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A B S T R A C T   

Electronic phenotyping is a fundamental task that identi昀椀es the special group of patients, which plays an 
important role in precision medicine in the era of digital health. Phenotyping provides real-world evidence for 
other related biomedical research and clinical tasks, e.g., disease diagnosis, drug development, and clinical trials, 
etc. With the development of electronic health records, the performance of electronic phenotyping has been 
signi昀椀cantly boosted by advanced machine learning techniques. In the healthcare domain, precision and fairness 
are both essential aspects that should be taken into consideration. However, most related efforts are put into 
designing phenotyping models with higher accuracy. Few attention is put on the fairness perspective of phe-
notyping. The neglection of bias in phenotyping leads to subgroups of patients being underrepresented which 
will further affect the following healthcare activities such as patient recruitment in clinical trials. In this work, we 
are motivated to bridge this gap through a comprehensive experimental study to identify the bias existing in 
electronic phenotyping models and evaluate the widely-used debiasing methods’ performance on these models. 
We choose pneumonia and sepsis as our phenotyping target diseases. We benchmark 9 kinds of electronic 
phenotyping methods spanning from rule-based to data-driven methods. Meanwhile, we evaluate the perfor-
mance of the 5 bias mitigation strategies covering pre-processing, in-processing, and post-processing. Through 
the extensive experiments, we summarize several insightful 昀椀ndings from the bias identi昀椀ed in the phenotyping 
and key points of the bias mitigation strategies in phenotyping.   

1. Introduction 

Phenotyping stands as a cornerstone in the realm of biomedical 
research, serving as the linchpin that enables medical practitioners to 
accurately pinpoint diseases [1,2], facilitates the acceleration of drug 
development [3], and plays a pivotal role in the meticulous design of 
clinical trials [4]. Its foundational signi昀椀cance reverberates throughout 
the entire healthcare ecosystem, fundamentally shaping the trajectory of 
patient care, research advancements, and medical innovation as illus-
trated in Fig. 1(b). 

Riding the wave of progress in electronic health records within the 
biomedical domain [5], the landscape of phenotyping has undergone a 
remarkable transformation, driven by the integration of cutting-edge 
computational methodologies, including advanced statistical analyses 

and arti昀椀cial intelligence techniques [6]. As a result, electronic pheno-
typing methods have consistently demonstrated their prowess, exhibit-
ing exceptional precision and ef昀椀ciency across a multitude of scenarios 
[7]. This evolution heralds a new era in healthcare, one where data- 
driven insights are poised to revolutionize medical diagnosis and 
treatment. 

However, bias is an inevitable factor in computational-based phe-
notyping methods, and its implications extend to various biomedical 
activities, including clinical trial design [4]. Bias in phenotyping in-
dicates the phenotyping results were affected by the sensitive attributes 
like gender, race, ethnicity, etc. The most common of phenotyping bias 
is some subgroups were underrepresented by the phenotyping method. 
For example, less patients may be diagnosed with a speci昀椀c disease than 
the ground truth. In this work, we will focus on the group bias which 
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indicates the bias between different patient subgroups to make our 
contribution focused. For instance, when minority groups are under-
represented in the phenotyping process, this bias carries over to clinical 
trials during patient recruitment [8]. Addressing bias in electronic 
phenotyping poses a dual challenge for several reasons. Firstly, identi-
fying bias from a computational standpoint is complex, as it often 
originates from two primary sources: data bias and model bias. Sec-
ondly, mitigating bias in electronic phenotyping and selecting appro-
priate debiasing techniques for different phenotype applications require 
careful consideration. 

We are, therefore, highly motivated to embark on an extensive 
investigation aimed at identifying and mitigating biases within the 
realm of electronic phenotyping. This comprehensive study will 
encompass a meticulous review of prevalent electronic phenotyping 
methodologies, diligently scrutinizing the inherent biases within these 
approaches. Subsequently, we will delve into the computational aspects 
of bias identi昀椀cation and mitigation. Our research will encompass 
practical experiments designed to assess both the prevailing biases 
within existing electronic phenotyping algorithms and the ef昀椀cacy of 
widely employed debiasing techniques. In addition, we present pivotal 
insights derived from our extensive experimentation. These 昀椀ndings 
encapsulate valuable knowledge and discoveries that shed light on the 
intricacies of electronic phenotyping and bias mitigation. By undertak-
ing this multifaceted examination, we aim to pave the way for more 
equitable and unbiased electronic phenotyping practices. The contri-
butions of this work can be succinctly summarized in three key aspects 
as follows: 

" We benchmark and analyze the bias of 9 commonly used pheno-
typing models from the computational perspective.  

" We evaluate 5 machine learning-based debiasing strategies for the 
phenotyping models. We analyze the advantages and disadvantages 
of each category debiasing strategy.  

" We conduct extensive experiments to identify and mitigate the bias 
on pneumonia and sepsis phenotyping tasks and summarize 
insightful key 昀椀ndings from the experimental results. 

2. Backgroundd 

Electronic phenotyping can identify the patients with a speci昀椀c dis-
ease, which has wide applications in disease diagnosis, treatment 
recommendation, clinical trial, etc as shown in Fig. 1(a). In this section, 
we embark on a comprehensive exploration of prevalent electronic 
phenotyping methods, classifying them for clarity and context. Subse-
quently, we delve into an insightful discussion on the latent biases that 
can emerge within these methods, dissecting them from both the data 
and model perspectives. 

2.1. Phenotyping methods 

We categorize the electronic phenotyping methods into 4 categories, 
which are rule-based, traditional machine learning, neural network, and 
tensor factorization as shown in Fig. 1(b). 

Rule-based Method: Rule-based method is one of the most funda-
mental and widely applied phenotyping techniques [9,10]. The core 
idea is to heuristically identify the phenotypes from electronic health 
records by the expert-de昀椀ned rules. The widely adopted rule-based 
methods bene昀椀t from the characteristics of interpretability, simplicity, 
and ease of implementation. PheKB [9] is a public rule-based pheno-
typing algorithm that is widely used. However, due to the human- 
de昀椀ned rules are usually limited to some speci昀椀c scenarios, they are 
hard to adapt to different disease or patient distributions. For example, 
Kho at al. [11] designed a phenotyping method specialized for type II 
diabetes. 

Traditional Machine Learning: The main kinds of traditional ma-
chine learning include logistic regression (LR) [12], tree-based methods 
[13,14], and SVM [15]. These methods don’t require large amounts of 
data in the training stage. Feature engineering [16] is an essential step 
for these methods to achieve competitive performance which will also 
require domain expertise. While traditional machine learning has found 
applications in various disease phenotyping tasks [17,18], Li et al. 
introduced Xrare [19], which leverages Gradient Boosting Decision 
Trees (GBDT) for diagnosing rare diseases from genetics and phenotypic 
data. Tensor factorization stands out as another prominent computa-
tional phenotyping method [31,32]. Ho et al. [31] propose Limestone to 

Fig. 1. Overview of the identi昀椀cation and mitigation of the bias in electronic phenotyping.  
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generate patients’ phenotypes without supervision. Afshar et al. 
designed a framework TASTE [32] for the temporal EHR data. Tensor 
factorization has the ability to break down high-dimensional patient 
data into more manageable low-dimensional vectors, which can then 
serve as phenotypes for various downstream tasks. Nonetheless, these 
methods still have limitations that impact their performance and 
adaptability. For instance, SVM is tailored for binary classi昀椀cation, 
rendering it impractical for multiclass phenotyping. LR is sensitive to 
outlier data [20], which is very common in EHR [21], and the tree-based 
model needs laborious hyper-parameter tuning for a stable performance 
[22]. 

