG

′

8 CFG
′ ← �푆 ′ ::= �푋

9 if isCyclic(�퐴, CFG) and �퐴 ∉ �푇 and all rules for �푆 ′ are of the form �푆 ′ ::= �퐴 �푋 then
10 CFG

′ ← �푆 ′ ::= �퐴 �푆 ′

11 if �퐴 ::= �휖 ∈ �푃 then
12 remove �푆 ′ ::= �퐴 �푋 from CFG

′

13 CFG
′ ← �푆 ′ ::= �푋

14 foreach �푆 ′ ::= �퐴 �푆 ′ ∈ �푃 , �푆 ′ ∈ �푇 do
15 if isCyclic(�퐴, CFG′) and �퐴 ∉ �푇 and �퐴 only used in singly-recursive rules then
16 if �퐴 ::= �퐴 �퐴 ∈ �푃 then
17 remove �퐴 ::= �퐴 �퐴 from CFG

′

18 if �퐴 ::= �휖 ∈ �푃 then
19 remove �퐴 ::= �휖 from CFG

′

20 if �퐴 ::= �푎 ∈ �푃 , �푎 ∈ Σ then
21 remove �퐴 ::= �푎 from CFG

′

22 CFG
′ ← �푋 ::= �푎 �푋 for all �푋 :: �퐴 �푋 ∈ �푃

23 CFG
′ ← �푋 ::= �푋 �푎 for all �푋 :: �푋 �퐴 ∈ �푃

24 if �퐴 ::= �푋 �퐴 ∈ �푃 or �퐴 ::= �퐴 �푋 ∈ �푃 then
25 remove �퐴 ::= �푋 �퐴 or �퐴 ::= �퐴 �푋 from CFG

′

26 CFG
′ ← �푆 ′ ::= �푋 �푆 ′

27 foreach �푆 ′ ::= �푆 ′ �퐵 ∈ �푃 , �푆 ′ ∈ �푇 do
28 // This procedure is similar to the above but handles left-recursion. It can be found in

the supplemental material.

29 HandleLeftRecursion(�퐵, �푆 ′ , CFG′)

30 �푃�푁 ← ∅
31 foreach �퐴 ∈ �푁 do
32 if ∀�푋 ::= �푌 �퐴 ∈ �푃 and ∀�푋 ::= �퐴 �푌 ∈ �푃 we have �푌 ∈ Σ and �푋 ≠ �퐴 then
33 �푃�푁 ← �퐴

34 return (CFG′, �푃�푁 )

they are used. We call these cyclic nonterminals. For example, given a nonterminal �푁 that satisfies
this property, we can replace uses of �퐴 ::= �푋 �푁 with two rules �퐴 ::= �푋 �푡 and �퐴 ::= �퐴 �푡 for all �푡s as
long as this does not change the language of nonterminal �퐴.

Definition 4.1 (Cyclic Nonterminal). A cyclic nonterminal is a nonterminal that falls into exclu-
sively one of the following categories:

• Left-cyclic: The nonterminal only has associated left-recursive rules.
• Right-cyclic: The nonterminal only has associated right-recursive rules.
• Doubly-cyclic: The nonterminal has one associated transitive rule, and all other associated
rules are non-recursive.

To compare the summary-degree for more than one string at a time under two grammars, we can
compare the summary-degree of sentential forms. Recall that a string in sentential form contains
terminals and nonterminals from a grammar [Aho et al. 2006]. Given two grammars�퐺1 and�퐺2 and
a string �푠 in sentential form, we assume inequality �푆�퐷�퐺1

(�푠) ≤ �푆�퐷�퐺2
(�푠) correctly holds for all the
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strings �푠 represents. We formally explain how to compare summary-degree for sentential form in
Lemma 4.7 with a proof in Section 4.4.

Example 4.2. In Figure 3a, �퐵 is a left-cyclic nonterminal. We can promote the recursion of �퐵
up the parse tree to the nonterminal �푆 as shown in Figure 3a To compute the summary-degree,
we treat �퐴 and �푋 as terminal symbols in the sentential form string �퐴�푋�푋�푋�푋 . For Figure 3a we
have �푆�퐷CFG (�퐴�푋�푋�푋�푋 ) = 9, and �푆�퐷CFG′ (�퐴�푋�푋�푋�푋 ) = 4; the parse forests for �퐴�푋�푋�푋�푋 for both
grammars is shown in Figure 3c. Since the transformation does not affect the nonterminal �푋 , the
summary-degree of all strings�퐴�푋�푋�푋�푋 represents also decreased according to Lemma 4.7. Figure 3b
demonstrates the transformation for the case where �퐵 is doubly-cyclic, which yields similar results
in terms of �푆�퐷 reduction.

High-level transformation. Our objective is to reduce the summary-degree for some strings
without negatively affecting the summary-degree of other strings. At the parse-tree level, we identify
cyclic-nonterminals, which reveal reusable sub-trees, and replace sub-trees derived from the original
grammar with these. We derive new grammar rules to accomplish this sub-tree replacement using
only nonterminals from the original grammar. We remove rules that become incorrect or redundant.
Intuitively, this reduces the summary-degree of the transformed grammar for the affected parse
trees because we have eliminated summary edges without affecting the reachability result (�푆-edges).
We call the transformed grammar skewed because of the shape of the resulting parse trees.

Transformation steps. Algorithm 2 gives the static skewing transformation, which is a top-down
procedure. It starts with the start symbol �푆 and then operates on the remaining nonterminals. We
call the nonterminals whose language cannot change target nonterminals, starting with �푆 . We visit
the right-hand sides for the symbol �푆 of the form �푆 ::= �퐴 �퐵.

(1) Transform any cyclic behavior of �퐴 or �퐵 on the right-hand side into equivalent left- or
right-recursive behavior for �푆 , of the form �푆 ::= �푆 �퐵 or �푆 ::= �퐴 �푆 , if the chosen nonterminal �퐴
or �퐵 is used in the same position for all right-hand sides of �푆 . If an epsilon rule exists for �퐴 or
�퐵, rules of the form �푆 ::= �퐴 �푋 or �푆 ::= �푋 �퐵 are replaced with �푆 ::= �푋 (lines 2-13).

(2) Locate a nonterminals�퐴 such that �푆 ::= �퐴 �푆 ,�퐴 is cyclic, and�퐴 is only used in singly-recursive
rules (lines 14-15).

