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ABSTRACT

Context. Hot sub-luminous stars represent a population of stripped and evolved red giants that is located on the extreme horizontal
branch. Since they exhibit a wide range of variability due to pulsations or binary interactions, it is crucial to unveil their intrinsic and
extrinsic variability to understand the physical processes of their formation. In the Hertzsprung-Russell diagram, they overlap with
interacting binaries such as cataclysmic variables (CVs).

Aims. By leveraging the most recent clustering algorithm tools, we investigate the variability of 1576 candidate hot subdwarf variables
using comprehensive data from Gaia DR3 multi-epoch photometry and Transiting Exoplanet Survey Satellite (TESS) observations.
Methods. We present a novel approach that uses the t-distributed stochastic neighbour embedding and the uniform manifold approxi-
mation and projection dimensionality reduction algorithms to facilitate the identification and classification of different populations of
variable hot subdwarfs and CVs in a large dataset. In addition to the publicly available Gaia time-series statistics table, we adopted
additional statistical features that enhanced the performance of the algorithms.

Results. The clustering results led to the identification of 85 new hot subdwarf variables based on Gaia and TESS light curves
and of 108 new variables based on Gaia light curves alone, including reflection-effect systems, HW Vir, ellipsoidal variables, and
high-amplitude pulsating variables. A significant number of known CVs (140) distinctively cluster in the 2D feature space among an
additional 152 objects that we consider candidates for new CVs.

Conclusions. This study paves the way for more efficient and comprehensive analyses of stellar variability from ground- and space-
based observations, and for the application of machine-learning classifications of candidate variable stars in large surveys.

Key words. methods: data analysis — methods: statistical — techniques: photometric — surveys — subdwarfs — stars: variables: general

1. Introduction

Hot sub-luminous stars are hot and compact evolved low-
mass stars that are located on the extreme horizontal branch,
between the main sequence (MS) and the white dwarf sequence
(Heber 2009, 2016). In a Hertzsprung-Russell diagram (HRD),
they occupy B and O spectral types and form the population
of hot subdwarf B (sdB) and O (sdO) stars. A recent study
of a 500 pc volume-limited sample of hot sub-luminous stars
reported that they are dominated by the sdB population (~60%;
Dawson et al. 2024). Most of this population are thought to have
a canonical core mass of 0.47 My and thin hydrogen layers
(~1074=1072 M; Saffer et al. 1994; Brassard et al. 2001). Their
thin envelope mass suggests that sdBs are the remnant cores
of low-mass red giant stars that were stripped through binary
interactions, which introduced a different evolutionary path than
for normal horizontal branch stars. This envelope mass prevents
them from supporting H-shell burning. After depletion of helium
in the sdB cores, on a timescale of ~10® yr (Dorman et al. 1993;
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Ostrowski et al. 2021), they first become sdOs and then evolve
to the white dwarf cooling stage.

Evolutionary calculations showed that sdB progenitors likely
underwent binary interactions (Han et al. 2002, 2003), includ-
ing common-envelope ejection (CEE; for short-period bina-
ries with a period of 0.1-10days), stable Roche-lobe overflow
(RLOF; for long-period or composite binaries with periods of
450-1600 days; Vos et al. 2020), and mergers (e.g. He white
dwarf + He white dwarf; Webbink 1984). Observational stud-
ies corroborated this (Pelisoli et al. 2020), and multiple studies
reported a significant fraction of hot subdwarfs in binary sys-
tems, either in close binaries with a MS or white dwarf com-
panion (e.g. Geier et al. 2022; Schaffenroth et al. 2022, 2023),
or in wide binaries with cool MS companions (e.g. Deca et al.
2012; Vosetal. 2019, 2020). This diversity makes them an
excellent population for studying binary star evolution. In addi-
tion, a broad range of unseen companions have been confirmed
to exist in hot subdwarfs, such as low-mass MS stars (dM),
brown dwarfs, and white dwarf companions (Kupfer et al. 2015;
Geier et al. 2010, 2022, 2023) through the project called Massive
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Unseen Companions to Hot Faint Underluminous Stars from the
Sloan Digital Sky Survey (MUCHFUSS). The existence of these
companions and their nature is often shown by the behaviour of
photometric light curves of the hot subdwarfs, such as ellipsoidal
variability for white dwarf companions and reflection effects for
low-mass companions (Schaffenroth et al. 2022; Barlow et al.
2022).

A population of hot subdwarfs was also found to exhibit
pulsations, and asteroseismology was used to study their struc-
ture and evolution (e.g. Charpinet et al. 2010; Van Grootel et al.
2010; Reed et al. 2020; Sahoo et al. 2020; Silvotti et al. 2022;
Krzesinski & Balona 2022; Uzundag et al. 2021, 2023, 2024).
While the mechanism for exciting pulsations in subdwarfs is
thought to be understood (i.e. the k-mechanism operating on the
Fe opacity bump; Charpinet et al. 1997; Fontaine et al. 2003),
it is unclear why only a handful of subdwarfs are observed to
pulsate while most do not. Theoretical work has demonstrated
that atomic diffusion is required, but it is unclear whether other
aspects such as the evolution history of the binary also play a
role (Hu et al. 2008, 2011; Bloemen et al. 2014).

It is essential to increase the detection of new variable
hot subdwarfs to enable a robust characterisation of their vari-
ability and to improve our understanding of these stars. In
addition to spectroscopic identifications of hot subdwarfs (e.g.
Luo et al. 2019; Lei et al. 2020, 2023), which are often obser-
vationally expensive, previous efforts to identify candidate hot
subdwarfs were made mainly based on their locations in the
colour-magnitude diagram and proper motion selection crite-
ria (Geier et al. 2019; Geier 2020) using Gaia DR2 obser-
vations (Gaia Collaboration 2018). Following similar steps,
Culpan et al. (2022) compiled a large catalogue of more than
60000 confirmed and candidate hot subdwarfs observed from
Gaia EDR3 data (Gaia Collaboration 2021a). These selections
are frequently affected by contamination from low-mass MS
stars, cataclysmic variables (CVs), and white dwarfs (Geier et al.
2019; Culpan et al. 2022; Barlow et al. 2022). Given this con-
tamination, it is critical for target selections to develop an effec-
tive framework to separate hot subdwarfs from other populations
of blue objects in the HR diagram and characterise their variabil-
ity in multiple time-domain surveys.

The interest in developing machine-learning algorithms
to automate the variability search and characterisation of
time-series data in time-domain astronomy has been strong
(e.g. Kimetal. 2021; Cuietal. 2022; Eyeretal. 2023;
Monsalves et al. 2024) due to the growing volume of data gen-
erated by large surveys, such as the All Sky Automated Survey
(ASAS; Pojmanski 2002), the Zwicky Transient Facility (ZTF;
Bellm et al. 2019), and the Gaia mission (Gaia Collaboration
2023). As the majority of these algorithms either depend on a
particular survey (e.g. based in space or on the ground) or are
task-oriented (e.g. a planet transit detection), their application is
often limited to a certain number of specific cases and goals.

