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ABSTRACT

Electronic phenotyping is a fundamental task that identifies the special group of patients, which plays an
important role in precision medicine in the era of digital health. Phenotyping provides real-world evidence for
other related biomedical research and clinical tasks, e.g., disease diagnosis, drug development, and clinical trials,
etc. With the development of electronic health records, the performance of electronic phenotyping has been
significantly boosted by advanced machine learning techniques. In the healthcare domain, precision and fairness
are both essential aspects that should be taken into consideration. However, most related efforts are put into
designing phenotyping models with higher accuracy. Few attention is put on the fairness perspective of phe-
notyping. The neglection of bias in phenotyping leads to subgroups of patients being underrepresented which
will further affect the following healthcare activities such as patient recruitment in clinical trials. In this work, we
are motivated to bridge this gap through a comprehensive experimental study to identify the bias existing in
electronic phenotyping models and evaluate the widely-used debiasing methods’ performance on these models.
We choose pneumonia and sepsis as our phenotyping target diseases. We benchmark 9 kinds of electronic
phenotyping methods spanning from rule-based to data-driven methods. Meanwhile, we evaluate the perfor-
mance of the 5 bias mitigation strategies covering pre-processing, in-processing, and post-processing. Through
the extensive experiments, we summarize several insightful findings from the bias identified in the phenotyping
and key points of the bias mitigation strategies in phenotyping.

1. Introduction

and artificial intelligence techniques [6]. As a result, electronic pheno-
typing methods have consistently demonstrated their prowess, exhibit-

Phenotyping stands as a cornerstone in the realm of biomedical
research, serving as the linchpin that enables medical practitioners to
accurately pinpoint diseases [1,2], facilitates the acceleration of drug
development [3], and plays a pivotal role in the meticulous design of
clinical trials [4]. Its foundational significance reverberates throughout
the entire healthcare ecosystem, fundamentally shaping the trajectory of
patient care, research advancements, and medical innovation as illus-
trated in Fig. 1(b).

Riding the wave of progress in electronic health records within the
biomedical domain [5], the landscape of phenotyping has undergone a
remarkable transformation, driven by the integration of cutting-edge
computational methodologies, including advanced statistical analyses
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ing exceptional precision and efficiency across a multitude of scenarios
[7]. This evolution heralds a new era in healthcare, one where data-
driven insights are poised to revolutionize medical diagnosis and
treatment.

However, bias is an inevitable factor in computational-based phe-
notyping methods, and its implications extend to various biomedical
activities, including clinical trial design [4]. Bias in phenotyping in-
dicates the phenotyping results were affected by the sensitive attributes
like gender, race, ethnicity, etc. The most common of phenotyping bias
is some subgroups were underrepresented by the phenotyping method.
For example, less patients may be diagnosed with a specific disease than
the ground truth. In this work, we will focus on the group bias which
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Fig. 1. Overview of the identification and mitigation of the bias in electronic phenotyping.

indicates the bias between different patient subgroups to make our
contribution focused. For instance, when minority groups are under-
represented in the phenotyping process, this bias carries over to clinical
trials during patient recruitment [8]. Addressing bias in electronic
phenotyping poses a dual challenge for several reasons. Firstly, identi-
fying bias from a computational standpoint is complex, as it often
originates from two primary sources: data bias and model bias. Sec-
ondly, mitigating bias in electronic phenotyping and selecting appro-
priate debiasing techniques for different phenotype applications require
careful consideration.

We are, therefore, highly motivated to embark on an extensive
investigation aimed at identifying and mitigating biases within the
realm of electronic phenotyping. This comprehensive study will
encompass a meticulous review of prevalent electronic phenotyping
methodologies, diligently scrutinizing the inherent biases within these
approaches. Subsequently, we will delve into the computational aspects
of bias identification and mitigation. Our research will encompass
practical experiments designed to assess both the prevailing biases
within existing electronic phenotyping algorithms and the efficacy of
widely employed debiasing techniques. In addition, we present pivotal
insights derived from our extensive experimentation. These findings
encapsulate valuable knowledge and discoveries that shed light on the
intricacies of electronic phenotyping and bias mitigation. By undertak-
ing this multifaceted examination, we aim to pave the way for more
equitable and unbiased electronic phenotyping practices. The contri-
butions of this work can be succinctly summarized in three key aspects
as follows:

e We benchmark and analyze the bias of 9 commonly used pheno-
typing models from the computational perspective.

e We evaluate 5 machine learning-based debiasing strategies for the
phenotyping models. We analyze the advantages and disadvantages
of each category debiasing strategy.

e We conduct extensive experiments to identify and mitigate the bias
on pneumonia and sepsis phenotyping tasks and summarize
insightful key findings from the experimental results.

2. Backgroundd

Electronic phenotyping can identify the patients with a specific dis-
ease, which has wide applications in disease diagnosis, treatment
recommendation, clinical trial, etc as shown in Fig. 1(a). In this section,
we embark on a comprehensive exploration of prevalent electronic
phenotyping methods, classifying them for clarity and context. Subse-
quently, we delve into an insightful discussion on the latent biases that
can emerge within these methods, dissecting them from both the data
and model perspectives.

2.1. Phenotyping methods

We categorize the electronic phenotyping methods into 4 categories,
which are rule-based, traditional machine learning, neural network, and
tensor factorization as shown in Fig. 1(b).

Rule-based Method: Rule-based method is one of the most funda-
mental and widely applied phenotyping techniques [9,10]. The core
idea is to heuristically identify the phenotypes from electronic health
records by the expert-defined rules. The widely adopted rule-based
methods benefit from the characteristics of interpretability, simplicity,
and ease of implementation. PheKB [9] is a public rule-based pheno-
typing algorithm that is widely used. However, due to the human-
defined rules are usually limited to some specific scenarios, they are
hard to adapt to different disease or patient distributions. For example,
Kho at al. [11] designed a phenotyping method specialized for type II
diabetes.

Traditional Machine Learning: The main kinds of traditional ma-
chine learning include logistic regression (LR) [12], tree-based methods
[13,14], and SVM [15]. These methods don’t require large amounts of
data in the training stage. Feature engineering [16] is an essential step
for these methods to achieve competitive performance which will also
require domain expertise. While traditional machine learning has found
applications in various disease phenotyping tasks [17,18], Li et al.
introduced Xrare [19], which leverages Gradient Boosting Decision
Trees (GBDT) for diagnosing rare diseases from genetics and phenotypic
data. Tensor factorization stands out as another prominent computa-
tional phenotyping method [31,32]. Ho et al. [31] propose Limestone to
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generate patients’ phenotypes without supervision. Afshar et al.
designed a framework TASTE [32] for the temporal EHR data. Tensor
factorization has the ability to break down high-dimensional patient
data into more manageable low-dimensional vectors, which can then
serve as phenotypes for various downstream tasks. Nonetheless, these
methods still have limitations that impact their performance and
adaptability. For instance, SVM is tailored for binary classification,
rendering it impractical for multiclass phenotyping. LR is sensitive to
outlier data [20], which is very common in EHR [21], and the tree-based
model needs laborious hyper-parameter tuning for a stable performance
[22].

