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Figure 1: In our design environment for editing knitting charts with blended primitives, a chart of knitting instructions is 
rasterized from layered vector boundaries and paths with associated raster stitch and yarn blocks. These cabled twist and 
braid patterns are designed using stitch paths we defned to encode a “right-leaning twist” (A) and a “left-leaning twist” (B). By 
placing the right twist along a stitch path that defnes a purl border (C), we can produce a twist texture (D). By staggering both 
the left and right twists (E), we can produce a braid texture (F). 

ABSTRACT 
In chart-based programming environments for machine knitting, 
patterns are specifed at a low level by placing operations on a 
grid. This highly manual workfow makes it challenging to iterate 
on design elements such as cables, colorwork, and texture. While 
vector-based abstractions for knitting design elements may facili-
tate higher-level manipulation, they often include interdependen-
cies which require stitch-level reconciliation. To address this, we 
contribute a new way of specifying knits with blended vector and 
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raster primitives. Our abstraction supports the design of interdepen-
dent elements like colorwork and texture. We have implemented 
our blended raster/vector specifcation in a direct manipulation 
design tool where primitives are layered and rasterized, allowing 
for simulation of the resulting knit structure and generation of ma-
chine instructions. Through examples, we show how our approach 
enables higher-level manipulation of various knitting techniques, 
including intarsia colorwork, short rows, and cables. Specifcally, 
we show how our tool supports the design of complex patterns 
including origami pleat patterns and capacitive sensor patches. 
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development environments. 
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1 INTRODUCTION 

Figure 2: Examples of knit surface patterning efects on a 
selection of sweaters. As opposed to overall fabric topology 
(e.g., a sleeve) or the individual stitch, these mid-level efects 
[2] determine the texture and color of knits. 

Knitting enables the fabrication of soft objects through a set of 
discrete operations on a yarn or set of yarns [60]. By combining 
diferent stitches and yarns, we can manufacture complex, multi-
material, three-dimensional shapes, with varying micro and macro 
material behaviors [3, 33, 36, 41]. Color patterning (also known as 
colorwork) and texture efects such as lace, cabling, and ribbing 
are extensively used in the design of knitwear and can introduce 
aesthetic and functional attributes to knits [2, 64], including the 
integration of elements of great interest to HCI researchers such as 
sensors and shape-changing components [14, 42, 43, 51]. Knitwear 
designers have common strategies for producing these attributes, 
but need to ultimately specify their knits with low-level descriptions. 
The lack of appropriate design representations can result in design 
challenges, as changing patterns stitch-by-stitch is labor intensive. 

For example, a cable is a surface texture which looks like a raised 
column of interwoven or twisted fabric [37]. Cables are a core 
element of Aran sweaters (such as the purple sweater in Figure 2), 
where many cables adorn on the surface of a knit to create intricate 
patterns. Cable knitting involves changing the order of certain loops 

at regular intervals. A designer has many variables to play with 
when designing cable structures, including the number of loops 
at each crossing, the crossing direction, crossing frequency, the 
column lean, etc., and can additionally incorporate colorwork and 
texture techniques to produce stunning surface patterns [19]. All of 
these variables can have a dramatic impact on cable appearance, yet 
their interdependence defes top-down abstraction: to design new 
cable structures, you must specify them on the individual stitch 
level, always reconciling cable-level design decisions with other 
factors such as shaping. 

The problem of design representations in knitting is familiar 
to HCI and graphics researchers, who have formalized low-level 
knitting operations in order to develop higher-level primitives that 
can be used to design new knit objects [45]. This body of prior 
work has largely focused on 3D shaping-oriented primitives which 
represent the overall surface topology of knit objects [28, 34, 35, 45, 
49, 50]. In contrast, the work presented here seeks to support design 
tasks which require a diferent level of abstraction than overall 
surface topology, namely the design of knit surface patterning 
efects (i.e., mid-level efects [2], examples of which are shown in 
Figure 2). What kinds of representations might we need to design 
new cables, lace, colorwork, and texture patterns? 

As another example, intarsia is a colorwork technique commonly 
used for patterns with large blocks of color (such as the corn and 
crow sweater in Figure 2). While it may appear that intarsia patterns 
would be relatively easy to design in, say, a pixel-based paint tool, 
there are knitting constraints that a designer must consider during 
the design of an intarsia pattern, including how yarns of diferent 
colors are joined (to prevent gaps between yarns), the direction each 
yarn is moving in a row, the slope of the boundary between yarns 
(a slope that is too gentle may lead to long foats), and on which 
side the yarn starts and ends. An example of the impact of these 
constraints is provided in Section 4.3. Designing intarsia patterns 
often involves resolving these constraints via decisions which 1) 
must happen at a low level, and 2) impact the fnal appearance of 
the pattern, sometimes dramatically. For example, this may include 
something as simple as resizing the height of a motif so that it totals 
an even number of rows, ensuring a yarn will return to the same 
side it started on. 

As a fnal motivating example, consider a designer who wants to 
create diferent amounts of stretch in diferent regions of a garment, 
for example: a sweater with conformal cufs, a warming densely 
knit body, an airier knit for the sleeves, and tough patches for the 
elbows. How can they prototype these diferent textures? While 
some textures are well-established, such as a ribbing for cufs, we 
have only scratched the surface of the mid-level material efects 
that are possible. Recent work has explored how mid-level efects 
can, for example, be tailored to produce material properties ideal 
for particular regions of garments [41]. How diferent stitches and 
yarns impact the fnal textures in knits is difcult to understand 
based on low-level descriptions alone, and rapid iteration on proto-
types will be crucial as we look to understand the possible material 
efects of novel functional fbers (e.g., [1, 14]). 

Better design representations would enable higher-level manipu-
lation of surface-level knit efects. However, developing abstractions 
for knitting is non-trivial. First of all, knitting design choices defy 
a strict hierarchy: stitches and yarns are interdependent and both 
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impact elements of the resulting textile. Second, knits are subject to 
strict set of fabrication constraints, which will change depending 
on knit pattern design choices (e.g., required number of transfers 
in a row), yarn selection (e.g., how stretchy or strong a particular 
yarn is), machine features (e.g., number of yarn feeds), and other 
implementation details. Therefore, our guiding research question 
is: How can we build design representations for knitting elements 
that support higher-level direct manipulation while maintaining 
access to stitch-level specifcation? 

To address this research challenge, we contribute blended prim-
itives for abstracting knit design elements. Specifcally, we blend 
raster-based stitch and yarn blocks with vector-based paths and 
boundaries. This allows us to specify and manipulate the relation-
ships between design elements, translated to groups of low-level 
knitting operations, and use these representations to generate ma-
chine knitting instructions. For example, we can design a raster-
based stitch block that creates a lace texture, then repeat that stitch 
block in a region of a garment as defned by a vector-delineated 
boundary to create a lace patch. By using techniques from computer 
graphics, we can determine reusable high-level strategies for stitch 
block repeats and other rasterization challenges. 

To demonstrate how blended primitives support the exploration 
of a knit design space, we contribute an open-source browser-based 
design environment. Links to the open-source code repository 
and hosted site can be found on the project page: https://depts. 
washington.edu/machines/projects/blended-primitives/. Our visual 
software supports direct manipulation of knit design patterns, in-
cluding repeating stitch blocks (which can include knit, purl, tuck, 
miss, and transfer operations), yarn blocks (for techniques such 
as fair isle colorwork), shaped knits (specifed through increases 
and decreases boundary conditions or short rows), and transfer 
operations (for designing cables and other knit textures). To demon-
strate our design tool, we have knit several examples that showcase 
diferent aspects of the design space. 