To remedy this, we present a machine-learning framework
for identifying variable hot subdwarfs and CV's based on photo-
metric time series alone. Our methods can be broadly applied
to any photometric data, such as those from the BlackGEM
(Groot et al. 2024), the Gravitational-wave Optical Transient
Observer (GOTO; Steeghs et al. 2022), and the Legacy Survey of
Space and Time (VRO/LSST; Ivezi¢ et al. 2019) missions. The
structure of this paper is as follows: In Sect. 2 we describe the
data and methods. This is followed by feature engineering and
the cluster analysis in Sect. 3. The results of the variability clas-
sification are provided and discussed in Sect. 4. Our conclusion
and future prospects are presented in Sect. 5.
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2. Data and methods
2.1. Gaia observations

The precise astrometric and photometric measurements pro-
vided by Gaia significantly boost the identification of the pop-
ulation of candidate hot subdwarfs in the colour-magnitude
diagram. Culpan et al. (2022) compiled a catalogue of 61 585
candidate hot subdwarfs based on colour, absolute magni-
tude, and reduced proper motion selection criteria in Gaia
EDR3 (Gaia Collaboration 2021a), which served as the basis
of this work. The release of Gaia DR3 multi-epoch photome-
try (Eyer et al. 2023) allowed us to cross-match this catalogue to
find candidates with available light curves and further study their
variability. This resulted in 2114 objects with available epoch
photometry using the Gaia flag has_epoch_photometry = True.
The remaining 59471 objects were excluded from the analysis
because no Gaia light curves are available for them.

Using the Gaia datalink service and the astroquery.Gaia
package (Ginsburg et al. 2019), we extracted the light curves of
these objects in the three Gaia filter bands (G, BP, and RP).
Before we searched for periodicity, we preliminarily assessed
the quality. First, we retained objects with reliable parallax mea-
surements (parallax_over_error > 5). Second, the Gaia boolean
quality flag reject_by_variability was used to remove
data points rejected by the Gaia variability pipeline (Eyer et al.
2023), and then objects with at least 25 observations in any of
the three band light curves were selected, following the mini-
mum number of observations suggested by Morales-Rueda et al.
(2006) for detecting stellar variability. For the Gaia astromet-
ric quality control, known as the re-normalised unit weight
error (RUWE), RUWE <7 was adapted as a substantial num-
ber of spectroscopically identified hot subdwarfs were observed
to exceed the recommended RUWE < 1.4 limit up to RUWE =7
(see Dawson et al. 2024 for more details). These selections
resulted in 1682 light curves that were ready for analysis. Their
Gaia G-band light curves have a typical median signal-to-noise
(S/N) ratio estimate (standard deviation of the magnitudes over
the rms of the magnitude uncertainties) of 3.5 and a median num-
ber of observations of about 40, as well as a median magnitude
of ~15 mag.

2.2. Frequency analysis

The population of hot subdwarfs hosts diverse types of vari-
ability, including pulsating variables and eclipsing binaries,
from close- to wide-binary systems. Therefore, their variabil-
ity exhibits a wide range of timescales from minutes to months
and of morphologies from sharp eclipses to sinusoidal pulsa-
tions. Following the success of our frequency-search algorithms
in finding dominant frequencies in multi-band, heteroscedastic,
and irregularly sampled light curves of candidate hot subdwarfs
from the MeerLICHT telescope (Ranaivomanana et al. 2023),
we applied the same approach to search for periodicity in Gaia
light curves. In brief, this method combines Fourier-based cal-
culations, namely the generalised Lomb-Scargle periodogram,
and phase-dispersion measurements, known as Lafler-Kinman
statistics, to alleviate the effects of noise and data gaps in a
periodogram. This hybrid approach is referred to as the ¥-static
(Saha & Vivas 2017), where the notation ¥ is used to represent
the periodogram throughout this work.

In the frequency grid search, the search was performed from
zero up to 360 day~! according to the Nyquist-frequency of the
2-minute cadence of the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al. 2015) short-cadence observations, which
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were used for comparison with the Gaia variability in Sect. 4.
The frequency step was finely tuned and was defined as the
inverse of the total time base divided by an oversampling fac-
tor of 10, following results in the literature that showed that
this value is appropriate to ensure that no dominant frequency
peaks are missed and to prevent a poor period estimation, which
would occur if its value were taken too low (VanderPlas 2018;
Schwarzenberg-Czerny 1996). In addition, the dominant fre-
quency we found was further optimised by fine-tuning the fre-
quency step with an oversampling factor of 100. This was only
done in a small frequency window around the dominant fre-
quency, where a frequency window size ten times larger than
the original frequency step was used on either side of the peak.

2.3. Uncertainties in the frequency estimates

The uncertainties in the dominant frequencies were estimated
by adopting a Monte Carlo approach, where the frequency algo-
rithm was run 1000 times. The standard deviation of the dom-
inant frequencies was taken as an estimate of the frequency
uncertainty. Each iteration consisted of (1) drawing a sample
from a normal distribution with zero mean and a width of the
magnitude errors per observation, and (2) creating a new light
curve by adding the sample to the original light curve. The mag-
nitude errors in the original light curves were kept in the new
light curves. The iterations finally consisted of (3) running the
algorithm on the new light curve using the same fine-tuned fre-
quency window as in the frequency optimisation. Due to the
finite sampling step in the frequency grid, each iteration could
result in the same identified dominant frequency. To mitigate
this, the frequency grids were shifted by 1/1000th of the fre-
quency step for each of the 1000 iterations to ensure that the
frequency search was not confined to the same frequency peak
in each iteration.

3. Feature engineering
3.1. Variability analysis

After we computed the dominant frequencies for all candidates,
a robust, unbiased method was required to determine the signif-
icance of the peaks and measure the reliability of the variabil-
ity. Although the false-alarm probability (FAP; Scargle 1982;
Baluev 2008) was frequently used in the literature to measure the
significance of the frequency peak, it is poorly adapted to vari-
ables in the high-frequency domain and in the case of signals
with red noise (VanderPlas 2018). Additionally, the interpreta-
tion of the FAP becomes complex in our case, where two inde-
pendent periodograms were combined in the hybrid approach.
Therefore, we addressed this by exploring machine-learning
clustering algorithms to distinguish candidates with different sig-
nificance levels and variability.

We explored various summary statistics that are capable of
unveiling the fidelity of the frequency peaks and the variability in
the Gaia time series. It was necessary to extract these parameters
from the data to work with the clustering algorithms described
in the next sections. First, we extracted the Gaia variability sum-
mary statistics table', which consists of statistical parameters (54
in total, excluding boolean parameters and object IDs) that were
computed using the Gaia DR3 time series (Eyer et al. 2023).
Second, after normalising the maximum amplitude in the P-
periodogram to one, we computed additional statistical features

! https://doi.org/10.17876/Gaia/dr.3/92
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(24 features) that were specifically designed to help us define
the significance of the peak, such as the 95th percentile of the
amplitude for the 100 peaks with the highest amplitude, the 99th
percentile of the amplitudes for the full spectrum, and the num-
ber of frequencies with amplitudes above 0.5. These features
were found to be useful for distinguishing objects with a clear
variability, as we discuss in Sect. 3.2. We obtained 84 features
in total (see Table A.1) when we combined these features with
the Gaia statistics table and another six parameters from the
Gaia DR3 source database (Gaia Collaboration 2023), such as
BP—RP, parallax, and RUWE. Entries with missing values were
removed from the table, which left 1576 final candidates out of
the 1682 objects.