Neural Network: With the increasing availability of electronic
health records [23], neural networks have garnered significant attention
in the healthcare domain due to their outstanding performance [24].
Their robust performance is primarily attributed to large-scale training
data. Furthermore, the diverse architectures of neural networks facili-
tate seamless adaptation to various tasks; for instance, RNN-based net-
works effectively process temporal EHR data [25], while Transformer-
based models excel in clinical text analysis [26]. However, their
inherent black-box nature [27] poses a challenge in real-world appli-
cations [28,29]. Additionally, the scarcity of data in certain rare disease
phenotyping tasks may render direct application of neural networks
unfeasible [30].

Given the strengths and weaknesses of these electronic phenotyping
methods, the selection of the most suitable approach should be tailored
to the specific task and application context.

2.2. Bias in phenotyping

We conduct a comprehensive analysis of bias in electronic pheno-
typing, examining it from both data and model perspectives as presented
in Fig. 1(c). Bias in phenotyping becomes evident when we observe
variations in the method’s performance across different subgroups
defined by sensitive attributes like gender, race, and other factors. The
origins of potential bias and their impact on phenotype outcomes will be
discussed in greater detail below.

Data-level bias: The EHR data encompasses a diverse range of
sources, including lab tests, diagnosis codes, treatment codes, and more.
Given that electronic phenotyping methods heavily rely on data, any
bias within the data significantly impacts the phenotyping outcomes. We
categorize data bias into two main types: human decision bias and pa-
tient distribution bias as shown in Fig. 1 (¢). Human decision bias arises
from clinical judgments, where certain records, such as diagnoses [33]
and treatments [34], may exhibit biases due to human clinical decisions.
For instance, phenotype rules crafted by humans may inadvertently
underrepresent certain subgroups [33]. On the other hand, patient dis-
tribution bias indicates an imbalance in patient representation due to
disparities in cohort selection procedures. This can occur when minority
patient groups are underrepresented, possibly stemming from limited
access to the healthcare system [35]. It’s crucial to recognize that biases
at the data level inevitably permeate into the models trained on such
data [36].

Model-level bias: The bias in the phenotyping model will also affect
the phenotype fairness. As described in Section 2.1, the bias can be
summarized into two categories. The first one is the bias in human-
defined rules, which usually exists in some heuristic phenotyping
methods like the rule-based method [33]. The second one is algorithm
bias which commonly exists in artificial intelligence methods as shown
in Fig. 1(c). The artificial intelligence algorithm will be trained toward
optimal prediction accuracy while sacrificing fairness [37,38]. There
will be prediction disparities between different subgroups, e.g., some
subgroups will have more positive predictions, the accuracy will also be
higher on some subgroups, etc [39].

The presence of bias in electronic phenotyping can lead to unfair
treatment of certain patient subgroups. Moreover, the patient cohorts
derived from phenotyping may introduce bias into subsequent
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Table 1
Statistical summary of MIMIC-III database.
# # # # ICD #
Patients Healthy Diagnoses codes Medications
MIMIC-III 38699 7821 15692 5435 1339918
Pneumonia 1419 1419 \ 1606 954
Sepsis 1096 1096 \ 1513 892

processes, such as the recruitment of patients for clinical trials.
Addressing bias in phenotyping, both at the data and model levels,
represents an ongoing challenge and an area for further research.

2.3. Bias mitigation strategies

The methods for mitigating bias can be classified into three cate-
gories: pre-processing, in-processing, and post-processing [39]. These
approaches are implemented at various stages within the electronic
phenotyping pipeline as demonstrated in Fig. 1(d).

Pre-processing strategy: Pre-processing method [40,41] aims to
remove the bias-related information in the input data. There are two
kinds of input bias-related information. The first one is sensitive features
(explicit bias information) such as gender and race for which we can
directly remove them. This category of method is a naive method to
reduce the bias in the field of fair machine learning. Due to the implicit
bias existing in other features, directly removing the sensitive attributes
cannot usually effectively reduce the bias [59]. In this paper, this
method will be used as a baseline method for comparison and evalua-
tion. The second one is implicit bias [42,43]. For example, the zip code is
not a sensitive attribute but may be related to the race population.
Moreover, we can resample the subgroups in the training data or re-
weight each sample to mitigate the bias in training [40].

In-processing strategy: In-processing method focuses on the model
training part. The in-processing method will guide the model to be
trained for unbiased predictions by adding fairness-related constraints
or regularization. This kind of method is the most commonly used one in
the machine learning community because of its flexibility and general-
izability for different scenarios and settings. One kind of in-processing
method is adding regularization, e.g., neural network local interpreta-
tion during the training stage [44,45]. Another main category of the
method is adversarial learning, which will train a model for prediction
and another model for adversarial classification [43,46].

Post-processing strategy: The post-processing method directly
processes the model outputs to force the outputs to be less biased. This
method can be widely applied to various kinds of methods but it needs
the patients’ sensitive attributes which may be unavailable due to the
private issue [47,48].

3. Datasets and methods
3.1. Datasets and tasks

Pneumonia and sepsis phenotype. We use the widely applied
MIMICIII [49,50] as the dataset for the following experiments in this
work. Based on the MIMIC-III, we choose pneumonia and sepsis as our
target phenotyping diseases because of their significant importance
[51,52].

Cohort selection. We select the target patient cohort based on
their’ DIAGNOSIS” feature in the”ADMISSIONS” file. We filter out 1419
patients diagnosed with pneumonia and 1096 patients diagnosed with
sepsis as shown in Table 1. For the negative patients, we randomly
sampled the same number as the positive patients from the neonatal
patients in MIMIC-III.