In summary, in this paper we contribute: 
• Blended primitives for designing mid-level knit efects: stitch 
paths, yarn paths, stitch flls, and yarn flls. 
• An open-source tool for designing with blended primitives, 
consisting of a chart-based editing environment and yarn-
level simulation. 
• Examples of mid-level abstractions for common knit design 
elements, including intarsia and fair-isle colorwork, lace, and 
cables. 
• Two domain demonstrations: intarsia-based sensing struc-
tures and origami-inspired pleat patterns. 

We conclude with a discussion of opportunities for HCI systems 
researchers in design tools for knit textiles and what we see as 
promising areas of future work. 

2 RELATED WORK 
Machine knitting has recently seen a surge of attention from HCI 
researchers who recognize it as an essential technique for the pro-
duction of e-textiles, soft interfaces, and functional fabrics, as well 
as an established outlet for personal expression. In this section 
we discuss how our contributions ft into the landscape of prior 

work on knitting design representations and associated tools. Ad-
ditionally, we review work on rasterization and fabric modeling 
and simulation which is relevant to the implementation of our de-
sign tool. While we focus on machine knitting in this paper, we 
recognize that interest in textile fabrication also extends to other 
domains, including weaving [13, 15] and embroidery [17, 18, 20]. 

2.1 Design Representations for Knit Objects 
There appears to be a general consensus among researchers that 
the complexity of knit programming, and the associated lack of 
tractable design primitives, poses a barrier to fully exploring the ex-
tensive design potential of machine knitting. Prior work has looked 
to address this challenge, largely through development of high-
level shaping primitives which can be used to represent the overall 
surface topology of knit objects while respecting the fabrication 
constraints of the knitting process. This includes generalized tubes 
and sheets [45], which was later extended to include splits and 
merges and deployed in the context of an interactive design tool 
[34, 35]. Other representations include stitch meshes [49, 50, 67] 
and coarse template meshes [28]. 

We distinguish our work from prior approaches by emphasising 
our focus on supporting the design of fabric-level structures as op-
posed to high-level 3D shape. High-level shaping primitives largely 
divorce three-dimensional form from the underlying stitch-level 
descriptions; this is advantageous for design tasks which are con-
cerned solely with global fabric topology (such as constructing a 
garment silhouette). However, we argue that the task of designing 
novel functional and aesthetic fabric-level structures requires fne 
control over individual loop positions. For example, prior work has 
demonstrated that small changes to loop positions can have a dra-
matic impact on the appearance of slip and tuck colorwork patterns 
[64] and the performance of knit sensors [1, 5]. We therefore think 
it is crucial to maintain direct access to stitch-level manipulation 
when designing fabric level efects, which our blended primitives 
approach supports by enabling this control via raster-based blocks 
containing stitch-level operations and yarn assignments. Prior work 
has explored diferent approaches to surface patterning largely 
through the development of textual domain-specifc programming 
languages [22, 24, 34]; our work instead presents a visual design 
environment where operation positions can be controlled via direct 
manipulation of associated vector paths and boundaries. This is 
more in line with the approach described by [2], which is specifc 
to brioche knitting. 

In parallel with work on design representations, researchers 
have worked to build out the infrastructure which will be essen-
tial for future development of robust machine knitting workfows. 
This includes process-oriented models of yarn topology [31, 32], 
domain-specifc programming languages [22, 23], compilers [39, 45], 
algorithms for scheduling and transfer planning [34, 39, 40, 48, 68], 
and debugging-oriented visualizations [68]. While the work we 
present in this paper is focused less on infrastructure and more on 
design representations, we found this prior work to be a valuable 
reference during implementation of our design tool. 
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Figure 3: Knitting operations: The charting language in the blended primitives editing environment supports knit, miss, tuck, 
and composite transfer operations. 

2.2 Fabric Modeling, Simulation, and Rendering 
Broadly, yarn simulation has been an area of intense interest in HCI, 
computer graphics, and textiles communities [11, 29, 30, 38, 69]. 
Early work achieved draping behavior in knitted fabrics [6], and 
proposed animation methods with particle systems [47] and splines 
with animated control points to model the micro-structure of knit-
ted fabrics [57]. Kaldor et al. [29, 30] published the frst system 
capable of simulating entire garments at the yarn level, with com-
putation of contact response of yarn-yarn collisions. Yuksel et al. 
[69] introduced the stitch mesh representation that incorporated 
mesh-based and yarn-level relaxation. Further work has focused on 
efcient implementations through nodal discretizations [53], com-
bined representations to retain large-scale behaviors of cloth [9], 
and realistic rendering of fabric appearance [10, 70]. Recent work 
continues to demonstrate new ways in which yarn-level mechan-
ics can improve fabric simulations, such as using implicit contact 
handling to simulate multi-layer fabric structures [58], animating 
yarn-level geometry on top of a deforming mesh [61], and inverse-
modeling yarn-level mechanics from real-world measurements [62]. 
For a more extensive review of simulation background we refer to 
Castillo et al. [10] and Casafranca et al. [9]. 

A challenge with relying on real-time yarn-level simulation as 
part of a design workfow is that computational intensity rapidly 
increases as pieces get larger. Leaf et al. [38] ofer yarn-level simula-
tion of swatches at interactive rates, but require GPU implementa-
tion. Our system extends the lightweight browser-based simulation 
introduced in KnitScape [64]. A topology graph [32] is combined 
with a particle-spring simulation to visualize local deformations 
in knitted swatches. In our work we demonstrate how mid-level 
efects like color and texture patterns ofer an ideal opportunity to 
deploy yarn-level simulation in the context of an interactive design 
tool. 

2.3 Rasterization 
We draw on foundational concepts in computer graphics for ras-
terizing geometric primitives and apply them to this domain of 
knit chart editing. Line drawing algorithms [7, 52, 66] and scan-
line polygon flling [21] were among the earliest graphics methods 
for efciently approximating exact mathematical representations 
of geometry as pixel positions in the frame bufer. Analogously 
to rasterization, knitting chart design entails converting geomet-
ric lines and regions into discrete stitch positions. Many desired 
properties are also shared. For example, in origami pleat patterns 
(Figure 17) the fold lines should be uniformly one stitch wide and 

avoid artifacts such as gaps when projected onto a knitting chart 
for consistent folding behavior and appearance. 

Pixel art has maintained prominence in computer graphics with 
popular editors (e.g., Aseprite and Pixelorama), and algorithms 
to facilitate pixel art creation through image abstraction [16] or 
rasterizing vector line art with minimal artifacts [26, 27]. Some 
community-built tools aid in the translation of images to a format 
readable by manual knitting machines (e.g., img2track [56] and 
AYAB [4]), but these are focused on translation of existing patterns 
to a knittable format rather than providing a full design environ-
ment. In contrast, our system integrates editor features such as 
layers and tilemaps into charting-specifc workfows. 

3 BLENDED PRIMITIVES 
Knitting patterns are typically designed in gridded charting envi-
ronments where individual operations are assigned cell-by-cell and 
yarns are assigned row-by-row, similar to a pixel-based painting 
workfow. While raster charts are a clear and widely used notation, 
they are not conducive to higher-level manipulation of groups of 
instructions beyond tile-based selection and repetition. Addition-
ally, many kinds of raster edits can be destructive (such as resizing 
workspace boundaries or translating stitches) and/or highly manual 
and repetitive (such as changing the slope of a line). Vector-based 
editing could potentially solve many of these problems, however, 
many knitting design elements (such as base texture or colorwork 
patterns) are still best specifed in a grid format. Therefore, our goal 
is to extend a raster-based charting environment with the ease of 
vector-based editing. 