3.2. Dimensionality reduction

The next step was to transform these features into a lower-
dimensional space such that we were able to visualise and
identify possible clusters. This was done by applying dimen-
sionality reduction techniques to our data, which convert high-
dimensional features into a 2D feature space. It is common
practice to reduce the dimensionality in machine learning, and
it has been used extensively in astronomy to visualise and
interpret data (Kao et al. 2024; Liao et al. 2024; Pantoja et al.
2022). We explored two non-linear dimensionality reduction
techniques: the t-distributed stochastic neighbour embedding (t-
SNE; van der Maaten & Hinton 2008) and the uniform manifold
approximation and projection (UMAP; Mclnnes et al. 2018a).
These were chosen over other techniques such as the principal
component analysis (PCA) because they are able to find non-
linear structures in data and are straightforward to implement.

Since our data had more than 80 features, it was important to
remove highly correlated features that might lead to noise in the
visualisation (Kuhn & Johnson 2019). This also helped the algo-
rithms, notably t-SNE, to efficiently map the high-dimensional to
low-dimensional space. To identify correlated features, we cal-
culated the Pearson correlation coefficient between all pair-wise
combinations of features and excluded one feature from each
pair for correlation values above 0.95. This reduced the num-
ber of features to 49, which is also recommended? (~50) to effi-
ciently optimise the t-SNE algorithm.

We further ranked the features using a random forest algo-
rithm (Breiman 2001), which is a commonly used technique for
obtaining relative feature importance scores (e.g. Richards et al.
2012). The importance score of each feature is determined based
on its ability to split the data into pure nodes (nodes with
instances belonging to the same class) in the individual decision
trees of the random forest model (see Breiman 2001 for more
details). At this stage, the sole purpose was to obtain the fea-
ture scores. Therefore, the default random forest model hyper-
parameters (e.g. the number of estimators) were used to fit the
data. Upon model fitting, we obtained the relative importance
scores of each feature. These scores were used to optimise the
t-SNE and UMAP algorithms in Sects. 3.2.1 and 3.2.2.

We also manually labelled each object based on their
phase-folded diagrams, where objects that exhibited an obvi-
ous variability were labelled as 0, and those with an ambigu-
ous variability were labelled as 1. These labels were used when
fitting the random forest algorithm. In addition, labelling the
data allowed us to examine the clustering performances and to
visualise the physical or statistical distribution of each class (e.g.

2 https://scikit-learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html

A268, page 3 of 15



Ranaivomanana, P., et al.: A&A, 693, A268 (2025)

t-SNE with 49 features

t-SNE with 27 features

GMM cluster solution

201 201
N
4+
c
o
c
8_ 01 01
IS
(o]
)
L
=Z —201 —20+
w
5 3 #  Cluster 0
* Cluster 1
Bona fide sample 2B Bona fide sample O Cluster 2
—401 , , , , —401, , , , , —401 , , , ,
—40 —-20 0 20 40 —40 —20 0 20 40 —40 —20 0 20 40
t-SNE Component 1 t-SNE Component 1 t-SNE Component 1
UMAP with 49 features UMAP with 27 features GMM cluster solution
] Bona fide sample 101 101
o
- 4 4
§ 6 8 8
9] =
o ° o
HER o g
St ot vt
o & (lcﬁ% o
< & 41 41
% 2 ;45,9 #  Cluster 0
Cluster 1
21 Bona fide sample 29 o Cluster2
2.5 5.0 7.5 10.0 -5 0 5 -5 0 5

UMAP Component 1

UMAP Component 1‘

UMAP Component 1

Fig. 1. Clustering results using the t-SNE (top panels) and UMAP (bottom panels) dimensionality reduction algorithms and clustering labels (right
panels) from the Gaussian mixture model (GMM). The left and middle panels represent the 2D components using 49 and 27 features, respectively.
The open orange stars in these panels correspond to the manually selected objects with clear variabilities.

period distribution) in the clusters shown in Fig. 1, which we dis-
cuss further throughout the paper.

3.2.1. Dimensionality reduction with t-SNE

We implemented the TSNE module from the scikit-learn
Python library (Pedregosa et al. 2011), where two crucial param-
eters, namely perplexity and learning rate, were optimised, while
the other parameters were kept to their default values. The per-
plexity can be seen as a tuning parameter that measures the effec-
tive number of nearest neighbours to be considered to construct
the low-dimensional embedding. Before running the t-SNE algo-
rithm, we first scaled each feature to have a zero mean and unit
standard deviation, which helped the algorithm to be more effi-
cient in finding structures in the data. The optimised values of the
two parameters are perplexity = 50 and learning rate = 600. With
these settings and the 49 features, Fig. 1 shows the transformed
low-dimensional projections, where we can identify three main
clusters, namely cluster O, cluster 1, and cluster 2. These are dis-
cussed in more detail in Sect. 3.3. The open orange stars in the
left and middle panels of Fig. 1 represent the objects we labelled
manually, most of which belong to one cluster. To label these
clusters, we fit the 2D projection data to a Gaussian mixture
model (implemented in scikit-learn) with three mixture com-
ponents. The advantage of using this model is that it provides
the probability of each object to belong to a cluster. The qual-
ity of the class labels predicted by the Gaussian mixture model
was evaluated using the so-called silhouette score (Rousseeuw
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1987), in addition to a visual inspection of the graphical out-
put. This evaluation metric compares how well data points match
their designated cluster to other clusters. We obtained a silhou-
ette score of 0.535, which is generally considered to indicate a
reasonable clustering solution (i.e. >0.5; Rousseeuw 1987). We
further improved this by iteratively removing the least impor-
tant features from the importance scores computed above that
might cause noise in the low-dimensional representation. In
other words, we stopped the iterative process when no further
improvements were visually detected in the output clusters and
in the silhouette score. This resulted in 27 features with a silhou-
ette score of 0.567. The t-SNE 2D representation of this result
is shown in Fig. 1 together with the Gaussian mixture clustering
solution. These 27 features are described in Table A.2 and are
used throughout the rest of the analysis.

The dominant features for the manually labelled objects
include the 95th percentile of the first 100 frequency peaks, the
number of peaks above 0.5 of the normalised ¥ periodogram,
and the 99th percentile of all periodogram peaks. However, they
do not imply that these top features alone can explain the sepa-
ration of the three clusters in the 2D feature space; it only means
that their importance scores are higher than those for the rest of
the features, as shown in Fig. A.2. As previously mentioned, the
aim of dimensionality reduction algorithms is to build new low-
dimensional features from linear or non-linear combinations of
high-dimensional features while preserving as much of the orig-
inal information as possible. Since the low-dimensional features
are mixtures of the original ones, we cannot conclude from the
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Fig. 2. Amplitude distribution of each cluster in the Gaia G band (left panel) and gradient of the variability amplitude in the G band across the

t-SNE components (right panel).

