)

Check for
updates

What’s in a cable? Abstracting Knitting Design Elements with
Blended Raster/Vector Primitives

Hannah Twigg-Smith
htwigg@uw.edu
University of Washington
Seattle, Washington, USA

Emily Whiting

whiting@bu.edu

Boston University
Boston, Massachusetts, USA

Yuecheng Peng
ychpeng@uw.edu
University of Washington
Seattle, Washington, USA

Nadya Peek
nadya@uw.edu
University of Washington
Seattle, Washington, USA

Figure 1: In our design environment for editing knitting charts with blended primitives, a chart of knitting instructions is
rasterized from layered vector boundaries and paths with associated raster stitch and yarn blocks. These cabled twist and
braid patterns are designed using stitch paths we defined to encode a “right-leaning twist” (A) and a “left-leaning twist” (B). By
placing the right twist along a stitch path that defines a purl border (C), we can produce a twist texture (D). By staggering both
the left and right twists (E), we can produce a braid texture (F).

ABSTRACT

In chart-based programming environments for machine knitting,
patterns are specified at a low level by placing operations on a
grid. This highly manual workflow makes it challenging to iterate
on design elements such as cables, colorwork, and texture. While
vector-based abstractions for knitting design elements may facili-
tate higher-level manipulation, they often include interdependen-
cies which require stitch-level reconciliation. To address this, we
contribute a new way of specifying knits with blended vector and

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676351

raster primitives. Our abstraction supports the design of interdepen-
dent elements like colorwork and texture. We have implemented
our blended raster/vector specification in a direct manipulation
design tool where primitives are layered and rasterized, allowing
for simulation of the resulting knit structure and generation of ma-
chine instructions. Through examples, we show how our approach
enables higher-level manipulation of various knitting techniques,
including intarsia colorwork, short rows, and cables. Specifically,
we show how our tool supports the design of complex patterns
including origami pleat patterns and capacitive sensor patches.

CCS CONCEPTS

+ Human-centered computing — Interactive systems and
tools; - Software and its engineering — Integrated and visual
development environments.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676351
mailto:nadya@uw.edu
mailto:ychpeng@uw.edu
mailto:whiting@bu.edu
mailto:htwigg@uw.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676351&domain=pdf&date_stamp=2024-10-11

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

KEYWORDS

Knitting Patterns, Machine Knitting, Design Tools, Abstractions,
Yarn Simulation

ACM Reference Format:

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek.
2024. What’s in a cable? Abstracting Knitting Design Elements with Blended
Raster/Vector Primitives. In The 37th Annual ACM Symposium on User Inter-
face Software and Technology (UIST °24), October 13-16, 2024, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 20 pages. https://doi.org/10.1145/3654777.
3676351

1 INTRODUCTION

Figure 2: Examples of knit surface patterning effects on a
selection of sweaters. As opposed to overall fabric topology
(e.g., a sleeve) or the individual stitch, these mid-Ilevel effects
[2] determine the texture and color of knits.

Knitting enables the fabrication of soft objects through a set of
discrete operations on a yarn or set of yarns [60]. By combining
different stitches and yarns, we can manufacture complex, multi-
material, three-dimensional shapes, with varying micro and macro
material behaviors [3, 33, 36, 41]. Color patterning (also known as
colorwork) and texture effects such as lace, cabling, and ribbing
are extensively used in the design of knitwear and can introduce
aesthetic and functional attributes to knits [2, 64], including the
integration of elements of great interest to HCI researchers such as
sensors and shape-changing components [14, 42, 43, 51]. Knitwear
designers have common strategies for producing these attributes,
but need to ultimately specify their knits with low-level descriptions.
The lack of appropriate design representations can result in design
challenges, as changing patterns stitch-by-stitch is labor intensive.

For example, a cable is a surface texture which looks like a raised
column of interwoven or twisted fabric [37]. Cables are a core
element of Aran sweaters (such as the purple sweater in Figure 2),
where many cables adorn on the surface of a knit to create intricate
patterns. Cable knitting involves changing the order of certain loops

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

at regular intervals. A designer has many variables to play with
when designing cable structures, including the number of loops
at each crossing, the crossing direction, crossing frequency, the
column lean, etc., and can additionally incorporate colorwork and
texture techniques to produce stunning surface patterns [19]. All of
these variables can have a dramatic impact on cable appearance, yet
their interdependence defies top-down abstraction: to design new
cable structures, you must specify them on the individual stitch
level, always reconciling cable-level design decisions with other
factors such as shaping.

The problem of design representations in knitting is familiar
to HCI and graphics researchers, who have formalized low-level
knitting operations in order to develop higher-level primitives that
can be used to design new knit objects [45]. This body of prior
work has largely focused on 3D shaping-oriented primitives which
represent the overall surface topology of knit objects [28, 34, 35, 45,
49, 50]. In contrast, the work presented here seeks to support design
tasks which require a different level of abstraction than overall
surface topology, namely the design of knit surface patterning
effects (i.e., mid-level effects [2], examples of which are shown in
Figure 2). What kinds of representations might we need to design
new cables, lace, colorwork, and texture patterns?

As another example, intarsia is a colorwork technique commonly
used for patterns with large blocks of color (such as the corn and
crow sweater in Figure 2). While it may appear that intarsia patterns
would be relatively easy to design in, say, a pixel-based paint tool,
there are knitting constraints that a designer must consider during
the design of an intarsia pattern, including how yarns of different
colors are joined (to prevent gaps between yarns), the direction each
yarn is moving in a row, the slope of the boundary between yarns
(a slope that is too gentle may lead to long floats), and on which
side the yarn starts and ends. An example of the impact of these
constraints is provided in Section 4.3. Designing intarsia patterns
often involves resolving these constraints via decisions which 1)
must happen at a low level, and 2) impact the final appearance of
the pattern, sometimes dramatically. For example, this may include
something as simple as resizing the height of a motif so that it totals
an even number of rows, ensuring a yarn will return to the same
side it started on.

As a final motivating example, consider a designer who wants to
create different amounts of stretch in different regions of a garment,
for example: a sweater with conformal cuffs, a warming densely
knit body, an airier knit for the sleeves, and tough patches for the
elbows. How can they prototype these different textures? While
some textures are well-established, such as a ribbing for cuffs, we
have only scratched the surface of the mid-level material effects
that are possible. Recent work has explored how mid-level effects
can, for example, be tailored to produce material properties ideal
for particular regions of garments [41]. How different stitches and
yarns impact the final textures in knits is difficult to understand
based on low-level descriptions alone, and rapid iteration on proto-
types will be crucial as we look to understand the possible material
effects of novel functional fibers (e.g., [1, 14]).

Better design representations would enable higher-level manipu-
lation of surface-level knit effects. However, developing abstractions
for knitting is non-trivial. First of all, knitting design choices defy
a strict hierarchy: stitches and yarns are interdependent and both

https://doi.org/10.1145/3654777.3676351
https://doi.org/10.1145/3654777.3676351

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

impact elements of the resulting textile. Second, knits are subject to
strict set of fabrication constraints, which will change depending
on knit pattern design choices (e.g., required number of transfers
in a row), yarn selection (e.g., how stretchy or strong a particular
yarn is), machine features (e.g., number of yarn feeds), and other
implementation details. Therefore, our guiding research question
is: How can we build design representations for knitting elements
that support higher-level direct manipulation while maintaining
access to stitch-level specification?

To address this research challenge, we contribute blended prim-
itives for abstracting knit design elements. Specifically, we blend
raster-based stitch and yarn blocks with vector-based paths and
boundaries. This allows us to specify and manipulate the relation-
ships between design elements, translated to groups of low-level
knitting operations, and use these representations to generate ma-
chine knitting instructions. For example, we can design a raster-
based stitch block that creates a lace texture, then repeat that stitch
block in a region of a garment as defined by a vector-delineated
boundary to create a lace patch. By using techniques from computer
graphics, we can determine reusable high-level strategies for stitch
block repeats and other rasterization challenges.

To demonstrate how blended primitives support the exploration
of a knit design space, we contribute an open-source browser-based
design environment. Links to the open-source code repository
and hosted site can be found on the project page: https://depts.
washington.edu/machines/projects/blended-primitives/. Our visual
software supports direct manipulation of knit design patterns, in-
cluding repeating stitch blocks (which can include knit, purl, tuck,
miss, and transfer operations), yarn blocks (for techniques such
as fair isle colorwork), shaped knits (specified through increases
and decreases boundary conditions or short rows), and transfer
operations (for designing cables and other knit textures). To demon-
strate our design tool, we have knit several examples that showcase
different aspects of the design space.

In summary, in this paper we contribute:

e Blended primitives for designing mid-level knit effects: stitch
paths, yarn paths, stitch fills, and yarn fills.

e An open-source tool for designing with blended primitives,
consisting of a chart-based editing environment and yarn-
level simulation.

o Examples of mid-level abstractions for common knit design
elements, including intarsia and fair-isle colorwork, lace, and
cables.

e Two domain demonstrations: intarsia-based sensing struc-
tures and origami-inspired pleat patterns.

We conclude with a discussion of opportunities for HCI systems
researchers in design tools for knit textiles and what we see as
promising areas of future work.

2 RELATED WORK

Machine knitting has recently seen a surge of attention from HCI
researchers who recognize it as an essential technique for the pro-
duction of e-textiles, soft interfaces, and functional fabrics, as well
as an established outlet for personal expression. In this section
we discuss how our contributions fit into the landscape of prior

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

work on knitting design representations and associated tools. Ad-
ditionally, we review work on rasterization and fabric modeling
and simulation which is relevant to the implementation of our de-
sign tool. While we focus on machine knitting in this paper, we
recognize that interest in textile fabrication also extends to other
domains, including weaving [13, 15] and embroidery [17, 18, 20].

2.1 Design Representations for Knit Objects

There appears to be a general consensus among researchers that
the complexity of knit programming, and the associated lack of
tractable design primitives, poses a barrier to fully exploring the ex-
tensive design potential of machine knitting. Prior work has looked
to address this challenge, largely through development of high-
level shaping primitives which can be used to represent the overall
surface topology of knit objects while respecting the fabrication
constraints of the knitting process. This includes generalized tubes
and sheets [45], which was later extended to include splits and
merges and deployed in the context of an interactive design tool
[34, 35]. Other representations include stitch meshes [49, 50, 67]
and coarse template meshes [28].