We propose blended primitives for knit pattern design: vec-
tor paths and boundaries which can be used to manipulate raster 
blocks of stitch instructions and yarn assignments. In our design 
environment, blended primitives are layered and rasterized to cre-
ate two charts which are overlaid to form a compact chart view: 
one which encodes yarn assignments and one which encodes stitch 
instructions. To enable this compact view where multiple yarns can 
appear in the same row of instructions (as opposed to most editors 
where only one yarn can appear per row), our system provides au-
tomatic yarn separation for fair isle and intarsia patterns, described 
in Section 6. 

Maintaining quick and easy access to low-level stitch and yarn 
assignments is one of the core goals of blended primitives. In our 
editor, modifcations to the yarn and stitch charts can occur either 
through direct manipulation of vector elements (e.g. by dragging 
path segments and control points or changing their stacking order) 
or via raster edits to their associated stitch and yarn blocks. In 



What’s in a cable? Abstracting Kniting Design Elements with Blended Raster/Vector Primitives UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

Figure 4: Blocks are raster bitmaps. Yarn blocks (top) en-
code yarn assignments, and can be edited with yarns from 
the current yarn palette using pixel editing tools. Similarly, 
stitch blocks (bottom) can be edited with operations from 
our supported operation set. Blocks can be quickly resized by 
dragging the arrows at their edges. The block origin can be 
easily repositioned using the “move” dragger at the bottom 
left corner. 

the rest of this section, we describe the pattern elements used to 
design knits in our system, give an overview of our tool interface, 
and provide a walkthrough of an intarsia design workfow in our 
system. In following sections, we show how blended primitives can 
be used to design common knitting elements through a series of 
demonstration examples, including intarsia and fair isle colorwork, 
lace, and cables. Later, we show two domain demonstrations in 
which blended primitives are used to design origami-inspired pleat 
patterns and intarsia-based sensing structures. 

3.1 Pattern Elements 
In our design interface, patterns are built from combinations of 
three kinds of primitive elements: blocks, boundaries, and paths. 

3.1.1 Blocks. A block comprises two bitmaps (one defning yarn 
assignments and one defning operations) which share a common 
origin at their lower left corner (Figure 4). All boundaries and paths 
have an associated block which is used during chart rasterization.. 
Additionally, “free blocks” can be used as a one-of non-destructive 
override for yarn and stitch instructions on lower layers, which is 
useful when designing an individual colorwork or texture motif. 

Figure 5: Boundaries can be used to assign yarns (top) and 
stitch patterns (center) to regions of a chart. They are also 
used to defne the edges of a knit panel, and can optionally 
have shaping instructions attached to them (bottom). 

For blocks associated with boundaries and paths, the block origin 
is defned as an ofset to the frst point in boundary or path, which 
can be moved to change the position of block repetitions. For free 
blocks, the block origin is an ofset to the global pattern origin. 

Stitch blocks are bitmaps which include supported operations 
(described in Figure 3) as well as the “transparent” stitch, which 
inherits the stitch assignment of a lower layer. Yarn blocks are 
bitmaps which include indices of yarns in the global yarn palette. 
Similar to stitch blocks, yarn blocks can also include a “transparent” 
yarn which inherits a yarn assignment from a lower layer. A new 
block contains a 1x1 bitmap with a transparent stitch and a 1x1 
bitmap of a transparent yarn. 

3.1.2 Boundaries. A boundary is a closed polyline path which 
outlines a region in a chart to be flled with a stitch and/or yarn 
pattern (Figure 5). Figure 12 shows how boundaries can be used 
to position colorwork motifs and a rib texture for a simple doodle 
cowl. Boundary edits are not destructive to their stitch and yarn 
flls, making it easy to use them to lay out and reposition diferent 
patterning blocks. This means that patterns like the cowl shown in 
Figure 12 are very easy to modify, e.g., by dragging the boundary 
edges. The tiling origin of a stitch and yarn block can be moved 
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Figure 6: Paths can be used to position stitch and yarn blocks. 
We can change path appearance by changing the size of the 
associated block, e.g., to make a single-stitch wide yarn path 
(top left) into a two-stitch wide yarn path. The same applies 
for stitch paths (bottom), where we can create a dotted stitch 
path by adding extra transparent space at the edge of the 
stitch block. 

by dragging the arrows at the bottom left corner of the block. This 
is used to align blocks relative to their boundaries or other blocks, 
e.g., to avoid strange repeat cutofs at the edges or stagger diferent 
motifs evenly. 

3.1.3 Paths. A path is a polyline along which a stitch and/or yarn 
block is tiled. Like boundaries, they are easy to manipulate by drag-
ging control points and segments, adding and removing points, and 
reordering layers. Path appearance is easily changed by editing the 
associated block (Figure 6). We support four diferent tiling modes 
to control block position along the path (described in 6.1.2). The 
block can also be ofset from the associated path using the “move” 
dragger at its bottom left corner. This can be used, for example, to 
change which side of a path a single-cell wide block appears on. 

3.2 Design Interface 
Our design tool (Figure 7) consists of a two-view interface showing 
our compact chart editor on the left and a yarn-level visualization 
on the right. 

3.2.1 Charting Pane. The charting pane contains a layered view 
of our overlaid stitch and yarn charts and vector primitives, as well 
as other interface elements and toolbars which display contextual 
information. Users manipulate vector elements in the charting pane 
by dragging on points and segments of vector elements (Figures 5 
and 6) and editing their associated blocks (Figure 4, top). When-
ever a boundary, path, or block is changed, we rasterize pattern 
elements to create the underlying stitch and yarn charts (our ras-
terization process is described further in Section 6). This means 
that the user never makes direct, destructive edits to a global in-
struction chart. This is a core advantage to our blended primitives 
approach: changes to a chart which would be labor-intensive under 
a traditional pixel-paint workfow (e.g., resizing overall dimensions 
or translating groups of operations) are instead rapid, incremen-
tal, and quickly reversible, recalling foundational principles in the 
design of interfaces for direct manipulation [59]. 

The appearance of the chart depends on the active color mode. 
Each chart cell always contains the symbol of its assigned operation 
from the stitch chart, but symbols alone can be hard to diferentiate 
(especially when zoomed out), so we ofer two color modes for 
chart editing. In command mode each cell is colored according to 
operations assigned in the stitch chart (shown in Figure 3), and 
in yarn mode each cell is colored according to yarns assigned in 
the yarn chart. The user can quickly switch between these modes 
using hotkeys or a button in the bottom toolbar. When the yarn 
color mode is active, we shade back-bed operations to give them the 
appearance of depth, which can help give the impression of a rib (an 
example of this can be seen in Figure 12, B). To enable some visual 
feedback of yarn color when the command color mode is active, 
the yarn sequence pane at the far left always shows which yarns 
are assigned to each row of the chart. The user can also recolor the 
current yarn palette in this pane, which updates both the chart and 
yarn visualization. Finally, the bottom toolbar enables the user to 
switch between three editing modes that control which elements 
are able to be selected and edited: boundary, path, and block. 

