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Abstract— We consider the problem of estimating a vector of
unknown constant parameters for a class of hybrid dynamical
systems with bounded delays in the detection of jumps. Using
a hybrid systems framework, we propose an algorithm that
estimates the jump times of the trajectories and uses stored data
to update the parameter estimate at jumps. We show that the
algorithm guarantees convergence of the parameter estimate to
the true value, except possibly on the intervals wherein detection
of jumps is delayed. Simulation results show the merits of the
proposed approach.

I. INTRODUCTION

Estimating the unknown parameters of a system is crucial in
many engineering applications. Hybrid systems – or systems
whose state variables may evolve continuously (or flow) and,
at times, evolve discretely (or jump) – present a unique
challenge for estimation algorithms due to the combination
of continuous and discrete dynamics. The recent works [1]–[3]
propose algorithms for hybrid linear regression, and [4]–[6]
study parameter estimation for classes of hybrid dynamical
systems. These works assume that jumps of the hybrid system
– henceforth called the plant – are detected instantaneously,
which allows the jumps of the estimators to be synchronized
with the jumps in the plant state. In such cases, under
appropriate excitation conditions, these estimation algorithms
ensure convergence of the parameter estimation error to
zero. However, in practice, jump detection is often delayed
due to sensing, signal transmission, and computation delays.
Moreover, if algorithms such as those in [1]–[6] are employed
under delays in jump detection, the estimation error may fail
to converge to zero. This finding motivates the development
of algorithms for estimating unknown parameters in hybrid
systems under bounded delays in the detection of jumps
in the plant state. Note that several recent works proposed
state observers for hybrid systems with jump times that are
unknown [7], [8] or known only approximately [9]–[11].

In this paper, given a hybrid parameter estimation algorithm
that is designed to jump synchronously with jumps in the plant
state, we propose a new algorithm for estimating unknown
parameters under delays in the detection of jumps in the plant
state. The proposed algorithm, described in Section III, uses
data stored during flows to estimate the jump times of the plant
state. In Section IV, we show that the new algorithm preserves

Research partially supported by NSF Grants no. CNS-2039054 and CNS-
2111688, by AFOSR Grants nos. FA9550-19-1-0169, FA9550-20-1-0238,
FA9550-23-1-0145, and FA9550-23-1-0313, by AFRL Grant nos. FA8651-
22-1-0017 and FA8651-23-1-0004, by ARO Grant no. W911NF-20-1-0253,
and by DoD Grant no. W911NF-23-1-0158.

The authors are with the Department of Electrical and Computer
Engineering, University of California, Santa Cruz, CA 95064, USA;
rsjohnson@ucsc.edu, ricardo@ucsc.edu

the stability bounds of the original estimation algorithm (with
instantaneous detection of jumps), except possibly on the
intervals wherein detection of jumps is delayed. Examples
are in Section V and concluding remarks are in Section VI.
Proofs are sketched due to space constraints.

A. Notation

We denote the set of real, nonnegative real, and positive real
numbers as R, R≥0, and R>0, respectively. We denote the
set of natural numbers (including zero) as N. The matrix
I denotes the identity matrix of appropriate dimension.
For x, y ∈ Rn, we write [x⊤ y⊤]⊤ as (x, y). The Euclidean
norm of vectors and the associated induced matrix norm is
denoted by | · |. The distance of a point x to a nonempty
set S is denoted by |x|S = infy∈S |y − x|. The closed
unit ball centered at the origin of appropriate dimension
(in the Euclidean norm) is denoted by B. A function
β : R≥0×R≥0 → R≥0 is said to be of class KL (β ∈ KL)
if it is nondecreasing in its first argument, nonincreasing in
its second argument, limr→0+ β(r, s) = 0 for each s ∈ R≥0,
and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

B. Hybrid Dynamical Systems

In this paper, a hybrid system H is modeled as [12]

H :

{
ẋ = F (x) x ∈ C

x+ = G(x) x ∈ D

where x ∈ Rn is the state, F : C → Rn is the flow
map defining a differential equation capturing the continuous
dynamics, and C ⊂ Rn defines the flow set on which flow
is permitted. The mapping G : D → Rn is the jump map
defining the law resetting x at jumps, and D ⊂ Rn is the
jump set on which jumps are permitted.