We distinguish our work from prior approaches by emphasising
our focus on supporting the design of fabric-level structures as op-
posed to high-level 3D shape. High-level shaping primitives largely
divorce three-dimensional form from the underlying stitch-level
descriptions; this is advantageous for design tasks which are con-
cerned solely with global fabric topology (such as constructing a
garment silhouette). However, we argue that the task of designing
novel functional and aesthetic fabric-level structures requires fine
control over individual loop positions. For example, prior work has
demonstrated that small changes to loop positions can have a dra-
matic impact on the appearance of slip and tuck colorwork patterns
[64] and the performance of knit sensors [1, 5]. We therefore think
it is crucial to maintain direct access to stitch-level manipulation
when designing fabric level effects, which our blended primitives
approach supports by enabling this control via raster-based blocks
containing stitch-level operations and yarn assignments. Prior work
has explored different approaches to surface patterning largely
through the development of textual domain-specific programming
languages [22, 24, 34]; our work instead presents a visual design
environment where operation positions can be controlled via direct
manipulation of associated vector paths and boundaries. This is
more in line with the approach described by [2], which is specific
to brioche knitting.

In parallel with work on design representations, researchers
have worked to build out the infrastructure which will be essen-
tial for future development of robust machine knitting workflows.
This includes process-oriented models of yarn topology [31, 32],
domain-specific programming languages [22, 23], compilers [39, 45],
algorithms for scheduling and transfer planning [34, 39, 40, 48, 68],
and debugging-oriented visualizations [68]. While the work we
present in this paper is focused less on infrastructure and more on
design representations, we found this prior work to be a valuable
reference during implementation of our design tool.

https://depts.washington.edu/machines/projects/blended-primitives/
https://depts.washington.edu/machines/projects/blended-primitives/

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

front knit +
right transfer

knit tuck
front/back miss front/back

front knit +
left transfer

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

back knit +
right transfer

back knit +
left transfer

r_ i i " " T """ rrm "M

-1 1
1203

Figure 3: Knitting operations: The charting language in the blended primitives editing environment supports knit, miss, tuck,

and composite transfer operations.

2.2 Fabric Modeling, Simulation, and Rendering

Broadly, yarn simulation has been an area of intense interest in HCI,
computer graphics, and textiles communities [11, 29, 30, 38, 69].
Early work achieved draping behavior in knitted fabrics [6], and
proposed animation methods with particle systems [47] and splines
with animated control points to model the micro-structure of knit-
ted fabrics [57]. Kaldor et al. [29, 30] published the first system
capable of simulating entire garments at the yarn level, with com-
putation of contact response of yarn-yarn collisions. Yuksel et al.
[69] introduced the stitch mesh representation that incorporated
mesh-based and yarn-level relaxation. Further work has focused on
efficient implementations through nodal discretizations [53], com-
bined representations to retain large-scale behaviors of cloth [9],
and realistic rendering of fabric appearance [10, 70]. Recent work
continues to demonstrate new ways in which yarn-level mechan-
ics can improve fabric simulations, such as using implicit contact
handling to simulate multi-layer fabric structures [58], animating
yarn-level geometry on top of a deforming mesh [61], and inverse-
modeling yarn-level mechanics from real-world measurements [62].
For a more extensive review of simulation background we refer to
Castillo et al. [10] and Casafranca et al. [9].

A challenge with relying on real-time yarn-level simulation as
part of a design workflow is that computational intensity rapidly
increases as pieces get larger. Leaf et al. [38] offer yarn-level simula-
tion of swatches at interactive rates, but require GPU implementa-
tion. Our system extends the lightweight browser-based simulation
introduced in KnitScape [64]. A topology graph [32] is combined
with a particle-spring simulation to visualize local deformations
in knitted swatches. In our work we demonstrate how mid-level
effects like color and texture patterns offer an ideal opportunity to
deploy yarn-level simulation in the context of an interactive design
tool.

2.3 Rasterization

We draw on foundational concepts in computer graphics for ras-
terizing geometric primitives and apply them to this domain of
knit chart editing. Line drawing algorithms [7, 52, 66] and scan-
line polygon filling [21] were among the earliest graphics methods
for efficiently approximating exact mathematical representations
of geometry as pixel positions in the frame buffer. Analogously
to rasterization, knitting chart design entails converting geomet-
ric lines and regions into discrete stitch positions. Many desired
properties are also shared. For example, in origami pleat patterns
(Figure 17) the fold lines should be uniformly one stitch wide and

avoid artifacts such as gaps when projected onto a knitting chart
for consistent folding behavior and appearance.

Pixel art has maintained prominence in computer graphics with
popular editors (e.g., Aseprite and Pixelorama), and algorithms
to facilitate pixel art creation through image abstraction [16] or
rasterizing vector line art with minimal artifacts [26, 27]. Some
community-built tools aid in the translation of images to a format
readable by manual knitting machines (e.g., img2track [56] and
AYAB [4]), but these are focused on translation of existing patterns
to a knittable format rather than providing a full design environ-
ment. In contrast, our system integrates editor features such as
layers and tilemaps into charting-specific workflows.

3 BLENDED PRIMITIVES

Knitting patterns are typically designed in gridded charting envi-
ronments where individual operations are assigned cell-by-cell and
yarns are assigned row-by-row, similar to a pixel-based painting
workflow. While raster charts are a clear and widely used notation,
they are not conducive to higher-level manipulation of groups of
instructions beyond tile-based selection and repetition. Addition-
ally, many kinds of raster edits can be destructive (such as resizing
workspace boundaries or translating stitches) and/or highly manual
and repetitive (such as changing the slope of a line). Vector-based
editing could potentially solve many of these problems, however,
many knitting design elements (such as base texture or colorwork
patterns) are still best specified in a grid format. Therefore, our goal
is to extend a raster-based charting environment with the ease of
vector-based editing.

We propose blended primitives for knit pattern design: vec-
tor paths and boundaries which can be used to manipulate raster
blocks of stitch instructions and yarn assignments. In our design
environment, blended primitives are layered and rasterized to cre-
ate two charts which are overlaid to form a compact chart view:
one which encodes yarn assignments and one which encodes stitch
instructions. To enable this compact view where multiple yarns can
appear in the same row of instructions (as opposed to most editors
where only one yarn can appear per row), our system provides au-
tomatic yarn separation for fair isle and intarsia patterns, described
in Section 6.

Maintaining quick and easy access to low-level stitch and yarn
assignments is one of the core goals of blended primitives. In our
editor, modifications to the yarn and stitch charts can occur either
through direct manipulation of vector elements (e.g. by dragging
path segments and control points or changing their stacking order)
or via raster edits to their associated stitch and yarn blocks. In

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

Figure 4: Blocks are raster bitmaps. Yarn blocks (top) en-
code yarn assignments, and can be edited with yarns from
the current yarn palette using pixel editing tools. Similarly,
stitch blocks (bottom) can be edited with operations from
our supported operation set. Blocks can be quickly resized by
dragging the arrows at their edges. The block origin can be
easily repositioned using the “move” dragger at the bottom
left corner.

the rest of this section, we describe the pattern elements used to
design knits in our system, give an overview of our tool interface,
and provide a walkthrough of an intarsia design workflow in our
system. In following sections, we show how blended primitives can
be used to design common knitting elements through a series of
demonstration examples, including intarsia and fair isle colorwork,
lace, and cables. Later, we show two domain demonstrations in
which blended primitives are used to design origami-inspired pleat
patterns and intarsia-based sensing structures.

3.1 Pattern Elements

In our design interface, patterns are built from combinations of
three kinds of primitive elements: blocks, boundaries, and paths.

3.1.1 Blocks. A block comprises two bitmaps (one defining yarn
assignments and one defining operations) which share a common
origin at their lower left corner (Figure 4). All boundaries and paths
have an associated block which is used during chart rasterization..
Additionally, “free blocks” can be used as a one-off non-destructive
override for yarn and stitch instructions on lower layers, which is
useful when designing an individual colorwork or texture motif.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 5: Boundaries can be used to assign yarns (top) and
stitch patterns (center) to regions of a chart. They are also
used to define the edges of a knit panel, and can optionally
have shaping instructions attached to them (bottom).

For blocks associated with boundaries and paths, the block origin
is defined as an offset to the first point in boundary or path, which
can be moved to change the position of block repetitions. For free
blocks, the block origin is an offset to the global pattern origin.

Stitch blocks are bitmaps which include supported operations
(described in Figure 3) as well as the “transparent” stitch, which
inherits the stitch assignment of a lower layer. Yarn blocks are
bitmaps which include indices of yarns in the global yarn palette.
Similar to stitch blocks, yarn blocks can also include a “transparent”
yarn which inherits a yarn assignment from a lower layer. A new
block contains a 1x1 bitmap with a transparent stitch and a 1x1
bitmap of a transparent yarn.

3.1.2 Boundaries. A boundary is a closed polyline path which
outlines a region in a chart to be filled with a stitch and/or yarn
pattern (Figure 5). Figure 12 shows how boundaries can be used
to position colorwork motifs and a rib texture for a simple doodle
cowl. Boundary edits are not destructive to their stitch and yarn
fills, making it easy to use them to lay out and reposition different
patterning blocks. This means that patterns like the cowl shown in
Figure 12 are very easy to modify, e.g., by dragging the boundary
edges. The tiling origin of a stitch and yarn block can be moved

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 6: Paths can be used to position stitch and yarn blocks.
We can change path appearance by changing the size of the
associated block, e.g., to make a single-stitch wide yarn path
(top left) into a two-stitch wide yarn path. The same applies
for stitch paths (bottom), where we can create a dotted stitch
path by adding extra transparent space at the edge of the
stitch block.

by dragging the arrows at the bottom left corner of the block. This
is used to align blocks relative to their boundaries or other blocks,
e.g., to avoid strange repeat cutoffs at the edges or stagger different
motifs evenly.

3.1.3 Paths. A path is a polyline along which a stitch and/or yarn
block is tiled. Like boundaries, they are easy to manipulate by drag-
ging control points and segments, adding and removing points, and
reordering layers. Path appearance is easily changed by editing the
associated block (Figure 6). We support four different tiling modes
to control block position along the path (described in 6.1.2). The
block can also be offset from the associated path using the “move”
dragger at its bottom left corner. This can be used, for example, to
change which side of a path a single-cell wide block appears on.

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

3.2 Design Interface

Our design tool (Figure 7) consists of a two-view interface showing
our compact chart editor on the left and a yarn-level visualization
on the right.