(3) Given a doubly-cyclic nonterminal �퐴, remove �퐴 ::= �퐴 �퐴 (lines 16-17).
(4) Remove epsilon and unary rules for this nonterminal, since these are redundant and replace-

able. Replace unary rule with additional linear rules where �퐴 is used (lines 18-23).
(5) For any recursive rules associated with �퐴, propagate the recursion up to the �푆 symbol

considered (lines 24-26).
(6) Repeat steps (2)-(5) to handle the left-recursive case �푆 ::= �푆 �퐴 (lines 27-29).
(7) Iteratively apply this transformation to the remaining nonterminals, where �푆 and the next

nonterminal are labeled as target nonterminals.

Complexity of static skewing. We prove the correctness of this transformation and annotation
and provide formal guarantees of its benefits in Section 4.4. For the transformation complexity,
given�푀 rules and �푁 nonterminals, the complexity is �푂 (�푀2 × �푁 ). The transformation is applied
�푁 times, where each nonterminal is chosen as a target once (and �푆 is always a target), and the
for-each loops on lines 2, 14, 27, and 31 are bounded by the number of rules�푀 . Within these for
each loop, checking the isCyclic property along with other if conditions are also bounded by�푀 . In
practice, the transformation takes less than a second.

Annotation steps. We annotate nonterminals that are only used in linear-like rules in the skewed
output grammar called propagating nonterminals. These are used in propagating edge recognition
in the online CFL-reachability solving process, described in Section 4.3.
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Definition 4.3 (Propagating Nonterminal). A nonterminal �푌 ≠ �푆 is called a propagating nontermi-
nal if all productions containing �푌 on the right-hand side are in the form of �푋 ::= �푌 , �푋 ::= �푌 �푧 or
�푋 ::= �푧 �푌 where �푧 is a terminal.

4.3 Dynamic Skewing: Skewed Tabulation Algorithm

Dynamic skewing focuses on identifying and handling edges that do not need to be inserted into the
graph. We call such edges propagating edges. A typical example is the edges labeled by a propagating
nonterminal (Definition 4.3). Consider a propagating nonterminal �푋 and a newly generated �푋 -edge
that is pushed into the worklist. According to Definition 4.3, all productions containing �푋 on the
right-hand side are in the form of �푌 ::= �푋 , �푌 ::= �푋 �푧 or �푌 ::= �푧 �푋 , where �푧 is a terminal. Namely,
the �푧-edges are always in the initial graph. Thus, no matter whether the �푋 -edges are in the graph
or not, the �푌 -edges can be generated when the �푋 -edge is popped from the worklist and processed.
Therefore, the �푋 -edges do not need to be inserted into the graph. In fact, besides the edges labeled
by propagating nonterminals, which can be determined statically by the grammar transformation,
propagating edges are also identified dynamically in the solving process. The following lists two
types of propagating edges:

• Static: an edge �푢
�푋
−→ �푣 such that �푋 is a propagating nonterminal. This type of propagating

edge can be found in static skewing.

• Dynamic: an edge �푢
�푋
−→ �푣 that is generated by �푋 ::= �푋 �푋 and all the binary productions

containing �푋 on the right-hand side are recursive, i.e., in the form of �퐴 ::= �푋 �퐴 or �퐴 ::= �퐴 �푋 .
This is because with the �푋 -edges that were not generated by �푋 ::= �푋 �푋 inserted into the
graph, those recursive productions can generate all the �푋 - and �퐴-edges without inserting

�푢
�푋
−→ �푣 into the graph. This type of propagating edge can only be determined in the dynamic

solving process.

The dynamic skewing approach leverages the result of static skewing. The skewedCFL-reachability
algorithm takes the skewed context-free grammar (Section 4.2) as input and deals with propagating
edges differently from the standard RHS-tabulation CFL-reachability algorithm. Algorithm 3 gives
the skewed-tabulation CFL-reachability algorithm, where the treatment of propagating edges is
displayed in lines 12–18. Our dynamic skewing reduces summary-degree by not inserting prop-
agating edges. Specifically, once a generated edge is identified as a propagating edge, it is never
inserted into the graph. To ensure termination, Algorithm 3 maintains an edge set PE to record
propagating edges. Once a propagating edge is generated, it is inserted into PE and the worklist�푊
if it is not already in PE. Otherwise, the propagating edge will be discarded.

The main structure of Algorithm 3 (lines 1–11) is similar to the RHS-tabulation-based standard
CFL-reachability algorithm. The difference is dealing with propagating edges (line 12–18). Specifi-

cally, when generating an edge, e.g., �푣�푖
�푋
−→ �푣 �푗 , it first identifies whether the edge is a propagating

edge, using the two criteria proposed above. If the edge meets any of the two criteria, the algorithm
adds it to the worklist but not into the graph, as seen in lines 13–16. Otherwise, the algorithm
inserts it into the graph and the worklist. Notably, the set PE also avoids repetitive worklist elements
in the case where the same propagating edge is generated from multiple different paths.

Example 4.4. Let us consider a path �푝 = �푥
�푏
−→ ~

�푏
−→ �푢

�푏
−→ �푣 under a grammar containing

�퐵 ::= �퐵 �퐵 | �푏, where �퐵 is not a cyclic nonterminal. In this case, �퐵 ::= �퐵 �퐵 cannot be removed by static

skewing (Algorithm 2). When processing �푝 , �푥
�퐵
−→ ~, ~

�퐵
−→ �푢, and �푢

�퐵
−→ �푣 are always generated and

inserted into the graph. The difference between RHS tabulation and dynamic skewing is that RHS

tabulation always inserts �푥
�퐵
−→ �푢 (also ~

�퐵
−→ �푣 and �푥

�퐵
−→ �푣) into the graph, whereas dynamic skewing
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Algorithm 3: CFL-Skewed: CFL-Reachability via Skewed Tabulation.