Data processing. We extract the diagnostic codes and drug names
from the patients’ histories. We follow the data preprocessing proced-
ures in TASTE framework [32] (TASTE framework is a recent state-of-
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the-art electronic phenotyping algorithm, which can be applied to
electronic health records.) to group these ICD-9 codes and medical
names into higher-level categories to avoid the potential data leakage
issue in the following model training. We will first convert the ICD-9
codes to the ICD-10 codes and respectively use the Clinical Classifica-
tion Software (CCS) system and the Anatomical Therapeutic Chemical
(ATC) classification system to transfer ICD codes and drug names into
more general classifications. The large number of features from ICD
codes and medications has been reduced discernibly to CCS and ATC
codes. For pneumonia, we get 232 CCS codes and 285 ATC codes. For
sepsis, we get 231 CCS codes and 270 ATC codes. As each patient may
have multiple visits, we formulate the input containing both temporal
features and static features. We formulate the input as 3D tensors [32]
consisting of patients, hospital visits, and temporal attributes. For the
sensitive attributes, we chose gender and race as the research targets.

3.2. Study design

In this section, we will introduce the proposed study design to
comprehensively investigate and mitigate the bias in electronic pheno-
typing. First, we will discuss how to quantitatively identify and measure
the bias in phenotyping with two bias metrics. Then, we will investigate
how to mitigate the bias from the computational perspective.

Identify bias in electronic phenotyping. To investigate the bias in
electronic phenotyping comprehensively, we first benchmark 4 main
categories of widely used phenotyping methods as described in Section
2.1. We include 9 electronic phenotyping methods in this work, which
are the rule-based method, logistic regression (LR) [12], random forest
(RF) [14], SVM [15], gradient boosting decision tree (GBDT) [13], MLP
[53], RNN [25], and LSTM [54]. We use the ROCAUC as metrics to
measure the phenotyping accuracy and demographic parity difference
(DPD), and equality odds difference (EOD) as the bias metrics. We will
introduce the details of the phenotyping methods and metrics in Section
3.3.1. We will analyze different methods’ performance on the pheno-
typing tasks and the bias respectively.

Mitigate bias from the computational perspective. We evaluate
three main categories of debiasing algorithms as introduced in Section
2.3 to mitigate the phenotyping bias. We choose 2 pre-processing debias
method, 2 in-processing debias method and 1 post-processing debias
method. All these representative debiasing methods will be tested on the
phenotyping methods described above if applicable. We will use the bias
and performance metrics to investigate the mitigation effectiveness of
different debiasing methods on various phenotyping algorithms.

3.3. Methods

3.3.1. Bias measure metrics

We will introduce the details of two bias metrics and their clinical
meaning in the electronic phenotyping as follows. We use Y to denote
the prediction of the phenotyping model, Y to denote the true label, and
S to denote the sensitive attribute of each patient, e.g., gender, race, etc.

Demographic Parity Difference (DPD): The DPD measures the
disparities of positive model outputs between different subgroups as
shown in the Eq. (1). In the context of phenotype, the positive outputs
indicate the diagnosis of specific diseases. DPD implies the bias in the
probability of diagnosis between different patient groups.

DPD=|P(Y=1S=0)-P(Y =1S=1)| €))

Equalized Odds Difference (EOD): The EOD measures the dispar-
ities of true positive outcomes between different subgroups as presented
in the Eq. (2). EOD measures the bias of correctly identifying patients
with specific diseases or phenotypes.

EOD=|P(Y=1]Y=1,5=0)-P(Y =1]Y =1,S=1)| 2
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3.3.2. Eletronic phenotyping methods
We formulate four categories of phenotyping methods as follows.
Rule-based methods: Rule-based methods are usually human-
defined if...else... rules, whose inputs are selected features Xejected, €-
g., ICD-codes, etc. Rule-based methods can be represented as follows in
general.

Y = Rules(Xselected) 3

The rule-based method adopted in this work is based on the PheKB.

Traditional machine learning: Traditional machine learning
methods consist of training and testing stages and require feature en-
gineering on the raw patient data Rawy.qyn, Rawi.s,. We formulate the
traditional machine learning phenotype pipeline as follows:

Xtrain, Xtest = FE(Rawtrain, Rawtest) C)]
Ytrain = ML(Xtrain) ()
Ytest = ML(Xtest) (6)

where ML models can be LR, RF, GBDT, and SVM in this work.

Neural networks: Neural network needs to design the network ar-
chitecture and train on large-scale data. We formulate the phenotyping
method with the neural network as follows.

Ytrain = NN(Xtrain, 0), Loss = l(?’train, Ytrain) 7
Ytest = NN(Xtest, 0) ®

where 0 is the trainable parameters of the neural network and the loss
function [ can be binary cross entropy. We choose MLP, RNN, and LSTM
these three representative models to instantiate NN in this work.

Tensor factorization: Tensor factorization algorithm decomposes
the input data into latent factor matrices for all three dimensions. We use
the latent factor matrix of patient dimension for our phenotyping task
and one machine learning algorithm as the classifier. This phenotyping
method can be formulated as follows.

Mp, Mv, Mt = TF(X), Loss = [(MpA-MvA-Mt, X) 9
Mtrainp, Mtestp = split(Mp) (10)
Ytest = ML(Mtestp) (€§)

where X represents the raw input and split() is to separate the whole
dataset into train and test sets. TF represents the tensor factorization
process, and the loss function is based on the cross entropy between the
product of the resulting three latent factor matrices and the raw input
data. We choose PARAFAC [55] as the tensor factorization algorithm
and LR as the classifier in this work.

3.3.3. Debiasing methods

We formulate three kinds of debiasing methods as follows.

Pre-processing debias: One kind of pre-processing debias method
will be operated on the input data to remove the explicit and implicit
bias features. Specifically, we utilize the Pearson Correlation Coefficient
(PCC) to determine the level of correlation between the two variables
and set a threshold to remove strongly correlated features that exceed
this threshold. This process can be presented as follows.

Xdebias = Remover(X, threshold) 12
Y = Model(Xdebias) 13)
where Remover() is the algorithm that removes the sensitive related

features, for which we choose correlation remover in this work. The
threshold is manually set for determining if the feature should be
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Table 2

