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Abstract—In task-based quantization, a multivariate analog

signal is transformed into a digital signal using a limited

number of low-resolution analog-to-digital converters (ADCs).

This process aims to minimize a fidelity criterion, which is

assessed against an unobserved task variable that is correlated

with the analog signal. The scenario models various applica-

tions of interest such as channel estimation, medical imaging

applications, and object localization. This work explores the in-

tegration of analog processing components—such as analog delay

elements, polynomial operators, and envelope detectors—prior to

ADC quantization. Specifically, four scenarios, involving different

collections of analog processing operators are considered: (i)

arbitrary polynomial operators with analog delay elements, (ii)

limited-degree polynomial operators, excluding delay elements,

(iii) sequences of envelope detectors, and (iv) a combination of

analog delay elements and linear combiners. For each scenario,

the minimum achievable distortion is quantified through deriva-

tion of computable expressions in various statistical settings. It

is shown that analog processing can significantly reduce the

distortion in task reconstruction. Numerical simulations in a

Gaussian example are provided to give further insights into the

aforementioned analog processing gains.

I. Introduction

Sensing, communication, and data compression systems uti-
lize analog-to-digital converters (ADCs) to transform observed
continuous-time analog signals into digital signals which can
then be efficiently processed, communicated, and stored [1]–
[12]. An ADC typically samples the signal at equally-spaced
time intervals, and the amplitude of each sample is sequen-
tially mapped onto a finite collection of quantization bins
via comparison with pre-determined thresholds. The number
of quantization bins is determined by the resolution of the
ADC, and is quantified in terms of its output bits, e.g., a
one-bit ADC has two quantization bins and its operation is
parameterized by a single ADC threshold. Increasing the ADC
resolution leads to reduced distortion. However, the ADC
power consumption grows exponentially in the number of
output bits. More precisely, in theory, the power consumption
of an ADC is proportional to fs2nq , where fs is the sampling
rate and nq is the number of output bits of the ADC [1], [13].
As an example, the power consumption of current commercial
high-speed (↑ 20 GSample/s), high-resolution (e.g., 8-12 bits)
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ADCs is around 500 mW per ADC [14]. This has led to
significant recent interest in the use of low-resolution ADCs
in data acquisition and processing systems and the design
of hardware architectures and algorithms which mitigate the
resulting loss in distortion due to coarse quantization.

Task-based quantization has emerged as a promising solu-
tion to mitigate the aforementioned rate-loss due to coarse
quantization using low resolution ADCs [5]–[9], [15]–[19].
The idea in task-based quantization is that the analog signal
observed by the system is often digitized to be processed
towards accomplishing a specific task, e.g., channel estimation,
object localization, or pattern recognition in medical imaging
[5], [20]–[22]. Consequently, the ADCs and their accompany-
ing analog processing circuits may be designed in a way to
extract the task-relevant bits of information from the analog
signal, while filtering out the irrelevant information through
the lossy quantization process. In other words, the analog pro-
cessing components and ADC thresholds are designed so that
the distortion between the task reconstruction and the ground-
truth task is minimized, rather than minimizing the distortion
between the original signal and its reconstruction in the digital
domain [5], [6], [23]. Consequently, performance gains in
task-based quantization are achieved by employing a hybrid
analog/digital (A/D) architecture and jointly designing the
analog pre-quantization mapping and digital post-quantization
mapping with respect to the underlying task.