Input :Edge-labeled directed graph�퐺 = ⟨�푉 , �퐸⟩, normalized CFG = ⟨Σ, �푁 ,�푇 , �푃, �푆 ⟩

Output :The set { (�푣8 , �푣9 ) | �푣8
(
−→ �푣9 ∈ �퐸 ∪ PE}

1 (CFG′
= ⟨Σ, �푁 ′,�푇 , �푃 ′, �푆 ⟩, PN) ← Skewed_Form(CFG) // Algorithm 2

2 PE ← ∅ ;�푊 ← �퐸
3 foreach �푋 ::= �휀 ∈ �푃 ′ do

4 foreach �푣 ∈ �푉 do add �푣
-
−→ �푣 to �퐸 and to�푊

5 while�푊 ≠ ∅ do

6 select and remove an edge �푣8
.
−→ �푣9 from�푊

7 foreach �푋 ::= �푌 ∈ �푃 ′ do Update(�푣8
-
−→ �푣9 ) // line 12

8 foreach �푋 ::= �푌 �푍 ∈ �푃 ′ do

9 foreach �푣9
/
−→ �푣: ∈ �퐸 do Update(�푣8

-
−→ �푣: ) // line 12

10 foreach �푋 ::= �푍 �푌 ∈ �푃 ′ do

11 foreach �푣:
/
−→ �푣8 ∈ �퐸 do Update(�푣:

-
−→ �푣9 ) // line 12

12 Procedure Update(�푣8
-
−→ �푣9 )

13 if �푋 ∈ PN then

14 if �푣8
-
−→ �푣9 ∉ PE then add �푣8

-
−→ �푣9 to PE and to�푊 // �푣8

-
−→ �푣9 is a static propagating edge

15 else if �푣8
-
−→ �푣9 is generated by �푋 ::= �푋 �푋 and (∀�퐴 ::= �푋 �퐵 ∈ �푃 ′ , ∀�퐴 ::= �퐵 �푋 ∈ �푃 ′

: �퐴 = �퐵) then

16 if �푣8
-
−→ �푣9 ∉ PE then add �푣8

-
−→ �푣9 to PE and to�푊 // �푣8

-
−→ �푣9 is a dynamic propagating edge

17 else if �푣8
-
−→ �푣9 ∉ �퐸 then

18 add �푣8
-
−→ �푣9 to �퐸 and to�푊 // �푣8

-
−→ �푣9 is not a propagating edge

does not insert them. Thus, �푥
�퐵
−→ �푣 will only be generated once by dynamic skewing because it

does not insert �푥
�퐵
−→ �푢 into the graph. In this case, dynamic skewing reduces the summary-degree

of the path string �푅(�푝) by 3, which not only reduces memory consumption but also reduces the
computations needed to generate summary edges.

As we can see in lines 12–18, our skewed solver guarantees that the summary-degrees of all the
path strings in the dynamic solving process are always smaller than (or at least equal to when there
are no propagating edges) the RHS-tabulation-based standard solver. Because the Algorithm 3 only
differs from the standard algorithm by skipping the insertion step for certain edges and does not
change the dynamic programming scheme, the time complexity of Algorithm 3 is the same as that
of the standard algorithm, i.e., �푂 (�푛3). Section 4.4 discusses the correctness of Algorithm 3.

4.4 Formal Analysis of Skewed Tabulation

We first discuss the correctness of static skewing and dynamic skewing.

Lemma 4.5 (Correctness of static skewing). Given an input grammar CFG and the transformed
grammar CFG′, the language of CFG and CFG′ are the same.

Proof. We introduce no new nonterminals in our grammar transformation. All new grammar
rules use the properties of cyclic nonterminals (Definition 4.1) to introduce left- or right-recursion
when this nonterminal is used on the right-hand side of a grammar rule. In particular, if �퐶 is cyclic,
a use of �퐶 in a rule �퐴 ::= �퐵 �퐶 can create a new rule �퐴 ::= �퐴 �퐶 , which is correctly provided that all
rules for �퐴 have a �퐶 nonterminal in that position. As this is redundant with the cyclic property of
the rule �퐶 , adding this rule does not change the language of CFG.
In terms of removing grammar rules, after adding rules as explained above, we remove the

grammar rules that make �퐶 cyclic provided that all right-hand side uses of �퐶 have been turned into
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recursion. Since the cyclic nature of �퐶 was captured in the rules of the form �퐴 ::= �퐴 �퐶 , it is correct
to remove the rule �퐶 ::= �퐶 �퐶 . If �퐶 is recursive like �퐶 ::= �퐶 �푋 , we add a rules �퐴 ::= �퐴 �푋 to replace
this rule and remove it. Again, we reiterate that this only occurs if all right-hand side uses of �퐶 are
in recursive rules (for rules that do not have �퐶 on the left-hand side).
The remaining transformations replace�퐶 uses with equivalent terminals or epsilon when possible,

which are trivially correct. Throughout this transformation, the nonterminal �퐶 cannot be a target
nonterminal. �푆 is always a target nonterminal. The only nonterminal language that changes
throughout this iteration of the transformation is the language of �퐶 . Therefore, since �푆 ≠ �퐶 the
language of �푆 has not changed, so the language of CFG and CFG

′ are the same. □

Lemma 4.6 (Correctness of Dynamic Skewing). Given a skewed context-free grammar CFG′,
Algorithm 3 (without further skewing CFG′ in line 1) and the standard algorithm (Algorithm 1) produce
the same result from the same graph.

Proof. We use a proof by contradiction. We want to show that the set of �푆 edges in the output
graph is the same using either algorithm. Thus, without loss of generality, we will prove the
following property: the set of edges that are not labeled by propagating nonterminals are the same
in the output graphs of Algorithm 1 and Algorithm 3. The only difference between Algorithm 1
and Algorithm 3 is that the first does not insert propagating nonterminals into the graph; these
are only inserted into the worklist. Recall that a propagating nonterminal is a nonterminal that is
only used on the right-hand side of linear rules (Definition 4.3). Consider a grammar rule �퐴 := �푃�푄 ,

where �푃 is a propagating nonterminal, and let there be two graph edges: �푣�푘
�푃
−→ �푣�푙 , �푣�푙

�푄
−→ �푣�푚 . Assume

by contradiction that �푣�푘
�퐴
−→ �푣�푚 is not generated. This means that when �푣�푘

�푃
−→ �푣�푙 arrived in the

worklist, �푣�푙
�푄
−→ �푣�푚 was not present in the graph. However, propagating nonterminals are only used

in linear rules, meaning �푄 is actually a terminal symbol, and terminal edges are always present

in the graph, so we have a contradiction. Therefore �푣�푘
�퐴
−→ �푣�푚 is generated. Similarly, given a

grammar rule �퐴 := �푄�푃 and edges �푣�푘
�푄
−→ �푣�푙 , �푣�푙

�푃
−→ �푣�푚 , the edge �퐴 must be generated since �푄 has

to be a terminal symbol. This covers all cases in which a summary edge may be generated based
on a propagating nonterminal. Applying this recursively, all nonterminal edges that depend on a
propagating nonterminal will eventually be generated since the rest of the algorithm is unchanged.
Therefore, all edges that are not labeled by propagating nonterminals are the same in the output
graphs of both Algorithms. As a result, the set of �푆-edges output by Algorithm 1 is the same as the
set of �푆-edges output by Algorithm 3. □

Next, we discuss the summary edge reduction achieved by static skewing. Specifically, we want
to show that the summary-degree of all strings �푠 is the same or reduced under the transformed
grammar CFG′ compared to the original grammar CFG. First, we show this is true for strings in
sentential form, which can contain nonterminals.