2D representation that a specific or a group of a few features
cause the distinction of the clusters.

3.2.2. Dimensionality reduction with UMAP

Similar to t-SNE, UMAP (Mclnnes et al. 2018a) is a non-linear
algorithm for high-dimensional data visualisation, except that
its approach to dimensionality reduction is grounded in mani-
fold theory and topological data analysis rather than probabilis-
tic modelling as in t-SNE. The UMAP algorithm is implemented
in the umap-learn Python package (Mclnnes et al. 2018b). We
ran the UMAP algorithm with its default parameter values and
the selected 27 features in Sect. 3.2.1, which already resulted
in reasonable silhouette score values and a distinctive visualisa-
tion (Fig. 1). The same features as obtained from t-SNE were
also used when running the UMAP algorithm to show that both
algorithms output the same results using the same features, and
to obtain meaningful clustering results. The obtained silhouette
scores are very similar for the 27 features (0.597) and 49 features
(0.599). The cluster labels were again obtained from the Gaus-
sian mixture model. We identified three main clusters similar to
those found with the t-SNE algorithm, which confirms the exis-
tence of these clusters in our data. The next section compares the
results from the two algorithms.

3.3. Cluster analysis and candidate selection

It is worth examining whether the three clusters found by t-SNE
and UMAP represent the same objects. Of the t-SNE and UMAP
components, 290 and 297 objects are part of cluster 0; 990 and
991 objects in cluster 1; and 296 and 288 objects in cluster
2, respectively. Therefore, we cross-matched the objects in the
three clusters from both algorithms and found a total number of
1563/1576 matches (~99%): 289, 988, and 286 matches from
cluster 0, cluster 1, and cluster 2, respectively. This shows that
the two clustering approaches are highly consistent. We exam-
ined the 13 mismatched objects because the clustering results for
t-SNE and UMAP matched for 1563 out of 1576 objects. Eight
of these 13 objects belong to cluster 0 in UMAP and to cluster
2 in t-SNE. These objects exhibit large peak-to-peak magnitudes
in the Gaia G band, with variations of at least 0.5 mag. In the 2D
t-SNE plot, they are located near the border of cluster 2, close to

cluster 0, which may explain the mismatch in the cluster labels
between UMAP and t-SNE for these objects. The remaining 5 of
the 13 objects either appear in cluster 1 in UMAP and cluster 2
in t-SNE, or vice versa, and they are similarly positioned at the
borders of each cluster. We did not observe any peculiar objects
in addition to these cases.

As our primary goal was to identify objects with signifi-
cant and clear variability among the clusters, we visually exam-
ined the light curves of the objects in each cluster. We observed
that the three clusters reflect the clarity of the light-curve vari-
ability, which can be translated into the light-curve S/N ratio.
More precisely, cluster 1 contains objects with a dubious vari-
ability that might be related to light curves with a relatively low
S/N ratio; cluster 2 primarily consists of objects with ambiguous
light-curve shapes but high variability amplitudes; and cluster 0
is dominated by objects with a clear variability that is associated
with high S/N ratio light curves. Some examples of light curves
in each cluster are shown in Fig. A.1, where the top panels rep-
resent clear variables that are typical for cluster 0, the middle
panels correspond to unclear variables found in cluster 1, and
the bottom panels consists of high-amplitude ambiguous vari-
ables in cluster 2. Since the two algorithms represent mostly the
same objects per cluster, we focused our analysis on the clusters
from the t-SNE components.

Furthermore, we measured the importance score of each
of the 27 features using random forest based on the assigned
label for each cluster, as we did with the manually labelled
data. The results indicated that the amplitude of the variability
in the G band (amp_G) has the highest feature score, followed
by the difference between the highest and lowest values of the
G-band light curves (range_mag_g_fov) and the interquartile
range of the G-band light curves (iqr_mag_g_fov). The rest
of the features are listed according to their importance score in
Table A.3. As shown in the left panel of Fig. 2, the distribu-
tion of the amplitude in a log space reveals three distributions
that support these results. In the same figure, a lower bound of
the amplitude is shown at ~20 mmag for cluster 0. Addition-
ally, the right panel of Fig. 2 reveals that the amplitude val-
ues gradually increase from low to high values of the t-SNE
component 1.

Based on these results, we considered all objects in cluster O
(290 objects) as potential variable hot subdwarfs, and we discuss
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right are phased to twice the period to highlight the ellipsoidal variation. The blue lines represent the binned phase of the TESS light curves (grey

data points), and the orange data points correspond to Gaia light curves.

their variability in Sect. 4.1, while objects in cluster 2 were found
to be mostly comprised of CVs and are discussed in Sect. 4.2.

4. Results
4.1. Hot subdwarf variability classification

To confirm the nature of the variations found in the Gaia light
curves, we compared them with those observed by TESS. First,
we verified whether any objects in the Gaia catalogue had
light curves in TESS using the Lightkurve Python package
(Lightkurve Collaboration 2018). Second, we searched for fast-
cadence (20 seconds) and short-cadence (2 minutes) light curves
and computed their Lomb-Scargle periodograms.

The periods found in the Gaia G band data strongly agree
with those obtained by TESS for the objects in cluster 0. The
variability types of these objects were thus determined with high
confidence. On the other hand, for objects without TESS obser-
vations, we are only able to provide a general classification, such
as an eclipsing binary or a sinusoidal-like shape class. In order
to ensure a homogeneous treatment of the whole sample, we did
not rely on TESS data for the results of the frequency analy-
sis. We instead only used the TESS data to improve the fidelity
of the classification. All lists of the candidate classifications are
provided in Tables A.4—A.10 (see section Data availability).

4.1.1. Variability in the confirmed hot subdwarfs

We found 78 known variable hot subdwarfs amongst the 290
objects in cluster 0 by cross-matching our data with a catalogue
of spectroscopically identified hot subdwarfs and known vari-
able hot subdwarfs from the literature (Schaffenroth et al. 2019,
2022, 2023; Culpan et al. 2022; Barlow et al. 2022; Lei et al.
2023; Dawson et al. 2024). Most of them (66/78) were iden-
tified from the compiled catalogue of 6616 known hot subd-
warfs Culpan et al. (2022), and 63/78 have short- or fast-cadence
TESS ligh tcurves. Based on the Gaia and TESS light curves,
we found 32 reflection-effect systems, 19 HW Vir systems, 6
pulsating variables, and 6 ellipsoidal variables. The remaining
15/78 systems were classified based solely on the Gaia three-
band light curves, where we found 5 sinusoidal-like light curves
that might be associated with reflection-effect systems or ellip-
soidal variations or a dominant pulsation mode, 5 eclipsing bina-
ries, and 2 HW Vir systems. Fig. 3 shows examples of new
HW Vir (TIC 129778070), reflection effect (TIC 333419799),
and ellipsoidal variables (TIC 287977499) systems identified in
this work.
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4.1.2. Variability in the candidate hot subdwarfs

From the unconfirmed hot subdwarfs (212/290), we identified 78
objects with short- and/or fast-cadence TESS light curves. Based
on the Gaia and TESS light curves, we found 42 reflection-
effect systems, 21 HW Vir systems, 3 pulsating variables, and 2
ellipsoidal variables. The remaining 134/212 candidate hot subd-
warfs were classified based on the Gaia three-band light curves,
where we found 60 sinusoidal-like light curves, 20 HW Vir sys-
tems, 14 eclipsing binaries, and 2 potentially pulsating variables.
Thirty-eight objects have an unclear variability, which prevented
us from labelling them.