3.2.1 Charting Pane. The charting pane contains a layered view
of our overlaid stitch and yarn charts and vector primitives, as well
as other interface elements and toolbars which display contextual
information. Users manipulate vector elements in the charting pane
by dragging on points and segments of vector elements (Figures 5
and 6) and editing their associated blocks (Figure 4, top). When-
ever a boundary, path, or block is changed, we rasterize pattern
elements to create the underlying stitch and yarn charts (our ras-
terization process is described further in Section 6). This means
that the user never makes direct, destructive edits to a global in-
struction chart. This is a core advantage to our blended primitives
approach: changes to a chart which would be labor-intensive under
a traditional pixel-paint workflow (e.g., resizing overall dimensions
or translating groups of operations) are instead rapid, incremen-
tal, and quickly reversible, recalling foundational principles in the
design of interfaces for direct manipulation [59].

The appearance of the chart depends on the active color mode.
Each chart cell always contains the symbol of its assigned operation
from the stitch chart, but symbols alone can be hard to differentiate
(especially when zoomed out), so we offer two color modes for
chart editing. In command mode each cell is colored according to
operations assigned in the stitch chart (shown in Figure 3), and
in yarn mode each cell is colored according to yarns assigned in
the yarn chart. The user can quickly switch between these modes
using hotkeys or a button in the bottom toolbar. When the yarn
color mode is active, we shade back-bed operations to give them the
appearance of depth, which can help give the impression of a rib (an
example of this can be seen in Figure 12, B). To enable some visual
feedback of yarn color when the command color mode is active,
the yarn sequence pane at the far left always shows which yarns
are assigned to each row of the chart. The user can also recolor the
current yarn palette in this pane, which updates both the chart and
yarn visualization. Finally, the bottom toolbar enables the user to
switch between three editing modes that control which elements
are able to be selected and edited: boundary, path, and block.

3.2.2 Yarn visualization pane. Our interface includes a yarn-level
visualization to provide constant feedback on design decisions. The
yarn visualization consists of layered yarn segment paths, shaded to
give the illusion of depth. It can be viewed from the technical front
or back, which can be helpful when inspecting float position on the
back of the fabric. The visualization updates, (regenerating yarn
topology and redrawing yarn segments), on edits in the charting
interface. For smaller patterns (e.g., below 100x100 stitches) these
updates are almost instantaneous, but topology generation slows
down for larger patterns and those which include multiple yarns
and/or short row shaping (and depends on device capability). There-
fore we also support a visualization mode where the topology is
regenerated on user request, which can be helpful when designing
larger or more complex patterns which include multiple yarns. The
yarn visualization includes a 2D relaxation simulation where con-
tacts between yarns are modeled as a particle-spring system. The

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

~ -

< refresh &% relax

arntile stitch tile

Figure 7: Our design interface consists of a split-pane view of a chart editor and yarn simulation.

relaxation can be run on request via a button in the visualization
toolbar, providing a preview of how yarn segments will deform
once knit.

3.3 Example Workflow

In this section we describe an example workflow in which we design
a simple intarsia pattern, demonstrating how our yarn visualization
provides rapid feedback on edits made in our charting interface
(Figure 8). On creating a new pattern, the workspace opens in
boundary edit mode to show a stockinette swatch: a rectangular
boundary with a knit stitch fill and a single yarn fill (Figure 8, A).
To begin an intarsia design, the user places control points to define
a new boundary (in this case, a circle). By default, all boundaries
defined after the first boundary have a transparent stitch and yarn
fill, meaning that they will inherit the operations and yarn assign-
ments from prior layers. Therefore, to make the circle a contrasting
color, the user assigns a contrasting yarn fill (Figure 8, B). These
modifications immediately update the yarn visualization, which
now shows the light yellow circle. However, “flipping” the swatch
in the visualization pane shows that the blue yarn leaves long floats
as it crosses behind the yellow circle (Figure 8, C).

While designing intarsia, these floats can be removed by using
another yarn to knit the blue segments which appear to the right

of the circle, preventing the yarn from needing to float across the
yellow circle. In our editor, this can be accomplished by simply
drawing a new boundary that is the same height as the circle and
moving it to the layer below the circle (Figure 8, D, left). This
removes most of the long blue floats, but two remain as the blue
yarn ends up on the wrong side of the pattern due to an odd number
of rows. In this example, this is addressed by shifting the circle and
the red boundary down by one row, removing the floats (Figure 8,
E). If this pattern was knit as-is, there would be gaps where the
yarns meet at each row. This is addressed by enabling the “tucks”
option on the yarn boundaries to add tucks when two yarns meet
at a boundary. Details on this are shown in Figure 9.

4 DEMONSTRATION EXAMPLES

In this section we demonstrate how our blended primitives ap-
proach can be used to recreate common knitting elements.

4.1 Cables, Braids, and Twists

Cable, braid, and twist textures are produced by selectively crossing
groups of stitches to give the appearance of multiple interwoven
strands of fabric. Crossed stitches on their own do not have much
depth, and cable strands are typically given more definition by using

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

- -i'-l'-ﬂl'-l'-i-l'-\-l"‘ g
W
J gRannnadnnanly
ERn R ahn AN
e e s e T T,
st atat sttt ra
O s s s s T T]
BRERRaRnRhane
J'J-”J'J-FJ‘J'-E’
‘ :ﬂf-’f.}’m

—mnnnaaes
st
= r.r.r.ru-.r.\-.r.r'.r -

ivivirieteivistotededss,

LTS
ghasnanasaanans
gannaanannannng
Wﬂﬂmﬂ-
-l"-l"-l"-l"-f'-f'-l'-l"-l"-f'—f'-l'—l"—q
bbb d b aarala
gRnRnananann

s
.r.:u-.r.rz::r.ra-,

Figure 8: Intarsia knitting: The yarn visualization provides
feedback on design decisions made in the charting environ-
ment. In this example, it shows the position of yarn floats
across the back of the fabric while designing an intarsia pat-
tern.

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

v,

¥

S PN S 3

NNRNRVRVNRNN

2R e e

Figure 9: Boundary conditions: The “join” setting controls
how yarns are joined at a boundary. When “none” is selected,
no change is made. In the case of a vertical join, this will pro-
duce a slit (A). The “tucks” option adds a tuck to the previous
color in the row, depending on the direction the carriage is
moving. These are visible in the simulation view by viewing
the back (B).

Figure 10: Cable knitting: We designed this cabled lattice
by first using a stitch path to make a 1x1 rib (A). A second
stitch path is used to place transfers in a zig-zag (B), which
we overlay on the rib definition (C). Together, these create a
lattice effect which can be seen in the yarn visualization (D)
and exported for knitting (E).

knit stitches for the main cable body and purl stitches as a back-
ground. There are multiple ways to design cable structures using
blended primitives. We found it easiest to control the base knit/purl

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 11: Colorwork cable knitting: To design a colorwork cable lattice, we begin by (A) applying a striped yarn fill and purl
stitch fill to a rectangular boundary. A (B) yarn-level visualization of the resulting knit gives constant feedback on design
decisions. Switching to the operation view mode, we add a (C) stitch path to overlay a 1x1 rib texture which includes miss
stitches every two rows. The (D, top) resulting rib only includes orange yarns, as the blue yarns are (D, bottom) floated across
the back. Next, we create (E) a stitch path which tiles transfers in a zigzag pattern. When (F) overlaid on the rib texture, the (G)
transfers move loops between the vertical lattice ribs to give them an interwoven effect.

B TR R O R R
MWW wntw \,\WW V\MW‘ \«MW W
e s Wl Bl o ol
A e e e
e
S Tt Bt b B e B R
L B R R B R R
Vit st B At
guﬂu nu“%w ""ﬁ?ffn““ nV‘WN “VWW nugg
g, oy
o

C

A
i

Figure 12: Colorwork repeats: Yarn blocks are tiled to fill their boundaries (A). Boundaries enable easy positioning of colorwork
and texture motifs, such as to design this sheep-inspired doodle cowl with ribbed edge (B). The simulation pane shows a
yarn-level visualization of the resulting knit (C). Yarn floats can be viewed by flipping the visualization to view the technical
back (D). The resulting time-needle view can be seen in (E).

. .“‘ »

Figure 13: Lace knitting: We support multiple approaches to lace design. Lace patterns can be designed by using a stitch block
to fill a boundary (left). This allows the quick application of a repeating lace texture to a region. Stitch paths can also be used to
design lace textures (right). This method is well-suited to individual lace motifs.

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

texture separately from the transfers. We did this by defining sepa-
rate stitch paths for the knit border and the transfers. Example cable,
braid, and twists can be seen in Figures 1 and 10. By overlaying the
texture and transfer paths atop a background with a striped yarn
fill, we can also design and simulate colorwork cable structures
such as the orange and blue cable lattice in Figure 11.

4.2 Fair Isle Colorwork

EII .I
Gldd 4]

—
S
[|
<
[o]
—
S

Figure 14: Colorwork: We support colorwork patterns which
include more than two colors per row, such as this motif
which includes three colors per row (A). The fabric is shown
in the yarn visualization (B), and the resulting floats can be
inspected by viewing the back (C).

Fair Isle colorwork (also known as stranded colorwork or float
jacquard) is a technique for producing color patterns where multiple
yarns are used across a whole row of knitting. For each row, the
yarn which should appear on the front of the fabric knits, and the
non-visible yarn (or yarns) floats behind the knit stitches. Figure 12
shows an example where multiple colorwork motifs are used to
pattern a “doodle cowl”, a type of pattern which is currently popular
in the hand knitting community as a sampler of themed colorwork
motifs. Our yarn separation can theoretically handle an arbitrary
number of yarns per row, although there are practical limitations
to this depending on maximum float length. Figure 14 shows a
colorwork pattern which includes three colors per row. The back of
the fabric can be examined in the yarn simulation, which enables
inspection of the resulting floats.

4.3 Intarsia Colorwork

Intarsia is a colorwork technique appropriate for patterns which
include large, unbroken blocks of color. A separate yarn feed is
used to knit each segment of color which appears in a row. This
means that a circle which appears in the center of a fabric requires
three separate yarns (Figure 8), and the “U” in UIST requires five
separate yarns (Figure 15). Our editor supports design of intarsia
patterns via yarn paths and yarn fills. To prevent gaps from form-
ing between adjacent blocks of color, the yarns must be joined at
the color changes. One strategy for joining is to add tucks to the
preceding color segment. In our editor, join conditions are specified

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

Figure 15: Path Intarsia: Whereas Figure 8 shows a patch
defined with a circle boundary, this example uses a path with
a corresponding stitch block to create the letters UIST. “U” in
“UIST” requires five separate yarns to knit it with the intarsia
technique: three in the background color (one for each side
plus one in the middle) and two for the letter color (one for
each leg).

by selecting the “tucks” join mode option on a boundary or path
(Figure 9). By placing a tuck on either the front or back bed depend-
ing on the position of the joined stitch, we also support design of
textured intarsia patterns.