A solution x to H is a hybrid arc [12] that is parameterized
by (t, j) ∈ R≥0 × N, where t is the elapsed ordinary time
and j is the number of jumps that have occurred. The domain
of x, denoted by domx ⊂ R≥0×N, is a hybrid time domain,
in the sense that for every (T, J) ∈ domx, there exists
a nondecreasing sequence {tj}J+1

j=0 with t0 = 0 such that
domx ∩ ([0, T ]× {0, 1, . . . , J}) =

⋃J
j=0 ([tj , tj+1], {j}) .

The operations supt domx and supj domx return the supre-
mum of the t and j coordinates, respectively, of points in
domx. A hybrid arc x is said to be

• nontrivial if domx contains more than one point;
• complete if domx is unbounded;
• continuous if nontrivial and domx ⊂ R≥0 × {0};
• discrete if nontrivial and domx ⊂ {0} × N;
• Zeno if it is complete and supt domx <∞.



A solution x to H is called maximal if it cannot be extended
– that is, if there does not exist another solution x′ to H such
that domx is a proper subset of domx′ and x(t, j) = x′(t, j)
for all (t, j) ∈ domx.

II. PROBLEM STATEMENT

Consider a hybrid plant, denoted by HP, with dynamics

HP :

{
ẋ = FP(x, θ) x ∈ CP

x+ = GP(x, θ) x ∈ DP
(1)

where x ∈ Rn is the state vector, FP is the flow map, GP
is the jump map, CP ⊂ Rn is the flow set, DP ⊂ Rn is the
jump set, θ ∈ Rp is a vector of unknown constant parameters,
and n, p ∈ N. If jumps in x are detected instantaneously,
then a hybrid estimator can be designed to estimate θ for
certain classes of hybrid plants [1]–[6]. We denote such an
estimation algorithm as HE with state z ∈ Rm, input x ∈ Rn,1

and dynamics

HE :

{
ż = FE(x, z) when HP flows

z+ = GE(x, z) when HP jumps
(2)

where FE is the flow map, GE is the jump map, and m ∈ N.
The state z of HE is partitioned as z := (θ̂, σ), where θ̂ ∈
Rp is an estimate of θ in (1) and σ ∈ Rm−p collects any
auxiliary state variables needed by the algorithm. We denote
the interconnection of HP and HE as H̃, with dynamics

H̃ :


ẋ = FP(x, θ)

ż = FE(x, z)

x+ = GP(x, θ)

z+ = GE(x, z)

=: F̃ (x, z, θ) (x, z) ∈ C̃

=: G̃(x, z, θ) (x, z) ∈ D̃

}
} (3)

where C̃ := CP × Rm and D̃ := DP × Rm.
The flow map FE and jump map GE of HE are designed

so that, under appropriate persistence of excitation conditions,
each complete solution (x, z) to H̃ converges (in distance)
to the set

A := {(x, z) ∈ Rn × Rm : θ̂ = θ}. (4)

In practice, exact synchronization between a plant and
an estimator is difficult to achieve due to delays in sensing,
signal transmission, and computation. Moreover, if detection
of jumps in the plant state is delayed, resetting z based on GE
may result in divergence of the parameter estimate – see the
example in Section V. This motivates the design of a new
estimation algorithm that accounts for such delays. We denote
this algorithm as ĤE, with dynamics

ĤE :

{
ż = FE(x, z) otherwise

z+ = ĜE(x, z) when a jump in x is detected
(5)

where FE is given in (2) and ĜE is to be designed to solve
the following problem.

1See [13] for details on hybrid systems with inputs.

Problem Statement: Given a hybrid plant HP as in (1) and
a hybrid estimator HE as in (2) providing convergence to A
in (4), design the jump map ĜE of ĤE in (5) so that, under
delays in detection of jumps in the plant state, the parameter
estimate θ̂ converges to the unknown parameter vector θ in
(1), except possibly on the delay intervals.

III. PROBLEM SOLUTION

A. Assumptions

To enable our design of ĜE, we make the following
assumption on the data of HP and HE.