Neural Network: With the increasing availability of electronic 
health records [23], neural networks have garnered signi昀椀cant attention 
in the healthcare domain due to their outstanding performance [24]. 
Their robust performance is primarily attributed to large-scale training 
data. Furthermore, the diverse architectures of neural networks facili-
tate seamless adaptation to various tasks; for instance, RNN-based net-
works effectively process temporal EHR data [25], while Transformer- 
based models excel in clinical text analysis [26]. However, their 
inherent black-box nature [27] poses a challenge in real-world appli-
cations [28,29]. Additionally, the scarcity of data in certain rare disease 
phenotyping tasks may render direct application of neural networks 
unfeasible [30]. 

Given the strengths and weaknesses of these electronic phenotyping 
methods, the selection of the most suitable approach should be tailored 
to the speci昀椀c task and application context. 

2.2. Bias in phenotyping 

We conduct a comprehensive analysis of bias in electronic pheno-
typing, examining it from both data and model perspectives as presented 
in Fig. 1(c). Bias in phenotyping becomes evident when we observe 
variations in the method’s performance across different subgroups 
de昀椀ned by sensitive attributes like gender, race, and other factors. The 
origins of potential bias and their impact on phenotype outcomes will be 
discussed in greater detail below. 

Data-level bias: The EHR data encompasses a diverse range of 
sources, including lab tests, diagnosis codes, treatment codes, and more. 
Given that electronic phenotyping methods heavily rely on data, any 
bias within the data signi昀椀cantly impacts the phenotyping outcomes. We 
categorize data bias into two main types: human decision bias and pa-
tient distribution bias as shown in Fig. 1 (c). Human decision bias arises 
from clinical judgments, where certain records, such as diagnoses [33] 
and treatments [34], may exhibit biases due to human clinical decisions. 
For instance, phenotype rules crafted by humans may inadvertently 
underrepresent certain subgroups [33]. On the other hand, patient dis-
tribution bias indicates an imbalance in patient representation due to 
disparities in cohort selection procedures. This can occur when minority 
patient groups are underrepresented, possibly stemming from limited 
access to the healthcare system [35]. It’s crucial to recognize that biases 
at the data level inevitably permeate into the models trained on such 
data [36]. 

Model-level bias: The bias in the phenotyping model will also affect 
the phenotype fairness. As described in Section 2.1, the bias can be 
summarized into two categories. The 昀椀rst one is the bias in human- 
de昀椀ned rules, which usually exists in some heuristic phenotyping 
methods like the rule-based method [33]. The second one is algorithm 
bias which commonly exists in arti昀椀cial intelligence methods as shown 
in Fig. 1(c). The arti昀椀cial intelligence algorithm will be trained toward 
optimal prediction accuracy while sacri昀椀cing fairness [37,38]. There 
will be prediction disparities between different subgroups, e.g., some 
subgroups will have more positive predictions, the accuracy will also be 
higher on some subgroups, etc [39]. 

The presence of bias in electronic phenotyping can lead to unfair 
treatment of certain patient subgroups. Moreover, the patient cohorts 
derived from phenotyping may introduce bias into subsequent 

processes, such as the recruitment of patients for clinical trials. 
Addressing bias in phenotyping, both at the data and model levels, 
represents an ongoing challenge and an area for further research. 

2.3. Bias mitigation strategies 

The methods for mitigating bias can be classi昀椀ed into three cate-
gories: pre-processing, in-processing, and post-processing [39]. These 
approaches are implemented at various stages within the electronic 
phenotyping pipeline as demonstrated in Fig. 1(d). 

Pre-processing strategy: Pre-processing method [40,41] aims to 
remove the bias-related information in the input data. There are two 
kinds of input bias-related information. The 昀椀rst one is sensitive features 
(explicit bias information) such as gender and race for which we can 
directly remove them. This category of method is a naïve method to 
reduce the bias in the 昀椀eld of fair machine learning. Due to the implicit 
bias existing in other features, directly removing the sensitive attributes 
cannot usually effectively reduce the bias [59]. In this paper, this 
method will be used as a baseline method for comparison and evalua-
tion. The second one is implicit bias [42,43]. For example, the zip code is 
not a sensitive attribute but may be related to the race population. 
Moreover, we can resample the subgroups in the training data or re- 
weight each sample to mitigate the bias in training [40]. 

In-processing strategy: In-processing method focuses on the model 
training part. The in-processing method will guide the model to be 
trained for unbiased predictions by adding fairness-related constraints 
or regularization. This kind of method is the most commonly used one in 
the machine learning community because of its 昀氀exibility and general-
izability for different scenarios and settings. One kind of in-processing 
method is adding regularization, e.g., neural network local interpreta-
tion during the training stage [44,45]. Another main category of the 
method is adversarial learning, which will train a model for prediction 
and another model for adversarial classi昀椀cation [43,46]. 

Post-processing strategy: The post-processing method directly 
processes the model outputs to force the outputs to be less biased. This 
method can be widely applied to various kinds of methods but it needs 
the patients’ sensitive attributes which may be unavailable due to the 
private issue [47,48]. 

3. Datasets and methods 

3.1. Datasets and tasks 

Pneumonia and sepsis phenotype. We use the widely applied 
MIMICIII [49,50] as the dataset for the following experiments in this 
work. Based on the MIMIC-III, we choose pneumonia and sepsis as our 
target phenotyping diseases because of their signi昀椀cant importance 
[51,52]. 

Cohort selection. We select the target patient cohort based on 
their”DIAGNOSIS” feature in the”ADMISSIONS” 昀椀le. We 昀椀lter out 1419 
patients diagnosed with pneumonia and 1096 patients diagnosed with 
sepsis as shown in Table 1. For the negative patients, we randomly 
sampled the same number as the positive patients from the neonatal 
patients in MIMIC-III. 

Data processing. We extract the diagnostic codes and drug names 
from the patients’ histories. We follow the data preprocessing proced-
ures in TASTE framework [32] (TASTE framework is a recent state-of- 

Table 1 
Statistical summary of MIMIC-III database.   

# 
Patients 

# 
Healthy 

# 
Diagnoses 

# ICD 
codes 

# 
Medications 

MIMIC-III 38699 7821 15692 5435 1339918 
Pneumonia 1419 1419 \ 1606 954 
Sepsis 1096 1096 \ 1513 892  
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the-art electronic phenotyping algorithm, which can be applied to 
electronic health records.) to group these ICD-9 codes and medical 
names into higher-level categories to avoid the potential data leakage 
issue in the following model training. We will 昀椀rst convert the ICD-9 
codes to the ICD-10 codes and respectively use the Clinical Classi昀椀ca-
tion Software (CCS) system and the Anatomical Therapeutic Chemical 
(ATC) classi昀椀cation system to transfer ICD codes and drug names into 
more general classi昀椀cations. The large number of features from ICD 
codes and medications has been reduced discernibly to CCS and ATC 
codes. For pneumonia, we get 232 CCS codes and 285 ATC codes. For 
sepsis, we get 231 CCS codes and 270 ATC codes. As each patient may 
have multiple visits, we formulate the input containing both temporal 
features and static features. We formulate the input as 3D tensors [32] 
consisting of patients, hospital visits, and temporal attributes. For the 
sensitive attributes, we chose gender and race as the research targets. 