4.4 Lace

Lace is knit by using different operations such as transfers to cre-
ate delicate patterns of holes. Blended primitives offer multiple
approaches to the design of lace patterns, which can be specified
using a traditional block-based repeat as a stitch fill of a boundary-
defined region (Figure 13, left) or by using a stitch path to tile a
block of instructions along a vector-based path (Figure 13, right).
The stitch fill approach may be more appropriate for all-over tex-
tures, while stitch paths are better suited to the design of individual
motifs.

5 FURTHER APPLICATIONS: SENSORS AND
FOLDS

Blended primitives enable us to build abstractions for applications
beyond the more traditional knitting techniques described in the

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 16: Knit pressure sensors: Yarn paths and fills can be used to design an interdigital electrode structure in our editor,
which can be knit via the intarsia technique (A). Note that we have used contrasting colors for the five separate yarns for
visualization purposes, but all yarns could be the same color when knit to hide the presence of the sensor. The interdigital
electrode structure can be used to sense pressure when in direct contact with skin (B), and positioned on a sock pattern in our
editing environment (C, top) and visualized (C, bottom). Stretched loops in the yarn visualization indicate loop connectivity
across short rows required to shape the sock heel. The knit sock (D) can sense changes in pressure at the heel and toe.

Figure 17: Self-folding knit pleats: Origami pleat patterns can be defined by layering knit and purl stitch paths over a garter
stitch region. This takes advantage of different stitchs’ tendency to deform to create self-folding patterns.

previous section. We describe two example applications in this sec-
tion: intarsia-based sensing structures and origami-inspired pleat
patterns.

5.1 Origami-Inspired Pleat Patterns

One technique to design knitted folds or pleats is to take advantage
of the curling behavior inherent to knit fabric: surfaces made en-
tirely of knit stitches have a natural tendency to curl towards the
back. Staggering knit and purl stitches can even out this curling
behavior and make a fabric lie flat. Therefore, to design a pleat, we
can use a base pattern with minimal curl and strategically place
knit or purl stitches where we want the fabric to curl. Blended
primitives enables us to abstract this core idea into reusable abstrac-
tions for mountain and valley folds, which we have used to design
origami pleat patterns (Figure 17). Our origami patterns consist of

a background boundary with a garter stitch fill (alternating rows
of knit and purl stitches). We then define a mountain fold as a knit
stitch path, and a valley fold as a purl stitch path. Using these stitch
paths, we can draw mountain and valley folds atop the garter back-
ground. This shows how our tool supports the design of folding
and shape-changing knits.

5.2 Intarsia-based Sensing Structures

Knit textiles can be used to sense environmental changes by incor-
porating conductive and other active yarns into the fabric structure.
These sensing structures can be used in a variety of ways to sense
stretch, pressure, touch, humidity, and more. This has been an area
of increasing interest to researchers exploring the intersection of
HCI and wearable interfaces [3, 42, 46, 51, 54, 65]. However, the
challenges of low-level knit programming extends to this emerging

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 18: Knit sensors: Knitting an intarsia pattern with
conductive yarns creates distinct conductive regions that can
be used for capacitive touch sensing.

Figure 19: Knit bend sensors: The interdigital electrode struc-
ture used for the sock shown in Figure 16 can also be used to
sense stretch, used here as part of a bend-sensing mitten.

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

domain. Our design tool is not specific to the design of knit sen-
sors, but our yarn paths and fills support the design of single-layer
multi-yarn sensing structures based on the intarsia technique.

We demonstrate how to knit two types of intarsia-based sensors:
capacitive touch sensors, which we use to create the volume control
pad in Figure 18, and interdigital electrode sensors, which we use to
sense pressure (to detect foot posture with a pressure-sensing sock
in Figure 16) and stretch/bend (used in the bend-sensing mitten
in Figure 19). For the latter sensor type, interdigital electrodes
are positioned against the skin, where higher pressure, resulting
either from direct contact (sock) or from localized bending (mitten),
will augment skin-electrode contact and thus reduce the resistance
measured across the electrodes. We knit these samples by running
a conductive embroidery thread (Madeira HC-40) in the same yarn
feed as the yarns which were intended to be conductive. This shows
how our design tool supports the integration of yarns into localized
sensor regions.

6 SYSTEM IMPLEMENTATION

The blended primitives design tool is browser-based and written in
client-side JavaScript. For a link to the open-source code repository
and hosted version of the tool, please visit the project page: https://
depts.washington.edu/machines/projects/blended-primitives/. The
tool consists of a split-pane view of our novel pattern-editing in-
terface and a 2D yarn-level simulation based on the open-source
KnitScape system [64]. In this section we describe our implemen-
tation of a novel pattern editing interface for design with blended
raster/vector primitives as well as our extensions to the KnitScape
yarn model and simulation. We tested our export format on the
Kniterate machine, which supports import of an instruction chart
and associated yarn sequence.

6.1 Stitch and Yarn Chart Rasterization

The pattern data structure consists of three arrays (for boundaries,
paths, and free blocks). We begin by computing the bounding box
for all boundaries, and use its dimensions it to initialize two bitmap
charts which will hold the operations and yarn assignments for
each cell. We refer to these as the stitch chart (SC) and the yarn chart
(YC), respectively. The stitch chart is initially filled with the empty
stitch, and the yarn chart is filled with the empty yarn. We then
rasterize the elements of the boundary, path, and free block arrays
to the stitch and yarn charts. The rasterized charts are overlayed in
our chart editor to determine which symbols and colors appear in
each cell.

One important decision we made was that boundary and path
coordinates refer to the lower left corner of a cell rather than its cen-
ter point. This is to ensure that paths and boundaries will maintain
their geometric magnitude when rasterized, i.e., a line from [0, 0]
to [20, 0] will rasterize to be 20 cells long (as opposed to 21 using
center points). In our implementation, only the interior of the path
is rasterized, meaning that the cell at [20, 0] will not be filled. We
felt this was better suited to chart editing as it is very common to
specify dimensions in stitches (width) and rows (height). Addition-
ally, defining coordinates in this way makes a clear distinction for
stitch assignment when adjacent regions share a boundary edge.

https://depts.washington.edu/machines/projects/blended-primitives/
https://depts.washington.edu/machines/projects/blended-primitives/

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

To generate the machine instructions and yarn topology for the
yarn simulation, each yarn must be scheduled in its own carriage
pass. This requires further processing of the stitch and yarn charts
and is handled during our yarn separation and transfer planning
step described in Section 6.2.

Figure 20: When a boundary includes shaping, fashioning in-
structions are written where rows increase and decrease and
update automatically as the boundary is reshaped. Pictured
here is an oddly-shaped boundary in the charting interface
(left), the resulting yarn simulation (center), and the time-
needle view which includes scheduled transfers (right).

6.1.1 Boundary Rasterization. We rasterize each polyline bound-
ary using a scanline fill approach modified to incorporate some
knitting-specific considerations. Pseudocode can be found in Ap-
pendix C. At a high level we follow a standard scanline polygon
fill algorithm [21], initializing an edge table (ET) and active edge
table (AET) and processing the intersections between a horizontal
scanline and any active edges in pairs. In order to better approxi-
mate the boundary, we use a scanline located halfway up the cell
(y + 0.5). We do this by offsetting the edge’s current x value during
edge table creation, setting it to x1 + (dx/2). For boundaries that
have shaping instructions, each edge also stores the last x value
rounded to the nearest integer (xLast), which we examine to detect
when rows are increasing or decreasing.

During the main loop, we round the scanline intersection of each
edge pair to the nearest integer to find the start and end points
for the pattern fill (x1 and x2). We then fill the space between x1
and x2 in the stitch and yarn charts by copying values from the
respective blocks, skipping locations where the block includes the
“transparent” stitch or yarn. The interior space is patterned using a
simple 2d repeat of the base block. It would be straightforward to
extend support to other repeat modes (e.g., ones that include block
reflection or an offset between pattern rows or columns). If the
boundary has shaping instructions, we examine the relationship

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

between x1 and x2 and the lastX value of their respective edges and
write fashioning instructions (transfers) to the prior row to account
for a difference: either moving a group of loops out (an increase) or
in (a decrease). Shaping instructions are only applied to single-stitch
increases and decreases, i.e., edges where —1 < 1/m < 1.

6.1.2 Path Rasterization. We rasterize each polyline path using
a Bresenham approach [7], again modified to incorporate some
knitting-specific considerations. Pseudocode can be found in Ap-
pendix C. We traverse each polyline segment from [x0, y0] to [x1,
y1] and draw the associated stitch and yarn blocks depending on
the tile mode of the path.

The “tiled” mode examines the last position of the block and only
plots it if the difference in x or y is greater than the block width or
height, respectively (an example of this can be seen in Figure 10-B).
The “dx” and “dy” modes specify whether the tile spacing should
iterate in the horizontal or vertical direction. This can be helpful in
cases where block iterations require exact spacing over a number of
rows (or columns), but the other dimension does not matter. Finally,
the “overlap” mode plots the whole block at every location.

Because path coordinates (like boundaries) refer to the lower-left
corner of a cell rather than the center point, the vector path is not
perfectly centered for paths using a block of an odd cell width.
While this may be off-putting to the perfectionists among us, it
enables fine control of the path offset (e.g., to position all iterations
of a block on the inside of a boundary.

6.2 Yarn Separation and Transfer Planning

When machine knitting complex patterns, loops often must be trans-
ferred from a front bed to a back bed and vice versa. We handle
transfer planning similarly to the schoolbus approach for the flat
lace transfer problem described by Lin et al. [40]. Full implementa-
tion can be found in our source code repository. However, instead
of transferring all loops between beds, we only transfer those with
target offsets. A simple example demonstrating our transfer planner
can be seen in Figure 21. First, we transfer all loops with a target
offset to the back bed (bright yellow), staggering them so as to not
transfer adjacent loops in the same pass of the carriage. Then, for
each target offset (in this case -1 and 1) we transfer the loops back to
the main bed, again staggering them so as to not transfer adjacent
loops.