Journal of Biomedical Informatics 156 (2024) 104671

Debiasing results of pneumonia phenotyping (Demographic Parity Difference. Correlation remover and resample are the pre-processing methods. Reduction and
adversarial mitigation are the in-processing methods. Threshold optimizer is a post-processing method. w/o debias is the baseline method without any debiasing

strategy.).
Disease phenotyping Rule Machine Learning Tensor Deep
Based Factorization Learning
Sensitive Debias PheKB- LR RF SVM GBC PARAFAC + LR MLP RNN LSTM
Attribute Method ICD
Gender (Input Correlation 0.000 0.031 + 0.036 + 0.047 + 0.037 + 0.037 + 0.001 0.041 + 0.041 + 0.040 +
include) Remover 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Resample 0.010 0.036 + 0.040 £ 0.043 + 0.038 + 0.037 + 0.001 0.038 + 0.035 + 0.037 £
0.001 0.001 0.001 0.001 0.001 0.002 0.001
Reduction / 0.039 + 0.036 + 0.039 + 0.037 + 0.047 + 0.001 0.036 + 0.036 + 0.035 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001
Threshold 0.000 0.049 + 0.045 + 0.052 + 0.045 + 0.048 + 0.001 0.053 + 0.043 + 0.040 +
Optimizer 0.001 0.000 0.001 0.001 0.001 0.001 0.001
Adversarial / / / / / / 0.043 + 0.038 + 0.087 +
Mitigation 0.001 0.001 0.014
w/o debias 0.000 0.031 + 0.036 + 0.047 + 0.037 + 0.037 + 0.001 0.041 + 0.064 + 0.040 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001
Race (Input Correlation 0.006 0.127 + 0.141 + 0.039 + 0.142 + 0.131 + 0.001 0.146 + 0.150 + 0.148 +
include) Remover 0.002 0.001 0.000 0.001 0.001 0.001 0.001
Resample 0.036 0.024 + 0.028 + 0.024 + 0.027 + 0.045 + 0.003 0.026 + 0.021 + 0.026 +
0.001 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.082 + 0.088 + 0.052 + 0.098 + 0.049 + 0.001 0.074 + 0.064 + 0.060 +
0.002 0.001 0.002 0.001 0.001 0.002 0.002
Threshold 0.001 0.034 + 0.034 + 0.026 + 0.036 + 0.029 + 0.001 0.030 + 0.023 + 0.028 +
Optimizer 0.001 0.001 0.000 0.002 0.000 0.000 0.001
Adversarial / / / / / / 0.141 + 0.169 + 0.146 +
Mitigation 0.001 0.002 0.001
w/o debias 0.006 0.127 + 0.141 + 0.039 + 0.142 + 0.131 + 0.001 0.148 + 0.145 + 0.072 £
0.002 0.001 0.000 0.001 0.001 0.001 0.022
Gender (Input Correlation 0.000 0.037 + 0.037 + 0.037 + 0.037 + 0.050 + 0.001 0.036 + 0.043 + 0.043 +
exclude) Remover 0.001 0.001 0.000 0.001 0.001 0.001 0.001
Resample 0.010 0.038 + 0.038 + 0.038 + 0.038 + 0.039 + 0.001 0.039 + 0.040 + 0.038 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001
Reduction / 0.037 + 0.037 £ 0.037 + 0.037 + 0.050 + 0.001 0.037 + 0.040 + 0.042 +
0.001 0.001 0.000 0.001 0.001 0.001 0.001
Threshold 0.000 0.047 + 0.037 + 0.047 + 0.043 + 0.060 + 0.001 0.041 + 0.044 + 0.040 +
Optimizer 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Adversarial / / / / / / 0.041 + 0.035 + 0.035 +
Mitigation 0.001 0.001 0.000
w/o debias 0.000 0.037 + 0.037 + 0.037 + 0.037 + 0.050 + 0.001 0.036 + 0.043 + 0.041 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001
Race (Input Correlation 0.006 0.142 + 0.142 + 0.142 + 0.142 + 0.103 + 0.000 0.141 + 0.138 + 0.141 +
exclude) Remover 0.001 0.001 0.0009 0.001 0.001 0.001 0.000
Resample 0.036 0.027 + 0.028 + 0.028 + 0.027 + 0.043 + 0.001 0.028 + 0.033 + 0.030 +
0.000 0.001 0.001 0.000 0.001 0.001 0.001
Reduction / 0.126 + 0.144 + 0.125 + 0.123 + 0.101 + 0.001 0.135 + 0.136 + 0.138 +
0.002 0.002 0.001 0.001 0.001 0.000 0.000
Threshold 0.001 0.025 + 0.027 + 0.043 + 0.041 + 0.019 + 0.000 0.033 + 0.044 + 0.035 +
Optimizer 0.000 0.001 0.000 0.000 0.000 0.000 0.001
Adversarial / / / / / / 0.125 + 0.135 + 0.110 +
Mitigation 0.001 0.001 0.004
w/o debias 0.006 0.142 + 0.142 + 0.142 + 0.142 + 0.103 + 0.000 0.141 + 0.141 + 0.141 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001
eliminated. N
Another pre-processing debias method is resampling, which resam- Y = Model(X) (16)
ple the ratio of different subgroups to make the balance of them. The R
process can be represented as follows. Loss = [(Ytrain, Ytrain) + fairnessconstraint a7)

Xresample = Resampler(X, S) a4

Y = Model(Xresample) 15)

In-processing debias: In-processing debias method performs during
the model training stage. One method to guide the model to be trained
toward fair predictions is by adding some fairness constraints, which is
one kind of widely applied method. In our experiment, the classification
reduction algorithm [56] is adopted for this guiding. Typically, the
objective of this algorithm is to minimize the disparity in prediction
between different groups during the training process. This process can
be presented as follows.

where fairness constraint is the regularization that ensures the predic-tion
fairness, for which we use demographic parity constraint in this work.

Another mainstream of the in-processing debiasing method is
adversarial learning, which will train a predictor model and an adver-
sary model. The predictor model will be trained with conventional
strategy as shown below.

Ytrain = Predictor(Xtrain, OP), LP = I( Ytrain, Ytrain) (18)