3.2. Study design 

In this section, we will introduce the proposed study design to 
comprehensively investigate and mitigate the bias in electronic pheno-
typing. First, we will discuss how to quantitatively identify and measure 
the bias in phenotyping with two bias metrics. Then, we will investigate 
how to mitigate the bias from the computational perspective. 

Identify bias in electronic phenotyping. To investigate the bias in 
electronic phenotyping comprehensively, we 昀椀rst benchmark 4 main 
categories of widely used phenotyping methods as described in Section 
2.1. We include 9 electronic phenotyping methods in this work, which 
are the rule-based method, logistic regression (LR) [12], random forest 
(RF) [14], SVM [15], gradient boosting decision tree (GBDT) [13], MLP 
[53], RNN [25], and LSTM [54]. We use the ROCAUC as metrics to 
measure the phenotyping accuracy and demographic parity difference 
(DPD), and equality odds difference (EOD) as the bias metrics. We will 
introduce the details of the phenotyping methods and metrics in Section 
3.3.1. We will analyze different methods’ performance on the pheno-
typing tasks and the bias respectively. 

Mitigate bias from the computational perspective. We evaluate 
three main categories of debiasing algorithms as introduced in Section 
2.3 to mitigate the phenotyping bias. We choose 2 pre-processing debias 
method, 2 in-processing debias method and 1 post-processing debias 
method. All these representative debiasing methods will be tested on the 
phenotyping methods described above if applicable. We will use the bias 
and performance metrics to investigate the mitigation effectiveness of 
different debiasing methods on various phenotyping algorithms. 

3.3. Methods 

3.3.1. Bias measure metrics 
We will introduce the details of two bias metrics and their clinical 

meaning in the electronic phenotyping as follows. We use �Y to denote 
the prediction of the phenotyping model, Y to denote the true label, and 
S to denote the sensitive attribute of each patient, e.g., gender, race, etc. 

Demographic Parity Difference (DPD): The DPD measures the 
disparities of positive model outputs between different subgroups as 
shown in the Eq. (1). In the context of phenotype, the positive outputs 
indicate the diagnosis of speci昀椀c diseases. DPD implies the bias in the 
probability of diagnosis between different patient groups. 
DPD = |P(�Y = 1|S = 0)−P(�Y = 1|S = 1)| (1) 

Equalized Odds Difference (EOD): The EOD measures the dispar-
ities of true positive outcomes between different subgroups as presented 
in the Eq. (2). EOD measures the bias of correctly identifying patients 
with speci昀椀c diseases or phenotypes. 
EOD = |P(�Y = 1|Y = 1, S = 0)−P(�Y = 1|Y = 1, S = 1)| (2)  

3.3.2. Eletronic phenotyping methods 
We formulate four categories of phenotyping methods as follows. 
Rule-based methods: Rule-based methods are usually human- 

de昀椀ned if…else… rules, whose inputs are selected features Xselected, e. 
g., ICD-codes, etc. Rule-based methods can be represented as follows in 
general. 
�Y = Rules(Xselected) (3) 

The rule-based method adopted in this work is based on the PheKB. 
Traditional machine learning: Traditional machine learning 

methods consist of training and testing stages and require feature en-
gineering on the raw patient data Rawtrain, Rawtest. We formulate the 
traditional machine learning phenotype pipeline as follows: 
Xtrain,Xtest = FE(Rawtrain,Rawtest) (4)  

�Ytrain = ML(Xtrain) (5)  

�Ytest = ML(Xtest) (6)  

where ML models can be LR, RF, GBDT, and SVM in this work. 
Neural networks: Neural network needs to design the network ar-

chitecture and train on large-scale data. We formulate the phenotyping 
method with the neural network as follows. 
�Ytrain = NN(Xtrain, θ), Loss = l(�Ytrain,Ytrain) (7)  

�Ytest = NN(Xtest, θ) (8)  

where θ is the trainable parameters of the neural network and the loss 
function l can be binary cross entropy. We choose MLP, RNN, and LSTM 
these three representative models to instantiate NN in this work. 

Tensor factorization: Tensor factorization algorithm decomposes 
the input data into latent factor matrices for all three dimensions. We use 
the latent factor matrix of patient dimension for our phenotyping task 
and one machine learning algorithm as the classi昀椀er. This phenotyping 
method can be formulated as follows. 
Mp,Mv,Mt = TF(X), Loss = l(MpÆA⋅MvÆA⋅Mt,X) (9)  

Mtrainp,Mtestp = split(Mp) (10)  

�Ytest = ML(Mtestp) (11)  

where X represents the raw input and split() is to separate the whole 
dataset into train and test sets. TF represents the tensor factorization 
process, and the loss function is based on the cross entropy between the 
product of the resulting three latent factor matrices and the raw input 
data. We choose PARAFAC [55] as the tensor factorization algorithm 
and LR as the classi昀椀er in this work. 

3.3.3. Debiasing methods 
We formulate three kinds of debiasing methods as follows. 
Pre-processing debias: One kind of pre-processing debias method 

will be operated on the input data to remove the explicit and implicit 
bias features. Speci昀椀cally, we utilize the Pearson Correlation Coef昀椀cient 
(PCC) to determine the level of correlation between the two variables 
and set a threshold to remove strongly correlated features that exceed 
this threshold. This process can be presented as follows. 
Xdebias = Remover(X, threshold) (12)  

�Y = Model(Xdebias) (13)  

where Remover() is the algorithm that removes the sensitive related 
features, for which we choose correlation remover in this work. The 
threshold is manually set for determining if the feature should be 
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eliminated. 
Another pre-processing debias method is resampling, which resam-

ple the ratio of different subgroups to make the balance of them. The 
process can be represented as follows. 
Xresample = Resampler(X, S) (14)  

�Y = Model(Xresample) (15) 
In-processing debias: In-processing debias method performs during 

the model training stage. One method to guide the model to be trained 
toward fair predictions is by adding some fairness constraints, which is 
one kind of widely applied method. In our experiment, the classi昀椀cation 
reduction algorithm [56] is adopted for this guiding. Typically, the 
objective of this algorithm is to minimize the disparity in prediction 
between different groups during the training process. This process can 
be presented as follows. 

�Y = Model(X) (16)  

Loss = l(�Ytrain,Ytrain)+ fairnessconstraint (17)  

where fairness constraint is the regularization that ensures the predic-tion 
fairness, for which we use demographic parity constraint in this work. 

Another mainstream of the in-processing debiasing method is 
adversarial learning, which will train a predictor model and an adver-
sary model. The predictor model will be trained with conventional 
strategy as shown below. 
�Ytrain = Predictor(Xtrain, θP), LP = l(�Ytrain,Ytrain) (18) 

Meanwhile, an adversary model will be trained to predict the sen-
sitive attributes based on the predictions from the Predictor model. This 
process can be formulated as follows: 

Table 2 
Debiasing results of pneumonia phenotyping (Demographic Parity Difference. Correlation remover and resample are the pre-processing methods. Reduction and 
adversarial mitigation are the in-processing methods. Threshold optimizer is a post-processing method. w/o debias is the baseline method without any debiasing 
strategy.).  

