
The Normalization Barrier Revisited
Shuo Ding

Georgia Institute of Technology
Atlanta, USA

sding@gatech.edu

Qirun Zhang
Georgia Institute of Technology

Atlanta, USA
qrzhang@gatech.edu

Abstract
In a POPL 2016 paper, Brown and Palsberg presented a break-
through result on “the normalization barrier.” The normaliza-
tion barrier, according to conventional wisdom, originates
from a theorem in computability theory, which says that a to-
tal universal function for all total computable functions is im-
possible. Therefore, it was widely believed that strongly nor-
malizing lambda calculi do not have self-interpreters either.
However, Brown and Palsberg constructed a self-interpreter
for F-omega, which is a strongly normalizing lambda cal-
culus. One of the key insights behind the Brown-Palsberg
breakthrough is due to the fact that “static type checking in
F-omega can exclude the (computability) proof’s diagonaliza-
tion gadget, leaving open the possibility for a self-interpreter,”
according to Brown and Palsberg [2016].

In this paper, we revisit this phenomenon. In particular, in
the Brown-Palsberg result, terms in F-omega were encoded
as typed representations, and an external type checker was
assumed to do type checking. In our work, we consider a
type checker assumed to be built into the interpreter, which
reports type errors on ill-typed inputs. We believe this is
closer to real interpreters. Consequently, our representation
is untyped, and ill-typed inputs are specifically handled. Un-
der this setting, we show that the original computability
theory result still holds. Our result does not contradict the
Brown-Palsberg result. Rather, it shows that computability
theory results are still applicable to F-omega from a different
angle, thus “rebuilding” the normalization barrier.

CCS Concepts: • Software and its engineering→ Inter-
preters; • Theory of computation → Type structures;
Computability.

Keywords: Partial Evaluation, Program Semantics, Computabil-
ity

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1257-9/24/10
https://doi.org/10.1145/3694848.3694851

ACM Reference Format:
Shuo Ding and Qirun Zhang. 2024. The Normalization Barrier
Revisited. In Proceedings of the Workshop Dedicated to Jens Pals-
berg on the Occasion of His 60th Birthday (JENSFEST ’24), October
22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3694848.3694851

1 Introduction
It is well-known in computability theory that there is no
computable, total, universal function for all computable total
functions. The fundamental reason is that such a universal
function would permit a new computable total function to be
defined, which is different from every computable total func-
tion on at least one input, contradicting the assumption that
the universal function can already simulate all computable
total functions. As a result, conventional wisdom [9] tended
to believe this phenomenon holds on lambda calculi as well,
meaning that strongly normalizing lambda calculi cannot
interpret themselves. This is called the “normalization bar-
rier” [3].
In the seminal work of Brown and Palsberg [3], it was

shown that F-omega, which is a strongly normalizing lambda
calculus within the lambda cube [2], can indeed write self-
interpreters on its typed representations. Consequently, the
Brown-Palsberg result breaks the normalization barrier, show-
ing that the computability theory result is less far-reaching
than previously thought. The inherent reason for the non-
applicability of the computability result, described by Brown
and Palsberg, is “static type checking in F-omega can exclude
the (computability) proof’s diagonalization gadget, leaving
open the possibility for a self-interpreter.”
In this paper, we revisit this phenomenon and show that

whether the computability result applies depends on the
exact definition of “self-interpreters.” In particular, our key
insight is based on the observation that real-world typed lan-
guage interpreters like Haskell GHCi [7] does type-checking
inside their interpreters, emitting type errors (which are es-
sentially special values printed) on ill-typed input programs.
Since programs are eventually represented as strings, type
checkers built inside interpreters are the common practice.
We show that if we assume this self-interpreter definition,
which does type-checking and emits special values on type
error, the computability theory result still applies, and thus
such self-interpreters are impossible.
The importance of the definitions of self-interpreters is

also discussed in Brown and Palsberg’s POPL 2017 work [4],
where the authors present two classes of self-interpreters:

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

1

https://orcid.org/0000-0003-0843-0729
https://orcid.org/0000-0001-5367-9377
https://doi.org/10.1145/3694848.3694851
https://doi.org/10.1145/3694848.3694851
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694848.3694851&domain=pdf&date_stamp=2024-10-22


JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Shuo Ding and Qirun Zhang

typed self-recognizers and typed self-evaluators. According
to this classification, our setting can be called untyped self-
evaluators.
Our result does not contradict the normalization break-

through. Instead, we “rebuild” the normalization barrier by
considering a different self-interpreter definition, showing
whether the computability-style result applies depends on
the exact formulation of the problem.
The rest of the paper is organized as follows. Section 2

details our rebuilding process, with Section 2.1 reviewing
the computability result, Section 2.2 reviewing Brown and
Palsberg’s setting, and Section 2.3 presenting our setting. Sec-
tion 3 discusses possible extensions of our setting. Section 4
concludes the paper.