4.1.3. Pulsating hot subdwarfs

We identified a total of nine already known pulsating variables
from the known and candidate hot subdwarfs observed from
Gaia and TESS. Three out of these nine pulsate in the Gaia
and TESS light curves, namely TIC 273218137, TIC 53826859,
and TIC 178626010, with a period of 0.09491h, 0.12096h,
and 1.39841 h, respectively. TIC 273218137 and TIC 53826859
are known pulsating hot subdwarfs from TESS observations
(Krzesinski & Balona 2022), while TIC 178626010 is a new
pulsating variable detected in this work and independently by
Krzesinski et al. (in prep.). In Fig. 4, their Gaia and TESS light
curves are phased to the same periods and reference epochs
tg, using the short-cadence light curves for TESS observa-
tions. The dominant frequencies found for these two objects are
the same in the three Gaia bands. Therefore, they are candi-
dates for a mode identification from an amplitude ratio analysis
(Aerts & Tkachenko 2024; Fritzewski et al. 2024). Their pulsa-
tion frequencies suggest that TIC 273218137 and TIC 53826859
are likely p-mode pulsators, and TIC 178626010 pulsates in the
g-mode regime. The remaining six known pulsating variables
have low-amplitude pulsations and higher-amplitude orbital
variability in their light curves. In our analysis, we were only
able to detect their orbital variability in the Gaia data.

4.1.4. Newly identified pulsating variables

We identified two unique high-amplitude pulsating objects from
Gaia (Fig. 5): Gaia DR3 5835161264415038592 and Gaia DR3
5929109825689001856 with G-band peak-to-peak amplitudes
of 0.21 mag and 0.25 mag and pulsation periods of 0.38225h
(22.935min) and 0.12844h (7.706 min), respectively. The BP
and RP periods for the two objects are the same as those deter-
mined in the G band. Their amplitudes in these bands are as
follows: Gaia DR3 5835161264415038592 has peak-to-peak
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and the orange data points correspond to Gaia light curves.
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Fig. 5. New high-amplitude pulsating variables observed with Gaia.

amplitudes of 0.21 mag and 0.19 mag in the BP and RP bands,
respectively. Similarly, Gaia DR3 5929109825689001856 has
peak-to-peak amplitudes of 0.29 mag and 0.23 mag in the BP and
RP bands, respectively. Their amplitude and frequency regimes
suggest that these are candidate blue large amplitude pulsators
(BLAPs; Pietrukowicz et al. 2017; Macfarlane et al. 2015).

4.2. Cataclysmic variables

Cluster 2 consists of 296 objects, 140 of which are known CVs
(Barlow et al. 2022; Hou et al. 2023; Canbay et al. 2023) and 4
are candidate CVs from Krzesinski et al. (in prep.). The remain-
ing 152 objects are identified by SIMBAD as candidate hot sub-
dwarfs (70), stars (61), variables (9), and CV candidates (3). We
considered all of these objects as candidate CVs since all known
objects in cluster 2 are CVs without contamination from other
classes. The full lists of confirmed and candidate CVs are given
in Table A.8 and A.9, respectively.

By cross-matching the objects in cluster 2 with TESS, we
found 127/140 confirmed CVs and 75/152 candidate CVs with
TESS short-cadence light curves. Their period distributions are
shown in Fig. 6, where the periods are centred at 3.43h and
4.63h for the known and candidate CVs, respectively. The
127/140 CVs represent the same objects as in the (Canbay et al.
2023) catalogue. However, their reported periods are only avail-
able for 71 objects, mainly taken from Ritter & Kolb (2003),
with a median period of 3.40h. This means that we added 56
new candidate orbital periods from our analysis.

[
jan)

CV candidates

o
o

Number of objects
o
()

201
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0= : : : .
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Fig. 6. Period distribution of the confirmed and candidate CVs in cluster
2.

4.3. Variability distributions

We investigated the photometric variability of 290 and 296
objects in cluster 0 and cluster 2, respectively. A summary of the
variability classification of confirmed and candidate hot subd-
warfs is presented in Table 1. In Fig. 7 we present a Gaia colour-
magnitude diagram of the 1576 candidate hot subdwarf variables
(grey circles) with the Gaia Catalogue of Nearby Stars in the
background (grey data points; Gaia Collaboration 2021b). Clas-
sified variables from cluster O with TESS light curves are shown
in the figure. The light-curve shapes of reflection-effect systems
can be explained by the fact that the hot subdwarf irradiates and
heats one side of its cooler companion star, causing the cooler
star to appear brighter on the side facing the hot subdwarf. As
the system orbits, this creates a quasi-sinusoidal variability in
the light curves. Depending on the viewing angle, reflection-
effect systems can be eclipsing and form the HW Vir systems.
On the other hand, compact hot subdwarf binaries, particularly
those with white dwarf companions, show ellipsoidal modula-
tion in their light curves due to tidal distortion of the hot sub-
dwarf, resulting in two maxima or two minima in their light
curves. Examples of a reflection, HW Vir, and ellipsoidal sys-
tem are shown in Fig. 3. As previously introduced, the evolu-
tionary stages of these systems can be understood through the
lens of a binary evolution channel, notably a common-envelope
evolution for short-period systems. However, the exact forma-
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Table 1. Variability classifications for known and candidate hot subdwarfs.