3.2.2 Yarn visualization pane. Our interface includes a yarn-level 
visualization to provide constant feedback on design decisions. The 
yarn visualization consists of layered yarn segment paths, shaded to 
give the illusion of depth. It can be viewed from the technical front 
or back, which can be helpful when inspecting foat position on the 
back of the fabric. The visualization updates, (regenerating yarn 
topology and redrawing yarn segments), on edits in the charting 
interface. For smaller patterns (e.g., below 100x100 stitches) these 
updates are almost instantaneous, but topology generation slows 
down for larger patterns and those which include multiple yarns 
and/or short row shaping (and depends on device capability). There-
fore we also support a visualization mode where the topology is 
regenerated on user request, which can be helpful when designing 
larger or more complex patterns which include multiple yarns. The 
yarn visualization includes a 2D relaxation simulation where con-
tacts between yarns are modeled as a particle-spring system. The 
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Figure 7: Our design interface consists of a split-pane view of a chart editor and yarn simulation. 

relaxation can be run on request via a button in the visualization 
toolbar, providing a preview of how yarn segments will deform 
once knit. 

3.3 Example Workfow 
In this section we describe an example workfow in which we design 
a simple intarsia pattern, demonstrating how our yarn visualization 
provides rapid feedback on edits made in our charting interface 
(Figure 8). On creating a new pattern, the workspace opens in 
boundary edit mode to show a stockinette swatch: a rectangular 
boundary with a knit stitch fll and a single yarn fll (Figure 8, A). 
To begin an intarsia design, the user places control points to defne 
a new boundary (in this case, a circle). By default, all boundaries 
defned after the frst boundary have a transparent stitch and yarn 
fll, meaning that they will inherit the operations and yarn assign-
ments from prior layers. Therefore, to make the circle a contrasting 
color, the user assigns a contrasting yarn fll (Figure 8, B). These 
modifcations immediately update the yarn visualization, which 
now shows the light yellow circle. However, “fipping” the swatch 
in the visualization pane shows that the blue yarn leaves long foats 
as it crosses behind the yellow circle (Figure 8, C). 

While designing intarsia, these foats can be removed by using 
another yarn to knit the blue segments which appear to the right 

of the circle, preventing the yarn from needing to foat across the 
yellow circle. In our editor, this can be accomplished by simply 
drawing a new boundary that is the same height as the circle and 
moving it to the layer below the circle (Figure 8, D, left). This 
removes most of the long blue foats, but two remain as the blue 
yarn ends up on the wrong side of the pattern due to an odd number 
of rows. In this example, this is addressed by shifting the circle and 
the red boundary down by one row, removing the foats (Figure 8, 
E). If this pattern was knit as-is, there would be gaps where the 
yarns meet at each row. This is addressed by enabling the “tucks” 
option on the yarn boundaries to add tucks when two yarns meet 
at a boundary. Details on this are shown in Figure 9. 

4 DEMONSTRATION EXAMPLES 
In this section we demonstrate how our blended primitives ap-
proach can be used to recreate common knitting elements. 

4.1 Cables, Braids, and Twists 
Cable, braid, and twist textures are produced by selectively crossing 
groups of stitches to give the appearance of multiple interwoven 
strands of fabric. Crossed stitches on their own do not have much 
depth, and cable strands are typically given more defnition by using 
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Figure 8: Intarsia knitting: The yarn visualization provides 
feedback on design decisions made in the charting environ-
ment. In this example, it shows the position of yarn foats 
across the back of the fabric while designing an intarsia pat-
tern. 

Figure 9: Boundary conditions: The “join” setting controls 
how yarns are joined at a boundary. When “none” is selected, 
no change is made. In the case of a vertical join, this will pro-
duce a slit (A). The “tucks” option adds a tuck to the previous 
color in the row, depending on the direction the carriage is 
moving. These are visible in the simulation view by viewing 
the back (B). 

Figure 10: Cable knitting: We designed this cabled lattice 
by frst using a stitch path to make a 1x1 rib (A). A second 
stitch path is used to place transfers in a zig-zag (B), which 
we overlay on the rib defnition (C). Together, these create a 
lattice efect which can be seen in the yarn visualization (D) 
and exported for knitting (E). 

knit stitches for the main cable body and purl stitches as a back-
ground. There are multiple ways to design cable structures using 
blended primitives. We found it easiest to control the base knit/purl 
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Figure 11: Colorwork cable knitting: To design a colorwork cable lattice, we begin by (A) applying a striped yarn fll and purl 
stitch fll to a rectangular boundary. A (B) yarn-level visualization of the resulting knit gives constant feedback on design 
decisions. Switching to the operation view mode, we add a (C) stitch path to overlay a 1x1 rib texture which includes miss 
stitches every two rows. The (D, top) resulting rib only includes orange yarns, as the blue yarns are (D, bottom) foated across 
the back. Next, we create (E) a stitch path which tiles transfers in a zigzag pattern. When (F) overlaid on the rib texture, the (G) 
transfers move loops between the vertical lattice ribs to give them an interwoven efect. 

Figure 12: Colorwork repeats: Yarn blocks are tiled to fll their boundaries (A). Boundaries enable easy positioning of colorwork 
and texture motifs, such as to design this sheep-inspired doodle cowl with ribbed edge (B). The simulation pane shows a 
yarn-level visualization of the resulting knit (C). Yarn foats can be viewed by fipping the visualization to view the technical 
back (D). The resulting time-needle view can be seen in (E). 

Figure 13: Lace knitting: We support multiple approaches to lace design. Lace patterns can be designed by using a stitch block 
to fll a boundary (left). This allows the quick application of a repeating lace texture to a region. Stitch paths can also be used to 
design lace textures (right). This method is well-suited to individual lace motifs. 
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texture separately from the transfers. We did this by defning sepa-
rate stitch paths for the knit border and the transfers. Example cable, 
braid, and twists can be seen in Figures 1 and 10. By overlaying the 
texture and transfer paths atop a background with a striped yarn 
fll, we can also design and simulate colorwork cable structures 
such as the orange and blue cable lattice in Figure 11. 

4.2 Fair Isle Colorwork 

Figure 14: Colorwork: We support colorwork patterns which 
include more than two colors per row, such as this motif 
which includes three colors per row (A). The fabric is shown 
in the yarn visualization (B), and the resulting foats can be 
inspected by viewing the back (C). 

Fair Isle colorwork (also known as stranded colorwork or foat 
jacquard) is a technique for producing color patterns where multiple 
yarns are used across a whole row of knitting. For each row, the 
yarn which should appear on the front of the fabric knits, and the 
non-visible yarn (or yarns) foats behind the knit stitches. Figure 12 
shows an example where multiple colorwork motifs are used to 
pattern a “doodle cowl”, a type of pattern which is currently popular 
in the hand knitting community as a sampler of themed colorwork 
motifs. Our yarn separation can theoretically handle an arbitrary 
number of yarns per row, although there are practical limitations 
to this depending on maximum foat length. Figure 14 shows a 
colorwork pattern which includes three colors per row. The back of 
the fabric can be examined in the yarn simulation, which enables 
inspection of the resulting foats. 

4.3 Intarsia Colorwork 
Intarsia is a colorwork technique appropriate for patterns which 
include large, unbroken blocks of color. A separate yarn feed is 
used to knit each segment of color which appears in a row. This 
means that a circle which appears in the center of a fabric requires 
three separate yarns (Figure 8), and the “U” in UIST requires fve 
separate yarns (Figure 15). Our editor supports design of intarsia 
patterns via yarn paths and yarn flls. To prevent gaps from form-
ing between adjacent blocks of color, the yarns must be joined at 
the color changes. One strategy for joining is to add tucks to the 
preceding color segment. In our editor, join conditions are specifed 

Figure 15: Path Intarsia: Whereas Figure 8 shows a patch 
defned with a circle boundary, this example uses a path with 
a corresponding stitch block to create the letters UIST. “U” in 
“UIST” requires fve separate yarns to knit it with the intarsia 
technique: three in the background color (one for each side 
plus one in the middle) and two for the letter color (one for 
each leg). 

by selecting the “tucks” join mode option on a boundary or path 
(Figure 9). By placing a tuck on either the front or back bed depend-
ing on the position of the joined stitch, we also support design of 
textured intarsia patterns. 