6.3 Yarn Topology and Simulation

Our yarn simulation extends the open-source KnitScape system
[64], which was developed for the design and simulation of slip and
tuck colorwork patterns. The yarn simulation uses an approach
proposed by Kapllani et al. [32] to generate a graph of yarn topology
from a chart of knitting instructions that encodes the order in which
a yarn visits contact nodes where it is intertwined. To draw the
yarns, leg and loop segments of a spline which is traced around
the contact nodes are separated onto layers and shaded to give
the illusion of depth. To preview the deformation caused by loops
which have been stretched across multiple rows of knitting, the
visualization also includes a particle-spring simulation where each
yarn segment tries to contract to a rest length based on the distance
it extends from its original row of instructions. We made a number
of extensions to the topology model and yarn simulation in order

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

Figure 21: We stagger loop transfers so as to not transfer
adjacent loops in the same pass of the carriage.

to support patterns which include transfers (e.g., cables, lace, and
fully-fashioned shaping), and patterns which include multiple yarns
per row (e.g., intarsia or fair isle colorwork).

6.3.1 Composite Transfers. Extending the existing knit, purl, slip,
and tuck operation set, we implemented a composite “knit then
transfer” operation where a loop is knit on the front or back bed
and will be moved to its target location on the next transfer pass.
Our full operation set can be seen in Figure 3. Currently, we have
not implemented commands which enable control over the order
in which loops end up in their target location (which can affect sur-
face appearance in some cases), and this is determined by carriage
pass direction. We think it would be straightforward to implement
additional composite operations which enable finer control over
transfer planning, and that this should be a priority for future work.
In order to visualize the greater depth introduced by a transferred
loop, we also extended the existing yarn visualization to support
an arbitrary number of shaded layers determined by the maximum
stack of yarns at any location in a pattern. To determine the correct
stacking order for transferred loops, we implemented the approach
described by Kapllani et al. [31]. Our full implementation is included
in our open-source code repository.

6.3.2 Multiple Yarns. In order to support patterns which include
multiple yarns per pattern row, we had to extend the existing topol-
ogy model to account for multiple yarn paths and arbitrary carriage
pass direction. The direction of the carriage determines the order in
which nodes are processed during creation of the topology graph.
When multiple yarns are assigned to a row (e.g., in intarsia patterns)
the pass direction of a particular row will depend on which side
the yarn in use was previously. This may result in arbitrary pass
directions (e.g., right-right-right-left-left-right). We accounted for
this by creating an array of carriage pass directions during yarn
separation, and using that during the topology graph and yarn path
creation to determine which direction the yarn would be moving
in that row. To support multiple yarns in a pattern, we create a sep-
arate yarn path for each yarn and use the yarn sequence produced
during yarn separation to determine which yarn’s path new nodes
should be added to.

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

6.4 Challenges and Opportunities

Our demonstration examples show that a 2D chart-based notation
such as ours can be powerful for designing mid-level texture and
colorwork effects, but some design tasks (like 3D shaping) are chal-
lenging due to the convoluted relationship between a 2D notation
and 3D result. While it is possible to use our notation to design
surfaces with short row shaping (such as the sock in Figure 16),
a 3D shaping primitive like a tube [45] or mesh [50] may be bet-
ter suited to that task. However, changes to fabric structure can
significantly impact the fabric gauge (e.g., some textures are short
and wide while others are tall and narrow), which may need to
be accounted for in the overall shape specification. This poses a
practical challenge when building knit design interfaces: overall
shape, colorwork/texture patterning, and the interaction between
them determine the aesthetic and functional qualities of the final
knit.

Future design tools must investigate how to support creative
exploration of these different dimensions—and their interactions—in
tandem. We don’t think that future knitting design tools should
prioritize reconciling disparate, task-specific representations under
one notation system, as we think such a system would risk sup-
porting some tasks far better than others (or worse: being “bad at
everything”). We think future interfaces should instead focus on
enabling someone to visualize and rapidly work across task-specific
notations, such as by providing multiple synchronized editing views.
As an example, we can imagine a future version of our system which
includes a 3D stitch mesh editing pane, in which a stitch mesh [50]
could be used to drive a base “shaping boundary” in our chart editor.
Stitch and yarn paths could then be defined in the chart editor and
visualized on the mesh surface to give a sense of their position in
the global fabric. Another way to accomplish this in the context of
our current interface would be to develop domain-specific block
editors which can compile to our charting language. For example,
a “brioche editor” which uses Albaugh et al. [2]’s brioche notation
could be opened in place of our current stitch block editor.

While we have not formally tested the limits of our approach
for fabric size, our tool is performant (i.e., changes to the chart
update the visualization with minimal delay [<50ms]) on our setup
(Chromium on an i7 laptop with integrated graphics) for charts be-
low 200x200 cells. Currently, update lag is largely due to a bottleneck
when performing local searches to find the origin of unanchored
yarn contacts during yarn topology generation, which particularly
impacts intarsia patterns (a future iteration of our system may
improve this by storing loop origin). However, we have tried to
mitigate the impact of this delay on user experience by offloading
computation to web workers where possible and adding a setting
to toggle whether the visualization/yarn topology is updated on-
the-fly (on input to the chart). We intend to continue to improve
our simulation by incorporating advances made in recent work on
efficient yarn-level simulation.

7 DISCUSSION

Machine knitting is an incredibly powerful domain with a massive
design space. In order to explore this design space, we need appro-
priate design representations that enable us to quickly iterate on
various aspects of the knit object of interest. Our work focuses on

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

supporting the design of new knit surface patterning effects such as
cable structures, colorwork, and texture patterns. This is how our
work differs from prior contributions which have largely focused on
capturing overall fabric shape, such as tubes and sheets [34, 35, 45]
and stitch meshes [49, 50]. We argue that design of fabric-level
effects such as cables is a fundamentally different task than design
of three-dimensional shaping, which has been the focus of prior
work. We think that because such fabric structures deal closely with
material behavior on the magnitude of an individual stitch, they
require design representations which maintain easy access to low-
level stitch operations while also supporting rapid manipulation
of higher-level operation groups. We have implemented a design
representation for knitting patterns we term blended primitives,
which we contribute alongside our design tool.

Future directions for our work fall into three high-level cate-
gories, each of which is relevant to research in and beyond HCI.
First, expanding the space of knit objects that can be specified and
visualized in our system will be important to enable design of com-
plex fabric structures, supporting ongoing development of novel
functional fabrics. Currently, only patterned sheets can be designed
in our editor. Through examples, we have demonstrated that a vari-
ety of single-layer sensing structures can be designed this way via
intarsia patterning. However, due to a limitation of our underlying
topology model we do not support double-sided or circular-knit
fabrics, techniques which have been previously demonstrated to
also be effective methods for fabricating knit sensors and actuators
[3,36, 42, 43, 54, 55]. We think it will be feasible to extend our editor
to these areas with reasonable effort, and this is a priority for future
work.

Second, providing designers with many different ways to specify
and manipulate primitive elements will be crucial for those explor-
ing the intersection of machine knitting and other domains. We
were interested in building a (somewhat) vector-based design envi-
ronment for knitting in part due to the many possible avenues for
interoperability with existing tools and file formats. For example,
we think it would be straightforward to implement support for a
crease pattern format (such as [12]) that automatically defines stitch
paths along fold creases, enabling knit origami patterns (such as
the one in Figure 17) to be specified in origami-specific design tools
and imported into our system. We anticipate that keeping an eye
towards interoperability in future tool development will be helpful
to those venturing into domains with few established design tools,
such as shape-changing fibers [14].

Third, informing a designer of fabrication constraints and errors
during design will always be an important aspect of a design tool.
We think that the yarn-level visualization included in our tool is
effective at helping designers navigate some of the challenges of
low-level knit programming, such removing long floats in the ex-
ample intarsia workflow shown in Figure 8. We think that the goals
of a simulation used alongside a charting environment are different
from those focused solely on rendering, and should be centered on
providing effective feedback to the designers. For example, render-
ing fiber-level detail for more “realistic” yarns might distract from
features of yarn topology which may be more relevant to designers,
such as loop connectivity and float position.

Finally, while we have focused on design for machine knitting in
this paper, we want to recognize its deep roots in the craft in hand

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

knitting, which continues to be beloved by millions around the
globe. Hand knitting-oriented design and simulation tools would
have the potential to reach and delight a massive audience. Our
charting language was designed with machine knitting in mind,
but it already is compatible with a significant subset of hand-knit
charting notation, which has had hundreds of years to mature and
continues to be the primary form of visual pattern sharing among
hand knitters [8]. We are very interested in building a dedicated
hand-knitting version of our system, as we think that this would
not only be a good way for hand knitters to take advantage of our
blended primitives editing tools and synchronized yarn visualiza-
tion, but it could also provide an alternative way to edit machine
knitting patterns that would be accessible to those who are already
fluent in chart notation.

Some related work has already begun in this space, e.g. by for-
malizing knitting shorthand [22]. The possibility space of hand
knitting is far greater than that of machine knitting, so develop-
ment of design tools that include some form of simulation presents
some practical development hurdles and open research problems,
although some mesh-based approaches exist [25]. However, such
tools would also provide us with an easy way to import, visualize,
and archive historic charted patterns. This could provide an im-
portant cultural snapshot of a craft which, despite its undeniable
ubiquity, is often overlooked [44, 63].

8 CONCLUSION

We presented blended primitives, a design representation for knit
fabric structures where a chart of knitting instructions and yarn as-
signments is rasterized from layers of vector boundaries and paths
with associated raster stitch and yarn blocks. We further contribute
a chart-based design tool which enables design and simulation of
knit objects via blended primitives. We have demonstrated how
blended primitives can be used to design a variety of common knit
fabric structures, including fair isle and intarsia colorwork, lace,
and cables. We have also demonstrated how our approach may be
useful to support future work on the development of functional
fabrics through example demonstrations of intarsia-based sensing
structures and origami-inspired pleat patterns. We argue that the
design of novel fabric-level structures, such as colorwork and tex-
ture patterns, requires different design representations than the
3d shaping-oriented primitives which have been the focus of prior
work. We are excited to continue to improve our blended primitives
editing environment and hope our open-source contributions can
enable future collaborations with researchers across domains.

ACKNOWLEDGMENTS

Special thanks to Afroditi Psarra and the UW DXARTS Softlab
for letting us use their Kniterate machine. This research is partly
supported by the NSF through awards 2339273 and 2047342.