Assumption 3.1: Given the hybrid systems HP in (1) and HE
in (2),

1. θ ∈ Θ, where Θ ⊂ Rp is a known compact set;
2. domFP ⊃ Rn ×Θ;
3. domFE = Rn × Rm;
4. domGE = Rn × Rm.

We impose the following local Lipschitz continuity condition.

Assumption 3.2: For each (x, z, θ) ∈ Rn × Rm × Θ, there
exist δx, δz > 0 and L ≥ 0 such that

|F̃ (x1, z1, θ)− F̃ (x2, z2, θ)| ≤ L(|x1 − x2|+ |z1 − z2|)

for each x1, x2 ∈ x+ δxB and each z1, z2 ∈ z + δzB.

We make the following assumption on solutions to HP.

Assumption 3.3: Given the hybrid system HP in (1), there
exist τ∗ > 0, ∆1 ∈ [0, τ∗), ε > 0, and a closed set X ⊂ Rn
such that the following conditions hold:

1. Each maximal solution x to HP from x(0, 0) ∈ X satis-
fies tj − tj−1 ≥ τ∗ for all j ∈ {1, 2, · · · , supj domx},
where {tj}

supj dom x

j=0 is the sequence defining domx as
in Section I-B.2

2. Each solution x to HP from x(0, 0) ∈ X satisfies
|x(t, j + 1)− x(t, j)| ≥ ε for all (t, j) ∈ domx such
that (t, j + 1) ∈ domx.

3. Following each jump in x, there is a delay of at most
∆1 seconds before the jump can be detected.

Finally, we make the following assumption on ĤE.

Assumption 3.4: Given the hybrid system ĤE in (5) and
τ∗, ∆1 from Assumption 3.3, there exists ∆2 ∈ (0, τ∗−∆1],
such that, for each (x, z) ∈ dom ĜE, the computation of the
jump map ĜE(x, z) takes at most ∆2 seconds.

Item 1 of Assumption 3.3 means that each maximal solution
x to HP from x(0, 0) ∈ X has a dwell time of at least τ∗

seconds. Item 2 imposes a lower bound on the change in x at
jumps. Item 3 of Assumption 3.3 and Assumption 3.4 mean
that the sum of the delay in detecting a jump in x and the
time required to compute ĜE is at most ∆1 +∆2 seconds.
Since ∆1 +∆2 < τ∗, this ensures that each time x jumps,
it does not jump again in the (hybrid) time required for the

2If x is continuous, we define t1 := supt domx.



estimation algorithm ĤE to detect the jump and compute the
jump map. In Section V we show that, for the bouncing ball
system [12, Example 1.1] with coefficient of restitution equal
to one, each solution with initial conditions in a closed set X
that excludes the origin satisfies Assumption 3.3.

Remark 3.5: According to Assumptions 3.3 and 3.4, the time
required to detect a jump in x and compute ĜE depends on
the hybrid time at which the jump occurred. In other words,
the delay is not necessarily the same for each jump in x. Such
a property holds for Zeno solutions as well; however, the
dwell time condition imposed by item 1 of Assumption 3.3
prohibits solutions with intervals of flow that have vanishing
length as hybrid time evolves.

B. Hybrid Model of the Interconnection with Delay
Inspired by [11], we model the interconnection of HP and

ĤE as3

H :



ẋ = FP(x, θ)

ż = FE(x, z)

τ̇δ = −min{τδ + 1, 1}

x+ = GP(x, θ)

z+ = z

τ+δ ∈ [0,∆]

x+ = x

z+ = ĜE(x, z)

τ+δ = −1

ξ ∈ C

ξ ∈ D91

ξ ∈ D0



(6)

with state ξ := (x, z, τδ) ∈ Z := Rn×Rm×
(
{−1}∪ [0,∆]

)
,

flow set
C := C̃ ×

(
{−1} ∪ [0,∆]

)
,

and jump set D := D91 ∪D0, where

D91 := D̃ × {−1}, D0 :=
(
C̃ ∪ D̃ ∪ G̃(D̃)

)
× {0}

with C̃, D̃, G̃ as in (3) and ∆ := ∆1 +∆2.
Compared to H̃ in (3), H contains a new state component

τδ ∈ {−1} ∪ [0,∆] that models the delay between the jumps
of the plant and the jumps of the estimator. When τδ = −1
and x does not jump, H flows with x and z flowing according
to FP and FE, respectively, and τδ remains equal to −1. When
the plant state x jumps, τδ is reset to a value in [0,∆] thus
starting a delay period. Then, H flows and τδ decreases until
it reaches 0, at which point a delay interval of length smaller
than or equal to ∆ has elapsed. Once τδ reaches zero, the
estimator state is reset based on ĜE, and τδ is reset to −1.