141/290 variable hot subdwarf candidates with Gaia and TESS lightcurves in cluster O

63 confirmed hot subdwarfs

78 hot subdwarf candidates

Confirmed variables New variables Confirmed variables New variables Total new
Reflection 15 17 2 40 57
HW Vir 13 6 7 14 20
Ellipsoidal 1 5 - 2 7
Pulsating variables 6 - 3 1 1
Others/Unclear 1 1 5 5 -

149/290 variable hot subdwarf candidates with only Gaia lightcurves in cluster 0
15 confirmed hot subdwarfs 134 hot subdwarf candidates Total new
Sinusoidal 5 60 65
HW Vir 2 20 22
Eclipsing binary 5 14 19
Pulsating variables 2 2
Others/Unclear 3 38 -
5 L Hot subdwarf candidates HW Vir 301 .
i CVs O Ellipsoidal e
O Reflection A Pulsation oV 201
=
- o QC, 10 4
O S ¢ 5
L o
- 5
@) | O 10
= L
L v —207
5 | 5
—30+1 All candidates O Ellipsoidal
B O Reflection < CVs !
- HW Vir A Pulsation .
—401—, . . . .
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10+ e t-SNE Component 1
oo Lo @m0 o o Ly
—0.5 0.0 0.5 Fig. 8. Identified variables from Gaia and TESS light curves. The

Fig. 7. Gaia DR3 colour-magnitude diagram depicting the candi-
date hot subdwarfs (1682) from Culpan et al. (2022) with Gaia light
curves (grey circles). The variability classifications are shown for the
selected candidate variable hot subdwarfs (290) with TESS observa-
tions (141/290). Among the candidate hot subdwarfs, CVs are also iden-
tified from the literature and are represented by left triangles. The grey
background data points correspond to the Gaia Catalogue of Nearby
Stars (Gaia Collaboration 2021b).

tion mechanisms and evolutionary pathways are still areas of
active research. On the other hand, CVs consist of a white dwarf
primary and a mass-transferring secondary, typically a MS star.
The shape of their light curves can mostly be explained by dra-
matic brightness increases known as outbursts, which are a result
of instabilities in the accretion disk and lead to sudden higher
mass transfer. In Fig. 7, reflection-effect and HW Vir systems
appear to occupy the same area (centred at Mz = 4.4 and
BP—-RP = —-0.2) and tend to be bluer than the known CVs (cen-
tered at M = 5.3 and BP—RP = 0.3).

Based on their locations in the t-SNE components, HW Vir
systems tend to be more concentrated in the sub-cluster between
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shaded colours correspond to confirmed hot subdwarfs. CV objects
were obtained from the literature (see Sect. 4.2).

cluster 0 and cluster 2, as shown in Fig. 8, with a broader G-
magnitude range (range_mag_g_fov around 0.50 mag) com-
pared to the rest of the variables in cluster 0 (range_mag_g_fov
around 0.16 mag). Poor Gaia sampling of HW Vir systems could
result in a sinusoidal-like shape of their light curves, as shown in
the first panel of Fig. 3, due to the smearing effect. This could
place them in a different position in cluster O rather than in
the sub-cluster. However, some HW Vir systems have shallower
eclipse depths compared to others, and this could also place them
in the main cluster in cluster 0. As previously mentioned, CVs
lie in cluster 2 with a G-magnitude range, range_mag_g_fov,
centred at 1.15 mag. The distributions of the other features are
presented in Fig. A.3, with the 10th percentile, the median, and
the 90th percentile of the features for each cluster. In comparison
to the other two clusters, cluster 2 exhibits a broader distribution
of features, notably a high amplitude of variability, as shown in
the right panel of Figs. 2 and A.3. These differences in the fea-
ture distributions could be relevant for the reduction algorithms
to represent the clusters in the low-dimensional space well.
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Fig. 9. Period distribution of the binary systems observed with Gaia and
TESS in cluster 0.

Of the new variables identified from Gaia and TESS in cluster
0, ~23% are classified as HW Vir systems, ~67% are reflection-
effect systems, and ~10% are ellipsoidal and pulsating variables.
For their period distributions, Fig. 9 shows that the periods of
known and new HW Vir systems are in the range of ~1.5hto ~9 h,
while those of the reflection-effect systems range from ~1.7 h to
~35h. This difference in the period distribution of the eclipsing
reflection-effect (HW Vir) and non-eclipsing reflection-effect sys-
tems has also been observed in other studies. HW Vir systems tend
to have shorter periods than non-eclipsing reflection-effect sys-
tems, as found by Schaffenroth et al. (2022). These authors also
found a broad peak at periods from 2 to 8 h, but were unable to
find objects with a period longer than ~30 h for reflection-effect
systems. They reported that periods longer than a few days might
be rare or might not exist for these systems. However, we found
several objects with periods longer than a few days from Gaia,
which might be binary or eclipsing systems. Since we have no
TESS observations for these objects, their variability types are
referred to as sinusoidal or eclipsing binary.

5. Conclusion and future prospects

We set out to develop a machine-learning algorithm that might
be generalised and that leverages multi-band photometric time-
series data in order to classify variable and non-variable subd-
warfs. We developed our algorithm using multi-band time-series
photometry from Gaia and validated the algorithm using inde-
pendent TESS data. Starting with a readily available catalogue
of 61 585 candidate hot subdwarfs, we were able to extract Gaia
multi-band light curves of 1682 objects with good astrometric
solutions and a variable number of observations in the Gaia
photometric bands (with 25 observations at least). We searched
for periodicities using the hybrid P-statistic approach and esti-
mated the uncertainties associated with the determined frequen-
cies with a Monte Carlo approach.

Using the sparsely sampled multi-band Gaia photometric
data, we defined a number of bespoke summary statistics to
supplement those already provided by the Gaia database. We
applied machine-learning algorithms to calculate the importance
of the feature and reduce the dimensionality before we applied
a clustering algorithm that identified three clusters, which are
predominantly predicted by the amplitude of the photometric
variability in the Gaia G band. We further validated the results

by applying two different dimensionality reduction techniques,
which resulted in 99% similar results.

The three clusters that we identified correspond to (candi-
date) hot subdwarfs with statistically significant variability (clus-
ter 0), non-variable subwarfs (cluster 1), and CVs (cluster 2).

Upon further inspection, we were able to identify different
populations of variable hot subdwarfs observed from Gaia and
TESS in cluster 0. A significant number of them are in binaries,
while a few pulsating variables are detected. The scarcity of the
observed pulsating variables in Gaia could be explained by the
fact that hot subdwarfs pulsate with low-amplitude light varia-
tions of about a few milli-magnitudes.

Our analysis allowed us to newly identify a large number stars
as variables, notably reflection-effect and HW Vir systems. The
key findings of the clustering analysis are summarised below.

— In cluster 0, 89 new hot subdwarf variables were identified
from Gaia and TESS observations, while 108 new variables
were found from Gaia alone. These new variables are mainly
reflection-effect and HW Vir systems.

— In the same cluster 0, nine previously identified pulsating
variables were found among the candidate variable hot sub-
dwarf. We further identified two new high-amplitude pulsat-
ing objects that are consistent with being BLAPs.

— In cluster 2, a large number of CVs were identified, of which
140 were spectroscopically confirmed in other studies. We
consider the remaining 156 objects in cluster 2 to be candi-
date CVs.

— Feature evaluation based on the three clusters showed that
features related to the photometric variations in the G band
strongly contribute to characterising the clusters, including
the amplitude, the magnitude range, and the interquartile
range of the G-band light curves. The G-band amplitude dis-
tribution suggests a lower limit of ~0.02 mag on the detection
of clear variability in the light curve.

The classification algorithm developed in this work was specifi-
cally designed to be flexible and generalisable. We used widely
available features and developed new features that can be effi-
ciently calculated for independent data sets with different prop-
erties. As a result of this, we can include new observations and
objects without having to retrain the algorithm. Furthermore,
our results can be used to help build labelled datasets for future
supervised machine-learning classifications of variable stars.