REFERENCES

[1] Roland Aigner, Mira Alida Haberfellner, and Michael Haller. 2024. Loopsense:
Low-Scale, Unobtrusive, and Minimally Invasive Knitted Force Sensors for Multi-
Modal Input, Enabled by Selective Loop-Meshing. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI °24). Association for
Computing Machinery, New York, NY, USA, 1-17. https://doi.org/10.1145/
3613904.3642528

https://doi.org/10.1145/3613904.3642528
https://doi.org/10.1145/3613904.3642528

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

[2] Lea Albaugh, Scott E Hudson, and Lining Yao. 2023. Physically Situated Tools for [23] Megan Hofmann, Lea Albaugh, Tongyan Wang, Jennifer Mankoff, and Scott E

Exploring a Grain Space in Computational Machine Knitting. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Hamburg
Germany, 1-14. https://doi.org/10.1145/3544548.3581434

Lea Albaugh, James McCann, Scott E. Hudson, and Lining Yao. 2021. Engineering
Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. Association for
Computing Machinery, New York, NY, USA, 1-12.

AYAB Developers. 2024. AYAB - All Yarns Are Beautiful. https://ayab-knitting.
com/, accessed 2024.

Emmanuel Ayodele, Syed Ali Raza Zaidi, Jane Scott, Zhigiang Zhang, Maryam
Hafeez, and Des McLernon. 2021. The Effect of Miss and Tuck Stitches on a
Weft Knit Strain Sensor. Sensors 21, 2 (Jan. 2021), 358. https://doi.org/10.3390/
521020358

David E. Breen, Donald H. House, and Michael J. Wozny. 1994. Predicting the
Drape of Woven Cloth Using Interacting Particles. In Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’94). Association for Computing Machinery, New York, NY, USA, 365-372. https:
//doi.org/10.1145/192161.192259

[7] J. E.Bresenham. 1965. Algorithm for computer control of a digital plotter. IBM

Systems Journal 4, 1 (1965), 25-30. https://doi.org/10.1147/sj.41.0025

J. C. Briar. 2011. Charts Made Simple: Understanding Knitting Charts Visually : A
Knitting on Paper Book. Glass Iris Publications.

Juan J. Casafranca, Gabriel Cirio, Alejandro Rodriguez, Eder Miguel, and Miguel A.
Otaduy. 2020. Mixing Yarns and Triangles in Cloth Simulation. Computer Graphics
Forum (2020). https://doi.org/10.1111/cgf.13915

Carlos Castillo, Jorge Lopez-Moreno, and Carlos Aliaga. 2019. Recent advances
in fabric appearance reproduction. Computers & Graphics 84 (2019), 103-121.
https://doi.org/10.1016/j.cag.2019.07.007

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2017. Yarn-Level Cloth
Simulation with Sliding Persistent Contacts. IEEE Transactions on Visualization
and Computer Graphics 23, 2 (2017), 1152-1162. https://doi.org/10.1109/TVCG.
2016.2592908

Erik D Demaine, Jason S Ku, and Robert J Lang. [n.d.]. A New File Standard to
Represent Folded Structures. ([n.d.]).

Laura Devendorf, Kathryn Walters, Marianne Fairbanks, Etta Sandry, and Emma R
Goodwill. 2023. AdaCAD: Parametric Design as a New Form of Notation for
Complex Weaving. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (CHI "23). Association for Computing Machinery, New York,
NY, USA, 1-18. https://doi.org/10.1145/3544548.3581571

[14] Jack Forman, Ozgun Kilic Afsar, Sarah Nicita, Rosalie Hsin-Ju Lin, Liu Yang,

Megan Hofmann, Akshay Kothakonda, Zachary Gordon, Cedric Honnet, Kristen
Dorsey, Neil Gershenfeld, and Hiroshi Ishii. 2023. FibeRobo: Fabricating 4D
Fiber Interfaces by Continuous Drawing of Temperature Tunable Liquid Crystal
Elastomers. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (UIST °23). Association for Computing Machinery, New
York, NY, USA, 1-17. https://doi.org/10.1145/3586183.3606732

Mikhaila Friske, Shanel Wu, and Laura Devendorf. 2019. AdaCAD: Crafting
Software For Smart Textiles Design. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1-13.

Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold,
and Andrew Nealen. 2012. Pixelated Image Abstraction. In International Sym-
posium on Non-Photorealistic Animation and Rendering, Paul Asente and Cindy
Grimm (Eds.). The Eurographics Association. https://doi.org/10.2312/PE/NPAR/
NPAR12/029-036

Maas Goudswaard, Abel Abraham, Bruna Goveia da Rocha, Kristina Andersen,
and Rong-Hao Liang. 2020. FabriClick: Interweaving Pushbuttons into Fabrics
Using 3D Printing and Digital Embroidery. 393 pages. https://doi.org/10.1145/
3357236.3395569

Bruna Goveia Da Rocha, Oscar Tomico, Panos Markopoulos, and Daniel Tet-
teroo. 2020. Crafting Research Products through Digital Machine Embroidery.
In Proceedings of the 2020 ACM Designing Interactive Systems Conference. ACM,
Eindhoven Netherlands, 341-350. https://doi.org/10.1145/3357236.3395443
Susan Guagliumi. 1990. Hand-Manipulated Stitches for Machine Knitters. GUAGLI-
UMIDOTCOM.

Nur Al-huda Hamdan, Simon Voelker, and Jan Borchers. 2018. Sketch&Stitch:
Interactive Embroidery for E-textiles. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/3173574.3173656
Donald Hearn, Pauline Baker, and Warren Carithers. 2010. Computer Graphics
with Open GL (fourth ed.). Pearson.

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E.
Hudson, James McCann, and Jennifer Mankoff. 2019. KnitPicking Textures:
Programming and Modifying Complex Knitted Textures for Machine and Hand
Knitting. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 5-16. https://doi.org/10.1145/3332165.3347886

Hudson. 2023. KnitScript: A Domain-Specific Scripting Language for Advanced
Machine Knitting. In Proceedings of the 36th Annual ACM Symposium on User In-
terface Software and Technology (UIST °23). Association for Computing Machinery,
New York, NY, USA, 1-21. https://doi.org/10.1145/3586183.3606789

Megan Hofmann, Jennifer Mankoff, and Scott E. Hudson. 2020. KnitGIST: A
Programming Synthesis Toolkit for Generating Functional Machine-Knitting
Textures. In Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology (UIST °20). Association for Computing Machinery, New
York, NY, USA, 1234-1247. https://doi.org/10.1145/3379337.3415590

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008. Knitty: 3D Modeling
of Knitted Animals with a Production Assistant Interface. (2008). https://doi.
org/10.2312/egs.20081011

Tiffany C. Inglis and Craig S. Kaplan. 2012. Pixelating vector line art. In Proceed-
ings of the Symposium on Non-Photorealistic Animation and Rendering (Annecy,
France) (NPAR ’12). Eurographics Association, Goslar, DEU, 21-28.

Tiffany C. Inglis, Daniel Vogel, and Craig S. Kaplan. 2013. Rasterizing and
antialiasing vector line art in the pixel art style. In Proceedings of the Symposium
on Non-Photorealistic Animation and Rendering (Anaheim, California) (NPAR
’13). Association for Computing Machinery, New York, NY, USA, 25-32. https:
//doi.org/10.1145/2486042.2486044

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and
Adriana Schulz. 2022. Computational Design of Knit Templates. ACM Transactions
on Graphics 41, 2 (April 2022), 1-16. https://doi.org/10.1145/3488006

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating
Knitted Cloth at the Yarn Level. In ACM SIGGRAPH 2008 Papers (Los Angeles,
California) (SIGGRAPH ’08). Association for Computing Machinery, New York,
NY, USA, Article 65, 9 pages. https://doi.org/10.1145/1399504.1360664
Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-
Based Cloth with Adaptive Contact Linearization. ACM Trans. Graph. 29, 4,
Article 105 (jul 2010), 10 pages. https://doi.org/10.1145/1778765.1778842

Levi Kapllani, Chelsea Amanatides, Genevieve Dion, and David E. Breen. 2022.
Loop Order Analysis of Weft-Knitted Textiles. Textiles 2, 2 (June 2022), 275-295.
https://doi.org/10.3390/textiles2020015

Levi Kapllani, Chelsea Amanatides, Genevieve Dion, Vadim Shapiro, and David E.
Breen. 2021. TopoKnit: A Process-Oriented Representation for Modeling the
Topology of Yarns in Weft-Knitted Textiles. Graphical Models 118 (Nov. 2021),
101114. https://doi.org/10.1016/.gmod.2021.101114

Ayelet Karmon, Yoav Sterman, Tom Shaked, Eyal Sheffer, and Shoval Nir. 2018.
KNITIT: A Computational Tool for Design, Simulation, and Fabrication of Multi-
ple Structured Knits. In Proceedings of the 2nd ACM Symposium on Computational
Fabrication. ACM, Cambridge Massachusetts, 1-10. https://doi.org/10.1145/
3213512.3213516

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skele-
tons: A Computer-Aided Design Tool for Shaping and Patterning of Knitted
Garments. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST '19). Association for Computing Machinery, New
York, NY, USA, 53-65. https://doi.org/10.1145/3332165.3347879

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik.
2021. Knit Sketching: From Cut & Sew Patterns to Machine-Knit Garments. ACM
Transactions on Graphics 40, 4 (Aug. 2021), 1-15. https://doi.org/10.1145/3450626.
3459752

Jin Hee (Heather) Kim, Kunpeng Huang, Simone White, Melissa Conroy, and
Cindy Hsin-Liu Kao. 2021. KnitDermis: Fabricating Tactile On-Body Interfaces
Through Machine Knitting. In Proceedings of the 2021 ACM Designing Interactive
Systems Conference (DIS "21). Association for Computing Machinery, New York,
NY, USA, 1183-1200. https://doi.org/10.1145/3461778.3462007

Bill King. 2023. Machine Knitting Techniques: Cables. Crowood Press.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve
Marschner. 2018. Interactive Design of Periodic Yarn-Level Cloth Patterns. ACM
Trans. Graph. 37, 6, Article 202 (dec 2018), 15 pages. https://doi.org/10.1145/
3272127.3275105

[39] Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert

Bernstein, and James McCann. 2023. Semantics and Scheduling for Machine
Knitting Compilers. ACM Transactions on Graphics 42, 4 (Aug. 2023), 1-26.
https://doi.org/10.1145/3592449

[40] Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer Plan-

ning for Flat Knitting. In Proceedings of the 2nd ACM Symposium on Computational
Fabrication (SCF ’18). Association for Computing Machinery, New York, NY, USA,
1-7. https://doi.org/10.1145/3213512.3213515