Meanwhile, an adversary model will be trained to predict the sen-
sitive attributes based on the predictions from the Predictor model. This
process can be formulated as follows:
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Table 3
Debiasing results of pneumonia phenotyping (Equalized Odds Difference. w/o debias is the baseline method without any debiasing strategy.).
Disease phenotyping Rule Machine Learning Tensor Deep
Based Factorization Learning
Sensitive Debias PheKB- LR RF SVM GBC PARAFAC + LR MLP RNN LSTM
Attribute Method ICD
Gender (Input Correlation 0.007 0.030 + 0.008 + 0.055 + 0.000 + 0.024 + 0.000 0.007 + 0.010 + 0.006 +
included) Remover 0.000 0.000 0.002 0.000 0.000 0.000 0.000
Resample 0.019 0.009 + 0.007 + 0.025 + 0.000 + 0.016 + 0.000 0.007 + 0.010 + 0.007 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.025 + 0.008 + 0.039 + 0.000 + 0.029 + 0.001 0.010 + 0.017 + 0.013 +
0.000 0.000 0.001 0.000 0.000 0.000 0.000
Threshold 0.005 0.039 + 0.061 + 0.052 + 0.055 + 0.037 £ 0.000 0.050 + 0.045 + 0.043 £
Optimizer 0.001 0.001 0.002 0.001 0.001 0.001 0.000
Adversarial / / / / / / 0.015 + 0.010 + 0.146 +
Mitigation 0.000 0.000 0.084
w/o debias 0.007 0.030 £ 0.008 + 0.055 + 0.000 + 0.024 + 0.000 0.007 + 0.011 + 0.006 +
0.000 0.000 0.002 0.000 0.000 0.000 0.000
Race (Input Correlation 0.048 0.064 + 0.010 + 0.121 + 0.000 + 0.049 + 0.000 0.020 + 0.024 + 0.021 +
included) Remover 0.000 0.000 0.003 0.000 0.000 0.000 0.000
Resample 0.072 0.053 + 0.009 + 0.074 + 0.000 + 0.107 + 0.003 0.021 + 0.028 + 0.043 +
0.003 0.000 0.004 0.000 0.000 0.000 0.001
Reduction / 0.102 + 0.093 + 0.116 + 0.074 + 0.140 + 0.002 0.110 + 0.125 + 0.135 +
0.001 0.001 0.002 0.001 0.001 0.003 0.003
Threshold 0.048 0.224 + 0.246 + 0.210 + 0.252 + 0.234 + 0.002 0.215 + 0.243 + 0.238 +
Optimizer 0.004 0.001 0.005 0.004 0.002 0.001 0.002
Adversarial / / / / / / 0.016 + 0.047 + 0.146 +
Mitigation 0.000 0.005 0.001
w/o debias 0.048 0.064 + 0.010 + 0.121 + 0.000 + 0.049 + 0.000 0.018 + 0.021 + 0.024 +
0.000 0.000 0.003 0.000 0.000 0.000 0.000
Gender (Input Correlation 0.007 0.000 + 0.000 + 0.000 + 0.000 + 0.040 + 0.002 0.001 + 0.017 + 0.020 +
excluded) Remover 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Resample 0.019 0.000 + 0.000 + 0.000 + 0.000 + 0.050 + 0.000 0.002 + 0.015 + 0.006 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.000 + 0.000 + 0.000 + 0.000 + 0.040 + 0.002 0.000 + 0.019 + 0.020 +
0.000 0.000 0.000 0.000 0.000 0.000 0.001
Threshold 0.005 0.046 + 0.049 + 0.040 + 0.038 + 0.053 + 0.001 0.031 + 0.039 + 0.027 £
Optimizer 0.002 0.000 0.001 0.001 0.001 0.000 0.000
Adversarial / / / / / / 0.020 + 0.015 + 0.016 +
Mitigation 0.000 0.000 0.000
w/o debias 0.007 0.000 + 0.000 + 0.000 + 0.000 + 0.040 + 0.002 0.001 + 0.020 + 0.017 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Race (Input Correlation 0.048 0.000 + 0.000 + 0.000 + 0.000 + 0.028 + 0.001 0.001 + 0.010 + 0.013 +
excluded) Remover 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Resample 0.072 0.000 + 0.003 + 0.003 + 0.000 + 0.058 + 0.000 0.003 + 0.023 + 0.018 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.026 £ 0.018 + 0.022 + 0.026 + 0.052 + 0.000 0.019 + 0.017 £ 0.022 +
0.000 0.000 0.001 0.000 0.000 0.000 0.000
Threshold 0.048 0.247 £ 0.257 + 0.241 + 0.236 + 0.125 + 0.000 0.216 + 0.230 + 0.195 +
Optimizer 0.001 0.001 0.002 0.003 0.001 0.004 0.001
Adversarial / / / / / / 0.036 + 0.017 + 0.010 +
Mitigation 0.001 0.000 0.000
w/o debias 0.048 0.000 + 0.000 + 0.000 + 0.000 + 0.028 + 0.001 0.001 + 0.012 + 0.012 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Strain = AdverseNN(Ytrain, 0A), LA = I(Strain, Strain) (19) The threshold-based post-processing method adjusts a predictive

The overall optimization goal is combining two losses of predictor
network and adversary model as follows.

L =oaLP+pLA (20)

where a, # are hyper-parameters that control the ratio of two losses. In
this work, we use the adversarial debiasing method proposed by Zhang
et al. [57].

Post-processing debias: Post-processing debiasing method directly
calibrates the model outputs, which can be formulated as:

Y = Model(X) 21

Ycal = Calibrator(Y) (22)

In this work, a threshold-based post-processing technique is
employed as a method of calibration, based on the principle of equality
of opportunity in model predictions, as articulated by Hardt et al. [48].

model’s decision boundary for different groups to meet fairness con-
straints like EOD or DPD. It tests various thresholds on the model’s
output and selects the one that best balances fairness and performance.
Technically, we use the ThresholdOptimizer class from Fairlearn library
to achieve this.

3.4. Implementation details

This section introduces the implementation details of different types
of rule-based and machine learning models.

Algorithm implementation: In our experiment, all algorithmic
implementations have been actualized within the Python 3.8 environ-
ment. We leverage the rule-based algorithms available from the
Phenotype Knowledgebase (PheKB) [9] community as part of our
analytical framework on the MIMIC-III. Furthermore, we leverage the
scikit-learn library to implement traditional machine learning method-
ologies, employing the tensorly library for tensor factorization
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Table 4
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Debiasing results of sepsis phenotyping (Demographic Parity Difference. w/o debias is the baseline method without any debiasing strategy.).