Scientifically, our results are twofold. First, we developed a
robust method for identifying variable subdwarf stars. Second,
we developed an algorithm that efficiently identifies CVs with-
out the need for expensive follow-up spectroscopic observations.
Together, these results allowed us to confidently identify new
variable subdwarfs for further analysis from existing data while
filtering out contaminating sources such as CVs. While hun-
dreds of hot subdwarfs and CVs have already been discovered,
a systematically discovered sample of these objects is required
to better understand various binary interaction processes, such
as mass transfer, common-envelope evolution, and tidal interac-
tions. Furthermore, an algorithm that efficiently identifies vari-
able and non-variable subdwarfs from sparsely sampled data
with known amplitude biases offers a unique opportunity for
building observational instability strips. By increasing the num-
ber of known sdBVs, we can perform population-level astero-
seismic studies, similar to the work done for 8 Cep stars using
Gaia and TESS data (Fritzewski et al. 2024). This approach has
the potential to reveal new insights into the pulsation proper-
ties and interior structure of hot subdwarfs by leveraging multi-
colour photometry and observational amplitude ratios for mode
identifications.
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Spectroscopic follow-up observations, such as those with
the 4-metre Multi-Object Spectroscopic Telescope (4MOST,;
de Jong et al. 2019), the William Herschel Telescope Enhanced
Area Velocity Explorer (WEAVE; Jin et al. 2024), the Sloan
Digital Sky Survey V (SDSS-V; Kollmeier et al. 2019), and
the Large sky Area Multi-Object fiber Spectroscopic Telescope
(LAMOST; Cui et al. 2012) may deliver radial velocity data and
atmospheric parameters to confirm the physical nature of these
new variables (153 candidate hot subdwarf and 152 candidate
CVs), as well as the two new high-amplitude pulsating vari-
ables identified from Gaia. Other future prospects include pho-
tometric observations of the pulsating variables identified in this
work using BlackGEM (Groot et al. 2024) to obtain multi-band
pulsation amplitudes for mode identifications and asteroseismic
modelling. Additionally, the release of Gaia Data Release 4
(DR4), which will include all photometric data, offers a valuable
prospect for further exploration. When the complete photometric
dataset becomes available, this work can immediately be applied
to the remaining 59 471 objects, enabling a comprehensive anal-
ysis of variability across a wider range of sources.

Data availability

Tables A.4—A.10 are available at the CDS via anonymous ftp to
cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/693/A268
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Appendix A: Additional material

Table A.1. All 84 features used in the feature selection.

No.

Feature

Description

Selected features for the clustering analysis

OO0 N W~

T S
OOV NAEWN—O

[ASE\S NSRS N SN SRS
NN AW =

log_sigvar*
frac_period*

std*

fapG*

fapRP*

fapBP*

Period_G*
Period_BP*
period_RP*
amp_G*

amp_BP*
kurtosisG*

p99*

p95_100%*

n05*

psi_sigvar*

bp_rp ¢
range_mag_g_fov
abbe_mag_g_fov
iqr_mag_g_fov
mad_mag_g_fov
stetson_mag_g_fov
abbe_mag_bp
abbe_mag_rp
outlier_median_g_fov
skewness_mag_bp
std_dev_over_rms_err_mag_g_fov

Significance of variability in the G band in a log scale
Period over the standard deviation (std) of the three band Gaia lightcurve periods
Standard deviation of the G, BP, and RP periods
False alarm probability of the Lomb-Scargle dominant frequency peak (G band)
False alarm probability of the Lomb-Scargle dominant frequency peak (RP band)
False alarm probability of the Lomb-Scargle dominant frequency peak (BP band)
Derived period from the G-band lightcurve
Derived period in the BP-band lightcurve
Derived period in the RP-band lightcurve
Amplitude of variability in the G band (mag.)
Amplitude of variability in the BP band (mag.)
G-band kurtosis of the periodogram
99th percentile of all periodogram peaks based on the G-band lightcurves
95th percentile of the first 100 frequency peaks based on the G-band lightcurves
Number of peaks above 0.5 of the normalised ¥'— periodogram based on the G band
G-band median absolute deviation of the periodogram
BP-RP colour
The range of the G-band time series
The Abbe value of the G-band time series
The Interquartile Range (IQR) of the G-band time series
The Median Absolute Deviation (MAD) of the G-band time series
The single-band Stetson variability index
The Abbe value of the BP-band time series
The Abbe value of the RP-band time series
Greatest absolute deviation from the G median normalised by the error
The standardised unbiased unweighted skewness of the BP-band time series
S/N ratio G estimate

Excluded features in the feature selection processes

28
29
30
31
32

33
34

35

36
37

38
39
40
41
42

43
44
45
46
47
48
49
50
51
52

53
54
55

57
58
59
60
61
62
63
64
65
66
67

G_abs*

N_G*

N_BP*

N_RP*

amp_RP*

p90_100*

p99_100*
rmse_over_ptp_amp*

parallax {
parallax_error {
phot_g_mean_mag ¢t
phot_g_n_obs {
RUWE ¢
num_selected_g_fov
mean_obs_time_g_fov
time_duration_g_fov
min_mag_g_fov
max_mag_g_fov
mean_mag_g_fov
median_mag_g_fov
trimmed_range_mag_g_fov
std_dev_mag_g_fov
skewness_mag_g_fov
kurtosis_mag_g_fov
num_selected_bp
mean_obs_time_bp
time_duration_bp
min_mag_bp
max_mag_bp
mean_mag_bp
median_mag_bp
range_mag_bp
trimmed_range_mag_bp
std_dev_mag_bp
kurtosis_mag_bp
mad_mag_bp
iqr_mag_bp
stetson_mag_bp
std_dev_over_rms_err_mag_bp
outlier_median_bp

Gaia G absolute magnitude
Number of observations in the G band.
Number of observations in the BP band
Number of observations in the RP band.
Amplitude of variability in the RP band (mag.)
90th percentile of the first 100 frequency peaks
99th percentile of the first 100 frequency peaks

Root mean square error (RMSE) of the Lomb-Scargle model
fit over the peak-to-peak G amplitude
Gaia parallax
Gaia parallax error
G-band mean magnitude
Number of observation contributing to G photometry
Renormalised unit weight error
Total number of G FOV transits selected for variability analysis
Mean observation time for G observations

Time duration of the G time series
The minimum value of the G-band time series

The maximum value of the G-band time series
The mean of the G-band time series
The median of the G-band time series
Trimmed difference between the highest and lowest G-band time series
Square root of the unweighted G magnitude variance
The standardised unbiased unweighted skewness of the G-band time series
The standardised unbiased unweighted kurtosis of the G-band time series
Total number of BP observations selected for variability analysis

Mean observation time for BP observations
Time duration of the BP time series
The minimum value of the BP-band time series
The maximum value of the BP-band time series
The mean of the BP-band time series
The median of the BP-band time series
The range of the BP-band time series
Trimmed difference between the highest and lowest BP-band time series
Square root of the unweighted BP magnitude variance
The standardised unbiased unweighted kurtosis of the BP-band time series
The Median Absolute Deviation (MAD) of the BP-band time series
The Interquartile Range (IQR) of the BP-band time series
The single-band Stetson variability index
S/N ratio BP estimate
Greatest absolute deviation from the BP median normalised by the error

A268, page 11 of 15



Ranaivomanana, P., et al.: A&A, 693, A268 (2025)

Table A.1. continued.