Zishun Liu, Xingjian Han, Yuchen Zhang, Xiangjia Chen, Yu-Kun Lai, Eugeni L.
Doubrovski, Emily Whiting, and Charlie C. L. Wang. 2021. Knitting 4D Garments
with Elasticity Controlled for Body Motion. ACM Transactions on Graphics 40, 4
(July 2021), 62:1-62:16. https://doi.org/10.1145/3450626.3459868

Yiyue Luo, Kui Wu, Tomas Palacios, and Wojciech Matusik. 2021. KnitUI: Fabri-
cating Interactive and Sensing Textiles with Machine Knitting. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. Number 668 in
CHI ’21. Association for Computing Machinery, New York, NY, USA, 1-12.

https://doi.org/10.1145/3544548.3581434
https://ayab-knitting.com/
https://ayab-knitting.com/
https://doi.org/10.3390/s21020358
https://doi.org/10.3390/s21020358
https://doi.org/10.1145/192161.192259
https://doi.org/10.1145/192161.192259
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1111/cgf.13915
https://doi.org/10.1016/j.cag.2019.07.007
https://doi.org/10.1109/TVCG.2016.2592908
https://doi.org/10.1109/TVCG.2016.2592908
https://doi.org/10.1145/3544548.3581571
https://doi.org/10.1145/3586183.3606732
https://doi.org/10.2312/PE/NPAR/NPAR12/029-036
https://doi.org/10.2312/PE/NPAR/NPAR12/029-036
https://doi.org/10.1145/3357236.3395569
https://doi.org/10.1145/3357236.3395569
https://doi.org/10.1145/3357236.3395443
https://doi.org/10.1145/3173574.3173656
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/3586183.3606789
https://doi.org/10.1145/3379337.3415590
https://doi.org/10.2312/egs.20081011
https://doi.org/10.2312/egs.20081011
https://doi.org/10.1145/2486042.2486044
https://doi.org/10.1145/2486042.2486044
https://doi.org/10.1145/3488006
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1778765.1778842
https://doi.org/10.3390/textiles2020015
https://doi.org/10.1016/j.gmod.2021.101114
https://doi.org/10.1145/3213512.3213516
https://doi.org/10.1145/3213512.3213516
https://doi.org/10.1145/3332165.3347879
https://doi.org/10.1145/3450626.3459752
https://doi.org/10.1145/3450626.3459752
https://doi.org/10.1145/3461778.3462007
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/3592449
https://doi.org/10.1145/3213512.3213515
https://doi.org/10.1145/3450626.3459868

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives

[43] Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tomas
Palacios, and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators
with Integrated Sensing by Machine Knitting. In CHI Conference on Human Factors
in Computing Systems. ACM, New Orleans LA USA, 1-13. https://doi.org/10.
1145/3491102.3517577

[44] Anne L. MacDonald. 2010. No Idle Hands: The Social History of American Knitting.

Random House Publishing Group.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik,

Jennifer Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting.

ACM Transactions on Graphics 35, 4 (July 2016), 49:1-49:11. https://doi.org/10.

1145/2897824.2925940

[46] Denisa Qori McDonald, Richard Vallett, Erin Solovey, Geneviéve Dion, and Ali
Shokoufandeh. 2020. Knitted Sensors: Designs and Novel Approaches for Real-
Time, Real-World Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 4, 4 (Dec. 2020), 145:1-145:25. https://doi.org/10.
1145/3432201

[47] M. Meifiner and B. Eberhardt. 1998. The Art of Knitted Fabrics, Realis-
tic & Physically Based Modelling of Knitted Patterns. Computer Graph-
ics Forum 17, 3 (1998), 355-362. https://doi.org/10.1111/1467-8659.00282
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00282

[48] Rahul Mitra, Liane Makatura, Emily Whiting, and Edward Chien. 2023. Helix-Free

Stripes for Knit Graph Design. In ACM SIGGRAPH 2023 Conference Proceedings (,

Los Angeles, CA, USA,) (SIGGRAPH °23). Association for Computing Machinery,

New York, NY, USA, Article 75, 9 pages. https://doi.org/10.1145/3588432.3591564

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mc-

cann. 2018. Automatic Machine Knitting of 3D Meshes. ACM Transactions on

Graphics 37, 3 (Aug. 2018), 35:1-35:15. https://doi.org/10.1145/3186265

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual Knitting

Machine Programming. ACM Transactions on Graphics 38, 4 (July 2019), 63:1—

63:13. https://doi.org/10.1145/3306346.3322995

Jifei Ou, Daniel Oran, Don Derek Haddad, Joseph Paradiso, and Hiroshi Ishii. 2019.

SensorKnit: Architecting Textile Sensors with Machine Knitting. 3D Printing and

Additive Manufacturing 6, 1 (March 2019), 1-11. https://doi.org/10.1089/3dp.

2018.0122

[52] M. L. V. Pitteway. 1967. Algorithm for drawing ellipses or hyperbolae
with a digital plotter. ~ Comput. J. 10, 3 (01 1967), 282-289. https://
doi.org/10.1093/comjnl/10.3.282 arXiv:https://academic.oup.com/comjnl/article-
pdf/10/3/282/1333509/100282.pdf

[53] José Maria Pizana, Alejandro Rodriguez, Gabriel Cirio, and Miguel A. Otaduy.

2020. A Bending Model for Nodal Discretizations of Yarn-Level Cloth. Computer

Graphics Forum (2020). https://doi.org/10.1111/cgf.14112

Andreas Pointner, Thomas Preindl, Sara Mlakar, Roland Aigner, Mira Alida Haber-

fellner, and Michael Haller. 2022. Knitted Force Sensors. In Adjunct Proceedings

of the 35th Annual ACM Symposium on User Interface Software and Technology

(UIST °22 Adjunct). Association for Computing Machinery, New York, NY, USA,

1-3. https://doi.org/10.1145/3526114.3558656

Andreas Pointner, Thomas Preindl, Sara Mlakar, Roland Aigner, and Michael

Haller. 2020. Knitted RESi: A Highly Flexible, Force-Sensitive Knitted Textile

Based on Resistive Yarns. In ACM SIGGRAPH 2020 Emerging Technologies (SIG-

GRAPH °20). Association for Computing Machinery, New York, NY, USA, 1-2.

https://doi.org/10.1145/3388534.3407292

[56] Davi Post. 2024. Img2track. https://daviworks.com/knitting/, accessed 2024.

[57] Yannick Rémion, Jean-Michel Nourrit, and Didier Gillard. 2000. A dynamic
animation engine for generic spline objects. The Journal of Visualization and
Computer Animation 11, 1 (2000), 17-26. https://doi.org/10.1002/(SICI)1099-
1778(200002)11:1< 17::AID-VIS213>3.0.CO;2-9

[58] Rosa M. Sanchez-Banderas, Alejandro Rodriguez, Héctor Barreiro, and Miguel A.

Otaduy. 2020. Robust Eulerian-on-Lagrangian Rods. ACM Trans. Graph. 39, 4

(Aug. 2020), 59:59:1-59:59:10. https://doi.org/10.1145/3386569.3392489

Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming Lan-

guages. Computer 16, 8 (Aug. 1983), 57-69. https://doi.org/10.1109/MC.1983.

1654471

David J. Spencer. 2001. Knitting Technology: A Comprehensive Handbook and

Practical Guide. CRC Press.

[61] Georg Sperl, Rahul Narain, and Chris Wojtan. 2021. Mechanics-Aware Deforma-

tion of Yarn Pattern Geometry. ACM Trans. Graph. 40, 4 (July 2021), 168:1-168:11.

https://doi.org/10.1145/3450626.3459816

Georg Sperl, Rosa M. Sanchez-Banderas, Manwen Li, Chris Wojtan, and Miguel A.

Otaduy. 2022. Estimation of Yarn-Level Simulation Models for Production Fabrics.

ACM Trans. Graph. 41, 4 (July 2022), 65:1-65:15. https://doi.org/10.1145/3528223.

3530167

Joanne Turney. 2009. The Culture of Knitting. Berg Publishers.

Hannah Twigg-Smith, Emily Whiting, and Nadya Peek. 2024. KnitScape: Compu-

tational Design and Yarn-Level Simulation of Slip and Tuck Colorwork Knitting

Patterns. In Proceedings of the CHI Conference on Human Factors in Computing

Systems (CHI °24). Association for Computing Machinery, New York, NY, USA,

1-20. https://doi.org/10.1145/3613904.3642799

[45

[49

[50

[51

[54

[55

[59

(60

o
&

[63
[64

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

(65

Richard Vallett, Denisa Qori McDonald, Genevieve Dion, Youngmoo Kim, and Ali
Shokoufandeh. 2020. Toward Accurate Sensing with Knitted Fabric: Applications
and Technical Considerations. Proceedings of the ACM on Human-Computer
Interaction 4, EICS (June 2020), 79:1-79:26. https://doi.org/10.1145/3394981
[66] Jerry Van Aken and Mark Novak. 1985. Curve-drawing algorithms for Raster
displays. ACM Trans. Graph. 4, 2 (apr 1985), 147-169. https://doi.org/10.1145/
282918.282943
[67] Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM
Transactions on Graphics 38, 1 (Jan. 2019), 10:1-10:13. https://doi.org/10.1145/
3292481
Tianhong Catherine Yu and James McCann. 2020. Coupling Programs and Visu-
alization for Machine Knitting. In Proceedings of the 5th Annual ACM Symposium
on Computational Fabrication (SCF "20). Association for Computing Machinery,
New York, NY, USA, 1-10. https://doi.org/10.1145/3424630.3425410
[69] Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Meshes for Modeling Knitted Clothing with Yarn-Level Detail. ACM Trans. Graph.
31, 4, Article 37 (jul 2012), 12 pages. https://doi.org/10.1145/2185520.2185533
[70] Jungiu Zhu, Adrian Jarabo, Carlos Aliaga, Ling-Qi Yan, and Matt Jen-Yuan Chiang.
2023. A Realistic Surface-based Cloth Rendering Model. In ACM SIGGRAPH 2023
Conference Proceedings (, Los Angeles, CA, USA,) (SSIGGRAPH °23). Association
for Computing Machinery, New York, NY, USA, Article 5, 9 pages. https://doi.
org/10.1145/3588432.3591554

[68

A KNITTING OVERVIEW

This section provides a high-level overview of the domain of knit-
ting and definitions for terms used in this paper. For a comprehen-
sive text on knitting technology, we refer to Spencer [60].