4.4 Lace 
Lace is knit by using diferent operations such as transfers to cre-
ate delicate patterns of holes. Blended primitives ofer multiple 
approaches to the design of lace patterns, which can be specifed 
using a traditional block-based repeat as a stitch fll of a boundary-
defned region (Figure 13, left) or by using a stitch path to tile a 
block of instructions along a vector-based path (Figure 13, right). 
The stitch fll approach may be more appropriate for all-over tex-
tures, while stitch paths are better suited to the design of individual 
motifs. 

5 FURTHER APPLICATIONS: SENSORS AND 
FOLDS 

Blended primitives enable us to build abstractions for applications 
beyond the more traditional knitting techniques described in the 
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Figure 16: Knit pressure sensors: Yarn paths and flls can be used to design an interdigital electrode structure in our editor, 
which can be knit via the intarsia technique (A). Note that we have used contrasting colors for the fve separate yarns for 
visualization purposes, but all yarns could be the same color when knit to hide the presence of the sensor. The interdigital 
electrode structure can be used to sense pressure when in direct contact with skin (B), and positioned on a sock pattern in our 
editing environment (C, top) and visualized (C, bottom). Stretched loops in the yarn visualization indicate loop connectivity 
across short rows required to shape the sock heel. The knit sock (D) can sense changes in pressure at the heel and toe. 

Figure 17: Self-folding knit pleats: Origami pleat patterns can be defned by layering knit and purl stitch paths over a garter 
stitch region. This takes advantage of diferent stitchs’ tendency to deform to create self-folding patterns. 

previous section. We describe two example applications in this sec-
tion: intarsia-based sensing structures and origami-inspired pleat 
patterns. 

5.1 Origami-Inspired Pleat Patterns 
One technique to design knitted folds or pleats is to take advantage 
of the curling behavior inherent to knit fabric: surfaces made en-
tirely of knit stitches have a natural tendency to curl towards the 
back. Staggering knit and purl stitches can even out this curling 
behavior and make a fabric lie fat. Therefore, to design a pleat, we 
can use a base pattern with minimal curl and strategically place 
knit or purl stitches where we want the fabric to curl. Blended 
primitives enables us to abstract this core idea into reusable abstrac-
tions for mountain and valley folds, which we have used to design 
origami pleat patterns (Figure 17). Our origami patterns consist of 

a background boundary with a garter stitch fll (alternating rows 
of knit and purl stitches). We then defne a mountain fold as a knit 
stitch path, and a valley fold as a purl stitch path. Using these stitch 
paths, we can draw mountain and valley folds atop the garter back-
ground. This shows how our tool supports the design of folding 
and shape-changing knits. 

5.2 Intarsia-based Sensing Structures 
Knit textiles can be used to sense environmental changes by incor-
porating conductive and other active yarns into the fabric structure. 
These sensing structures can be used in a variety of ways to sense 
stretch, pressure, touch, humidity, and more. This has been an area 
of increasing interest to researchers exploring the intersection of 
HCI and wearable interfaces [3, 42, 46, 51, 54, 65]. However, the 
challenges of low-level knit programming extends to this emerging 
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Figure 18: Knit sensors: Knitting an intarsia pattern with 
conductive yarns creates distinct conductive regions that can 
be used for capacitive touch sensing. 

Figure 19: Knit bend sensors: The interdigital electrode struc-
ture used for the sock shown in Figure 16 can also be used to 
sense stretch, used here as part of a bend-sensing mitten. 

domain. Our design tool is not specifc to the design of knit sen-
sors, but our yarn paths and flls support the design of single-layer 
multi-yarn sensing structures based on the intarsia technique. 

We demonstrate how to knit two types of intarsia-based sensors: 
capacitive touch sensors, which we use to create the volume control 
pad in Figure 18, and interdigital electrode sensors, which we use to 
sense pressure (to detect foot posture with a pressure-sensing sock 
in Figure 16) and stretch/bend (used in the bend-sensing mitten 
in Figure 19). For the latter sensor type, interdigital electrodes 
are positioned against the skin, where higher pressure, resulting 
either from direct contact (sock) or from localized bending (mitten), 
will augment skin-electrode contact and thus reduce the resistance 
measured across the electrodes. We knit these samples by running 
a conductive embroidery thread (Madeira HC-40) in the same yarn 
feed as the yarns which were intended to be conductive. This shows 
how our design tool supports the integration of yarns into localized 
sensor regions. 

6 SYSTEM IMPLEMENTATION 
The blended primitives design tool is browser-based and written in 
client-side JavaScript. For a link to the open-source code repository 
and hosted version of the tool, please visit the project page: https:// 
depts.washington.edu/machines/projects/blended-primitives/. The 
tool consists of a split-pane view of our novel pattern-editing in-
terface and a 2D yarn-level simulation based on the open-source 
KnitScape system [64]. In this section we describe our implemen-
tation of a novel pattern editing interface for design with blended 
raster/vector primitives as well as our extensions to the KnitScape 
yarn model and simulation. We tested our export format on the 
Kniterate machine, which supports import of an instruction chart 
and associated yarn sequence. 

6.1 Stitch and Yarn Chart Rasterization 
The pattern data structure consists of three arrays (for boundaries, 
paths, and free blocks). We begin by computing the bounding box 
for all boundaries, and use its dimensions it to initialize two bitmap 
charts which will hold the operations and yarn assignments for 
each cell. We refer to these as the stitch chart (��) and the yarn chart 
(��), respectively. The stitch chart is initially flled with the empty 
stitch, and the yarn chart is flled with the empty yarn. We then 
rasterize the elements of the boundary, path, and free block arrays 
to the stitch and yarn charts. The rasterized charts are overlayed in 
our chart editor to determine which symbols and colors appear in 
each cell. 

One important decision we made was that boundary and path 
coordinates refer to the lower left corner of a cell rather than its cen-
ter point. This is to ensure that paths and boundaries will maintain 
their geometric magnitude when rasterized, i.e., a line from [0, 0]
to [20, 0] will rasterize to be 20 cells long (as opposed to 21 using 
center points). In our implementation, only the interior of the path 
is rasterized, meaning that the cell at [20, 0] will not be flled. We 
felt this was better suited to chart editing as it is very common to 
specify dimensions in stitches (width) and rows (height). Addition-
ally, defning coordinates in this way makes a clear distinction for 
stitch assignment when adjacent regions share a boundary edge. 

https://depts.washington.edu/machines/projects/blended-primitives/
https://depts.washington.edu/machines/projects/blended-primitives/
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To generate the machine instructions and yarn topology for the 
yarn simulation, each yarn must be scheduled in its own carriage 
pass. This requires further processing of the stitch and yarn charts 
and is handled during our yarn separation and transfer planning 
step described in Section 6.2. 

Figure 20: When a boundary includes shaping, fashioning in-
structions are written where rows increase and decrease and 
update automatically as the boundary is reshaped. Pictured 
here is an oddly-shaped boundary in the charting interface 
(left), the resulting yarn simulation (center), and the time-
needle view which includes scheduled transfers (right). 

6.1.1 Boundary Rasterization. We rasterize each polyline bound-
ary using a scanline fll approach modifed to incorporate some 
knitting-specifc considerations. Pseudocode can be found in Ap-
pendix C. At a high level we follow a standard scanline polygon 
fll algorithm [21], initializing an edge table (�� ) and active edge 
table (��� ) and processing the intersections between a horizontal 
scanline and any active edges in pairs. In order to better approxi-
mate the boundary, we use a scanline located halfway up the cell 
(� + 0.5). We do this by ofsetting the edge’s current � value during 
edge table creation, setting it to �1 + (��/2). For boundaries that 
have shaping instructions, each edge also stores the last x value 
rounded to the nearest integer (����� ), which we examine to detect 
when rows are increasing or decreasing. 