We design the jump map ĜE of H so that the dynamics
of the θ̂ component of solutions to H are equivalent to the
dynamics of the θ̂ component of solutions to H̃, except
perhaps on the delay intervals. The algorithm we propose
requires sampling of solutions to H, which we describe in
the following section.

3Note that the jump map in (6) encodes a sequential execution of jumps.
That is, it does not allow solutions to jump due to the state component x
reaching DP during a delay interval. This modeling decision is justified
since Assumptions 3.3 and 3.4 impose that x flows for the duration of each
delay interval.

C. Sampling of Solutions to H
Let ξ = (x, z, τδ) be a solution to H in (6). During flows,

we sample x and z at hybrid time instants {(t̃k, j̃k)}S(t)k=0 ∈
dom ξ, where t 7→ S(t) ∈ N\{0} indicates a time-dependent
number of samples that is to be designed, and (t̃0, j̃0) :=
(0, 0). We also record the time t at which each sample is
taken. We store the samples of x, z, and t in time-varying
matrices X, Z, and T, respectively, defined as4

X(t, j) :=
[
x1(t, j) x2(t, j) · · · xN(t)(t, j)

]
∈ Rn×N(t)

Z(t, j) :=
[
z1(t, j) z2(t, j) · · · zN(t)(t, j)

]
∈ Rm×N(t)

T(t, j) :=
[
τ1(t, j) τ2(t, j) · · · τN(t)(t, j)

]
∈ R1×N(t)

(7)
for all (t, j) ∈ dom ξ, where t 7→ N(t) ∈ N \ {0} indicates
that the number of columns of X, Z, and T is time dependent.
The matrices X, Z, and T are initialized as X(0, 0) = x(0, 0),
Z = z(0, 0), and T(0, 0) = 0, respectively, with N(0) = 1.
Each time a sample of x (resp., z and t) is stored, we append
a new column to the right of the last column of X (resp., Z
and T), thereby increasing the value of N(t) by one, and
store the sample in the new column. Samples are stored
whenever the current value of t or x differs sufficiently from
the value stored in the last column of T or X, respectively.
In particular, when

|t− τN(t)(t, j)| ≥ αt (8a)
or

|x(t, j)− xN(t)(t, j)| ≥ αx (8b)

where αt ∈ (0, (τ∗ −∆1)/3] and αx ∈ (0, ε/2] are design
parameters, with τ∗ > 0, ∆1 ∈ [0, τ∗), and ε > 0 from
Assumption 3.3. Since, by item 1 of Assumption 3.3, jumps
in x occur at most every τ∗ seconds, we remove column ℓ of
X, Z, and T when τℓ+1(t, j) ≤ t−τ∗, for each (t, j) ∈ dom ξ
and each ℓ ∈ {1, 2, · · · , N(t) − 1}, to ensure that there is
at most one jump among the samples stored in X . Each
time a column of X, Z, and T is removed, the value of N(t)
is decreased by one. Thus, the elements of X, Z, and T
are piecewise constant right-continuous signals, with values
changing only at the sample times.

Omitting the arguments of X, Z, T, and N for readability,
suppose that a jump in x is detected at hybrid time (t∗, j∗) ∈
dom ξ. Since each solution ξ to H in (6) jumps each time
the plant state x jumps, it follows that the jump in x occurred
at hybrid time (t∗ − δ1, j

∗ − 1), where δ1 is unknown and
satisfies δ1 ∈ [0,∆1], with ∆1 ∈ [0, τ∗) from Assumption 3.3.
Note that, due to Assumption 3.3, (8a) guarantees that, at
hybrid time (t∗, j∗), there are at least three samples of x
(resp., z and t) stored in X (resp., Z and T) from the interval
of flow prior to the jump at hybrid time (t∗ − δ1, j

∗ − 1).
Furthermore, (8b) guarantees that a sample of x (resp., z
and t) is stored in X (resp., Z and T) immediately after the
jump at hybrid time (t∗ − δ1, j

∗ − 1). In the next section, we
propose a method of determining the index of the sample
right before the jump.