Lemma 4.7 (Comparing summary-degree of sentential forms). Given a string �푠 in sentential
form containing nonterminal �푋 and two grammars �퐺1, �퐺2, the inequality �푆�퐷�퐺2

(�푠) ≤ �푆�퐷�퐺1
(�푠) holds

if (1) the strings �푋 derives in �퐺2 are a subset of the strings �푋 derives in �퐺1 and (2) the inequality
�푆�퐷�퐺2

(�푠′) ≤ �푆�퐷�퐺1
(�푠′) holds for all �푠′ in this subset of �푋 -derived strings.

Proof. Consider the inequality �푆�퐷�퐺2
(�푠) ≤ �푆�퐷�퐺1

(�푠), where �푠 is in sentential form, and the
definition of summary-degree (Definition 3.3). The summary-degree of a string �푠 is reduced if
the summary-degree for sub-strings �푠′ are reduced since the summary-degree is defined as the
sum of summary-count of the sub-strings of �푠 . The summary-degree of the strings represented
by the nonterminals �푋 denoted �푠′ is always reduced in �퐺2: for the strings derived from �푋 in �퐺1
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that are invalid in �퐺2 the summary-degree is now 0, and for the strings derived from �푋 in both
grammars, �푆�퐷�퐺2

(�푠′) ≤ �푆�퐷�퐺1
(�푠′). Thus, all the sub-strings �푠′ have a reduced summary-degree.

Therefore, all strings represented by this sentential form in using the original grammar have a
reduced summary-degree using the new grammar. □

We use Lemma 4.7 to compare the summary-degree of all strings �푠 under the grammar CFG′.

Theorem 4.8 (Summary-degree Reduction of static Skewing). Given the summary-degree
of any string �푠 , under the transformed grammar CFG′ and the original grammar CFG, we have
�푆�퐷CFG

′ (�푠) ≤ �푆�퐷CFG (�푠).

Proof. Nonterminals in CFG
′ fall into two categories: (1) they parse a subset of the strings they

parsed in the original grammar, or (2) they parse the same strings as in the original grammar. This
means the summary-degree of some sentential forms has decreased as the summary-count of some
strings from the original grammar has become 0. Since the summary-degree of a sentential form can
only decrease, applying Lemma 4.7 recursively implies that for any string �푠 , the summary-degree of
CFG

′ will either be the same or reduced compared to the original grammar. Therefore, we reduced
the summary-degree of CFG′ over all strings. □

Finally, we discuss the formal guarantees of skewed tabulation. Lemma 4.5 states that the static
skewing preserves the language of the input grammar CFG, and Theorem 4.8 states that the trans-
formed grammar only reduces the summary-degree, and therefore the number of summary edges,
in CFL-reachability. Lemma 4.6 states that the dynamically skewed tabulation CFL-reachability
algorithm preserves the same result as the RHS tabulation. Trivially, dynamic skewing can only
reduce the number of summary edges inserted because its only difference with Algorithm 1 is
skipping the insertion of some special edges. Thus, our overall approach preserves the output of
RHS tabulation while reducing the number of summary edges inserted.

Theorem 4.9. Given a grammar CFG and an edge-labeled graph �퐺 , Algorithms 1 and 3 produce
the same reachability results.

5 EXPERIMENTS

CFL-reachability has been extensively discussed in the literature. Instead of building a CFL-
reachability solver from scratch, we implemented our CFL-Skewed algorithm (CFL-Skewed) on a
state-of-the-art general CFL-reachability solver POCR [Lei et al. 2022b]. The reachability propa-
gation in POCR follows the traditional RHS tabulation. Therefore, we refer POCR as the baseline
RHS-tabulation implementation (CFL-RHS). In this setting, both CFL-Skewed and CFL-RHS can ben-
efit from POCR’s ability to handle transitive rules. As a result, we can demonstrate the performance
difference caused by different tabulation strategies. In the literature, Datalog has been a prominent
framework for formulating program-analysis problems [Bravenboer and Smaragdakis 2009; Lu
et al. 2013; Scholz et al. 2016; Whaley et al. 2005]. In particular, CFL-reachability can be encoded
as a Datalog problem instance [Reps 1998]. Therefore, we adopt a state-of-the-art Datalog solver
Soufflé [Scholz et al. 2016]. We perform extensive evaluations on three C/C++ client analyses: an
alias analysis [Zheng and Rugina 2008], a value-flow analysis [Sui et al. 2014], and a polymorphic
taint analysis [Kodumal and Aiken 2004]. Our experiments focus on three research questions.

RQ1: How much can CFL-Skewed reduce inserted summary edges?
RQ2: Towhat extent can CFL-Skewed accelerate CFL-reachability by reducing summary edges?
RQ3: Can CFL-Skewed outperform state-of-the-art solvers in memory overhead?

Summary. By reducing wasted summary edges, CFL-Skewed outperforms a state-of-the-art CFL-
reachability solver CFL-RHS and a state-of-the-art Datalog solver Soufflé in all of the three clients.
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Table 1. Benchmark information, where PEG is used for alias analysis, and SVFG is used for value-flow
analysis and taint analysis. #LOC(k) denotes the number of lines of codes, measured in thousands. #SumEdge
by CFL-RHS denotes the number of summary edges in the final graph computed by CFL-RHS.

Bench. #LOC(k)
PEG SVFG #SumEdge by CFL-RHS

#Node #Edge #Node #Edge Alias Value-Flow Taint

1.cactus 257 45,696 104,816 235,102 337,313 86,091,010 2,327,596 47,508,895

2.deepsjeng 10 7,588 16,564 9,813 19,962 4,459,735 1,113,521 48,254,292

3.imagick 259 43,801 116,706 344,796 539,533 835,383,009 74,655,258 -

4.lbm 1 783 1,616 995 1,391 29,643 11,410 47,003

5.leela 21 9,103 22,884 48,138 70,610 8,702,553 2,280,728 212,128,751

6.mcf 3 2,320 5,090 2,685 3,965 550,673 29,345 1,050,586

7.nab 24 4,337 9,950 32,037 41,617 458,650 3,854,605 26,013,979

8.omnetpp 134 75,418 172,436 468,794 1,613,922 279,194,458 39,426,888 -

9.parest 427 26,701 66,984 365,846 739,060 82,710,266 210,190,800 -

10.perlbench 362 40,078 115,890 613,180 1,507,152 - 1,026,629,696 -

11.povray 170 18,510 46,332 351,415 769,078 54,670,321 274,590,820 -

12.x264 96 19,835 48,678 140,517 256,521 13,202,928 35,521,661 -

13.xz 33 3,472 8,102 31,267 41,616 434,838 710,239 44,237,649

For alias analysis, CFL-Skewed is 3.34× and 3.16× faster than CFL-RHS and Soufflé, respectively. For
value-flow analysis, CFL-Skewed is 1.13× and 1.85× faster than CFL-RHS and Soufflé, respectively.
For taint analysis, CFL-Skewed is 2.05× and 2.28× faster than CFL-RHS and Soufflé, respectively.
Moreover, for alias analysis, CFL-Skewed consumes 60.05% and 61.45% less memory than CFL-RHS