Disease phenotyping Rule Machine Learning Tensor Deel Learning
Based Factorization
Sensitive Debias PheKB- LR RF SVM GBC PARAFAC + LR MLP RNN LSTM
Attribute Method ICD
Gender (Input Correlation 0.007 0.017 + 0.012 + 0.019 + 0.014 + 0.018 + 0.000 0.018 + 0.019 + 0.016 +
include) Remover 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Resample 0.001 0.041 + 0.032 + 0.042 + 0.033 + 0.034 + 0.000 0.033 + 0.037 + 0.035 +
0.001 0.001 0.001 0.000 0.000 0.000 0.001
Reduction / 0.021 + 0.012 + 0.025 + 0.014 + 0.042 + 0.001 0.019 + 0.016 + 0.019 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Threshold 0.000 0.023 + 0.015 + 0.060 + 0.017 + 0.024 + 0.000 0.022 + 0.023 = 0.027 £
Optimizer 0.000 0.000 0.003 0.000 0.000 0.000 0.000
Adversarial / / / / / / 0.027 + 0.012 + 0.015 +
Mitigation 0.000 0.000 0.000
w/o debias 0.007 0.017 + 0.012 + 0.019 + 0.014 + 0.018 £ 0.000 0.019 + 0.016 + 0.016 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Race (Input Correlation 0.140 0.122 + 0.149 + 0.051 + 0.148 + 0.135 + 0.002 0.163 + 0.163 + 0.160 +
include) Remover 0.001 0.001 0.002 0.001 0.001 0.001 0.001
Resample 0.029 0.039 + 0.028 + 0.043 + 0.037 + 0.021 + 0.000 0.024 + 0.020 + 0.022 +
0.001 0.000 0.002 0.000 0.000 0.000 0.000
Reduction / 0.091 + 0.094 + 0.061 + 0.092 + 0.060 + 0.001 0.068 + 0.072 + 0.066 +
0.003 0.003 0.003 0.003 0.002 0.002 0.002
Threshold 0.004 0.041 + 0.033 + 0.028 + 0.053 + 0.029 + 0.000 0.035 + 0.047 + 0.047 £
Optimizer 0.001 0.000 0.001 0.001 0.001 0.001 0.002
Adversarial / / / / / / 0.158 + 0.156 + 0.166 +
Mitigation 0.001 0.002 0.001
w/o debias 0.140 0.122 + 0.148 + 0.051 + 0.148 + 0.135 + 0.002 0.163 + 0.163 + 0.162 +
0.001 0.001 0.002 0.001 0.001 0.001 0.001
Gender (Input Correlation 0.007 0.015 + 0.014 + 0.015 + 0.015 + 0.063 + 0.002 0.014 + 0.017 + 0.019 +
exclude) Remover 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Resample 0.001 0.034 + 0.034 + 0.034 + 0.034 + 0.050 + 0.001 0.033 + 0.038 + 0.038 +
0.000 0.000 0.000 0.000 0.000 0.001 0.002
Reduction / 0.015 + 0.014 + 0.015 + 0.015 + 0.063 + 0.002 0.014 + 0.017 + 0.019 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Threshold 0.000 0.026 + 0.025 + 0.020 + 0.019 + 0.050 + 0.001 0.016 + 0.026 + 0.020 +
Optimizer 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Adversarial / / / / / / 0.013 + 0.010 + 0.023 +
Mitigation 0.000 0.000 0.000
w/o debias 0.007 0.015 + 0.014 + 0.015 + 0.015 + 0.063 + 0.002 0.014 + 0.019 + 0.018 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Race (Input Correlation 0.140 0.149 + 0.148 + 0.149 + 0.149 + 0.138 £ 0.003 0.148 + 0.155 + 0.156 +
exclude) Remover 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Resample 0.029 0.035 + 0.034 + 0.034 + 0.035 + 0.058 + 0.001 0.035 + 0.026 + 0.026 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.127 + 0.147 £ 0.138 + 0.125 + 0.127 £ 0.001 0.149 + 0.156 + 0.154 +
0.000 0.001 0.000 0.002 0.001 0.002 0.001
Threshold 0.004 0.021 + 0.044 + 0.018 + 0.055 + 0.032 £ 0.000 0.036 + 0.046 + 0.032 +
Optimizer 0.000 0.002 0.000 0.000 0.001 0.001 0.001
Adversarial / / / / / / 0.141 + 0.140 + 0.149 +
Mitigation 0.001 0.001 0.002
w/o debias 0.140 0.149 + 0.148 + 0.149 + 0.149 + 0.138 + 0.003 0.148 + 0.155 + 0.154 +
0.001 0.001 0.001 0.001 0.001 0.001 0.001

algorithms and the PyTorch library for the development and deployment
of our neural network models. For the critical task of debiasing methods,
we call upon the 0.9.0 version of the fairlearn library for the traditional
machine learning implementation. However, in instances where the
fairlearn library does not provide any support, we undertake the
development of our own debias procedures for our models.

Model and training detail: In pursuit of robust and reliable results
during the training phase, we rigorously employ a 5-fold cross-
validation methodology, thereby facilitating the robust estimation of
our measuring metrics. In configuring the training hyperparameters, we
set the maximum iterations for logistic regression (LR) and support
vector machines (SVM) to 120, while opting for a total of 30 estimators
for tree-based models(Random Forest, Gradient Boosting Classifier). The
maximum iterations in tensor factorization are set 100 for PARAFAC and
400 for LR’s prediction. Meanwhile, we select the top 20 features from
the latent factor matrix. The hidden size of both LSTM and RNN models
is set to 128. For neural network models, we deliberately define key
parameters, specifying a learning rate of 1e — 04, a minibatch size of

256, and an epoch number of 40 to ensure convergence and effective
training. Additionally, in the context of tensor factorization, we estab-
lish the rank of the latent factor matrix at 20. The hyperparameter of
debiasing strategies are as follows. The threshold of the correlation
remover strategy is set to 0.5. The resample strategy used down-
sampling mode. For all the fairness constraint, we use the de-
mographic parity as the implementation.

4. Results
We analyze the experiment results from two perspectives. The first

one is bias measurement in the phenotyping. The other is how the
debiasing algorithms perform.