Prior design frameworks for task-based quantization have
focused on linear processing in the analog domain. In this
work, we consider the use of non-linear analog processing
operators using implementable collections of analog compo-
nents — consisting of analog delay elements, polynomial
operators, and envelope detectors prior to ADC quantization
— to further mitigate the coarse quantization distortion loss
when using low resolution ADCs. This builds upon recent
works [10], [11], [24], where the design and implementation
of such circuit components for high frequency applications
was considered in the context of wireless communications.
It was shown that the power consumption of these analog
processing components is negligible compared to that of the
ADCs, hence justifying their application in such scenarios.
Particularly, we consider four scenarios using analog operators
consisting of: (i) arbitrary polynomial operators with analog
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delay elements, (ii) limited-degree polynomial operators, ex-
cluding delay elements, (iii) sequences of envelope detectors,
and (iv) a combination of analog delay elements and linear
combiners. In each scenario, we quantify the fundamental
performance limits, in terms of achievable distortion in task
reconstruction under general statistical assumptions on the task
statistics. Furthermore, given a fixed ADC power budget —
using a fixed number and resolution of ADCs — we show that
the resulting task-reconstruction distortion decreases compared
to the prior approach of using linear analog processing.
Notation: The set {1, 2, · · · , n}, n ↓ N is represented by [n]. The
vector (x1, x2, . . . , xn) is written as x(1:n) and x

n, interchange-
ably. The ith element is written as x(i) and xi, interchangeably.
An n ↔m matrix is written as h(1:n, 1:m) = [hi, j]i, j↓[n]↔[m]. Sets
are denoted by calligraphic letters such as X.

II. Problem Formulation
The task-based quantization setting considered in this work

is shown in Figure 1. In the following, we describe the general
problem formulation, and provide examples in the context of
channel estimation as a motivating application.
Task vector: The (unobserved) sequence of task vectors
S

n↔ω = (S n(1), S n(2), · · · , S n(ω)) are independently and identi-
cally distributed according to an underlying probability distri-
bution PS n (·) defined on Rn↔ω, where n ↓ N is the dimension of
the task vector and ω ↓ N is the blocklength. The vector S

n( j)
is the task vector at time j, j ↓ [ω]. The objective in task-
based quantization is to produce an accurate reconstruction
of the task vector based on a sequence of coarsely quantized
indirect observations. As an example, in the context of chan-
nel estimation, the task vector S

n( j) represents the channel
coefficient matrix at time j, and the objective is to produce an
accurate channel estimate via indirect observations acquired
by sending a sequence of pilot signals over the channel.
Measurement Vector: The (observed) sequence of mea-
surements is a sequence of real-valued vectors X

m↔ω =
(Xm(1), Xm(2), · · · , Xm(ω), where m ↓ N. Each X

m( j), j ↓ [ω]
is produced conditioned on the realization of the task-vector
s

n( j) according to the conditional distribution PXm |S n (·|sn( j)).
For instance, in the context of channel estimation, the mea-
surement vector at time j models the analog channel output
when a pilot signal is sent over the channel.
Analog Processing Functions: The measurement vectors
X

m↔ω are fed sequentially to a collection of analog processing
functions f

(a)
i, j : Rm↔ j ↗ R, i ↓ [nq], j ↓ [ω], where nq ↓ N, and

the choice of f
(a)
i, j , i ↓ [nq], j ↓ [ω] is restricted by the limita-

tions of the analog circuit design as discussed in the sequel.
In general, we assume that the analog processing functions at
time j are chosen from a set Fa, j of implementable analog

functions. The output of the analog processing functions is
denoted by W

nq↔ω, where Wi, j ↭ f
(a)
i, j (Xm↔i), i ↓ [nq], j ↓ [ω],

f
(a)
i, j ↓ Fa, j, and nq ↓ N. Note that in the general scenario

described here, Wi, j may casually depend on the past real-
izations of the measurement vector. The analog processing
functions may consist of linear combiners, delay elements,
non-linear operators such as low degree polynomial operators,

and envelope detectors [5], [10], [25], [26]. For a fixed number
and resolution of ADCs, our objective is to quantify the gains
due to the use of each of the aforementioned classes of non-
linear analog processing functions, in terms of achievable
distortion, in comparison with linear analog processing.
ADC Module. At time j ↓ [ω], the processed signal vector
W

nq ( j) is fed to a set of nq ADCs each with ε ↓ N output
levels. The quantization output is defined as Ŵ

nq ( j), where

Ŵ( j, k) = k ↘≃ W( j, i) ↓ [t j(i, k), t j(i, k + 1)], (1)

k ↓ [0, ε ⇐ 1], i ↓ [nq], and we have defined t j(i, 0) ↭ ⇐⇒
and t j(i, ε) ↭ ⇒. We call t

nq↔(ε)
j

the threshold matrix at time
j. Ŵ( j, i) is called the quantization output of the ε-level ADC
with thresholds t

nq

j
(i) for input Wj(i).