2 Revisiting the Normalization Barrier
We first review the computability result (Section 2.1), and
then discuss Brown and Palsberg’s setting (Section 2.2) where
“self-interpreters” are possible for F-omega, and finally dis-
cuss our setting (Section 2.3) where “self-interpreters” are
impossible for F-omega.
We assume the standard definition of F-omega as formu-

lated in Brown and Palsberg’s original work [3]. In particular,
we use the same notations.

2.1 Computability Theory
In the literature, two common ways to formulate computabil-
ity theory are formal languages [10] and sets of natural num-
bers [1, 5], and the two approaches are equivalent. We follow
the second approach: studying subsets of N and partial func-
tions fromN toN. This is also the formulation used in Brown
and Palsberg’s paper [3].

Definition 2.1. Let N be the set of natural numbers. A com-
putable partial function 𝑓 is a partial function in N ⇀ N
that can be computed by a Turing machine. If 𝑓 is defined
on every input, it is called a computable total function. For
every computable partial function 𝑓 , let 𝑓 be a natural num-
ber encoding one Turing machine corresponding to 𝑓 .1 A
function 𝑢 ∈ (N × N) ⇀ N is called a universal function
for all computable total functions if and only if for every
computable total function 𝑓 , we have ∀𝑥,𝑢 (𝑓 , 𝑥) = 𝑓 (𝑥).

A universal function is an interpreter in computability
theory sense. The set of natural numbers encoding Turing
machines is the “programming language.” In many cases, we
can extend this set to the entire N, where natural numbers
not encoding Turing machines can be given a default inter-
pretation. Under this setting, a universal function defines a
programming language.

1We can choose any Turing machine corresponding to 𝑓 , and · itself does
not need to be computable.

Theorem 2.2. There does not exist a computable total func-
tion serving as the universal function for all computable total
functions.

Proof. Suppose we have such a computable total universal
function 𝑢. Thus 𝑢 (𝑓 , 𝑥) = 𝑓 (𝑥) for every computable total
function 𝑓 . Then 𝑝 (𝑥) = 𝑢 (𝑥, 𝑥) + 1 is also a computable
total function, so 𝑝 has code 𝑝 . A contradiction results from
𝑝 (𝑝) = 𝑢 (𝑝, 𝑝) + 1 = 𝑝 (𝑝) + 1. □

Theorem 2.2 can be generalized to broader settings: any
subclass of computable total functions with the ability to
formulate computations like “+1” does not have universal
functions in that class. The proof is essentially the same.

2.2 Brown and Palsberg’s Setting (Typed,
Self-Recognizer)

According to the classification of Brown and Palsberg [4], the
normalization breakthrough work [3] constructed a typed
self-recognizer, which recovers a program from its represen-
tation. Specifically for F-omega, we assume a quoter map-
ping each term 𝑒 to a typed representation 𝑒 , and the self-
interpreter is defined as unquote satisfying the following
condition for every well-typed F-omega term 𝑒 .

unquote 𝑒 →∗ 𝑒

The quoter must satisfy two conditions [3]: (1) the produced
representation must be in 𝛽-normal forms, and (2) the quoter
itself must be injective. The first condition rules out using the
term itself as the representation, and the second condition
rules out using the term’s normal form as the representation.
There is no assumption on the computability of the quoter,
however.

Under this setting, constructions similar to𝑝 (𝑥) = 𝑢 (𝑥, 𝑥)+
1 are not guaranteed to be feasible. Brown and Palsberg used
the term 𝜆𝑥 .𝜆𝑦.((unquote 𝑥) 𝑥) to demonstrate the non-
feasibility, where 𝜆𝑦 plays the rule of “+1”. This term itself
is not guaranteed to be typable, let alone the subsequent
construction (𝑝 𝑝). Thus the type system prevents the di-
agonalization construction. Note that in this case, the type
checking occurs outside the calculus. Nevertheless, the door
is open for constructing such an unquote. Indeed, Brown
and Palsberg gave such an interpreter [3].

There is an important detail in Brown and Palsberg’s term
𝜆𝑥.𝜆𝑦.((unquote 𝑥) 𝑥). In the body part ((unquote 𝑥) 𝑥),
the first occurrence of 𝑥 serves as the representation of some
term 𝑒 , while the second occurrence of 𝑥 , which is still the
representation of 𝑒 , serves as the “input” to 𝑒 . This detail
plays an important role in our construction in the next sub-
section.