4.1. Bias measurement in phenotyping

We summarize several key findings from the bias measurement re-
sults in two diseases phenotyping as follows.
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Table 5
Debiasing results of sepsis phenotyping (Equalized Odds Difference. w/o debias is the baseline method without any debiasing strategy.).
Disease phenotyping Rule Machine Learning Tensor Deep
Based Factorization Learning
Sensitive Debias PheKB- LR RF SVM GBC PARAFAC + LR MLP RNN LSTM
Attribute Method ICD
Gender (Input Correlation 0.005 0.037 £ 0.010 + 0.085 + 0.004 + 0.027 + 0.000 0.011 + 0.011 + 0.009 +
included) Remover 0.000 0.000 0.001 0.000 0.000 0.000 0.000
Resample 0.004 0.026 + 0.014 + 0.062 + 0.004 + 0.036 + 0.000 0.013 + 0.015 + 0.013 +
0.000 0.000 0.002 0.000 0.000 0.000 0.000
Reduction / 0.015 + 0.010 + 0.049 + 0.004 + 0.058 + 0.001 0.009 + 0.029 + 0.025 +
0.000 0.000 0.001 0.000 0.000 0.000 0.000
Threshold 0.010 0.029 + 0.014 + 0.121 + 0.012 + 0.027 + 0.000 0.019 + 0.020 + 0.020 +
Optimizer 0.000 0.000 0.002 0.000 0.000 0.000 0.000
Adversarial / / / / / / 0.046 + 0.016 + 0.007 +
Mitigation 0.002 0.000 0.000
w/o debias 0.005 0.037 £ 0.010 + 0.085 + 0.004 + 0.027 £ 0.000 0.011 + 0.013 + 0.009 +
0.000 0.000 0.001 0.000 0.000 0.000 0.000
Race (Input Correlation 0.093 0.093 + 0.010 + 0.129 + 0.006 + 0.063 + 0.003 0.038 + 0.049 + 0.038 +
included) Remover 0.001 0.000 0.007 0.000 0.001 0.003 0.002
Resample 0.062 0.056 + 0.010 + 0.087 + 0.007 + 0.111 + 0.003 0.048 + 0.063 + 0.063 +
0.004 0.000 0.004 0.000 0.000 0.001 0.001
Reduction / 0.100 + 0.091 + 0.090 + 0.096 + 0.150 + 0.001 0.141 + 0.129 + 0.142 +
0.002 0.001 0.002 0.002 0.001 0.001 0.001
Threshold 0.187 0.251 + 0.266 + 0.130 + 0.241 + 0.220 + 0.000 0.265 + 0.255 + 0.264 +
Optimizer 0.003 0.000 0.005 0.003 0.002 0.004 0.006
Adversarial / / / / / / 0.039 + 0.040 + 0.043 +
Mitigation 0.003 0.003 0.001
w/o debias 0.093 0.093 + 0.010 + 0.129 + 0.006 + 0.063 + 0.003 0.038 + 0.042 + 0.042 +
0.001 0.000 0.007 0.000 0.001 0.002 0.002
Gender (Input Correlation 0.005 0.002 + 0.001 + 0.002 + 0.002 + 0.091 + 0.006 0.000 + 0.029 + 0.033 +
excluded) Remover 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Resample 0.004 0.002 + 0.006 + 0.002 + 0.002 + 0.093 + 0.000 0.004 + 0.027 + 0.031 £
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Reduction / 0.002 + 0.001 + 0.002 + 0.002 + 0.091 + 0.006 0.000 + 0.028 + 0.032 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Threshold 0.010 0.024 + 0.032 + 0.024 + 0.013 + 0.068 + 0.002 0.004 + 0.041 + 0.035 £
Optimizer 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Adversarial / / / / / / 0.027 + 0.012 + 0.028 +
Mitigation 0.000 0.000 0.000
w/o debias 0.005 0.002 + 0.001 + 0.002 + 0.002 + 0.091 + 0.006 0.000 + 0.034 + 0.034 +
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Race (Input Correlation 0.093 0.004 + 0.001 + 0.004 + 0.004 + 0.090 + 0.004 0.002 + 0.039 + 0.045 +
excluded) Remover 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Resample 0.062 0.004 + 0.007 + 0.007 + 0.004 + 0.081 + 0.002 0.004 + 0.040 + 0.029 +
0.000 0.000 0.000 0.000 0.000 0.001 0.000
Reduction / 0.047 £ 0.014 + 0.044 + 0.027 + 0.095 + 0.003 0.017 + 0.044 + 0.038 +
0.001 0.000 0.001 0.000 0.000 0.002 0.001
Threshold 0.187 0.229 + 0.253 + 0.225 + 0.280 + 0.134 + 0.001 0.264 + 0.232 + 0.255 +
Optimizer 0.003 0.005 0.001 0.005 0.001 0.002 0.001
Adversarial / / / / / / 0.015 + 0.022 + 0.032 +
Mitigation 0.000 0.000 0.001
w/o debias 0.093 0.004 + 0.001 + 0.004 + 0.004 + 0.090 + 0.004 0.002 + 0.043 + 0.041 +
0.000 0.000 0.000 0.000 0.000 0.001 0.001

e The electronic phenotyping bias across races is more significant
than genders. From Table 2, we can observe the race DPD bias is
about 7 % higher than the gender bias on average across different
phenotyping methods without debiasing strategies. From Table 4,
the race DPD bias is over 12 % larger than gender bias. Similarly,
when the bias metric is EOD, the race bias is 2 %, 3 % higher than
gender bias on pneumonia and sepsis phenotyping respectively ac-
cording to the Table 3 and Table 5. The potential reason behind is the
patient distributions across different races is very diverse than the
distributions across genders. There are also more salient differences
on some social determinants like economic condition, workload, etc
among races than genders. The inner high diverse distributions of
different races than genders cause the larger bias measured in the
experiments.

Phenotyping bias varies across different phenotyping algo-
rithms. Rule-based Phenotyping method shows significantly
less bias.

From Table 2 and Table 4, we can find different phenotyping method
presents various levels of bias under different settings. When sensitive
attribute is included, in pneumonia phenotyping, RNN shows the high-
est gender bias, and MLP has the highest racial bias. For the sepsis
phenotyping, SVM and MLP present the highest gender bias when
gender is not included in the input. Meanwhile, MLP and RNN have the
highest racial bias in sepsis phenotyping. When we exclude the sensitive
attribute from input features, the RNN presents the largest gender bias
while 4 ML models show the highest racial bias in both pneumonia and
sepsis phenotyping. Moreover, we find the rule-based method presents
significantly less bias compared to other methods. In the pneumonia
phenotyping, rule-based method shows 4 % lower gender bias and 11 %
lower race bias in terms of DPD. Noticeably, observed from Table 3 and
Table 5, while the EOD gap in gender is 1 % lower, the average race bias
of rule-based algorithms is 1 % higher. The bias varies on different
phenotyping algorithm is probably caused by the computational
mechanisms behind each algorithm is different. For example, the rule-
based method will only rely on several expert selected features, which
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Fig. 2. Pneumonia phenotype performance. (w/o debias is the baseline method without any debiasing strategy. w/o sensitive represents omit the sensitive attributes
from input features. w/ sensitive represents the input features includes the sensitive attributes.).

include less feature as well as less bias among the input data. So the debiasing method couldn’t effectively mitigate the gender
bias. However, most debiasing methods can reduce race bias signifi-
cantly. For example, the race bias of MLP in pneumonia phenotyping is
reduced by 12.2 % with the resample debiasing method. The race bias of
SVM can be further reduced by 1.5 % with resample strategy in the
sepsis phenotyping task. This is because the racial bias is more salient
than the gender bias, so the debiasing strategies show better perfor-
mance on the racial bias.

e Exclude the sensitive attributes from input data has a trivial
effect on the bias. Excluding the sensitive attributes is the most
intuitive method to mitigate the bias from the observation in Table 2,
3, 4, and 5. However, we find that after excluding the sensitive at-
tributes, the bias is still significant. In pneumonia phenotyping, the
gender bias of LR, RF, GBC, and LSTM increases after the gender
feature is excluded, and the racial bias of LR, RF, SVM, LSTM in-
creases after the race is excluded. In sepsis phenotyping, RF, GBC,
RNN, and LSTM’s gender bias increases. SVM, GBC’s racial bias in-
creases after the race attribute is excluded. The reason behind is

o Correlation removing method is not capable of mitigating the
bias in phenotyping. We can observe from Table 2 and Table 4, that
removing the sensitive correlation from input features doesn’t work

other features contains the implicit information related to the sen-
sitive attributes. So directly removing the sensitive attributes may
not work effectively.