Digital Processing Function: A digital processing function
fd : Rnq↔ω ↗ Rn↔ω acts on the sequence of quantized vectors
Ŵ

nq↔ω to produce the task reconstruction Ŝ
n↔ω. There are no

restrictions on the choice of the digital processing function.
Distortion Function: Given d : Rn ↔ Rn ↗ R+, the ω-shot
distortion is defined as:

dω ↭
1
ω

ω∑

j=1

ES n↔ω ,Xm↔ω (d(S n( j), Ŝ n( j))).

In summary, a task-based quantization setup is characterized
by the tuple (n,m, PS n , PXm |S n , (Fa, j) j↓N, nq, ε, d(·, ·)).

Given a collection of analog processing functions
( f

(a)
i, j )i↓[nq], j↓[ω] and thresholds t

nq↔ε
j
, j ↓ [ω], the digital process-

ing function minimizing distortion is given by:
f
→
d
= arg min

fd :Rnq↔ω↗Rn↔ω
ES n↔ω ,Xm↔ω (d( fd(Wnq↔ω), S n↔ω)).

For instance, if d(·, ·) is the square error distortion function,
then by the orthogonality principle, we have f

→
d

(Wnq↔ω) =
E(S n↔ω |Wnq↔ω). Since there are no restrictions on the choice
of the digital processing functions, in the sequel, we always
assume that the optimal digital processing function is used
for reconstruction, i.e., Ŝ

n↔ω = f
→
d

(Wnq↔ω). Consequently, we
focus on the optimization problem for the choice of analog
processing functions and quantization thresholds.
System Objective: The objective in task-based quantization
is to find the optimal choice of system parameters which
minimize the achievable distortion given a fixed number and
resolution of ADCs and a fixed collection of implementable
analog processing functions Fa, j, j ↓ N, To elaborate, the
minimum ω-shot achievable distortion is defined as:

d
→
ω ↭ min

( f
(a)
i, j )i↓[nq], j↓[ω]↓Fa, j

t
nq↔ε
j
↓Rnq↔ε

1
ω

ω∑

j=1

ES n↔ω ,Xm↔ω (d(S n( j), Ŝ n( j))). (2)

The collection of functions ( f
(a)
i, j )i↓[nq], j↓[ω] and thresholds

t
nq↔ε
j
, j ↓ [ω] minimizing (2) are called the ω-shot optimal

functions and thresholds, respectively. Our objective is to
characterize d

→
ω and the corresponding processing functions and

thresholds.
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Fig. 1. The task-based quantization setup.

III. An Illustrative Gaussian Example

In order to motivate the use of non-linear processing prior
to quantization, in this section, we focus on a simple Gaussian
example, and provide an intuitive justification of the perfor-
mance gains due to using non-linear processing over linear
processing. In the subsequent sections, we build upon the
intuition provided by this example, and study the fundamental
performance limits of the general task-based quantization
problem using various classes of non-linear analog processing
functions. Section V numerically evaluates the achievable
distortion in each of the scenarios considered in this section.

Let us take n = m = 1, and let the task be characterized
by a zero-mean, unit variance, Gaussian random variable, i.e.,
S ⇑ N(0, 1). Additionally, let us assume that the measurement
vector is produced by passing the task through a Gaussian
additive channel, i.e., X = S +N,N ⇑ N(0,ϑ2

N
), where ϑN ↓ R

and S and N are independent of each other. Furthermore, let
the quantization system be equipped by two one-bit ADCs, i.e.,
nq = ε = 2. Finally, we take d(s, s⇓) = (s ⇐ s

⇓)2 as the square
distortion. We consider four scenarios, and find the minimum
achievable distortion in each case.