and Soufflé, respectively. For value-flow analysis, CFL-Skewed consumes 20.38% and 16.47% less
memory than CFL-RHS and Soufflé, respectively. For taint analysis, CFL-Skewed consumes 63.06%
and 56.56% less memory than CFL-RHS and Soufflé, respectively.

5.1 Experimental Setup

All experiments were conducted on a platform with an eight-core 2.60 GHz Intel Xeon CPU and a
128GB RAM memory, running Ubuntu 20.04.

Benchmarks and graph collection. We evaluate the client analyses on the SPEC CPU 2017
suite. Three programs (i.e., xalancbmk, gcc and blender) failed to be linked by wllvm and thus
are not included in our evaluation. Our measurements take the average of three runtimes for
each experiment. We found that the runtimes varied little in practice, so this number of runs
was sufficient to present an accurate and fair comparison. Table 1 presents the statistics of the
benchmarking graphs used in our evaluation. In particular, alias analysis is conducted on program
expression graphs (PEGs) [Zheng and Rugina 2008], and value-flow analysis and taint analysis are
conducted on sparse value-flow graphs (SVFGs) [Sui et al. 2014]. To obtain the graphs, we compile
each program into a bitcode file using Clang-14.0.0, linked via wllvm2 for whole-program analysis.
Then, we extract the corresponding graphs using an open-source tool SVF [Sui and Xue 2016].
Existing graph simplification techniques, including cycle elimination [Tarjan 1972], offline variable
substitution [Rountev and Chandra 2000], and non-contributing parenthesis-edge elimination [Li
et al. 2020] are used to preprocess the input graphs.

Implementation. We implemented our grammar transformer (Algorithm 2) in Python 3. Our
grammar transformation takes less than one second to process the three grammars used in our
evaluation. Therefore, its running time is negligible. We implemented CFL-Skewed (Algorithm
3) in C++ based on LLVM-14.0.0. Our implementation uses LLVM SparseBitVector to construct
the adjacency-list-based data structures for storing summary edges. Our dynamic skewing is

2https://github.com/travitch/whole-program-llvm.
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�푀 ::= �퐷�푉 �푑

�퐷�푉 ::= �푑 �푉

�푉 ::= �퐴�푉 | �푉 �퐴 | FV8 �푓8 | �푀 | �휀

FV8 ::= �푓8 �푉

�퐴 ::= �퐴 �퐴 | �푎 �푀 | �푎 | �휀

�퐴 ::= �퐴 �퐴 | �푀 �푎 | �푎 | �휀

(a) Normalized CFG for alias analysis.

�푀 ::= �퐷�푉 �푑

�퐷�푉 ::= �푑 �푉

�푉 ::= �퐴�푉 | �푎 �푉 | �푉 �퐴 | �푉 �푎 | FV8 �푓8 | �푀 | �휀

FV8 ::= �푓8 �푉

�퐴 ::= �푎 �푀

�퐴 ::=�푀 �푎

PN = {DV, FV8 , �푀 }

(b) Skewed CFG for alias analysis.

Fig. 4. CFGs for alias analysis, where �푉 is the start symbol.

�퐴 ::= �퐴 �퐵 | �퐴 �푎 | �푎 | �휀

�퐵 ::= CA8 ret8
CA8 ::= call8 �퐴

(a) Normalized CFG for value-flow analysis.

�퐴 ::= �퐴 �퐵 | �퐴 �푎 | �푎 | �휀

�퐵 ::= CA8 ret8
CA8 ::= call8 �퐴

PN = {CA8 }

(b) Skewed CFG for value-flow analysis.

Fig. 5. CFGs for value-flow analysis, where �퐴 is the start symbol.

�푆 ::= �푃 �푁

�푃 ::= �퐴 �푃 | ret8 �푃 | �휀

�푁 ::= �퐴 �푁 | call8 �푁 | �휀

�퐴 ::= �퐴 �퐴 | CA8 ret8 | �푎 | �휀

CA8 ::= call8 �퐴

(a) Normalized CFG for taint analysis.

�푆 ::= �푃 | �푆 call8 | �푆 �퐴

�푃 ::= �퐴 �푃 | ret8 �푃 | �휀

�퐴 ::= �퐴 �퐴 | CA8 ret8 | �푎 | �휀

CA8 ::= call8 �퐴

PN = {CA8 }

(b) Skewed CFG for taint analysis.

Fig. 6. CFGs for taint analysis, where �푆 is the start symbol.

implemented on top of the artifact of the paper [Lei et al. 2022a], an improved version of CFL-
reachability that helps reduce redundant work caused by transitive rules. For CFL-RHS, we use the
code released in the artifact of the paper [Lei et al. 2022a] and run the experiments with the “cfl
-pocr” option.3 For Soufflé, we use the stable release 2.3. Soufflé synthesizes optimized Datalog
solvers in C++ based on provided input relations (converted from the input grammars). Because
Soufflé supports generating C++ programs with OpenMP annotations for parallel execution, our
evaluation uses an 8-thread version. We compare with Soufflé in this way to demonstrate that our
single-threaded CFL-Skewed is roughly comparable with an 8-threaded parallel program that does
the same computation. For these experiments, we set a time limit of 48 hours and a memory limit
of 128 GB for each run.