Disease phenotyping Rule 
Based 

Machine Learning Tensor 
Factorization 

Deep 
Learning  

Sensitive 
Attribute 

Debias 
Method 

PheKB- 
ICD 

LR RF SVM GBC PARAFAC þ LR MLP RNN LSTM 

Gender (Input 
include) 

Correlation 
Remover 

0.000 0.031 ±
0.001 

0.036 ±
0.001 

0.047 ±
0.001 

0.037 ±
0.001 

0.037 ± 0.001 0.041 ±
0.001 

0.041 ±
0.001 

0.040 ±
0.001 

Resample 0.010 0.036 ±
0.001 

0.040 ±
0.001 

0.043 ±
0.001 

0.038 ±
0.001 

0.037 ± 0.001 0.038 ±
0.001 

0.035 ±
0.002 

0.037 ±
0.001 

Reduction / 0.039 ±
0.001 

0.036 ±
0.001 

0.039 ±
0.001 

0.037 ±
0.001 

0.047 ± 0.001 0.036 ±
0.001 

0.036 ±
0.001 

0.035 ±
0.001 

Threshold 
Optimizer 

0.000 0.049 ±
0.001 

0.045 ±
0.000 

0.052 ±
0.001 

0.045 ±
0.001 

0.048 ± 0.001 0.053 ±
0.001 

0.043 ±
0.001 

0.040 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.043 ±
0.001 

0.038 ±
0.001 

0.087 ±
0.014 

w/o debias 0.000 0.031 ±
0.001 

0.036 ±
0.001 

0.047 ±
0.001 

0.037 ±
0.001 

0.037 ± 0.001 0.041 ±
0.001 

0.064 ±
0.001 

0.040 ±
0.001 

Race (Input 
include) 

Correlation 
Remover 

0.006 0.127 ±
0.002 

0.141 ±
0.001 

0.039 ±
0.000 

0.142 ±
0.001 

0.131 ± 0.001 0.146 ±
0.001 

0.150 ±
0.001 

0.148 ±
0.001 

Resample 0.036 0.024 ±
0.001 

0.028 ±
0.000 

0.024 ±
0.000 

0.027 ±
0.000 

0.045 ± 0.003 0.026 ±
0.000 

0.021 ±
0.000 

0.026 ±
0.000 

Reduction / 0.082 ±
0.002 

0.088 ±
0.001 

0.052 ±
0.002 

0.098 ±
0.001 

0.049 ± 0.001 0.074 ±
0.001 

0.064 ±
0.002 

0.060 ±
0.002 

Threshold 
Optimizer 

0.001 0.034 ±
0.001 

0.034 ±
0.001 

0.026 ±
0.000 

0.036 ±
0.002 

0.029 ± 0.001 0.030 ±
0.000 

0.023 ±
0.000 

0.028 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.141 ±
0.001 

0.169 ±
0.002 

0.146 ±
0.001 

w/o debias 0.006 0.127 ±
0.002 

0.141 ±
0.001 

0.039 ±
0.000 

0.142 ±
0.001 

0.131 ± 0.001 0.148 ±
0.001 

0.145 ±
0.001 

0.072 ±
0.022 

Gender (Input 
exclude) 

Correlation 
Remover 

0.000 0.037 ±
0.001 

0.037 ±
0.001 

0.037 ±
0.000 

0.037 ±
0.001 

0.050 ± 0.001 0.036 ±
0.001 

0.043 ±
0.001 

0.043 ±
0.001 

Resample 0.010 0.038 ±
0.001 

0.038 ±
0.001 

0.038 ±
0.001 

0.038 ±
0.001 

0.039 ± 0.001 0.039 ±
0.001 

0.040 ±
0.001 

0.038 ±
0.001 

Reduction / 0.037 ±
0.001 

0.037 ±
0.001 

0.037 ±
0.000 

0.037 ±
0.001 

0.050 ± 0.001 0.037 ±
0.001 

0.040 ±
0.001 

0.042 ±
0.001 

Threshold 
Optimizer 

0.000 0.047 ±
0.001 

0.037 ±
0.001 

0.047 ±
0.001 

0.043 ±
0.001 

0.060 ± 0.001 0.041 ±
0.001 

0.044 ±
0.001 

0.040 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.041 ±
0.001 

0.035 ±
0.001 

0.035 ±
0.000 

w/o debias 0.000 0.037 ±
0.001 

0.037 ±
0.001 

0.037 ±
0.001 

0.037 ±
0.001 

0.050 ± 0.001 0.036 ±
0.001 

0.043 ±
0.001 

0.041 ±
0.001 

Race (Input 
exclude) 

Correlation 
Remover 

0.006 0.142 ±
0.001 

0.142 ±
0.001 

0.142 ±
0.0009 

0.142 ±
0.001 

0.103 ± 0.000 0.141 ±
0.001 

0.138 ±
0.001 

0.141 ±
0.000 

Resample 0.036 0.027 ±
0.000 

0.028 ±
0.001 

0.028 ±
0.001 

0.027 ±
0.000 

0.043 ± 0.001 0.028 ±
0.001 

0.033 ±
0.001 

0.030 ±
0.001 

Reduction / 0.126 ±
0.002 

0.144 ±
0.002 

0.125 ±
0.001 

0.123 ±
0.001 

0.101 ± 0.001 0.135 ±
0.001 

0.136 ±
0.000 

0.138 ±
0.000 

Threshold 
Optimizer 

0.001 0.025 ±
0.000 

0.027 ±
0.001 

0.043 ±
0.000 

0.041 ±
0.000 

0.019 ± 0.000 0.033 ±
0.000 

0.044 ±
0.000 

0.035 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.125 ±
0.001 

0.135 ±
0.001 

0.110 ±
0.004 

w/o debias 0.006 0.142 ±
0.001 

0.142 ±
0.001 

0.142 ±
0.001 

0.142 ±
0.001 

0.103 ± 0.000 0.141 ±
0.001 

0.141 ±
0.001 

0.141 ±
0.001  

S. Ding et al.                                                                                                                                                                                                                                     



Journal of Biomedical Informatics 156 (2024) 104671

6

�Strain = AdverseNN(�Ytrain, θA), LA = l(�Strain, Strain) (19) 
The overall optimization goal is combining two losses of predictor 

network and adversary model as follows. 
L = αLP+ βLA (20)  

where α, β are hyper-parameters that control the ratio of two losses. In 
this work, we use the adversarial debiasing method proposed by Zhang 
et al. [57]. 

Post-processing debias: Post-processing debiasing method directly 
calibrates the model outputs, which can be formulated as: 
�Y = Model(X) (21)  

�Ycal = Calibrator(�Y) (22) 
In this work, a threshold-based post-processing technique is 

employed as a method of calibration, based on the principle of equality 
of opportunity in model predictions, as articulated by Hardt et al. [48]. 

The threshold-based post-processing method adjusts a predictive 
model’s decision boundary for different groups to meet fairness con-
straints like EOD or DPD. It tests various thresholds on the model’s 
output and selects the one that best balances fairness and performance. 
Technically, we use the ThresholdOptimizer class from Fairlearn library 
to achieve this. 

3.4. Implementation details 

This section introduces the implementation details of different types 
of rule-based and machine learning models. 

Algorithm implementation: In our experiment, all algorithmic 
implementations have been actualized within the Python 3.8 environ-
ment. We leverage the rule-based algorithms available from the 
Phenotype Knowledgebase (PheKB) [9] community as part of our 
analytical framework on the MIMIC-III. Furthermore, we leverage the 
scikit-learn library to implement traditional machine learning method-
ologies, employing the tensorly library for tensor factorization 

Table 3 
Debiasing results of pneumonia phenotyping (Equalized Odds Difference. w/o debias is the baseline method without any debiasing strategy.).  