1) Scenario 1. Linear Analog Processing: In this scenario,
we restrict fa : R ↗ R to affine transformations, i.e., Fa, j =
{ fa| fa(x) = bx+c, b, c ↓ R}, j ↓ [ω]. It is straightforward to see,
using the orthogonality principle, that the minimum one-shot
achievable distortion is given by:

d
→
1,lin = min

ϖ1,ϖ2:ϖ1<ϖ2
ES ,N((S ⇐ Ŝ )2), (3)

where Ŝ ↭ E(S |X̂ϖ1,ϖ2 ) and X̂ϖ1,ϖ2 is the quantization output of
a three-level ADC with thresholds (⇐⇒, ϖ1, ϖ2,⇒) for input X

(see Equation (1)).
2) Scenario 2. Quadratic Analog Operators: In this sce-

nario, we choose fa : R ↗ R from the set of all quadratic
functions, i.e., Fa, j = { f : R↗ R| f (x) = ax

2 + bx + c, a, b, c ↓
R}, j ↓ [ω]. Let ϖ1 ⇔ ϖ2 ⇔ ϖ3 be arbitrarily chosen real
numbers. Define f1(x) = (x ⇐ ϖ1)(x ⇐ ϖ3) and f2(x) = (x ⇐ ϖ2).
In this case, W1 = (X ⇐ ϖ1)(X ⇐ ϖ3) and W2 = X ⇐ ϖ2 are
the ADC inputs. We set the ADC thresholds to zero, so that
Ŵ1 = (X ↓ [ϖ1, ϖ3]) and Ŵ2 = (X ↓ [ϖ2,⇒]). Thus,
receiving Ŵ1 and Ŵ2 is equivalent to receiving the quantization

output for quantizing X with a four-level ADC with thresholds
ϖ1, ϖ2, ϖ3. Consequently,

d
→
1,quad

= min
ϖ1,ϖ2,ϖ3:ϖ1<ϖ2<ϖ3

ES ,N((S ⇐ Ŝ )2), (4)

where Ŝ = E(S |X̂ϖ1,ϖ2,ϖ3 ) and X̂ϖ1,ϖ2,ϖ3 is the quantization output
of a four-level ADC with thresholds (⇐⇒, ϖ1, ϖ2, ϖ3,⇒) for
input X. Note that this is an improvement over the achievable
distortion of Scenario 1. In fact, to achieve d

→
1,quad

using
linear analog processing, one needs to use three one-bit ADCs
instead of two one-bit ADCs, thus requiring a fifty percent
increase in ADC power consumption.

3) Scenario 3. Envelope Detectors: In this scenario, we
assume the quantization system is equipped with envelope
detectors, which can perform absolute value operations on the
analog signal. Let ϖ1 ⇔ ϖ2 ⇔ ϖ3 be arbitrarily chosen real
numbers. Define f1(x) = |x⇐ ϖ1+ϖ3

2 | and f2(x) = x. Furthermore,
let the ADC thresholds be t1 =

ϖ3⇐ϖ1
2 and t2 = ϖ2. Then,

Ŵ1 = (|X ⇐ ϖ1 + ϖ3

2
| < ϖ3 ⇐ ϖ1

2
) = (X ↓ [ϖ1, ϖ3]),

Ŵ2 = (X > ϖ2).

Consequently, the achievable distortion is equal to that of
Scenario 2, and improves the distortion in Scenario 1. In
general the use of polynomial operators (Scenario 2) leads
to lower achievable distortion compared to envelope detectors
(Scenario 3), however the circuit design of envelope detectors
is more straightforward than that of polynomial operators [24],
hence there is a trade-off between design complexity and
achievable distortion between these two scenarios.