5.2 Evaluated Grammars

Alias analysis grammar. We adopt the field-sensitive version of the context-free grammar given
by Zheng and Rugina [2008]. Figure 4a presents the context-free grammar in a normalized form,
which is also used in existing works [Lei et al. 2022b;Wang et al. 2017; Zhang et al. 2014]. Figure 4b is
the skewed version of the original grammar. In Figure 4a, there are three terminals �푎, �푑 , �푓�푖 , denoting
assignment, pointer dereference, and the address of the �푖-th field, respectively. The start symbol
of the grammar is �푉 , denoting value aliasing. The grammar works on bidirected graphs, i.e., for

each edge �푢
�푋
−→ �푣 in the graph where �푋 is a symbol of the grammar, there always exists an inverse

edge �푣
�푋
−→ �푢 in the graph. Comparing 4b with Figure 4a, we see that for the non-start symbols �퐴

and �퐴, our static skewing (Algorithm 2) eliminated the recursive parts of their productions. The

3https://github.com/kisslune/POCR#usage.
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Fig. 7. Reduction rates of non-�푆 summary edges by CFL-Skewed. The white bars denote alias analysis, the
gray bars denote value-flow analysis and the black bars denote taint analysis.

removed recursions are promoted to the start symbol �푉 , as the two new productions �푉 ::= �푎 �푉 and
�푉 ::= �푉 �푎. Our static skewing annotated three propagating nonterminals: DV, FV�푖 and�푀 .

Value-flow analysis grammar. The context-sensitive value-flow analysis is used as a pre-analysis
for memory leak detection formulated by Sui et al. [2014]. Figure 5a presents the context-free
grammar in a normalized form. Figure 5b is the skewed version of the original grammar. In Figure 5a,
there are three terminals �푎, call�푖 and ret�푖 , denoting assignment, and calls and returns with a callsite
index �푖 , respectively. The start symbol is �퐴, denoting value flow. Comparing Figure 5b with Figure
5a, we see that the static skewing did not change any production because there are no cyclic non-
terminals (Definition 4.1) in the grammar. Our static skewing annotated a propagating nonterminal
CA�푖 . Thus, the speedup is achieved by dynamic skewing, i.e., the treatment of propagating edges.

Taint analysis grammar.We adopt the context-free grammar given in Section 5.1 of [Kodumal
and Aiken 2004] for taint analysis. Figures 6a and 6b give the normalized grammar and the
skewed grammar, respectively. In Figure 6a, there are three terminals �푎, call�푖 and ret�푖 , denoting
assignment, and calls and returns with a callsite index �푖 , respectively. The start symbol is �푆 , denoting
interprocedural value-flow with unbalanced calls and returns. Comparing Figure 6b with Figure
6a, we see that the cyclic nonterminal �푁 is removed in the skewed grammar, with all its recursive
behavior promoted to the start symbol �푆 , resulting in the two new productions �푆 ::= �푆 call�푖 and
�푆 ::= �푆 �퐴. One propagating nonterminal CA�푖 is annotated.

5.3 RQ1: Reduction of Summary Edges

Figure 7 shows the reduction rates of non-S summary edges. In particular, non-S summary edges are
the edges whose labels are not the start symbol of the CFG. Since a non-S edge does not represent
any CFL-reachability solution, fewer non-S edges inserted during CFL-reachability solving is
always better. According to the literature [Lei et al. 2022b], CFL-RHS does not reduce any inserted
summary edges, so we use the data of CFL-RHS as the inserted summary edges of the standard RHS
tabulation, as seen in the columns “#SumEdge by CFL-RHS” in Table 1. Specifically, the reduction
rate of non-S edges of each program is calculated by (#EdgeRHS − #EdgeSkewed)/(#EdgeRHS − #S),
where #EdgeRHS and #EdgeSkewed denotes the number of summary edges inserted in RHS tabulation
and CFL-Skewed, respectively; and #S denotes the number of �푆 edges, which is consistent in both
RHS and CFL-Skewed.
By observing Figure 7, we see that our CFL-Skewed drastically reduced the number of non-S

edges. On average, for the programs successfully solved by both CFL-RHS and CFL-Skewed, our
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Table 2. Running time (in seconds) results on SPEC2017 benchmarks. The “-” mark indicates out-of-time.

Program
Alias Analysis Value-Flow Analysis Taint Analysis

CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8

cactus 2,548.03 1,448.98 2,646.44 4.45 4.32 5.63 597.88 432.44 725.28

deepsjeng 10.05 5.90 6.19 1.48 1.26 2.26 1,518.75 651.87 1,499.59

imagick 30,514.60 8,312.89 23,125.35 245.84 229.15 373.22 - - -

lbm 0.03 0.02 0.29 0.01 0.01 0.02 0.06 0.04 0.05

leela 44.34 22.28 45.90 2.68 2.59 4.98 12,027.60 4,742.04 5,535.93

mcf 1.06 0.56 1.34 0.02 0.02 0.05 1.97 1.64 2.95

nab 1.24 0.48 0.77 3.41 3.41 6.52 262.92 74.84 483.47

omnetpp 146,438.00 21,188.20 33,860.40 186.22 135.82 293.98 - - -

parest 11,109.90 1,832.99 1,673.97 1,213.31 1,131.42 1,830.77 - - -

perlbench - - - 6,514.56 5,956.88 7,787.65 - - -

povray 3,020.72 896.48 1,560.56 1,713.86 1,196.65 2,112.30 - - -

x264 127.54 22.42 34.73 67.79 62.68 91.24 - - -

xz 0.95 0.39 0.89 0.80 0.67 1.39 918.09 480.74 582.79

CFL-Skewed reduced 96.54%, 78.11% and 46.50% non-�푆 edges, respectively, for alias analysis, value-
flow analysis and taint analysis. CFL-Skewed reduces non-�푆 edges from two angles: (1) eliminating
some recursive behaviors of non-�푆 nonterminals, and (2) avoiding inserting propagating edges into
the graph. By observing the grammars in Figures 4 and 6, alias and taint analyses can benefit from
both angles. However, Figure 7 shows that the reduction rates of non-�푆 edges of alias analysis are
much larger than those of taint analysis. The reason behind this is that all non-�푆 nonterminals of the
alias grammar benefit from either of the two angles. As seen in Figure 4b, the recursive behaviors

of �퐴 and �퐴 are totally removed, and DV, FV�푖 and �푀 are annotated as propagating nonterminals.
Therefore, CFL-Skewed is able to reduce almost all non-�푆 summary edges. In the other case, for taint
analysis, the recursive behaviors of both �퐴 and �푃 are not eliminated, resulting in a large number of
non-�푆 edges inserted into the graph. The result of value-flow analysis also provides an interesting
observation. As seen in Figure 5, the only difference of skewed grammar is annotating CA�푖 as
a propagating nonterminal. However, Figure 7 shows that even without changing the grammar,
CFL-Skewed still reduced the majority of non-�푆 edges for value-flow analysis. This means that the
propagating CA�푖 -edges takes a much larger proportion in non-�푆 edges than �퐵-edges.