Disease phenotyping Rule 
Based 

Machine Learning Tensor 
Factorization 

Deep 
Learning  

Sensitive 
Attribute 

Debias 
Method 

PheKB- 
ICD 

LR RF SVM GBC PARAFAC þ LR MLP RNN LSTM 

Gender (Input 
included) 

Correlation 
Remover 

0.007 0.030 ±
0.000 

0.008 ±
0.000 

0.055 ±
0.002 

0.000 ±
0.000 

0.024 ± 0.000 0.007 ±
0.000 

0.010 ±
0.000 

0.006 ±
0.000 

Resample 0.019 0.009 ±
0.000 

0.007 ±
0.000 

0.025 ±
0.000 

0.000 ±
0.000 

0.016 ± 0.000 0.007 ±
0.000 

0.010 ±
0.000 

0.007 ±
0.000 

Reduction / 0.025 ±
0.000 

0.008 ±
0.000 

0.039 ±
0.001 

0.000 ±
0.000 

0.029 ± 0.001 0.010 ±
0.000 

0.017 ±
0.000 

0.013 ±
0.000 

Threshold 
Optimizer 

0.005 0.039 ±
0.001 

0.061 ±
0.001 

0.052 ±
0.002 

0.055 ±
0.001 

0.037 ± 0.000 0.050 ±
0.001 

0.045 ±
0.001 

0.043 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.015 ±
0.000 

0.010 ±
0.000 

0.146 ±
0.084 

w/o debias 0.007 0.030 ±
0.000 

0.008 ±
0.000 

0.055 ±
0.002 

0.000 ±
0.000 

0.024 ± 0.000 0.007 ±
0.000 

0.011 ±
0.000 

0.006 ±
0.000 

Race (Input 
included) 

Correlation 
Remover 

0.048 0.064 ±
0.000 

0.010 ±
0.000 

0.121 ±
0.003 

0.000 ±
0.000 

0.049 ± 0.000 0.020 ±
0.000 

0.024 ±
0.000 

0.021 ±
0.000 

Resample 0.072 0.053 ±
0.003 

0.009 ±
0.000 

0.074 ±
0.004 

0.000 ±
0.000 

0.107 ± 0.003 0.021 ±
0.000 

0.028 ±
0.000 

0.043 ±
0.001 

Reduction / 0.102 ±
0.001 

0.093 ±
0.001 

0.116 ±
0.002 

0.074 ±
0.001 

0.140 ± 0.002 0.110 ±
0.001 

0.125 ±
0.003 

0.135 ±
0.003 

Threshold 
Optimizer 

0.048 0.224 ±
0.004 

0.246 ±
0.001 

0.210 ±
0.005 

0.252 ±
0.004 

0.234 ± 0.002 0.215 ±
0.002 

0.243 ±
0.001 

0.238 ±
0.002 

Adversarial 
Mitigation 

/ / / / / / 0.016 ±
0.000 

0.047 ±
0.005 

0.146 ±
0.001 

w/o debias 0.048 0.064 ±
0.000 

0.010 ±
0.000 

0.121 ±
0.003 

0.000 ±
0.000 

0.049 ± 0.000 0.018 ±
0.000 

0.021 ±
0.000 

0.024 ±
0.000 

Gender (Input 
excluded) 

Correlation 
Remover 

0.007 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.040 ± 0.002 0.001 ±
0.000 

0.017 ±
0.000 

0.020 ±
0.000 

Resample 0.019 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.050 ± 0.000 0.002 ±
0.000 

0.015 ±
0.000 

0.006 ±
0.000 

Reduction / 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.040 ± 0.002 0.000 ±
0.000 

0.019 ±
0.000 

0.020 ±
0.001 

Threshold 
Optimizer 

0.005 0.046 ±
0.002 

0.049 ±
0.000 

0.040 ±
0.001 

0.038 ±
0.001 

0.053 ± 0.001 0.031 ±
0.001 

0.039 ±
0.000 

0.027 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.020 ±
0.000 

0.015 ±
0.000 

0.016 ±
0.000 

w/o debias 0.007 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.040 ± 0.002 0.001 ±
0.000 

0.020 ±
0.000 

0.017 ±
0.000 

Race (Input 
excluded) 

Correlation 
Remover 

0.048 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.028 ± 0.001 0.001 ±
0.000 

0.010 ±
0.000 

0.013 ±
0.000 

Resample 0.072 0.000 ±
0.000 

0.003 ±
0.000 

0.003 ±
0.000 

0.000 ±
0.000 

0.058 ± 0.000 0.003 ±
0.000 

0.023 ±
0.000 

0.018 ±
0.000 

Reduction / 0.026 ±
0.000 

0.018 ±
0.000 

0.022 ±
0.001 

0.026 ±
0.000 

0.052 ± 0.000 0.019 ±
0.000 

0.017 ±
0.000 

0.022 ±
0.000 

Threshold 
Optimizer 

0.048 0.247 ±
0.001 

0.257 ±
0.001 

0.241 ±
0.002 

0.236 ±
0.003 

0.125 ± 0.000 0.216 ±
0.001 

0.230 ±
0.004 

0.195 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.036 ±
0.001 

0.017 ±
0.000 

0.010 ±
0.000 

w/o debias 0.048 0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.000 ±
0.000 

0.028 ± 0.001 0.001 ±
0.000 

0.012 ±
0.000 

0.012 ±
0.000  
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algorithms and the PyTorch library for the development and deployment 
of our neural network models. For the critical task of debiasing methods, 
we call upon the 0.9.0 version of the fairlearn library for the traditional 
machine learning implementation. However, in instances where the 
fairlearn library does not provide any support, we undertake the 
development of our own debias procedures for our models. 

Model and training detail: In pursuit of robust and reliable results 
during the training phase, we rigorously employ a 5-fold cross- 
validation methodology, thereby facilitating the robust estimation of 
our measuring metrics. In con昀椀guring the training hyperparameters, we 
set the maximum iterations for logistic regression (LR) and support 
vector machines (SVM) to 120, while opting for a total of 30 estimators 
for tree-based models(Random Forest, Gradient Boosting Classi昀椀er). The 
maximum iterations in tensor factorization are set 100 for PARAFAC and 
400 for LR’s prediction. Meanwhile, we select the top 20 features from 
the latent factor matrix. The hidden size of both LSTM and RNN models 
is set to 128. For neural network models, we deliberately de昀椀ne key 
parameters, specifying a learning rate of 1e − 04, a minibatch size of 

256, and an epoch number of 40 to ensure convergence and effective 
training. Additionally, in the context of tensor factorization, we estab-
lish the rank of the latent factor matrix at 20. The hyperparameter of 
debiasing strategies are as follows. The threshold of the correlation 
remover strategy is set to 0.5. The resample strategy used down- 
sampling mode. For all the fairness constraint, we use the de-
mographic parity as the implementation. 

4. Results 

We analyze the experiment results from two perspectives. The 昀椀rst 
one is bias measurement in the phenotyping. The other is how the 
debiasing algorithms perform. 

4.1. Bias measurement in phenotyping 

We summarize several key 昀椀ndings from the bias measurement re-
sults in two diseases phenotyping as follows. 

Table 4 
Debiasing results of sepsis phenotyping (Demographic Parity Difference. w/o debias is the baseline method without any debiasing strategy.).  