No. Feature Description

68  num_selected_rp Total number of RP observations selected for variability analysis

69 mean_obs_time_rp Mean observation time for RP observations

70 time_duration_rp Time duration of the RP time series

71 min_mag_rp The minimum value of the RP-band time series

72 max_mag_rp The maximum value of the RP-band time series

73 mean_mag_rp The mean of the RP-band time series

74  median_mag_rp The median of the RP-band time series

75  range_mag_rp The range of the RP-band time series

76  trimmed_range_mag_rp Trimmed difference between the highest and lowest RP-band time series
77  std_dev_mag_rp Square root of the unweighted RP magnitude variance

78  skewness_mag_rp The standardised unbiased unweighted skewness of the RP-band time series
79  kurtosis_mag_rp The standardised unbiased unweighted kurtosis of the RP-band time series
80  mad_mag_rp The Median Absolute Deviation (MAD) of the RP-band time series

81 iqr_mag_rp The Interquartile Range (IQR) of the RP-band time series

82  stetson_mag_rp The single-band Stetson variability index

83  std_dev_over_rms_err_mag_rp S/N ratio RP estimate

84 outlier_median_rp Greatest absolute deviation from the RP median normalised by the error

Notes. Features marked with (*) were computed in this work, those with () are from the Gaia DR3 source database (Gaia Collaboration 2023),
while the rest were obtained from the Gaia variability summary table (Eyer et al. 2023). A full description of these Gaia statistics can be found in
the Gaia documentation here.

Table A.2. Feature ranking based on the manual labelling. (Eyer et al. 2023)

ID Feature Description
1 p95_100%* 95th percentile of the first 100 frequency peaks based on the G-band lightcurves
2 n05* Number of peaks above 0.5 of the normalised ¥ periodogram based on the G band
3 p99* 99th percentile of all periodogram peaks based on the G-band lightcurves
4  Period_G* Derived period from the G-band lightcurve
5  frac_period* Period over the standard deviation (std) of the three band Gaia lightcurve periods
6 fapG* False alarm probability of the Lomb-Scargle dominant frequency peak (G band)
7  psi_sigvar* G-band median absolute deviation of the periodogram
8  kurtosisG* G-band kurtosis of the periodogram
9 igr_mag_g_fov The Interquartile Range (IQR) of the G-band time series
10 std* Standard deviation of the G, BP, and RP periods
11 amp_G* Amplitude of variability in the G band (mag.)
12 log_sigvar* Significance of variability in the G band in a log scale
13 mad_mag_g fov The Median Absolute Deviation (MAD) of the G-band time series
14 range_mag_g_fov The range of the G-band time series
15 abbe_mag_bp The Abbe value of the BP-band time series
16 abbe_mag_rp The Abbe value of the RP-band time series
17  Period_RP* Derived period from the RP-band lightcurve
18 fapBP* False alarm probability of the Lomb-Scargle dominant frequency peak (BP band)
19 abbe_mag_g_fov The Abbe value of the G-band time series
20 stetson_mag_g_fov Stetson G FoV variability index
21  Period_BP* Derived period from the BP-band lightcurve
22 amp_BP* Amplitude of variability in the BP band(mag.)
23 fapRP* False alarm probability of the Lomb-Scargle dominant frequency peak (RP band)
24 std_dev_over_rms_err_mag_g fov S/N ratio G FoV estimate
25 bp_rpt BP — RP colour
26  outlier_median_g_fov The most outlying measurement with respect to the median
27  skewness_mag_bp The standardised unbiased unweighted skewness of the BP-band time series

Notes. Features marked with (*) were computed in this work, those with (f) are from the Gaia DR3 source database (Gaia Collaboration 2023),
while the rest were obtained from the Gaia variability summary table.
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Table A.3. Feature ranking based on the three cluster labels.

Feature

Description

amp_G*
range_mag_g_fov
igr_mag_g_fov

Amplitude of variability in the G band (mag.)
The range of the G-band time series
The Interquartile Range (IQR) of the G-band time series

ID

1

2

3

4 log_sigvar* Significance of variability in the G band in a log scale

5  stetson_mag_g_fov Stetson G FoV variability index

6  n05* Number of peaks above 0.5 of the normalised ¥ periodogram based on the G band
7  std_dev_over_rms_err_mag_g_fov S/N ratio G FoV estimate

8  p95_100* 95th percentile of the first 100 frequency peaks based on the G-band lightcurves
9 mad_mag_g fov The Median Absolute Deviation (MAD) of the G-band time series

10 bp_rpt BP — RP colour

11 outlier_median_g_fov The most outlying measurement with respect to the median

12 p99* 99th percentile of all periodogram peaks based on the G-band lightcurves

13 amp_BP* Amplitude of variability in the BP band(mag.)

14 Period_G* Derived period from the G-band lightcurve

15 abbe_mag_g_fov The Abbe value of the G-band time series

16  kurtosisG* G-band kurtosis of the periodogram

17  skewness_mag_bp The standardised unbiased unweighted skewness of the BP-band time series
18 abbe_mag_bp The Abbe value of the BP-band time series

19  psi_sigvar® G-band median absolute deviation of the periodogram

20 abbe_mag_rp The Abbe value of the RP-band time series

21  fapG* False alarm probability of the Lomb-Scargle dominant frequency peak (G band)
22 Period_RP* Derived period from the RP-band lightcurve

23 Period_BP* Derived period from the BP-band lightcurve

24 frac_period* Period over the standard deviation (std) of the three band Gaia lightcurve periods
25  std* Standard deviation of the G, BP, and RP periods

26 fapRP* False alarm probability of the Lomb-Scargle dominant frequency peak (RP band)
27 fapBP* False alarm probability of the Lomb-Scargle dominant frequency peak (BP band)

Notes

. Features marked with (*) were computed in this work, those with (1) are from the Gaia DR3 source database (Gaia Collaboration 2023),

while the rest were obtained from the Gaia variability summary table (Eyer et al. 2023).
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Gaia DR3 5787123360811371520
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Fig. A.1. Examples of periodograms and phase-folded light curves for each cluster. The top, middle, and bottom rows correspond to cluster 0,
cluster 1, and cluster 2, respectively.
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Fig. A.2. Random forest feature importance scores for the 27 features listed in Table A.3. The x-axis corresponds to the Feature ID in the table.
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Fig. A.3. Distribution of the feature medians for each cluster. The x-axis corresponds to the feature ID listed in Table A.3; The y-axis represents
the median (open marker), the 10th percentile (lower cap), and the 90th percentile (upper cap) of each feature after a z-score normalisation.
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