During the main loop, we round the scanline intersection of each 
edge pair to the nearest integer to fnd the start and end points 
for the pattern fll (�1 and �2). We then fll the space between �1 
and �2 in the stitch and yarn charts by copying values from the 
respective blocks, skipping locations where the block includes the 
“transparent” stitch or yarn. The interior space is patterned using a 
simple 2d repeat of the base block. It would be straightforward to 
extend support to other repeat modes (e.g., ones that include block 
refection or an ofset between pattern rows or columns). If the 
boundary has shaping instructions, we examine the relationship 

between �1 and �2 and the ����� value of their respective edges and 
write fashioning instructions (transfers) to the prior row to account 
for a diference: either moving a group of loops out (an increase) or 
in (a decrease). Shaping instructions are only applied to single-stitch 
increases and decreases, i.e., edges where −1 ≤ 1/� ≤ 1. 

6.1.2 Path Rasterization. We rasterize each polyline path using 
a Bresenham approach [7], again modifed to incorporate some 
knitting-specifc considerations. Pseudocode can be found in Ap-
pendix C. We traverse each polyline segment from [�0, �0] to [�1, 
�1] and draw the associated stitch and yarn blocks depending on 
the tile mode of the path. 

The “tiled” mode examines the last position of the block and only 
plots it if the diference in � or � is greater than the block width or 
height, respectively (an example of this can be seen in Figure 10-B). 
The “dx” and “dy” modes specify whether the tile spacing should 
iterate in the horizontal or vertical direction. This can be helpful in 
cases where block iterations require exact spacing over a number of 
rows (or columns), but the other dimension does not matter. Finally, 
the “overlap” mode plots the whole block at every location. 

Because path coordinates (like boundaries) refer to the lower-left 
corner of a cell rather than the center point, the vector path is not 
perfectly centered for paths using a block of an odd cell width. 
While this may be of-putting to the perfectionists among us, it 
enables fne control of the path ofset (e.g., to position all iterations 
of a block on the inside of a boundary. 

6.2 Yarn Separation and Transfer Planning 
When machine knitting complex patterns, loops often must be trans-
ferred from a front bed to a back bed and vice versa. We handle 
transfer planning similarly to the schoolbus approach for the fat 
lace transfer problem described by Lin et al. [40]. Full implementa-
tion can be found in our source code repository. However, instead 
of transferring all loops between beds, we only transfer those with 
target ofsets. A simple example demonstrating our transfer planner 
can be seen in Figure 21. First, we transfer all loops with a target 
ofset to the back bed (bright yellow), staggering them so as to not 
transfer adjacent loops in the same pass of the carriage. Then, for 
each target ofset (in this case -1 and 1) we transfer the loops back to 
the main bed, again staggering them so as to not transfer adjacent 
loops. 

6.3 Yarn Topology and Simulation 
Our yarn simulation extends the open-source KnitScape system 
[64], which was developed for the design and simulation of slip and 
tuck colorwork patterns. The yarn simulation uses an approach 
proposed by Kapllani et al. [32] to generate a graph of yarn topology 
from a chart of knitting instructions that encodes the order in which 
a yarn visits contact nodes where it is intertwined. To draw the 
yarns, leg and loop segments of a spline which is traced around 
the contact nodes are separated onto layers and shaded to give 
the illusion of depth. To preview the deformation caused by loops 
which have been stretched across multiple rows of knitting, the 
visualization also includes a particle-spring simulation where each 
yarn segment tries to contract to a rest length based on the distance 
it extends from its original row of instructions. We made a number 
of extensions to the topology model and yarn simulation in order 
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Figure 21: We stagger loop transfers so as to not transfer 
adjacent loops in the same pass of the carriage. 

to support patterns which include transfers (e.g., cables, lace, and 
fully-fashioned shaping), and patterns which include multiple yarns 
per row (e.g., intarsia or fair isle colorwork). 

6.3.1 Composite Transfers. Extending the existing knit, purl, slip, 
and tuck operation set, we implemented a composite “knit then 
transfer” operation where a loop is knit on the front or back bed 
and will be moved to its target location on the next transfer pass. 
Our full operation set can be seen in Figure 3. Currently, we have 
not implemented commands which enable control over the order 
in which loops end up in their target location (which can afect sur-
face appearance in some cases), and this is determined by carriage 
pass direction. We think it would be straightforward to implement 
additional composite operations which enable fner control over 
transfer planning, and that this should be a priority for future work. 
In order to visualize the greater depth introduced by a transferred 
loop, we also extended the existing yarn visualization to support 
an arbitrary number of shaded layers determined by the maximum 
stack of yarns at any location in a pattern. To determine the correct 
stacking order for transferred loops, we implemented the approach 
described by Kapllani et al. [31]. Our full implementation is included 
in our open-source code repository. 

6.3.2 Multiple Yarns. In order to support patterns which include 
multiple yarns per pattern row, we had to extend the existing topol-
ogy model to account for multiple yarn paths and arbitrary carriage 
pass direction. The direction of the carriage determines the order in 
which nodes are processed during creation of the topology graph. 
When multiple yarns are assigned to a row (e.g., in intarsia patterns) 
the pass direction of a particular row will depend on which side 
the yarn in use was previously. This may result in arbitrary pass 
directions (e.g., right-right-right-left-left-right). We accounted for 
this by creating an array of carriage pass directions during yarn 
separation, and using that during the topology graph and yarn path 
creation to determine which direction the yarn would be moving 
in that row. To support multiple yarns in a pattern, we create a sep-
arate yarn path for each yarn and use the yarn sequence produced 
during yarn separation to determine which yarn’s path new nodes 
should be added to. 

6.4 Challenges and Opportunities 
Our demonstration examples show that a 2D chart-based notation 
such as ours can be powerful for designing mid-level texture and 
colorwork efects, but some design tasks (like 3D shaping) are chal-
lenging due to the convoluted relationship between a 2D notation 
and 3D result. While it is possible to use our notation to design 
surfaces with short row shaping (such as the sock in Figure 16), 
a 3D shaping primitive like a tube [45] or mesh [50] may be bet-
ter suited to that task. However, changes to fabric structure can 
signifcantly impact the fabric gauge (e.g., some textures are short 
and wide while others are tall and narrow), which may need to 
be accounted for in the overall shape specifcation. This poses a 
practical challenge when building knit design interfaces: overall 
shape, colorwork/texture patterning, and the interaction between 
them determine the aesthetic and functional qualities of the fnal 
knit. 

Future design tools must investigate how to support creative 
exploration of these diferent dimensions–and their interactions–in 
tandem. We don’t think that future knitting design tools should 
prioritize reconciling disparate, task-specifc representations under 
one notation system, as we think such a system would risk sup-
porting some tasks far better than others (or worse: being “bad at 
everything”). We think future interfaces should instead focus on 
enabling someone to visualize and rapidly work across task-specifc 
notations, such as by providing multiple synchronized editing views. 
As an example, we can imagine a future version of our system which 
includes a 3D stitch mesh editing pane, in which a stitch mesh [50] 
could be used to drive a base “shaping boundary” in our chart editor. 
Stitch and yarn paths could then be defned in the chart editor and 
visualized on the mesh surface to give a sense of their position in 
the global fabric. Another way to accomplish this in the context of 
our current interface would be to develop domain-specifc block 
editors which can compile to our charting language. For example, 
a “brioche editor” which uses Albaugh et al. [2]’s brioche notation 
could be opened in place of our current stitch block editor. 