Disease phenotyping Rule 
Based 

Machine Learning Tensor 
Factorization 

Deel Learning  

Sensitive 
Attribute 

Debias 
Method 

PheKB- 
ICD 

LR RF SVM GBC PARAFAC þ LR MLP RNN LSTM 

Gender (Input 
include) 

Correlation 
Remover 

0.007 0.017 ±
0.000 

0.012 ±
0.000 

0.019 ±
0.000 

0.014 ±
0.000 

0.018 ± 0.000 0.018 ±
0.000 

0.019 ±
0.000 

0.016 ±
0.000 

Resample 0.001 0.041 ±
0.001 

0.032 ±
0.001 

0.042 ±
0.001 

0.033 ±
0.000 

0.034 ± 0.000 0.033 ±
0.000 

0.037 ±
0.000 

0.035 ±
0.001 

Reduction / 0.021 ±
0.000 

0.012 ±
0.000 

0.025 ±
0.000 

0.014 ±
0.000 

0.042 ± 0.001 0.019 ±
0.000 

0.016 ±
0.000 

0.019 ±
0.000 

Threshold 
Optimizer 

0.000 0.023 ±
0.000 

0.015 ±
0.000 

0.060 ±
0.003 

0.017 ±
0.000 

0.024 ± 0.000 0.022 ±
0.000 

0.023 ±
0.000 

0.027 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.027 ±
0.000 

0.012 ±
0.000 

0.015 ±
0.000 

w/o debias 0.007 0.017 ±
0.000 

0.012 ±
0.000 

0.019 ±
0.000 

0.014 ±
0.000 

0.018 ± 0.000 0.019 ±
0.000 

0.016 ±
0.000 

0.016 ±
0.000 

Race (Input 
include) 

Correlation 
Remover 

0.140 0.122 ±
0.001 

0.149 ±
0.001 

0.051 ±
0.002 

0.148 ±
0.001 

0.135 ± 0.002 0.163 ±
0.001 

0.163 ±
0.001 

0.160 ±
0.001 

Resample 0.029 0.039 ±
0.001 

0.028 ±
0.000 

0.043 ±
0.002 

0.037 ±
0.000 

0.021 ± 0.000 0.024 ±
0.000 

0.020 ±
0.000 

0.022 ±
0.000 

Reduction / 0.091 ±
0.003 

0.094 ±
0.003 

0.061 ±
0.003 

0.092 ±
0.003 

0.060 ± 0.001 0.068 ±
0.002 

0.072 ±
0.002 

0.066 ±
0.002 

Threshold 
Optimizer 

0.004 0.041 ±
0.001 

0.033 ±
0.000 

0.028 ±
0.001 

0.053 ±
0.001 

0.029 ± 0.000 0.035 ±
0.001 

0.047 ±
0.001 

0.047 ±
0.002 

Adversarial 
Mitigation 

/ / / / / / 0.158 ±
0.001 

0.156 ±
0.002 

0.166 ±
0.001 

w/o debias 0.140 0.122 ±
0.001 

0.148 ±
0.001 

0.051 ±
0.002 

0.148 ±
0.001 

0.135 ± 0.002 0.163 ±
0.001 

0.163 ±
0.001 

0.162 ±
0.001 

Gender (Input 
exclude) 

Correlation 
Remover 

0.007 0.015 ±
0.000 

0.014 ±
0.000 

0.015 ±
0.000 

0.015 ±
0.000 

0.063 ± 0.002 0.014 ±
0.000 

0.017 ±
0.000 

0.019 ±
0.000 

Resample 0.001 0.034 ±
0.000 

0.034 ±
0.000 

0.034 ±
0.000 

0.034 ±
0.000 

0.050 ± 0.001 0.033 ±
0.000 

0.038 ±
0.001 

0.038 ±
0.002 

Reduction / 0.015 ±
0.000 

0.014 ±
0.000 

0.015 ±
0.000 

0.015 ±
0.000 

0.063 ± 0.002 0.014 ±
0.000 

0.017 ±
0.000 

0.019 ±
0.000 

Threshold 
Optimizer 

0.000 0.026 ±
0.000 

0.025 ±
0.000 

0.020 ±
0.000 

0.019 ±
0.000 

0.050 ± 0.001 0.016 ±
0.000 

0.026 ±
0.000 

0.020 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.013 ±
0.000 

0.010 ±
0.000 

0.023 ±
0.000 

w/o debias 0.007 0.015 ±
0.000 

0.014 ±
0.000 

0.015 ±
0.000 

0.015 ±
0.000 

0.063 ± 0.002 0.014 ±
0.000 

0.019 ±
0.000 

0.018 ±
0.000 

Race (Input 
exclude) 

Correlation 
Remover 

0.140 0.149 ±
0.001 

0.148 ±
0.001 

0.149 ±
0.001 

0.149 ±
0.001 

0.138 ± 0.003 0.148 ±
0.001 

0.155 ±
0.001 

0.156 ±
0.001 

Resample 0.029 0.035 ±
0.000 

0.034 ±
0.000 

0.034 ±
0.000 

0.035 ±
0.000 

0.058 ± 0.001 0.035 ±
0.000 

0.026 ±
0.000 

0.026 ±
0.000 

Reduction / 0.127 ±
0.000 

0.147 ±
0.001 

0.138 ±
0.000 

0.125 ±
0.002 

0.127 ± 0.001 0.149 ±
0.001 

0.156 ±
0.002 

0.154 ±
0.001 

Threshold 
Optimizer 

0.004 0.021 ±
0.000 

0.044 ±
0.002 

0.018 ±
0.000 

0.055 ±
0.000 

0.032 ± 0.000 0.036 ±
0.001 

0.046 ±
0.001 

0.032 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.141 ±
0.001 

0.140 ±
0.001 

0.149 ±
0.002 

w/o debias 0.140 0.149 ±
0.001 

0.148 ±
0.001 

0.149 ±
0.001 

0.149 ±
0.001 

0.138 ± 0.003 0.148 ±
0.001 

0.155 ±
0.001 

0.154 ±
0.001  
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" The electronic phenotyping bias across races is more signi昀椀cant 
than genders. From Table 2, we can observe the race DPD bias is 
about 7 % higher than the gender bias on average across different 
phenotyping methods without debiasing strategies. From Table 4, 
the race DPD bias is over 12 % larger than gender bias. Similarly, 
when the bias metric is EOD, the race bias is 2 %, 3 % higher than 
gender bias on pneumonia and sepsis phenotyping respectively ac-
cording to the Table 3 and Table 5. The potential reason behind is the 
patient distributions across different races is very diverse than the 
distributions across genders. There are also more salient differences 
on some social determinants like economic condition, workload, etc 
among races than genders. The inner high diverse distributions of 
different races than genders cause the larger bias measured in the 
experiments. 

" Phenotyping bias varies across different phenotyping algo-
rithms. Rule-based Phenotyping method shows signi昀椀cantly 
less bias. 

From Table 2 and Table 4, we can 昀椀nd different phenotyping method 
presents various levels of bias under different settings. When sensitive 
attribute is included, in pneumonia phenotyping, RNN shows the high-
est gender bias, and MLP has the highest racial bias. For the sepsis 
phenotyping, SVM and MLP present the highest gender bias when 
gender is not included in the input. Meanwhile, MLP and RNN have the 
highest racial bias in sepsis phenotyping. When we exclude the sensitive 
attribute from input features, the RNN presents the largest gender bias 
while 4 ML models show the highest racial bias in both pneumonia and 
sepsis phenotyping. Moreover, we 昀椀nd the rule-based method presents 
signi昀椀cantly less bias compared to other methods. In the pneumonia 
phenotyping, rule-based method shows 4 % lower gender bias and 11 % 
lower race bias in terms of DPD. Noticeably, observed from Table 3 and 
Table 5, while the EOD gap in gender is 1 % lower, the average race bias 
of rule-based algorithms is 1 % higher. The bias varies on different 
phenotyping algorithm is probably caused by the computational 
mechanisms behind each algorithm is different. For example, the rule- 
based method will only rely on several expert selected features, which 

Table 5 
Debiasing results of sepsis phenotyping (Equalized Odds Difference. w/o debias is the baseline method without any debiasing strategy.).  