4We denote the columns of T as τi, rather than ti, to avoid confusion with
the sequence of times {tj}

supj dom ξ

j=0 that define dom ξ as in Section I-B.



D. Jump Index Determination

To find the index of the sample of x that was stored right
before the jump, we propose the following approach that we
explain first in words before formally defining an algorithm.

Pick ℓ ∈ {1, 2, · · · , N−1} and ϑ ∈ Θ, with Θ ⊂ Rp from
item 1 of Assumption 3.1, where ℓ is a candidate for the index
of the sample of x that was stored right before the jump,
and ϑ is a candidate for the value of the unknown parameter
vector θ. Using FP in (1), we compute two solutions, denoted
by t 7→ x̂1(t) with initial condition x1, and t 7→ x̂ℓ+1(t),
with initial condition xℓ+1. In particular, we solve

˙̂x1=FP(x̂1,ϑ), x̂1(τ1)=x1 ∀t∈[τ1,τℓ],
˙̂xℓ+1=FP(x̂ℓ+1,ϑ), x̂ℓ+1(τℓ+1)=xℓ+1 ∀t∈[τℓ+1,τN ],

(9)

where xi and τi, i ∈ {1, 2, · · · , N}, are columns of X and T,
respectively, in (7). Note that, due to item 2 of Assumption 3.1,
the systems in (9) are well defined for all x̂1, x̂ℓ+1 ∈ Rn and
all ϑ ∈ Θ. Finally, we compare the solutions x̂1 and x̂ℓ+1

against the samples stored in X by computing

α(ℓ, ϑ) :=
ℓ∑
i=1

|xi− x̂1(τi)|2 +
N∑

i=ℓ+1

|xi− x̂ℓ+1(τi)|2. (10)

Let ϑ ∈ Θ be such that the value of α(ℓ, ϑ) is minimized. If
the jump in x occurred between the samples xℓ and xℓ+1,
then α(ℓ, ϑ) will be small. On the other hand, if the jump did
not occur between xℓ and xℓ+1, then α(ℓ, ϑ) may be large.

Remark 3.6: Note that, for each ℓ ∈ {1, 2, · · · , N}, multiple
distinct values of ϑ ∈ Θ may yield the same minimum value
of α(ℓ, ϑ). In particular, if the flow map FP in (1) does not
depend on components of θ, then α can be minimized for any
values of the corresponding components of ϑ. An example
of such a case is described in Section V, where FP does not
depend on the second component of θ.

Formally, we determine the index of the sample of x that
was stored right before the jump by solving the following:

minimize α(ℓ, ϑ)

subject to ℓ ∈ {1, 2, · · · , N − 1}, ϑ ∈ Θ,

˙̂x1 = FP(x̂1, ϑ), x̂1(τ1) = x1,

˙̂xℓ+1 = FP(x̂ℓ+1, ϑ), x̂ℓ+1(τℓ+1) = xℓ+1.

(11)

Note that the optimization problem in (11) can be solved in
parallel for each ℓ ∈ {1, 2, · · · , N − 1}.

E. Design of ĜE

Let ℓ ∈ {1, 2, · · · , N −1} and ϑ ∈ Θ be the result of (11).
Since, by (8b) and item 2 of Assumption 3.3, a sample of x
is stored in X immediately after each jump, it follows that
the jump in x occurred at hybrid time (τℓ+1, j

∗ − 1). We
design the jump map ĜE in (5) to reset the estimator state,
z, using the data stored in Z, based on the knowledge that a
jump in x occurred at hybrid time (τℓ+1, j