While we have not formally tested the limits of our approach 
for fabric size, our tool is performant (i.e., changes to the chart 
update the visualization with minimal delay [<50ms]) on our setup 
(Chromium on an i7 laptop with integrated graphics) for charts be-
low 200x200 cells. Currently, update lag is largely due to a bottleneck 
when performing local searches to fnd the origin of unanchored 
yarn contacts during yarn topology generation, which particularly 
impacts intarsia patterns (a future iteration of our system may 
improve this by storing loop origin). However, we have tried to 
mitigate the impact of this delay on user experience by ofoading 
computation to web workers where possible and adding a setting 
to toggle whether the visualization/yarn topology is updated on-
the-fy (on input to the chart). We intend to continue to improve 
our simulation by incorporating advances made in recent work on 
efcient yarn-level simulation. 

7 DISCUSSION 
Machine knitting is an incredibly powerful domain with a massive 
design space. In order to explore this design space, we need appro-
priate design representations that enable us to quickly iterate on 
various aspects of the knit object of interest. Our work focuses on 
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supporting the design of new knit surface patterning efects such as 
cable structures, colorwork, and texture patterns. This is how our 
work difers from prior contributions which have largely focused on 
capturing overall fabric shape, such as tubes and sheets [34, 35, 45] 
and stitch meshes [49, 50]. We argue that design of fabric-level 
efects such as cables is a fundamentally diferent task than design 
of three-dimensional shaping, which has been the focus of prior 
work. We think that because such fabric structures deal closely with 
material behavior on the magnitude of an individual stitch, they 
require design representations which maintain easy access to low-
level stitch operations while also supporting rapid manipulation 
of higher-level operation groups. We have implemented a design 
representation for knitting patterns we term blended primitives, 
which we contribute alongside our design tool. 

Future directions for our work fall into three high-level cate-
gories, each of which is relevant to research in and beyond HCI. 
First, expanding the space of knit objects that can be specifed and 
visualized in our system will be important to enable design of com-
plex fabric structures, supporting ongoing development of novel 
functional fabrics. Currently, only patterned sheets can be designed 
in our editor. Through examples, we have demonstrated that a vari-
ety of single-layer sensing structures can be designed this way via 
intarsia patterning. However, due to a limitation of our underlying 
topology model we do not support double-sided or circular-knit 
fabrics, techniques which have been previously demonstrated to 
also be efective methods for fabricating knit sensors and actuators 
[3, 36, 42, 43, 54, 55]. We think it will be feasible to extend our editor 
to these areas with reasonable efort, and this is a priority for future 
work. 

Second, providing designers with many diferent ways to specify 
and manipulate primitive elements will be crucial for those explor-
ing the intersection of machine knitting and other domains. We 
were interested in building a (somewhat) vector-based design envi-
ronment for knitting in part due to the many possible avenues for 
interoperability with existing tools and fle formats. For example, 
we think it would be straightforward to implement support for a 
crease pattern format (such as [12]) that automatically defnes stitch 
paths along fold creases, enabling knit origami patterns (such as 
the one in Figure 17) to be specifed in origami-specifc design tools 
and imported into our system. We anticipate that keeping an eye 
towards interoperability in future tool development will be helpful 
to those venturing into domains with few established design tools, 
such as shape-changing fbers [14]. 

Third, informing a designer of fabrication constraints and errors 
during design will always be an important aspect of a design tool. 
We think that the yarn-level visualization included in our tool is 
efective at helping designers navigate some of the challenges of 
low-level knit programming, such removing long foats in the ex-
ample intarsia workfow shown in Figure 8. We think that the goals 
of a simulation used alongside a charting environment are diferent 
from those focused solely on rendering, and should be centered on 
providing efective feedback to the designers. For example, render-
ing fber-level detail for more “realistic” yarns might distract from 
features of yarn topology which may be more relevant to designers, 
such as loop connectivity and foat position. 

Finally, while we have focused on design for machine knitting in 
this paper, we want to recognize its deep roots in the craft in hand 

knitting, which continues to be beloved by millions around the 
globe. Hand knitting-oriented design and simulation tools would 
have the potential to reach and delight a massive audience. Our 
charting language was designed with machine knitting in mind, 
but it already is compatible with a signifcant subset of hand-knit 
charting notation, which has had hundreds of years to mature and 
continues to be the primary form of visual pattern sharing among 
hand knitters [8]. We are very interested in building a dedicated 
hand-knitting version of our system, as we think that this would 
not only be a good way for hand knitters to take advantage of our 
blended primitives editing tools and synchronized yarn visualiza-
tion, but it could also provide an alternative way to edit machine 
knitting patterns that would be accessible to those who are already 
fuent in chart notation. 

Some related work has already begun in this space, e.g. by for-
malizing knitting shorthand [22]. The possibility space of hand 
knitting is far greater than that of machine knitting, so develop-
ment of design tools that include some form of simulation presents 
some practical development hurdles and open research problems, 
although some mesh-based approaches exist [25]. However, such 
tools would also provide us with an easy way to import, visualize, 
and archive historic charted patterns. This could provide an im-
portant cultural snapshot of a craft which, despite its undeniable 
ubiquity, is often overlooked [44, 63]. 

8 CONCLUSION 
We presented blended primitives, a design representation for knit 
fabric structures where a chart of knitting instructions and yarn as-
signments is rasterized from layers of vector boundaries and paths 
with associated raster stitch and yarn blocks. We further contribute 
a chart-based design tool which enables design and simulation of 
knit objects via blended primitives. We have demonstrated how 
blended primitives can be used to design a variety of common knit 
fabric structures, including fair isle and intarsia colorwork, lace, 
and cables. We have also demonstrated how our approach may be 
useful to support future work on the development of functional 
fabrics through example demonstrations of intarsia-based sensing 
structures and origami-inspired pleat patterns. We argue that the 
design of novel fabric-level structures, such as colorwork and tex-
ture patterns, requires diferent design representations than the 
3d shaping-oriented primitives which have been the focus of prior 
work. We are excited to continue to improve our blended primitives 
editing environment and hope our open-source contributions can 
enable future collaborations with researchers across domains. 
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A KNITTING OVERVIEW 
This section provides a high-level overview of the domain of knit-
ting and defnitions for terms used in this paper. For a comprehen-
sive text on knitting technology, we refer to Spencer [60]. 

Knitting refers to the process of manipulating yarn into fabric 
via interlooping, in which loops of yarn are pulled through other 
loops. Knitting is often compared (and confused) with weaving, 
where fabric is formed by interlacing two sets of yarns at right 
angles. Both techniques produce diferent attributes in the fabric 
with diferent applications: knits are typically more breathable and 
stretchier (T-shirts, socks), while wovens are frm and stable (denim, 
bedsheets, towels). 

Hand knitting is at least 1500 years old and continues to be 
extremely popular today. Hand knitting is typically performed on 
straight pointed needles. As a general rule, hand knitting has a far 
larger possibility space than machine knitting, so anything that 
can be knit on a machine can be knit by hand. However there 
are practical tradeofs in terms of speed, pattern complexity, and 
consistency. 

Knitting machines also use needles, but each needle holds only a 
small number of loops at a time (typically only one or two). Knitting 
machine needles are shaped like a small hook with a latch that can 
open and close. On the machine, needles are arranged into one 
or more beds. In this paper we are concerned with V-bed knitting 
machines, in which two beds are oriented in an upside-down V 
shape, with the needle hooks facing each other at the top. Other 
classes of knitting machines have diferent bed confgurations. For 
example, circular knitting machines have a circular bed. 