4.1.1. Performance of debiasing algorithms

o The debiasing strategies are more effective on racial bias than
gender bias. From the gender part in both Table 2 and Table 4, we
can find that the gender bias decreases with a non-trivial level. The
reason may be the bias across genders is relatively small and trivial.

for the sepsis and pneumonia phenotyping. For pneumonia pheno-
typing, the gender bias even increases a bit after the correlation
removal in DL methods of LSTM. The race bias of MLP and RNN
increases after the correlation removal. The situation is similar in the
sepsis phenotype. This may be caused by the input feature containing
little information related to the sensitive attributes. This phenome-
non further shows the bias in phenotyping is more likely to be caused
by the phenotyping algorithm and data distribution. Neither the
removal of sensitive attributes and correlation among other features
has the satisfying debiasing performance.
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Fig. 3. Sepsis phenotype performance. (w/o debias is the baseline method without any debiasing strategy. w/o sensitive represents omit the sensitive attributes from
input features. w/ sensitive represents the input features includes the sensitive attributes.).

e Resample the patients’ data and postprocess the outputs are two
very simple yet effective debiasing methods. From Table 2 and
Table 4, we can find resampling the patients’ data to make each
subgroup size more balanced can significantly reduce the phenotype
bias. The race bias in pneumonia phenotype has been reduced by 9 %
on average with either of resampling or postprocessing method.

The highest gender bias can be reduced by 2.9 % with resampling on
RNN. For the sepsis phenotyping task, the highest race bias decrease by
14 %. Nevertheless, the gender biases of our models are almost all below
2 % and can hardly be further reduced even with resampling or post-
processing. These two methods are the simplest yet effective debiasing
strategies. Resampling method will make the patients of different sub-
groups more balanced which can significantly mitigate the prediction
performance gaps. Postprocess is a more straightforward strategy which
directly mitigate the bias by tuning the outputs.

e There is a trade-off between phenotyping accuracy and bias.
From Fig. 2, we can find that most phenotyping models’ phenotype
accuracy will decrease when the debiasing method is applied. This
phenomenon also appears in sepsis phenotype as shown in Fig. 3. So
when we develop and deploy the phenotyping method, we need to
make a trade-off between accuracy and bias based on the real-world

10

phenotyping requirement. The trade-off between accuracy and bias
also exists in other prediction tasks. How to maintain the accuracy as
well as bias in phenotyping remains as a challenge in designing
phenotyping algorithms.

5. Limitations

There are still limitations of this work, for which we conclude them
into three points. The first is we only consider two representative dis-
eases, which cannot cover all the disease types. The findings from this
paper may not be scalable to some specific type of diseases. For example,
some disease has unique patient distributions, e.g., breast cancer,
prostate cancer, etc. In this paper, we haven’t considered the bias and
fairness issue in these specific diseases. Secondly, in the implementation
of the data processing and methods, there may be bias in this process.
One of them is the conversion from ICD to 9 to ICD-10. There is potential
bias because the one-to-one conversion from ICD to 9 to ICD-10 is not
100 % straightforward. The other is the random sampling of negative
patients. The random process to select patients may involve the bias.
More granularity method to sample the negative patients can be
employed in the future work.
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6. Discussion and conclusion

From the experiment analysis on the main categories of phenotyping
models and debiasing methods. We will discuss some limitations and
future directions of this topic. We will also conclude this work with
several takeaways and conclusions.

In this work, we choose two common diseases which are pneumonia
and sepsis. However, there are some diseases that have specific char-
acteristics. These specialties may make phenotyping bias on these dis-
eases different from the findings we summarize in this work. For
example, breast cancer is more commonly diagnosed among females
compared to males [58]. The patients’ data distribution across genders
will be obviously different between females and males, which may cause
significant gender bias in phenotyping. So for some specific diseases, we
need to analyze their potential bias case by case.

We investigate the bias issue in phenotyping from a computational
perspective. However, there is still a gap between the computational
perspective and the clinical perspective. Addressing this gap represents
one of the most promising and crucial directions for future research. In
our future work, we will consider developing some methods that can
clearly deliver computational fairness to the clinical practitioners and
involve them to collaborate in the study. In this work, we mainly focus
on the bias mitigation strategy in the data processing, model training,
and output calibration steps. However, the data collection in healthcare
is also very important. How to collect the data containing less bias re-
mains a promising future direction.

To summarize, we comprehensively investigate the bias and the bias
mitigation methods with pneumonia and sepsis phenotyping. From the
perspective of phenotyping bias, we find that race bias is more obvious
than gender bias and the rule-based phenotyping method demonstrates
significantly less bias than machine learning phenotyping methods.
Simply excluding the sensitive attributes doesn’t work well in bias
mitigation. Moreover, from the perspective of bias mitigation, we find
that resample and post-process these two methods are simple yet
effective in bias mitigation. Moreover, if the fairness of the phenotyping
model improves through mitigation, the phenotyping accuracy will be
negatively affected to some extent. So the tradeoff between fairness and
accuracy needs to be considered when implementing and deploying the
phenotyping model. The future work in this line of research can be
derived in several directions. The first one is to develop more advanced
debiasing methods for the phenotyping models according to the task
specialties. The second is to bridge the gap of fairness between
computation and clinical, which will help translate the computational
debiasing methods into real-world clinical practice. The third direction
is inspired by the findings from our experimental results that we can
attach more importance to the healthcare data collection stage and
improve the access of healthcare resources to the underrepresented
groups.

Statement of significance

Problem or Issue: The bias issue in phenotyping in the era of EHR is
not sufficiently researched especially from the computational
perspective.

What is Already Known: There is bias in healthcare and especially
the phenotyping task. And the bias in phenotyping stage will do no good
to some underrepresented groups. Further, the bias in phenotyping will
also affect the other related biomedical activities, like clinical trial
matching, etc.

What this Paper Adds: This paper aims to provide comprehensive
study of the bias issue in electronic phenotyping from a computational
perspective. To the best of our knowledge, we are the first work to
intensively investigate this fairness problem. We expect our work can
inspire more efforts in this topic in the future.
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