∗ − 1). To do so,
we first compute solutions to the system

˙̂x = FP(x̂, ϑ), x̂(τℓ) = xℓ

µ̇ = FE(x̂, µ), µ(τℓ) = zℓ
(12)

for all t ∈ [τℓ, τℓ+1]. Note that, due to items 2 and 3 of
Assumption 3.1, the system in (12) is well defined for all
(x̂, µ, ϑ) ∈ Rn × Rm × Θ and, due to Assumption 3.2, a
solution to (12) from a given initial condition is unique.
Then, we reset column ℓ of Z in (7) using the value of the
jump map GE in (2) evaluated at (x̂(τℓ+1), µ(τℓ+1)), which
are obtained from computing the solution to (12). That is,

zℓ+1 = GE(x̂(τℓ+1), µ(τℓ+1)) (13)

which is well defined due to item 4 of Assumption 3.1. Next,
we forward propagate the system in (12) from time τℓ+1 up
to the current time t∗ by solving

˙̂x = FP(x̂, ϑ), x̂(τℓ+1) = xℓ+1

µ̇ = FE(x̂, µ), µ(τℓ+1) = zℓ+1

(14)

for all t ∈ [τℓ+1, t
∗]. Given the solution t 7→ (x(t), µ(t))

to (14), we reset columns ℓ + 2 through N of Z in (7) as
zi = µ(τi) for all i ∈ {ℓ+2, ℓ+3, · · · , N}. Finally, we reset
the estimator state z as

z+ = µ(t∗). (15)

Given a solution ξ to H and X, Z, T as in (7), we
implement (11)–(15) using Algorithm 1. Recall that, from
Assumption 3.4, we assume that an output from this algorithm
can be numerically generated in at most ∆2 seconds.

Algorithm 1 Algorithm for computing ĜE in (5)
Require: (t∗, j∗) ∈ dom ξ

Create an empty vector Q ∈ RN−1

for ℓ = 1 to N − 1 do
Solve for ϑ ∈ Θ that minimizes α(ℓ, ϑ) in (10)
Store α(ℓ, ϑ) in row ℓ of Q

end for
Find minQ and set ℓ as the corresponding row index
Compute the solution (x̂, µ) to (12) for all t ∈ [τℓ, τℓ+1]
Set zℓ+1 = GE(x̂(τℓ+1), µ(τℓ+1)) as in (13)
Compute the solution (x̂, µ) to (14) for all t ∈ [τℓ+1, t

∗]
for i = ℓ+ 2 to N do

Set zi = µ(τi)
end for
Set z+ = µ(t∗)

IV. STABILITY ANALYSIS

To establish the stability properties induced by the proposed
algorithm, we first make the following assumption regarding
the parameter estimation error for H̃ in (3).

Assumption 4.1: Given a closed set X ⊂ Rn, for each
compact set K ⊂ Rm, there exists β ∈ KL such that
the parameter estimation error (t, j) 7→ θ̂(t, j) − θ for
each solution (x, z) to the hybrid system H̃ in (3) from
(x(0, 0), z(0, 0)) ∈ X×K satisfies, for all (t, j) ∈ dom(x, z),

|θ̂(t, j)− θ| ≤ β(|θ̂(0, 0)− θ|, t+ j). (16)



In words, Assumption 4.1 states that the set A in (4) is KL
pre-asymptotically stable5 on X ×K for H̃. The recent works
[1]–[4] proposed hybrid parameter estimation algorithms
that, under appropriate excitation conditions, satisfy this
assumption. We now establish our main stability result.

Theorem 4.2: Given the hybrid systems HP in (1) and HE
in (2), suppose that the resulting interconnection H̃ in (3)
satisfies Assumption 4.1 for a given compact set K ⊂ Rm
and for X ⊂ Rn satisfying the conditions in Assumption 3.3.
Then, with H defined in (6), using FP, GP from HP, FE from
HE, and ĜE from Algorithm 1, the parameter estimation
error (t, j) 7→ θ̂(t, j) − θ for each solution ξ to H from
ξ(0, 0) ∈ Z0 := {ξ ∈ Z : x ∈ X , z ∈ K, τδ = −1} satisfies

|θ̂(t, j)− θ| ≤ β
(
|θ̂(0, 0)− θ|, t+ η(j)

)
(17)

for all (t, j) ∈ dom ξ such that τδ(t, j) = −1, with β ∈ KL
from Assumption 4.1 and η(j) := j − ⌊j/2⌋.

Theorem 4.2 provides an upper bound on the norm of the
parameter estimation error for H, except possibly during the
delay intervals, namely, for (t, j)′s such that τδ(t, j) ∈ [0,∆].