Disease phenotyping Rule 
Based 

Machine Learning Tensor 
Factorization 

Deep 
Learning  

Sensitive 
Attribute 

Debias 
Method 

PheKB- 
ICD 

LR RF SVM GBC PARAFAC þ LR MLP RNN LSTM 

Gender (Input 
included) 

Correlation 
Remover 

0.005 0.037 ±
0.000 

0.010 ±
0.000 

0.085 ±
0.001 

0.004 ±
0.000 

0.027 ± 0.000 0.011 ±
0.000 

0.011 ±
0.000 

0.009 ±
0.000 

Resample 0.004 0.026 ±
0.000 

0.014 ±
0.000 

0.062 ±
0.002 

0.004 ±
0.000 

0.036 ± 0.000 0.013 ±
0.000 

0.015 ±
0.000 

0.013 ±
0.000 

Reduction / 0.015 ±
0.000 

0.010 ±
0.000 

0.049 ±
0.001 

0.004 ±
0.000 

0.058 ± 0.001 0.009 ±
0.000 

0.029 ±
0.000 

0.025 ±
0.000 

Threshold 
Optimizer 

0.010 0.029 ±
0.000 

0.014 ±
0.000 

0.121 ±
0.002 

0.012 ±
0.000 

0.027 ± 0.000 0.019 ±
0.000 

0.020 ±
0.000 

0.020 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.046 ±
0.002 

0.016 ±
0.000 

0.007 ±
0.000 

w/o debias 0.005 0.037 ±
0.000 

0.010 ±
0.000 

0.085 ±
0.001 

0.004 ±
0.000 

0.027 ± 0.000 0.011 ±
0.000 

0.013 ±
0.000 

0.009 ±
0.000 

Race (Input 
included) 

Correlation 
Remover 

0.093 0.093 ±
0.001 

0.010 ±
0.000 

0.129 ±
0.007 

0.006 ±
0.000 

0.063 ± 0.003 0.038 ±
0.001 

0.049 ±
0.003 

0.038 ±
0.002 

Resample 0.062 0.056 ±
0.004 

0.010 ±
0.000 

0.087 ±
0.004 

0.007 ±
0.000 

0.111 ± 0.003 0.048 ±
0.000 

0.063 ±
0.001 

0.063 ±
0.001 

Reduction / 0.100 ±
0.002 

0.091 ±
0.001 

0.090 ±
0.002 

0.096 ±
0.002 

0.150 ± 0.001 0.141 ±
0.001 

0.129 ±
0.001 

0.142 ±
0.001 

Threshold 
Optimizer 

0.187 0.251 ±
0.003 

0.266 ±
0.000 

0.130 ±
0.005 

0.241 ±
0.003 

0.220 ± 0.000 0.265 ±
0.002 

0.255 ±
0.004 

0.264 ±
0.006 

Adversarial 
Mitigation 

/ / / / / / 0.039 ±
0.003 

0.040 ±
0.003 

0.043 ±
0.001 

w/o debias 0.093 0.093 ±
0.001 

0.010 ±
0.000 

0.129 ±
0.007 

0.006 ±
0.000 

0.063 ± 0.003 0.038 ±
0.001 

0.042 ±
0.002 

0.042 ±
0.002 

Gender (Input 
excluded) 

Correlation 
Remover 

0.005 0.002 ±
0.000 

0.001 ±
0.000 

0.002 ±
0.000 

0.002 ±
0.000 

0.091 ± 0.006 0.000 ±
0.000 

0.029 ±
0.000 

0.033 ±
0.000 

Resample 0.004 0.002 ±
0.000 

0.006 ±
0.000 

0.002 ±
0.000 

0.002 ±
0.000 

0.093 ± 0.000 0.004 ±
0.000 

0.027 ±
0.000 

0.031 ±
0.000 

Reduction / 0.002 ±
0.000 

0.001 ±
0.000 

0.002 ±
0.000 

0.002 ±
0.000 

0.091 ± 0.006 0.000 ±
0.000 

0.028 ±
0.000 

0.032 ±
0.000 

Threshold 
Optimizer 

0.010 0.024 ±
0.000 

0.032 ±
0.001 

0.024 ±
0.000 

0.013 ±
0.000 

0.068 ± 0.002 0.004 ±
0.000 

0.041 ±
0.000 

0.035 ±
0.000 

Adversarial 
Mitigation 

/ / / / / / 0.027 ±
0.000 

0.012 ±
0.000 

0.028 ±
0.000 

w/o debias 0.005 0.002 ±
0.000 

0.001 ±
0.000 

0.002 ±
0.000 

0.002 ±
0.000 

0.091 ± 0.006 0.000 ±
0.000 

0.034 ±
0.000 

0.034 ±
0.000 

Race (Input 
excluded) 

Correlation 
Remover 

0.093 0.004 ±
0.000 

0.001 ±
0.000 

0.004 ±
0.000 

0.004 ±
0.000 

0.090 ± 0.004 0.002 ±
0.000 

0.039 ±
0.001 

0.045 ±
0.001 

Resample 0.062 0.004 ±
0.000 

0.007 ±
0.000 

0.007 ±
0.000 

0.004 ±
0.000 

0.081 ± 0.002 0.004 ±
0.000 

0.040 ±
0.001 

0.029 ±
0.000 

Reduction / 0.047 ±
0.001 

0.014 ±
0.000 

0.044 ±
0.001 

0.027 ±
0.000 

0.095 ± 0.003 0.017 ±
0.000 

0.044 ±
0.002 

0.038 ±
0.001 

Threshold 
Optimizer 

0.187 0.229 ±
0.003 

0.253 ±
0.005 

0.225 ±
0.001 

0.280 ±
0.005 

0.134 ± 0.001 0.264 ±
0.001 

0.232 ±
0.002 

0.255 ±
0.001 

Adversarial 
Mitigation 

/ / / / / / 0.015 ±
0.000 

0.022 ±
0.000 

0.032 ±
0.001 

w/o debias 0.093 0.004 ±
0.000 

0.001 ±
0.000 

0.004 ±
0.000 

0.004 ±
0.000 

0.090 ± 0.004 0.002 ±
0.000 

0.043 ±
0.001 

0.041 ±
0.001  
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include less feature as well as less bias among the input data.  

" Exclude the sensitive attributes from input data has a trivial 
effect on the bias. Excluding the sensitive attributes is the most 
intuitive method to mitigate the bias from the observation in Table 2, 
3, 4, and 5. However, we 昀椀nd that after excluding the sensitive at-
tributes, the bias is still signi昀椀cant. In pneumonia phenotyping, the 
gender bias of LR, RF, GBC, and LSTM increases after the gender 
feature is excluded, and the racial bias of LR, RF, SVM, LSTM in-
creases after the race is excluded. In sepsis phenotyping, RF, GBC, 
RNN, and LSTM’s gender bias increases. SVM, GBC’s racial bias in-
creases after the race attribute is excluded. The reason behind is 
other features contains the implicit information related to the sen-
sitive attributes. So directly removing the sensitive attributes may 
not work effectively. 