Knitting refers to the process of manipulating yarn into fabric
via interlooping, in which loops of yarn are pulled through other
loops. Knitting is often compared (and confused) with weaving,
where fabric is formed by interlacing two sets of yarns at right
angles. Both techniques produce different attributes in the fabric
with different applications: knits are typically more breathable and
stretchier (T-shirts, socks), while wovens are firm and stable (denim,
bedsheets, towels).

Hand knitting is at least 1500 years old and continues to be
extremely popular today. Hand knitting is typically performed on
straight pointed needles. As a general rule, hand knitting has a far
larger possibility space than machine knitting, so anything that
can be knit on a machine can be knit by hand. However there
are practical tradeoffs in terms of speed, pattern complexity, and
consistency.

Knitting machines also use needles, but each needle holds only a
small number of loops at a time (typically only one or two). Knitting
machine needles are shaped like a small hook with a latch that can
open and close. On the machine, needles are arranged into one
or more beds. In this paper we are concerned with V-bed knitting
machines, in which two beds are oriented in an upside-down V
shape, with the needle hooks facing each other at the top. Other
classes of knitting machines have different bed configurations. For
example, circular knitting machines have a circular bed.

A carriage moves along the needle bed to guide the yarn and
actuate the needles according to the pattern. Typically, machines
have multiple yarn feeders which the carriage will pick up and drop
off according to which yarn is in use. During the carriage movement,
the type of stitch performed by each needle is determined by how
far it moves out and in. To knit a stitch, when the needle moves out
the previously-held loop slides back behind the latch, and a new
loop of yarn is laid into the open hook. Then, as the needle moves
back in, the previous loop slides forward, pushes the latch closed,
and drops over the closed latch.

https://doi.org/10.1145/3491102.3517577
https://doi.org/10.1145/3491102.3517577
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/2897824.2925940
https://doi.org/10.1145/3432201
https://doi.org/10.1145/3432201
https://doi.org/10.1111/1467-8659.00282
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00282
https://doi.org/10.1145/3588432.3591564
https://doi.org/10.1145/3186265
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1089/3dp.2018.0122
https://doi.org/10.1089/3dp.2018.0122
https://doi.org/10.1093/comjnl/10.3.282
https://doi.org/10.1093/comjnl/10.3.282
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/10/3/282/1333509/100282.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/10/3/282/1333509/100282.pdf
https://doi.org/10.1111/cgf.14112
https://doi.org/10.1145/3526114.3558656
https://doi.org/10.1145/3388534.3407292
https://daviworks.com/knitting/
https://doi.org/10.1002/(SICI)1099-1778(200002)11:1<17::AID-VIS213>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1099-1778(200002)11:1<17::AID-VIS213>3.0.CO;2-9
https://doi.org/10.1145/3386569.3392489
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/3450626.3459816
https://doi.org/10.1145/3528223.3530167
https://doi.org/10.1145/3528223.3530167
https://doi.org/10.1145/3613904.3642799
https://doi.org/10.1145/3394981
https://doi.org/10.1145/282918.282943
https://doi.org/10.1145/282918.282943
https://doi.org/10.1145/3292481
https://doi.org/10.1145/3292481
https://doi.org/10.1145/3424630.3425410
https://doi.org/10.1145/2185520.2185533
https://doi.org/10.1145/3588432.3591554
https://doi.org/10.1145/3588432.3591554

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

B GLOSSARY OF TERMS

stitch Used interchangeably to refer either to: a single loop of yarn
embedded in fabric, the unit operation which produced it,
or to a repeating texture pattern (e.g. “seed stitch”).

knit Refers to fundamental knitting operation in which a loop
of yarn is pulled through an existing loop. The yarn can be
pulled through a loop from either side, producing either a
knit (which resembles a “v”) or a purl (resembling a small
bump). In machine knitting, these operations are often re-
ferred to by the bed used to create them (“front knit” or
“back knit”), while hand knitters refer to them as “knits” and

« »
purls”.

tuck An operation where a loop of yarn is added to a needle
without pulling it through an existing loop (if present)

slip, skip, miss
An operation where yarn is passed behind a loop without
being pulled through it. In machine knitting, the latch hook
needle does not extend to pick up a new loop. In hand
knitting, the loop is passed without modification from one
straight needle to another. In both cases, the extra yarn
produces a float.

transfer
An operation where loops are moved from one needle to
another, often used to create textures like lace or cables or
to shape the fabric.

float A loose bit of yarn not directly worked into the fabric struc-
ture. Typically there is an upper limit to the length of a
float, as floats which are too long may snag on fingers or
jewellery.

chart A visual representation of a knitting pattern, in which sym-
bols and colors are arranged on a grid to communicate the
placement of stitches, yarns, and techniques across the rows
and columns of the fabric.

colorwork
An umbrella term describing knitting techniques where
different colors of yarn are incorporated into a single piece
to create color patterns.

stranded or fair-isle colorwork
A colorwork technique for working two or more colors of
yarn in the same row by floating the non-showing yarn
across the back of the fabric.

intarsia
A colorwork technique where each separate block of color
in a row is knit by a dedicated yarn. This means that yarns
are not floated across the back of the work (as they are
in stranded colorwork), making it an ideal technique for
larger, solid-colored areas.

cable A texture effect where loops are “crossed”, which can cre-
ate the appearance of twisted rope on the fabric surface.
Knitting machines use transfers to rearrange the loops, and

rib

lace

Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

hand knitters typically use an extra needle (a “cable nee-
dle”). Cable knitting is a family of techniques for producing
different effects via crossed stitches, including braids, twists,
and lattices.

A texture created by alternating knit and purl stitches in
vertical columns. This produces a very stretchy fabric com-
monly used for cuffs, collars, and hems.

A technique that incorporates patterns of holes or gaps,
often created by using transfers to move loops to create
holes and form intricate designs.

What’s in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Primitives UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA

C PSEUDOCODE FOR BOUNDARY AND PATH RASTERIZATION

Algorithm 1: Boundary Rasterization

Function AddEdge (EdgeTable, [x1,y1] « p1, [x2,y2] « p2):
if y1 = y2: return;
if y1 > y2:
[x1,x2] « [x2,x1];
[y1,y2] « [y2,y1];
dx « (x2 - x1)/(y2 — y1);
edge «— edge {
x « x1+ (dx/2);
dx « dx;
yMin « y1;
yMax « y2;
xLast «— x1;
I8
EdgeT able.insert(edge);
Function RasterizeBoundary (boundary):
points, stitchBlock, yarnBlock, offset, shaping < boundary;
EdgeTable < [];
for i < 0 to points.length:
AddEdge (EdgeTable, points|i], points[(i + 1)%points.length))
EdgeTable < EdgeTable sorted on x;
ActiveEdgeTable — [];
y<0
while there are edges left to process:
move edges from EdgeTable to ActiveEdgeTable where yMin = y;
for i < 0;i < ActiveEdgeTable.length;i « i+ 2:
left < ActiveEdgeTable[i];
right < ActiveEdgeTable[i + 1];
x0 « round(left.x);
x1 < round(right.x);
if x0 = x1: continue;
StitchBlockY « (y - offset.y) % stitchBlock.height;
YarnBlockY « (y - offset.y) % yarnBlock.height;
for x « x0 to x1:
StitchBlockX « (x - offset.x) % stitchBlock.width;
YarnBlockX « (x - offset.x) % yarnBlock.width;
stitch « stitchBlock.at(StitchBlockX, StitchBlockY);
yarn « yarnBlock.at(YarnBlockX, YarnBlockY);
if stitch # TRANSPARENT: DrawStitch(stitch, x, y);
if yarn # TRANSPARENT: DrawYarn(yarn, x, y);
if shaping > 0:
ShapelLeft(left.xLast — x1);
ShapeRight (right.xLast — x2);
left.xLast « x1;
right.xLast < x2;
remove edges from ActiveEdgeTable where yMax = y;
foreach edge in ActiveEdgeTabledo
edge.x < edge.x + edge.dx;
ye—y+1

UIST ’24, October 13-16, 2024, Pittsburgh, PA, USA Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek

Algorithm 2: Path rasterization

Function PlotPath(p0, p1, block, offset, mode):
[x0,0] « pO;
[x1,y1] « pl;
dx « abs(x1 — x0);
sx «— x0 < x1?1: —1;
dy <« —abs(y1 — y0);
sy «—y0 < yl?1:-1;
error < dx +dy;
last « [x0,y0];

while True :
switch mode do

case ‘overlap“ do
DrawBlock (block, x0 + of fset.x,y0 + of fset.y)

case ‘tiled” do
if abs(x0 — last.x) > block.width or abs(y0 — last.y) > block.height :

DrawBlock (block, x0 + of fset.x,y0 + of fset.y);
last « [x0,y0];
case ‘dx” do
if x0 # last.x :
DrawBlock(block, x0 + of fset.x,y0 + of fset.y);
last « [x0,y0];
case ‘dy” do
if y0 # lasty :
DrawBlock (block, x0 + of fset.x,y0 + of fset.y);
last « [x0,y0];
if x0 = x1 and y0 = y1 : break;
e2 «— 2 Xerror;
ife2 > dy:
if x0 = x1 : break;
error «— error +dy;
x0 «— x0 + sx;
if e2 < dx:
if y0 = y1 : break;
error < error +dx;
y0 «— y0 + sy;

Function RasterizePath(path):
points, stitchBlock, yarnBlock, offset, mode « path;
for each segment pair p0, p1 in points :
PlotPath(p0, p1, stitchBlock, offset, mode);
PlotPath(p0, p1, yarnBlock, offset, mode);

	Abstract
	1 Introduction
	2 Related Work
	2.1 Design Representations for Knit Objects
	2.2 Fabric Modeling, Simulation, and Rendering
	2.3 Rasterization

	3 Blended Primitives
	3.1 Pattern Elements
	3.2 Design Interface
	3.3 Example Workflow

	4 Demonstration Examples
	4.1 Cables, Braids, and Twists
	4.2 Fair Isle Colorwork
	4.3 Intarsia Colorwork
	4.4 Lace

	5 Further Applications: Sensors and Folds
	5.1 Origami-Inspired Pleat Patterns
	5.2 Intarsia-based Sensing Structures

	6 System Implementation
	6.1 Stitch and Yarn Chart Rasterization
	6.2 Yarn Separation and Transfer Planning
	6.3 Yarn Topology and Simulation
	6.4 Challenges and Opportunities

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Knitting Overview
	B Glossary of terms
	C Pseudocode for Boundary and Path Rasterization