5.4 RQ2: Runtime Speedups

Tables 2 presents the running time results, where we CFL-RHS, CFL-Skewed and Soufflé-8 to
denote the results of CFL-RHS CFL-Skewed and 8-thread Soufflé, respectively. On average, for
alias analysis, CFL-Skewed is 3.34× faster than CFL-RHS, and is 3.16× Soufflé-8. For value-flow
analysis, CFL-Skewed is 1.13× faster than CFL-RHS, and is 1.85× faster than Soufflé-8. For taint
analysis, CFL-Skewed is 2.05× faster than CFL-RHS, and is 2.28× faster than Soufflé-8.
We see that the speedups of CFL-Skewed in alias and taint analyses are much more significant

than in value-flow analysis. The difference between value-flow analysis and the other two clients is
that there is no removal of recursive behaviors of non-�푆 nonterminals, and there are no dynamic
propagating edges (Section 4.3) discovered. The experimental result indicates that reducing non-�푆
recursive behaviors plays a more important role in accelerating CFL-reachability analysis. This is
also supported by the results of the taint analysis. Considering Figure 7 and Table 2 together, we
see that, although CFL-Skewed reduced a much smaller proportion of non-�푆 edges in taint analysis
than in value-flow analysis, the speedup of taint analysis is much more significant. A reasonable
interpretation is that the reduced non-�푆 recursive behaviors in taint analysis contribute to most of
the wasted computations. This observation aligns with an existing work [Lei et al. 2022b], which
claims that recursive behavior in CFL-reachability leads to tremendous redundancy.
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Table 3. Memory consumption (in MB) results on SPEC2017 benchmarks.

Program
Alias Analysis Value-Flow Analysis Taint Analysis

CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8 CFL-RHS CFL-Skewed Soufflé-8

cactus 2,085.70 1,070.47 2,691.38 266.44 244.06 291.86 2,340.73 1,081.74 1,108.75

deepsjeng 196.43 161.20 177.81 27.98 21.41 28.71 1,281.70 523.71 1,159.80

imagick 17,756.77 7,038.54 27,059.50 1,392.29 1,014.08 1,625.00 - - -

lbm 4.50 2.49 22.22 1.66 1.66 1.57 8.41 2.95 22.07

leela 262.09 86.07 295.05 78.65 63.24 77.74 3,775.13 1,307.32 4,998.11

mcf 26.07 13.77 22.21 3.46 2.95 2.54 36.64 18.46 45.54

nab 31.14 12.95 39.24 48.88 43.74 87.44 2,293.73 259.59 628.96

omnetpp 14,370.71 1,992.62 8,355.10 1,835.80 979.77 1,228.12 - - -

parest 3,705.35 736.63 2,581.16 2,928.81 2,522.41 3,083.87 - - -

perlbench - - - 9,240.88 7,442.98 8,120.21 - - -

povray 2,289.31 508.88 1,720.26 4,132.14 2,980.36 3,808.22 - - -

x264 609.20 226.78 443.95 534.73 340.84 467.02 - - -

xz 27.05 8.28 21.94 38.23 31.83 29.56 1,112.15 445.50 1,113.14

5.5 RQ3: Reduction of Memory Consumption

Table 3 presents the memory consumption results. Wemeasured memory consumption by recording
the values VmRSS and VmSize at runtime reported by the process status file on our Ubuntu system
(“/proc/self/status”). On average, for alias analysis, CFL-Skewed reduced 60.05% and 61.45% mem-
ory consumption for CFL-RHS and Soufflé-8, respectively. For value-flow analysis, CFL-Skewed
reduced 20.38% and 16.47% memory consumption for CFL-RHS and Soufflé-8, respectively. For
taint analysis, CFL-Skewed reduced 63.06% and 56.56% memory consumption for CFL-RHS and
Soufflé-8, respectively.

Memory consumption reflects the number of summary edges inserted into the graph, i.e., stored
in memory. Comparing value-flow analysis with the other two clients, the reduced memory usage
of value-flow analysis is much smaller than the other two clients. This implies that, based on the
simpler grammar (Figure 5), the solving process of value-flow analysis involves much fewer non-�푆
edges than other clients. Comparing taint analysis with alias analysis, although taint analysis
reduced a much smaller proportion of non-�푆 edges (Figure 7), it has memory reduction rates close
to alias analysis where almost all non-�푆 edges are reduced. This implies that non-�푆 edges take a
much larger proportion in taint analysis than in alias analysis. This is also reflected in the running
time (Table 2), where the speedups of taint analysis are larger than others.

5.6 Discussions

Limitations. The grammar transformation does not work in the case where we cannot identify
any cyclic nonterminals in the input grammar with the desired usage patterns. This is the case for
the value-flow grammar shown in Figure 5. The grammar annotation alone can be fairly effective.
However, as in the case of value-flow, all insertions of the nonterminal CA�푖 can be optimized out.
In practice, there exist grammars that cannot be handled by both static and dynamic skewing.
For those grammars, our grammar transformation can neither change the grammars nor produce
the annotation set PN . In this case, the CFL-Skewed algorithm in Algorithm 3 is equivalent to the
traditional CFL-reachability algorithm based on RHS tabulation. For more restrictive grammar, our
approach may also be limited based on how skewed the input grammar is. For example, the well-
knownDyck grammar4 can only be skewed dynamically since there are no cyclic nonterminals other
than the start nonterminal �푆 . In Algorithm 2, the static skewing algorithm, the start nonterminal �푆 is
part of the set of target nonterminals �푇 which explicitly will not be modified by the transformation

4The Dyck language of �푘 kinds of parentheses is defined by the grammar: �푆 ::= �푆 �푆 | ( �푆 ) | . . . | (: �푆 ): | �휀 .
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since the set of strings expressed by the start nonterminal cannot be changed in order to preserve
the correctness of the output of CFL-Skewed. Similarly, a linear grammar can only be skewed
dynamically since all its rules are linear by definition, and our grammar transformation only
replaces and modifies nonlinear rules.

CFL-Skewed versus Soufflé. Soufflé is a Datalog solver, which is more general than CFL-
reachability. Though Soufflé’s partial evaluation can distinguish linear rules from non-linear
ones based on extensional databases (EDBs) and intensional databases (IDBs), it does not have any
knowledge about equivalent grammar forms. Our work introduces propagating nonterminals, a
concept situated between EDB and IDB in Soufflé’s terminology. Specifically, in static skewing,
CFL-Skewed always tries to promote the recursive behavior of non-�푆 nonterminals to �푆 the start
symbol to reduce the unnecessary rules and nonterminals and annotate propagating nonterminals—
a notion that Soufflé does not have. In dynamic skewing, CFL-Skewed harnesses the propagating
nonterminals to further reduce unnecessary summary edges. According to our experience, the
performance of 8-thread Soufflé is significantly better than single-thread Souffléwhen analyzing
the benchmarks in our experiments. We chose 8 threads because the running time of Soufflé-8 is
roughly similar to that of CFL-Skewed. The experimental result that our (single-thread) CFL-Skewed
outperforms 8-thread Soufflé demonstrates that skewed tabulation outperforms the classic RHS
tabulation, and it also implies that our CFL-Skewed can also significantly outperform single-thread
Soufflé in solving the three clients.