4.1.1. Performance of debiasing algorithms  

" The debiasing strategies are more effective on racial bias than 
gender bias. From the gender part in both Table 2 and Table 4, we 
can 昀椀nd that the gender bias decreases with a non-trivial level. The 
reason may be the bias across genders is relatively small and trivial. 

So the debiasing method couldn’t effectively mitigate the gender 
bias. However, most debiasing methods can reduce race bias signi昀椀-
cantly. For example, the race bias of MLP in pneumonia phenotyping is 
reduced by 12.2 % with the resample debiasing method. The race bias of 
SVM can be further reduced by 1.5 % with resample strategy in the 
sepsis phenotyping task. This is because the racial bias is more salient 
than the gender bias, so the debiasing strategies show better perfor-
mance on the racial bias.  

" Correlation removing method is not capable of mitigating the 
bias in phenotyping. We can observe from Table 2 and Table 4, that 
removing the sensitive correlation from input features doesn’t work 
for the sepsis and pneumonia phenotyping. For pneumonia pheno-
typing, the gender bias even increases a bit after the correlation 
removal in DL methods of LSTM. The race bias of MLP and RNN 
increases after the correlation removal. The situation is similar in the 
sepsis phenotype. This may be caused by the input feature containing 
little information related to the sensitive attributes. This phenome-
non further shows the bias in phenotyping is more likely to be caused 
by the phenotyping algorithm and data distribution. Neither the 
removal of sensitive attributes and correlation among other features 
has the satisfying debiasing performance. 

Fig. 2. Pneumonia phenotype performance. (w/o debias is the baseline method without any debiasing strategy. w/o sensitive represents omit the sensitive attributes 
from input features. w/ sensitive represents the input features includes the sensitive attributes.). 
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" Resample the patients’ data and postprocess the outputs are two 
very simple yet effective debiasing methods. From Table 2 and 
Table 4, we can 昀椀nd resampling the patients’ data to make each 
subgroup size more balanced can signi昀椀cantly reduce the phenotype 
bias. The race bias in pneumonia phenotype has been reduced by 9 % 
on average with either of resampling or postprocessing method. 

The highest gender bias can be reduced by 2.9 % with resampling on 
RNN. For the sepsis phenotyping task, the highest race bias decrease by 
14 %. Nevertheless, the gender biases of our models are almost all below 
2 % and can hardly be further reduced even with resampling or post-
processing. These two methods are the simplest yet effective debiasing 
strategies. Resampling method will make the patients of different sub-
groups more balanced which can signi昀椀cantly mitigate the prediction 
performance gaps. Postprocess is a more straightforward strategy which 
directly mitigate the bias by tuning the outputs.  

" There is a trade-off between phenotyping accuracy and bias. 
From Fig. 2, we can 昀椀nd that most phenotyping models’ phenotype 
accuracy will decrease when the debiasing method is applied. This 
phenomenon also appears in sepsis phenotype as shown in Fig. 3. So 
when we develop and deploy the phenotyping method, we need to 
make a trade-off between accuracy and bias based on the real-world 

phenotyping requirement. The trade-off between accuracy and bias 
also exists in other prediction tasks. How to maintain the accuracy as 
well as bias in phenotyping remains as a challenge in designing 
phenotyping algorithms. 

5. Limitations 

There are still limitations of this work, for which we conclude them 
into three points. The 昀椀rst is we only consider two representative dis-
eases, which cannot cover all the disease types. The 昀椀ndings from this 
paper may not be scalable to some speci昀椀c type of diseases. For example, 
some disease has unique patient distributions, e.g., breast cancer, 
prostate cancer, etc. In this paper, we haven’t considered the bias and 
fairness issue in these speci昀椀c diseases. Secondly, in the implementation 
of the data processing and methods, there may be bias in this process. 
One of them is the conversion from ICD to 9 to ICD-10. There is potential 
bias because the one-to-one conversion from ICD to 9 to ICD-10 is not 
100 % straightforward. The other is the random sampling of negative 
patients. The random process to select patients may involve the bias. 
More granularity method to sample the negative patients can be 
employed in the future work. 

Fig. 3. Sepsis phenotype performance. (w/o debias is the baseline method without any debiasing strategy. w/o sensitive represents omit the sensitive attributes from 
input features. w/ sensitive represents the input features includes the sensitive attributes.). 
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6. Discussion and conclusion 

From the experiment analysis on the main categories of phenotyping 
models and debiasing methods. We will discuss some limitations and 
future directions of this topic. We will also conclude this work with 
several takeaways and conclusions. 

In this work, we choose two common diseases which are pneumonia 
and sepsis. However, there are some diseases that have speci昀椀c char-
acteristics. These specialties may make phenotyping bias on these dis-
eases different from the 昀椀ndings we summarize in this work. For 
example, breast cancer is more commonly diagnosed among females 
compared to males [58]. The patients’ data distribution across genders 
will be obviously different between females and males, which may cause 
signi昀椀cant gender bias in phenotyping. So for some speci昀椀c diseases, we 
need to analyze their potential bias case by case. 

We investigate the bias issue in phenotyping from a computational 
perspective. However, there is still a gap between the computational 
perspective and the clinical perspective. Addressing this gap represents 
one of the most promising and crucial directions for future research. In 
our future work, we will consider developing some methods that can 
clearly deliver computational fairness to the clinical practitioners and 
involve them to collaborate in the study. In this work, we mainly focus 
on the bias mitigation strategy in the data processing, model training, 
and output calibration steps. However, the data collection in healthcare 
is also very important. How to collect the data containing less bias re-
mains a promising future direction. 

To summarize, we comprehensively investigate the bias and the bias 
mitigation methods with pneumonia and sepsis phenotyping. From the 
perspective of phenotyping bias, we 昀椀nd that race bias is more obvious 
than gender bias and the rule-based phenotyping method demonstrates 
signi昀椀cantly less bias than machine learning phenotyping methods. 
Simply excluding the sensitive attributes doesn’t work well in bias 
mitigation. Moreover, from the perspective of bias mitigation, we 昀椀nd 
that resample and post-process these two methods are simple yet 
effective in bias mitigation. Moreover, if the fairness of the phenotyping 
model improves through mitigation, the phenotyping accuracy will be 
negatively affected to some extent. So the tradeoff between fairness and 
accuracy needs to be considered when implementing and deploying the 
phenotyping model. The future work in this line of research can be 
derived in several directions. The 昀椀rst one is to develop more advanced 
debiasing methods for the phenotyping models according to the task 
specialties. The second is to bridge the gap of fairness between 
computation and clinical, which will help translate the computational 
debiasing methods into real-world clinical practice. The third direction 
is inspired by the 昀椀ndings from our experimental results that we can 
attach more importance to the healthcare data collection stage and 
improve the access of healthcare resources to the underrepresented 
groups. 

Statement of signi昀椀cance 
Problem or Issue: The bias issue in phenotyping in the era of EHR is 

not suf昀椀ciently researched especially from the computational 
perspective. 

What is Already Known: There is bias in healthcare and especially 
the phenotyping task. And the bias in phenotyping stage will do no good 
to some underrepresented groups. Further, the bias in phenotyping will 
also affect the other related biomedical activities, like clinical trial 
matching, etc. 

What this Paper Adds: This paper aims to provide comprehensive 
study of the bias issue in electronic phenotyping from a computational 
perspective. To the best of our knowledge, we are the 昀椀rst work to 
intensively investigate this fairness problem. We expect our work can 
inspire more efforts in this topic in the future. 
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