It can be noted that in Scenarios 1-3, since fa is memoryless,
and its output at time j only depends on the input at time j, the
minimum ω-shot achievable distortion is equal to the minimum
one-shot achievable distortion for all ω ↓ N.

4) Scenario 4. Analog Delay Elements: In this scenario,
we consider the use of analog delay elements, which allows
for causal memory in the analog processing functions. That
is, we consider a processing function at time j ↓ N which is
an affine function of the form fa, j : R j ↗ R and fa, j takes
X

m↔ j as input. The two-shot minimum achievable distortion is
given by:

d
→
2,delay

= min
ϖ1,ϖ2,ϖ3,ϖ4,a1,a2

1
2

2∑

j=1

E((S j ⇐ Ŝ j)2), (5)
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where Ŝ j = ES j |X1,X2 (S j|X̂1, X̂2) and X̂1 is the quantization
output of a three-level ADC with thresholds (⇐⇒, ϖ1, ϖ2,⇒)
for input X1 and X̂2 is the quantization output of a three-level
ADC with thresholds (⇐⇒, ϖ3, ϖ4,⇒) for input a1X1 + a2X2.
It should be noted that the optimization in this scenario is
over a larger search space compared to that of Scenario 1,
as it allows for two-dimensional quantization, in the (X1, X2)
space rather than only the X2 space, in the second time-slot.
The optimization reduces to that of Scenario 1 by restricting
to a1 = 0, a2 = 1. This achievable distortion is numerically
evaluated in Section V. We show that in this simple scenario,
the gains due to the additional delay element are negligible
compared to Scenario 1. However, if the use of delay elements
is further augmented by analog polynomial operators, then we
achieve significant gains over the previous three scenarios.

IV. Fundamental Performance Limits in Task-Based
Quantization

A. Finite-degree Polynomial Operators and Delay Elements

We consider a setup equipped with finite-degree polyno-
mial operators with delay elements. That is, we consider the
following set of implementable functions:

F t

a, j = { f (·)| f (x
m↔ j) =

∑

(ku,v,u↓[m],v↓[ j]):∑
u,v ku,v⇔t

bkm↔ j

∏

v↓[m],u↓[ j]

x
ku,v , bkm↔ j ↓ R},

Fa, j = ↖t↓NF t

a, j, j ↓ N.

Theorem 1. Consider a task-based quantization setup

parametrized by (n,m, PS n , PXm |S n , (Fa, j) j↓N, nq, ε, d(·, ·)) as de-

scribed in the prequel. Assume that there exists s ↓ Rm

such that E(d(S m, s)) ⇔ ⇒. The minimum achievable ω-shot

distortion for asymptotically large ω is given by:

lim
ω↗⇒

d
→
ω = min

P
Ŝ m |Xn :I(Xn;Ŝ m)⇔nq

ES ,X(d(S n, Ŝ n)), (6)

where P
S m,Xn,Ŝ m ↭ PS m,Xn P

Ŝ m |Xn , i.e., the Markov chain S
n ↙

X
m ↙ Ŝ

n
holds.

The distortion is then equal to the indirect distortion-rate
function (iDRF) evaluated at compression rate nq bits per input
symbol. The proof follows by noting that using the multivari-
ate Taylor expansion, any quantizer used for indirect source
coding can be well-approximated, with arbitrary precision,
using a finite-degree polynomial. Consequently, the optimal
quantization scheme achieving the iDRF can be implemented
using the analog processing functions, and its output (bits) can
be passed through the ADCs without any further modification
on the digital side. That is, the analog processing function
is chosen such that its output is equal to that of the optimal
compression function in the equivalent indirect source coding
problem. Note that the output of the optimal compression
function is binary, hence by setting the ADC thresholds equal
to 1

2 , the binary analog processing outputs are recovered
without further distortion on the digital side. The complete
proof is given in [27].