A carriage moves along the needle bed to guide the yarn and 
actuate the needles according to the pattern. Typically, machines 
have multiple yarn feeders which the carriage will pick up and drop 
of according to which yarn is in use. During the carriage movement, 
the type of stitch performed by each needle is determined by how 
far it moves out and in. To knit a stitch, when the needle moves out 
the previously-held loop slides back behind the latch, and a new 
loop of yarn is laid into the open hook. Then, as the needle moves 
back in, the previous loop slides forward, pushes the latch closed, 
and drops over the closed latch. 
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B GLOSSARY OF TERMS 
stitch Used interchangeably to refer either to: a single loop of yarn 

embedded in fabric, the unit operation which produced it, 
or to a repeating texture pattern (e.g. “seed stitch”). 

knit Refers to fundamental knitting operation in which a loop 
of yarn is pulled through an existing loop. The yarn can be 
pulled through a loop from either side, producing either a 
knit (which resembles a “v”) or a purl (resembling a small 
bump). In machine knitting, these operations are often re-
ferred to by the bed used to create them (“front knit” or 
“back knit”), while hand knitters refer to them as “knits” and 
“purls”. 

tuck An operation where a loop of yarn is added to a needle 
without pulling it through an existing loop (if present) 

slip, skip, miss 
An operation where yarn is passed behind a loop without 
being pulled through it. In machine knitting, the latch hook 
needle does not extend to pick up a new loop. In hand 
knitting, the loop is passed without modifcation from one 
straight needle to another. In both cases, the extra yarn 
produces a foat. 

transfer 
An operation where loops are moved from one needle to 
another, often used to create textures like lace or cables or 
to shape the fabric. 

float A loose bit of yarn not directly worked into the fabric struc-
ture. Typically there is an upper limit to the length of a 
foat, as foats which are too long may snag on fngers or 
jewellery. 

chart A visual representation of a knitting pattern, in which sym-
bols and colors are arranged on a grid to communicate the 
placement of stitches, yarns, and techniques across the rows 
and columns of the fabric. 

colorwork 
An umbrella term describing knitting techniques where 
diferent colors of yarn are incorporated into a single piece 
to create color patterns. 

stranded or fair-isle colorwork 
A colorwork technique for working two or more colors of 
yarn in the same row by foating the non-showing yarn 
across the back of the fabric. 

intarsia 
A colorwork technique where each separate block of color 
in a row is knit by a dedicated yarn. This means that yarns 
are not foated across the back of the work (as they are 
in stranded colorwork), making it an ideal technique for 
larger, solid-colored areas. 

cable A texture efect where loops are “crossed”, which can cre-
ate the appearance of twisted rope on the fabric surface. 
Knitting machines use transfers to rearrange the loops, and 
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hand knitters typically use an extra needle (a “cable nee-
dle”). Cable knitting is a family of techniques for producing 
diferent efects via crossed stitches, including braids, twists, 
and lattices. 

rib A texture created by alternating knit and purl stitches in 
vertical columns. This produces a very stretchy fabric com-
monly used for cufs, collars, and hems. 

lace A technique that incorporates patterns of holes or gaps, 
often created by using transfers to move loops to create 
holes and form intricate designs. 
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C PSEUDOCODE FOR BOUNDARY AND PATH RASTERIZATION 

Algorithm 1: Boundary Rasterization 
Function AddEdge(��������� , [�1, �1] ← �1, [�2, �2] ← �2): 

if �1 = �2: return; 
if �1 > �2: 
[�1, �2] ← [�2, �1]; 
[�1, �2] ← [�2, �1]; 

�� ← (�2 − �1)/(�2 − �1); 
���� ← edge { 

x ← �1 + (��/2); 
dx ← �� ; 
yMin ← �1; 
yMax ← �2; 
xLast ← �1; 

}; 
��������� .insert(����); 

Function RasterizeBoundary(boundary): 
������ , �����ℎ����� , ��������� , ofset, shaping ← ��������; 
��������� ← []; 
for � ← 0 to points.length: 

AddEdge(��������� , ������ [�], ������ [(� + 1)%������.�����ℎ]) 
��������� ← ��������� sorted on � ; 
��������������� ← []; 
� ← 0; 
while there are edges left to process: 

move edges from ��������� to ��������������� where ���� = �; 
for � ← 0; � < ���������������.�����ℎ; � ← � + 2: 

�� � � ← ActiveEdgeTable[�]; 
���ℎ� ← ActiveEdgeTable[� + 1]; 
�0 ← round(left.x); 
�1 ← round(right.x); 
if �0 = �1: continue; 
�����ℎ������ ← (� - ofset.y) % �����ℎ����� .height; 
���������� ← (� - ofset.y) % ��������� .height; 
for � ← �0 to �1: 

�����ℎ������ ← (� - ofset.x) % �����ℎ����� .width; 
���������� ← (� - ofset.x) % ��������� .width; 
�����ℎ ← �����ℎ����� .at(�����ℎ������ , �����ℎ������ ); 
���� ← ��������� .at(���������� , ���������� ); 
if �����ℎ ≠ � ���������� : DrawStitch(�����ℎ, � , �); 
if ���� ≠ TRANSPARENT : DrawYarn(����, � , �); 
if �ℎ����� > 0: 

ShapeLeft(�� � � .����� − �1); 
ShapeRight(���ℎ� .����� − �2); 

�� � � .����� ← �1; 
���ℎ� .����� ← �2; 

remove edges from ��������������� where ���� = �; 
foreach ���� in ���������������do 

����.� ← ����.� + ����.�� ; 
� ← � + 1; 
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Algorithm 2: Path rasterization 
Function PlotPath(�0, �1, ����� , ofset, ����): 
[�0, �0] ← �0; 
[�1, �1] ← �1; 
�� ← ��� (�1 − �0); 
�� ← �0 < �1?1 : −1; 
�� ← −��� (�1 − �0); 
�� ← �0 < �1?1 : −1; 
����� ← �� + ��; 
���� ← [�0, �0]; 
while True : 

switch ���� do 
case “overlap“ do 

DrawBlock(�����, �0 + � � � ��� .�,�0 + � � � ��� .�) 
case “tiled” do 

if ��� (�0 − ���� .�) ≥ �����.����ℎ or ��� (�0 − ���� .�) ≥ �����.ℎ���ℎ� : 
DrawBlock(�����, �0 + � � � ��� .�,�0 + � � � ��� .�); 
���� ← [�0, �0]; 

case “dx” do 
if �0 ≠ last.� : 

DrawBlock(�����, �0 + � � � ��� .�,�0 + � � � ��� .�); 
���� ← [�0, �0]; 

case “dy” do 
if �0 ≠ last.� : 

DrawBlock(�����, �0 + � � � ��� .�,�0 + � � � ��� .�); 
���� ← [�0, �0]; 

if �0 = �1 and �0 = �1 : break; 
�2 ← 2 × ����� ; 
if �2 ≥ �� : 

if �0 = �1 : break; 
����� ← ����� + ��; 
�0 ← �0 + �� ; 

if �2 ≤ �� : 
if �0 = �1 : break; 
����� ← ����� + �� ; 
�0 ← �0 + ��; 

Function RasterizePath(path): 
������, �����ℎ�����,���������, ofset,���� ← ���ℎ; 
for each segment pair �0, �1 in ������ : 

PlotPath(�0, �1, �����ℎ����� , ofset, ����); 
PlotPath(�0, �1, ��������� , ofset, ����); 
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