2.3 Our Setting (Untyped, Self-Evaluator)
In practical typed programming languages, programs are
still initially represented as strings. As a result, the inter-
preter’s type is essentially string → string, with the return

2



The Normalization Barrier Revisited JENSFEST ’24, October 22, 2024, Pasadena, CA, USA

value as either the evaluation result of the input program,
or an error message when there are type errors in the input
program. In this case, runtime errors can be classified as part
of the evaluation result, and we only distinguish static error
messages (type errors) detected before the evaluation.
Under this setting, the type checking occurs inside the

interpreter. This setting is similar to computability theory
where everything is represented as a natural number. We
show that the computability theory trick is applicable here
and thus re-establishing the normalization barrier. Accord-
ing to the classification in [4], our setting can be called an
untyped self-evaluator.

To represent a program as data, we still need a quoter satis-
fying the previously discussed two conditions: (1) producing
𝛽-normal forms, and (2) being injective. Here, the essential
characteristic is that this quoter should map every F-omega
term to the same type, which is similar to real programming
languages where every program is represented as a string.
This opens the door to handling ill-typed possibilities. We
still denote this quoter as ·.

However, pure F-omega (as defined in [3]) does not have
direct string types. But we can use Church numerals to serve
as natural numbers, which can encode strings using Gödel’s
encoding or similar techniques [6, 8]. Church numerals can
be assigned the following type, denoted as 𝑇 .2 Conceptu-
ally, this encoding process can be understood as encoding
F-omega terms as strings and then converting the strings to
natural numbers.

𝑇 = ∀𝛼 : ∗.(𝛼 → 𝛼) → 𝛼 → 𝛼

The quoter ·, in our case, maps both well-typed F-omega
terms and ill-typed F-omega terms to 𝑇 . Again, we do not
assume whether the quoter is computable or not. Our inter-
preter interp, on the other hand, has the type 𝑇 → 𝑇 , where
the result is either the quoted normal form (nf) of the quoted
term or a special value denoting that there are type errors
(we choose Λ𝛼 : ∗.𝜆𝑥 : 𝛼.𝑥 ). Note that we can stipulate that
the quoted value of well-typed terms is always different from
this special value. Eventually, we get the following defini-
tion. Note that the = here means the two sides have the same
normal form.

interp 𝑒 =

{
nf (𝑒) if 𝑒 is well-typed;
Λ𝛼 : ∗.𝜆𝑥 : 𝛼.𝑥 otherwise.

Under this setting, the computability-style construction
can be formulated as

𝑝 = 𝜆𝑥 : 𝑇 .𝜆𝑦 : 𝜏 .(interp (apply 𝑥 𝑥)))

2Theoretically, the type parameter 𝛼 is not important here because we only
care about the number of nestings inside the Church numerals. Thus, we
can also choose any concrete base type as 𝛼 , if available. Those base types
may not include natural numbers or strings, however.

where 𝜏 is an arbitrary type (which could be one of the base
types in F-omega, if available) and apply : (𝑇 ×𝑇 ) → 𝑇 is a
meta-level function satisfying the following.

∀𝑒, 𝑥, (apply 𝑒 𝑥) = (𝑒 𝑥)
Namely, apply takes the code of a term 𝑒 and a term 𝑥 of
type 𝑇 , and returns the code of the (possibly ill-typed) term
(𝑒 𝑥). In practical programming languages, this roughly cor-
responds to simply concatenating two pieces of source code,
so we regard apply as a natural accompanying feature of our
interpreter.

We argue that 𝑝 is not formalizable inside F-omega. Indeed,
if it is formalizable, then it has code 𝑝 of type 𝑇 . Following
the computability style argument, we get the following con-
tradiction.

(𝑝 𝑝) = 𝜆𝑦 : 𝜏 .(interp (apply 𝑝 𝑝))
= 𝜆𝑦 : 𝜏 .(interp (𝑝 𝑝))
= 𝜆𝑦 : 𝜏 .nf ((𝑝 𝑝))

Note that every part of the above equality chain is well-typed:
they are valid terms inside F-omega, assuming the existence
of interp and apply. In particular, (𝑝 𝑝) is well-typed because
𝑝 always has type 𝑇 , and thus, the interpreter produces the
normal form of a well-typed term. In general, because we
assumes interp already handles type checking internally, the
ill-typed possibility can only occur inside interp, which does
not affect the typability of interp itself and terms constructed
using interp.