B. Memoryless Finite-degree Polynomial Operators

Implementing large analog delay elements may not be
practically possible due to synchronization and chip space
limitation issues. In this section, we consider a task-based
quantization setup equipped with finite-degree polynomial
operators without delay elements:

F t

a, j = { f (·)| f (x
m) =

∑

(ku,u↓[m]):∑
u ku⇔t

bkm

∏

v↓[m]

x
ku , bkm ↓ R}, j ↓ N.

Note that this can be considered as the one-shot version of the
scenario considered in Section IV-A.

Theorem 2. Consider a task-based quantization setup param-

eterized by (n,m, PS n , PXm |S n , (Fa, j) j↓N, nq, ε, d(·, ·)). The mini-

mum achievable distortion is given by:

d
→
ω = min

f :Rm↗[εnq ]
g:[εnq ]↗Rn

ES ,X(d(S n, Ŝ n)), (7)

for all ω ↓ N, where Ŝ ↭ g( f (X))).

The proof follows by similar arguments as that of Theorem
1. We provide an outline in the following. We first note that
since the system is not equipped with delay elements, the
reconstruction at time j only depends on the input at time
j. Consequently, the ω-shot minimum achievable distortion is
the same for all values of ω ↓ N. Hence, it suffices to consider
the one-shot distortion. Furthermore, the ADCs can produce at
most εnq Voronoi regions, which implies that the right-hand-
side term in (7) is a lower-bound for the achievable distortion.
On the other hand, similar to the proof of Theorem 1, using the
multi-variate version of Taylor’s approximation, any quantizer
with εnq Voronoi regions can be constructed using finite-degree
polynomials and nq ADCs each with ε quantization levels. This
implies that the right-hand-side term in (7) is an upper-bound
for the achievable distortion.

C. Low-Degree Polynomials without Delay Elements

It is shown in [10], [24], that although the power consump-
tion of low-degree polynomial operators such as quadratic
operators may be significantly smaller than that of ADC
components, the power consumption grows with polynomial
degree, and becomes significant for high-degree polynomials.
As a result, in this section we focus on the use of low degree
polynomial operators with no delay elements. To derive com-
putable, closed-form expressions for the achievable distortion,
we focus on the scalar measurements and one-bit ADCs, i.e.,
m = 1, ε = 2. We consider the set of implementable analog
functions F ϱ

a, j = { f (·)| f (x) =
∑ϱ

i=0 aix
i, ai ↓ R}, where ϱ ↓ N is

the maximum polynomial degree. The following characterizes
the minimum achievable distortion in this scenario.

Theorem 3. Consider a task-based quantization setup pa-

rameterized by (n, 1, PS n , PXm |S n , (F ϱ
a, j) j↓N, nq, 2, d(·, ·)) as de-

scribed in the prequel. Then,

d
→
ω = min

(ϖi)i↓[Γ]
g:[Γ+1]↗Rn

ES ,X(d(S n, g(X̂))),
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where X̂ is the quantization output of a (Γ+1)-level ADC with

thresholds (⇐⇒, ϖ1, ϖ2, · · · , ϖΓ,⇒) and input X, and

Γ ↭ min(2nq ,Γ⇓) Γ⇓ ↭




nqϱ + 1 if ϱ is odd,

nqϱ otherwise
.

Note that since the polynomial operators may have a con-
stant non-zero bias, we may assume without loss of generality
that the ADCs have zero thresholds, and incorporate the
thresholds into the polynomial bias. Then, the proof of the
theorem follows by noting that the output of the ADC changes
at the roots of the polynomial operator. Each polynomial
operator of degree ϱ has at most ϱ distinct roots, and since there
are nq operators, they may have at most ϱnq different roots.
On the other hand, for even-degree polynomials, the value
for asymptotically large negative and positive inputs are the
same, hence the ADC output is equal for both. Consequently,
there are at most Γ⇓ different quantization Voronoi regions as
a result of the ADC operation. The complete proof is provided
in [27]. It should be noted that the result may be generalized
to ε > 2 by using Proposition 4 in [24] to characterize the
Voronoi regions.