Remark 4.3: Note that Assumptions 3.1, 3.2, and 3.4 are
not included in Theorem 4.2. These assumptions are used to
justify the hybrid model of H in (6) and to design the jump
map ĜE of ĤE in Sections III-C–III-E. However, given H,
to prove Theorem 4.2, we need only Assumption 4.1 and a
set X satisfying the conditions in Assumption 3.3.

Sketch of Proof: We rewrite H in (6) to incorporate our
design for the jump map ĜE. To do so, we augment the state
vector of H with a new component, µ, that evolves based on
the dynamics of µ in (12)–(14). The resulting hybrid system,
denoted by H′, has dynamics

H′ :



ẋ= FP(x,θ)

ż = FE(x,z)

µ̇= FE(x,µ)

τ̇δ =−min{τδ+1,1}

x+ =GP(x,θ)

z+ = z

µ+ =GE(x,µ)

τ+δ ∈ [0,∆]

x+ = x

z+ = µ

µ+ = µ

τ+δ =−1

=: F ′(ξ,θ) ξ′ ∈C ′

=:G′
91(ξ,θ) ξ′ ∈D′

91

=:G′
0(ξ,θ) ξ′ ∈D′

0



(18)

with state ξ′ := (x, z, µ, τδ) ∈ Z ′ := Rn × Rm × Rm ×(
{−1} ∪ [0,∆]

)
, flow set

C ′ := C̃ × Rm ×
(
{−1} ∪ [0,∆]

)
5The term “pre-asymptotic,” as opposed to “asymptotic,” indicates the

possibility of maximal solutions that are not complete. This allows for
separating the conditions for completeness from the conditions for stability
and attractivity.

and jump set D′ := D′
91 ∪D′

0, where

D′
91 :=D̃×Rm×{−1}, D′

0 :=
(
C̃∪D̃∪G̃(D̃)

)
×Rm×{0}

with C̃, D̃, G̃ as in (3).
Compared to H in (6), H′ contains a new state component

µ ∈ Rm. When τδ = −1 and x does not jump, µ flows per
the flow map FE, as in (12). When the plant state x jumps, µ
is reset to the value of GE(x, µ), and then continues flowing
per FE until τδ reaches zero, as in (13)–(14). At the end of
the delay interval, the estimator state z is reset to the value
of µ, as in (15). The recent work [11] establishes a general
framework for modeling hybrid systems with delayed jumps.

Pick a solution ξ′ = (x, z, µ, τδ) to H′ from ξ′(0, 0) ∈
Z ′

0 := {ξ′ ∈ Z ′ : x ∈ X , z ∈ K,µ = z, τδ = −1}. We
define xr and µr as j-reparamaterizations [14] of x and µ,
respectively, that remove the trivial jumps from x and µ. In
particular, xr(t, η(j)) := x(t, j) and µr(t, η(j)) := µ(t, j)
for all (t, j) ∈ dom ξ′, with η as in Theorem 4.2. Using
[12, Definition 2.6], it can be shown that ξr := (xr, µr) is a
solution to the hybrid system H̃ in (3). Then, (17) follows
from the fact that, by Assumption 4.1, each solution to H̃ in
(3) from (x(0, 0), z(0, 0)) ∈ X ×K satisfies (16).

V. EXAMPLE

Consider the problem of estimating the acceleration due
to gravity and the restitution coefficient for a bouncing ball.
The ball has state x = (x1, x2) ∈ R2, where x1 is the height
above the ground and x2 is the vertical velocity. The bouncing
ball system has dynamics [12, Example 1.1]

HP :


ẋ =

[
x2
−γ

]
= FP(x, θ) x ∈ CP

x+ =

[
x1

−λx2

]
= GP(x, θ) x ∈ DP

(19)

with flow set CP := {x ∈ R2 : x1 ≥ 0}, jump set
DP := {x ∈ R2 : x1 = 0, x2 ≤ 0}, and θ := (γ, λ) ∈
Θ := [0, 10] × [0, 1], where γ is the acceleration due to
gravity and λ is the restitution coefficient.