3 Discussion
We discussed an untyped self-evaluator where the normaliza-
tion barrier from computability theory is rebuilt. There are
several future directions that could be explored further. First,
is it possible to define a typed self-evaluator and rebuild the
normalization barrier? Second, the interp term is assumed to
come with another meta-level function apply, which is used
to deal with the function currying issue inside F-omega. Is it
possible to come up with a cleaner definition where we only
assume one term? We leave these questions as future work.

4 Conclusion
Traditional computability theory concludes that a total uni-
versal function for all total computable functions is impossi-
ble, which resulted in a conventional wisdom called “the nor-
malization barrier,” saying that self-interpreters for strongly
normalizing calculi are also impossible. The POPL 2016 work
due to Brown and Palsberg broke this barrier and presented a
self-interpreter for F-omega, which is a strongly normalizing
lambda calculus. That result showed computability theorems
were less far-reaching than previously thought. In our pa-
per, we rebuilt the normalization barrier by changing the
definition of self-interpreters to include type checking as an
internal feature, showing that computability theorems are
still applicable from this angle.

3



JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Shuo Ding and Qirun Zhang

It is important to note that all three results (computability
theory, Brown and Palsberg, ours) do not contradict each
other in any sense. They are applicable in different scenarios,
which demonstrates the importance of clarifying the settings
and definitions before applying any theorems.

Acknowledgements. We thank Govind Gnanakumar for
discussions on self interpreters. This work was supported,
in part, by the United States National Science Foundation
(NSF) under grants No. 2114627 and No. 2237440; and by
the Defense Advanced Research Projects Agency (DARPA)
under grant N66001-21-C-4024. Any opinions, findings, con-
clusions, or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the
views of the above sponsoring entities.

References
[1] Andrea Asperti. 2008. The intensional content of Rice’s theorem. In

Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008. ACM, 113–119. https://doi.org/10.1145/1328438.
1328455

[2] Henk Barendregt. 1991. Introduction to Generalized Type Systems.
J. Funct. Program. 1, 2 (1991), 125–154. https://doi.org/10.1017/
S0956796800020025

[3] Matt Brown and Jens Palsberg. 2016. Breaking through the normaliza-
tion barrier: a self-interpreter for f-omega. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016. ACM, 5–17. https://doi.org/10.1145/2837614.2837623

[4] Matt Brown and Jens Palsberg. 2017. Typed self-evaluation via in-
tensional type functions. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. ACM, 415–428. https://doi.org/10.1145/
3009837.3009853

[5] N. Cutland. 1980. Computability: An Introduction to Recursive Function
Theory. Cambridge University Press. https://books.google.com/books?
id=wAstOUE36kcC

[6] Kurt Gödel. 1931. Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme I. Vol. 38. Springer, 173–198.
https://doi.org/10.1007/BF01700692

[7] HaskellWiki. Accessed in May 2024. GHC/GHCi. https://wiki.haskell.
org/GHC/GHCi.

[8] Shuying Liang, Weibin Sun, and Matthew Might. 2014. Fast Flow
Analysis with Godel Hashes. In 14th IEEE International Working Con-
ference on Source Code Analysis and Manipulation, SCAM 2014, Victoria,
BC, Canada, September 28-29, 2014. IEEE Computer Society, 225–234.
https://doi.org/10.1109/SCAM.2014.40

[9] Frank Pfenning and Peter Lee. 1991. Metacircularity in the Poly-
morphic lambda-Calculus. Theor. Comput. Sci. 89, 1 (1991), 137–159.
https://doi.org/10.1016/0304-3975(90)90109-U

[10] M. Sipser. 2012. Introduction to the Theory of Computation. (2012).
https://books.google.com/books?id=H94JzgEACAAJ

4

https://doi.org/10.1145/1328438.1328455
https://doi.org/10.1145/1328438.1328455
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.1145/2837614.2837623
https://doi.org/10.1145/3009837.3009853
https://doi.org/10.1145/3009837.3009853
https://books.google.com/books?id=wAstOUE36kcC
https://books.google.com/books?id=wAstOUE36kcC
https://doi.org/10.1007/BF01700692
https://wiki.haskell.org/GHC/GHCi
https://wiki.haskell.org/GHC/GHCi
https://doi.org/10.1109/SCAM.2014.40
https://doi.org/10.1016/0304-3975(90)90109-U
https://books.google.com/books?id=H94JzgEACAAJ

	Abstract
	1 Introduction
	2 Revisiting the Normalization Barrier
	2.1 Computability Theory
	2.2 Brown and Palsberg's Setting (Typed, Self-Recognizer)
	2.3 Our Setting (Untyped, Self-Evaluator)

	3 Discussion
	4 Conclusion
	References