D. Envelope Detectors without Delay elements

As shown in the circuit design and simulations of [24],
implementing envelope detectors to produce absolute value
functions is less costly in terms of circuit design complexity
and power consumption, compared to polynomial operators.
Consequently, in this section, we consider

F ϱ
a, j = { f (y) = As(x, bs), x ↓ R|s ↓ [ϱ], as ↓ Rs}, ϱ ↓ N,

where A1(x, b) ↭ |x ⇐ b|, x, b ↓ R and As(x, bs) ↭
A1(As⇐1(x, bs⇐1), bs) = |As⇐1(x, bs⇐1) ⇐ bs|, s ↓ N. That is,
F ϱ

a, j consists of all functions which can be generated using
sequences of s ⇔ ϱ concatenated envelope detectors with
thresholds b1, b2, · · · , bs, respectively.

Definition 1 (Fully-Symmetric Vector). A vector b =
(b1, b2, · · · , b2n ) is called symmetric if bi + b2n⇐i = b j +
b2n⇐ j, i, j ↓ [2n ⇐ 1]. The vector b is called fully-symmetric

if it is symmetric and the vectors (b1, b2, · · · , b2n⇐1 ) and

(b2n⇐1+1, b2n⇐1+2, · · · , b2n ) are both fully-symmetric for n > 2
and symmetric for n = 2.

Theorem 4. Consider a task-based quantization setup pa-

rameterized by (n, 1, PS n , PXm |S n , (F ϱ
a, j) j↓N, nq, 2, d(·, ·)) as de-

scribed in the prequel. Then,

d
→
ω = min

(ϖi)i↓[Γ]↓S
g:[Γ+1]↗Rn

ES ,X(d(S n, g(X̂))),

where Γ ↭ min(2nq , nq2ϱ), and S consists of the set of all

vectors of length nq2ϱ, which can be partitioned into nq fully-

symmetric subvectors, each of length 2ϱ.

The proof follows by similar arguments as that of Theorem
3 and [24, Proposition 5].

Fig. 2. Comparison of MSE distortion for linear and nonlinear analog
processing with and without analog delay elements for a jointly Gaussian
scalar task S and measurement X, with nq = ε = 2.

V. Simulation Results
Let us consider the task-based quantization setup considered

in Section III. Figure 2 provides a numerical evaluation of the
achievable distortion in this setup under each of the scenar-
ios considered in Section IV. The linear analog processing
plot (red square markers) shows the achievable distortion
when only linear analog processing is used without delay
element, and it serves as a baseline for the other schemes.
It is derived by evaluating Equation (3) and sweeping over
all possible values of ϖ1, ϖ2 with step-size 0.01. The linear
processing with delay elements plot (blue triangle markers)
is derived by evaluating Equation (5) by sweeping over
values of ϖ1, ϖ2, ϖ3, ϖ4, a1, a2. It can be observed that in this
simple scenario, the use of a single delay element while
restricting to linear processing does not lead to a tangible
performance improvement. The non-linear analog processing
plot (orange circle markers) shows the achievable performance
when quadratic polynomial operators are used without delay
elements. It is derived by optimizing Equation (4). It can
be observed that the use of quadratic operators improves the
achievable distortion over the baseline. Lastly, the non-linear
analog processing with delay elements plot (green triangle
markers) shows the performance when polynomial operators
with arbitrary degree and arbitrary number of delay elements
can be used. It is derived by optimizing Equation (6). This
serves as an outer-bound for the achievable distortion in
the previously mentioned scenarios as it considers the most
general subset of implementable analog functions.

VI. Conclusions
The use of non-linear analog processing prior to quantiza-

tion using low resolution ADCs in the task based quantization
problem was studied. Several classes of non-linear analog
processors were considered including analog delay elements,
polynomial operators, and envelope detectors. In each sce-
nario, the minimum achievable distortion was characterized
and it was shown that the use of non-linear processing im-
proves the achievable distortion. Simulations of a Gaussian
task-based quantization setup were provided to illustrate these
gains.
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