For the estimation algorithm HE, we employ the algo-
rithm proposed in [4, Chapter 4]. This algorithm has state
z = (θ̂, ψ, α) ∈ R2 × R2×2 × R2, input x ∈ R2, and data

FE(x, z) =

 γcψ
⊤(y − ψθ̂)

−λcψ + ϕc(x)
−λc(x+ α)− fc(x)


GE(x, z) =

θ̂ + ψ+⊤

γd+|ψ+|2 (y
+ − ψ+θ̂)

(1− λd)ψ + ϕd(x)
(1− λd)(x+ α)− gd(x)


(20)

where γc, λc, γd > 0, λd ∈ (0, 2) are design parameters,
y := x+ α, fc(x) := [ x2

0 ], ϕc(x) :=
[

0 0
−1 0

]
, gd(x) := [ x1

0 ],
and ϕd(x) :=

[
0 0
0 −x2

]
.

The interconnection of HP and HE is simulated with
θ = (9.81, 1), γc = 1.5, λc = 0.01, γd = 0.5, and
λd = 1.99 from the initial conditions x(0, 0) = (4.91, 0),
θ̂(0, 0) = (0, 0), ψ(0, 0) = [ 0 0

0 0 ], and α(0, 0) = −x(0, 0).



It can be shown numerically that the trajectory of the plant
state x is sufficiently exciting to ensure convergence of θ̂ to θ
for HE (see [4, Thereom 4.7] for details). Hence, if jumps in
x are detected instantaneously and the jump map is computed
instantly, the parameter estimate θ̂ converges exponentially
to θ as shown in blue in Figure 1.6 However, when jumps
of HE are delayed, the parameter estimation error fails to
converge to zero, as shown in green in Figure 1.

Fig. 1: The projection onto t of the estimation error for HE
with no delay in the jump detection (blue) and with a delay
of up to 0.2 seconds (green). When jumps of HE are delayed,
the parameter estimate fails to converge.

To estimate θ in the presence of delays in jump detec-
tion and jump map computation, we employ the proposed
algorithm H in (6), with ĜE computed using Algorithm 1,
αt = 0.28, and αx = 9.81. The maps FP in (19) and
FE, GE in (20) satisfy Assumptions 3.1 and 3.2. Furthermore,
with θ = (9.81, 1), for each maximal solution x to (19)
from x(0, 0) ∈ [4.91,∞) × [0,∞), the initial interval
of flow in domx has length of at least 1 second, and x
flows for at least 2 seconds after each jump. Suppose that
detection of jumps in x is delayed by at most 0.15 seconds
and Algorithm 1 takes at most 0.05 seconds to compute.
Then, Assumption 3.3 holds with X = [4.91,∞)× [0,∞),
τ∗ = 1, ∆1 = 0.15, and ε = 19.62, and Assumption 3.4
holds with ∆2 = 0.05. Since, for each compact set K ⊂ Rm,
the θ̂ component of each solution to H̃ from X×K converges
exponentially to θ, it follows that Assumption 4.1 holds and
the conditions of Theorem 4.2 are satisfied. The parameter
estimation error for H, shown in green in Figure 2, converges
to zero and is equal to the estimation error for HE (with no
delay in jump detection) shown in blue, except possibly on
the delay intervals in accordance with Theorem 4.2.

VI. CONCLUSION

In this paper, given a hybrid parameter estimation algorithm
that is designed to jump synchronously with jumps in the
plant state, we proposed a new algorithm for estimating
unknown parameters in a class of hybrid dynamical systems
under delays in the detection of jumps in the plant state. We
showed that the proposed algorithm preserves the stability
bounds of the original version, except possibly during the
delays in detection of jumps. Future work on this topic
includes analyzing the parameter estimation error for the
proposed algorithm during the delay intervals, and studying

6Code at https://github.com/HybridSystemsLab/
ApproximatelyKnownJumpTimes_BouncingBall

Fig. 2: The projection onto t of the estimation error for HE
with no delay in jump detection (blue) and for H with a
delay of up to 0.2 seconds (green). The estimation error for
H converges to zero, except possibly on the delay intervals.

the robustness properties induced by the algorithm. Moreover,
since the optimization that we employ to determine the
jump times of the plant state may be nonconvex, future
work includes studying methods to convexify this problem
to guarantee unique solutions. Analyzing the computational
complexity of the optimization is also of interest.
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