Recursive productions and grammar rewriting. The work of POCR [Lei et al. 2022b] also studies
recursive productions. It is interesting to note that the POCR only works when there is at least
one “transitive” (i.e., doubly recursive) production in the input context-free grammar. Another
work [Shi et al. 2023] proposes PEARL, an approach that further targets these transitive productions
by using batch-propagation of reachability information. In most cases, these require users to
manually rewrite the grammar to expose such transitive productions. Moreover, they rely on the
traditional RHS tabulation [Reps et al. 1995] and make memory trade-offs to achieve speedup.
On the contrary, the grammar transformation (Algorithm 2) in our work can automatic rewrite
the input grammar. Our approach directly improves the tabulation process and does not increase
memory consumption. Moreover, our technique eliminates recursive productions by moving the
recursion to the start symbol, as many as possible. However, it may not eliminate all transitive
productions. In this case, skewed tabulation can be integrated into POCR and PEARL, which can
process those transitive productions more effectively. In fact, our implementation is built on top of
POCR, which demonstrates that the benefits of our approach can be observed in conjunction with
the benefits of works that implement specialized optimizations for transitive rules.

6 RELATED WORK

CFL-reachability is central to program analysis as many program properties can be specified as
context-free grammars. The traditional CFL-reachability algorithm exhibits a cubic time com-
plexity [Reps 1998]. Chaudhuri [2008] proposes a subcubic CFL-reachability algorithm, which
improves the cubic complexity by a logarithmic factor. Chatterjee et al. [2018] establish a cubic
conditional lower bound for CFL-reachability. Asymptotically fast algorithms exist only for special
cases. For bidirected Dyck-reachability, Chatterjee et al. [2018] give an algorithm that runs in
time �푂 (�푚 + �푛 · �훼 (�푛)) where �훼 (�푛) is the inverse Ackermann function. When restricted to graphs
with bounded treewidth, Chatterjee et al. [2019] gave faster algorithms for solving demand-driven
queries in the presence of graph changes. When restricted to directed acyclic graphs, Yannakakis
[1990] noted that CFL-reachability could be solved in �푂 (�푛�휔 ) time. McAllester [2002] established
a framework for determining the time complexity of static analysis. Kodumal and Aiken [2004]
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describe a specialized set constraint reduction for Dyck-reachability. Pavlogiannis [2022] surveys
the recent algorithmic developments for improving CFL- and Dyck-reachability. Skewed tabulation
does not improve the asymptotic complexity of CFL-reachability. Instead, our results demonstrate
that a better grammar form can make CFL-reachability more scalable in practice.
In the seminal work, Yannakakis [1990] discusses an �푂 (�푚�푛)-time algorithm for linear context-

free language reachability problems. However, most existing work in program analysis follows
the standard grammar normalization for CFL-reachability[Chaudhuri 2008; Melski and Reps 2000;
Milanova 2020; Rehof and Fähndrich 2001; Reps 1998; Wang et al. 2017; Zheng and Rugina 2008; Zuo
et al. 2021]. Hollingum and Scholz [2015] propose a general method for CFL-reachability based on
a partial evaluation of a single input grammar, which does not require the normal form. Lange and
Leiß [2009] discuss a different normal form for teaching the CYK parsing algorithm. Beyond CFL-
reachability, Tang et al. [2015] require a similar normal form for tree-adjoining-language reachability.
Zhang and Su [2017] propose linear-conjunctive language reachability where the input grammar is
in the linear form. In general, linear context-free language is not expressive enough to be used in
practical program analyses. Milanova [2020] observes that some linear constraints can simplify the
underlying CFL-reachability formulation. Context-free path querying [Hellings 2014] in Database is
similar to CFL-reachability, which also requires that the input grammar is in Chomsky normal form.
A recent work [Lei et al. 2022b] improves the performance by modifying the online solver, which
sacrifices memory consumption for higher speed. Another recent work [Shi et al. 2023] further
improves performance by modifying the online solver using batch propagation of reachability
information and transitivity-aware subgraphs. Both of these works [Lei et al. 2022b; Shi et al.
2023] present runtime optimizations that target and, therefore, require transitive rules in the input
grammar. Our skewed tabulation can be seen as a more powerful grammar transformation combined
with a specialized solver, which works both offline and online and improves the performance of
CFL-reachability for both time and memory consumption. Note that in CFL-reachability, the input
grammar can be ambiguous. Our static skewing resembles the grammar transformations in parser
generators [Aho et al. 1986]. Existing parser generators (e.g., LL and LALR generators) only work
for deterministic context-free languages. By contrast, our static skewing technique for general
context-free grammars. It is an interesting future direction to further investigate the connections
between parser generators and the grammar transformation for skewed tabulation.
Datalog is a well-known framework for formulating program-analysis problems [Bravenboer

and Smaragdakis 2009; Lu et al. 2013; Scholz et al. 2016; Whaley et al. 2005]. CFL-reachability
problem instances can be directly encoded as a Datalog specification, like for the state-of-the-art
Datalog solver Soufflé [Scholz et al. 2016]. Problem instances can leverage advanced Datalog
evaluation strategies such as semi-naïve evaluation [Ullman 1989], tabulation [Warren 1992], and
magic sets [Bancilhon et al. 1986; Beeri and Ramakrishnan 1987]. Our work focuses on improving
the tabulation [Melski and Reps 2000; Naeem et al. 2010; Reps 1998] for CFL-reachability, which
does not rely on specialized evaluation strategies.

7 CONCLUSION

This paper has presented skewed tabulation for CFL-reachability. We skew the parse trees statically
and dynamically by transforming the input grammar and adjusting the CFL-reachability algorithm.
The key idea is to use grammar structure to make the CFL-reachability algorithm reuse summary
edges. We prove that our approach can only reduce the number of summaries compared to the
traditional CFL-reachability via RHS tabulation. Our experimental results show that this approach
achieves significant speedups, reduces memory overhead, and reduces the number of non �푆-edges
by a significant margin in practice.
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