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Abstract— In the setting of a differential inclusion, strong
forward invariance of a closed or a compact set is studied.
Main results are novel necessary Lyapunov-like conditions
for this property. They involve time-varying and autonomous
Lyapunov/barrier functions that are smooth everywhere or at
least outside the invariant set and are decreasing or at least
not increasing faster than exponentially.

I. INTRODUCTION

Invariance is an important concept in dynamics and con-
trol. When uniqueness of solutions to the dynamics is not
guaranteed, one may need to distinguish between weak
invariance and strong invariance. Strong forward invariance
of a set is the property that no (forward) solution to the
dynamics leaves the set. This paper studies strong forward
invariance of a closed or compact set in the setting of differ-
ential inclusions. The main results, proved under Basic As-
sumptions on the differential inclusion, with and without its
Lipschitz continuity, show that for strongly forward invariant
closed or compact sets there exist Lyapunov-like functions
that are positive definite with respect to the invariant set, are
reasonably smooth, and certify the invariance.

Necessary and sufficient conditions for strong forward
invariance of a set, in terms of tangent cones to the set, are
reasonably well-known [1]. Sufficient conditions involving
Lyapunov-like functions appeared in [2], [3], [4], [5]. Neces-
sary conditions involving Lyapunov-like functions, especially
smooth ones, appear to not have been studied. Proposing
such conditions is the main contribution of this paper.

When the invariant set is compact, Theorem 3.1 provides
a smooth time-varying Lyapunov-like function. Its proof
relies on augmenting the differential inclusion and apply-
ing, to the resulting hybrid system, a converse Lyapunov
result of [6]. For the more general case of a closed set,
Theorem 3.2 provides an autonomous Lyapunov-like func-
tion that is smooth outside the invariant set K and does
not increase faster than exponentially. Its proof relies on
a smooth Lyapunov-like barrier function [7] that certifies
the invariance of the open complement of the invariant set
K for the reverse dynamics. Theorem 3.4, for Lipschitz
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dynamics, provides an autonomous Lyapunov-like function
that is continuously differentiable everywhere and does not
increase faster than exponentially. Theorem 3.7 characterizes,
through the existence of an exponentially decreasing smooth
Lyapunov function, strong forward invariance that persists
under nonvanishing perturbations. This is facilitated by an
idea of [8], which links this property to asymptotic stability
under smaller, but still nonvanishing, perturbations.

Related results include the existence of smooth Lyapunov-
like or barrier functions that verify no finite-time blow-up, or
forward completeness, of the solutions on open sets; see [9]
for differential equations and, essentially, Lipschitz continu-
ous differential inclusions, and [7] for hybrid inclusions.1 A
different, closely related, body of work is on barrier functions
and safety, including [12], [13], [14], [15], [8], [16], [17],
[18] and [19]. Section IV-A below explores the connections
to safety in some detail. For a survey of converse Lyapunov
results related to asymptotic stability, see [20].

II. SETTING AND PRELIMINARIES

The setting for most of this paper is that of a differential
inclusion

ẋ ∈ F (x), (1)

where F : Rn ⇒ Rn is a set-valued mapping: for every
x ∈ Rn, F (x) ⊂ Rn is a set. Solutions to (1) are understood
in the Caratheodory sense: ϕ : I → Rn is a solution to (1) if
I ⊂ R is an interval, ϕ is locally absolutely continuous on
I , and, for almost every t ∈ I , ϕ̇(t) ∈ F (ϕ(t)).

Let S ⊂ Rn be a set. The main property of interest is
defined below:

The set S is strongly forward invariant for (1) if every
solution ϕ : [0, T ] → Rn of (1) with ϕ(0) ∈ S satisfies
ϕ(t) ∈ S for every t ∈ [0, T ]; equivalently, if there
exists no solution ϕ : [0, T ] → Rn of (1) such that
ϕ(0) ∈ S and ϕ(T ) ̸∈ S.

Note that strong forward invariance does not insist on the
existence of solutions. As an extreme example, one can
consider (1) where F (x) = ∅ for all x ∈ Rn, and then
every set S is strongly forward invariant for (1) as there is no
solution to check. A common understanding of weak forward
invariance of a set S (see, e.g., [21]) insists on the existence
of at least one forward complete solution, i.e., a solution
with domain unbounded to the right, that remains in S, from
every initial condition in S. One should be aware then that,
in general, strong forward invariance does not ensure weak
forward invariance in this sense.

1Early necessary and sufficient conditions for no finite-time blow-up,
for time-varying differential equations, with or without uniqueness, and
involving Lyapunov-like functions that are not smooth, are in [10] and [11].



A. Sufficient conditions

Below, a sufficient Lyapunov-like condition for strong
forward invariance of a closed set is given. Another one,
involving a time-varying Lyapunov-like function, is included
later in Theorem 3.1. The main purpose of this paper is to
provide converse results to these sufficient conditions.

Proposition 2.1: (general sufficient condition) Let K ⊂
Rn be a nonempty closed set. Suppose that there exist an
open neighborhood U ⊂ Rn of the boundary ∂K of K,
a continuous function V : U → R that is continuously
differentiable on U \K and such that V (x) = 0 if x ∈ ∂K
and V (x) > 0 if x ∈ U \K, and λ ∈ R so that

∇V (x) · f ≤ λV (x) ∀x ∈ U \K, ∀f ∈ F (x).

Then, K is strongly forward invariant for (1).

The right-hand side of the Lyapunov inequality in Propo-
sition 2.1 involves the function v 7→ λv. More general
functions that guarantee the same outcome can be used;
see for example the so-called “uniqueness functions” in [22,
Definition 4] and the earlier references therein. The sufficient
conditions in Proposition 2.1 can be generalized by con-
sidering functions V that need not be smooth, for example
just locally Lipschitz, and using generalized differentiation
techniques, for example the Clarke generalized gradient.

B. Background results

From now on, the following assumption is in place:

Assumption 2.2: (Standing Assumption) The set-valued
mapping F : Rn ⇒ Rn satisfies the Basic Assumptions:
for every x ∈ Rn, F (x) is nonempty, closed, and convex,
and F is outer semicontinuous and locally bounded on Rn.

Equivalently, F has nonempty, compact, and convex val-
ues at every x ∈ Rn and is upper semicontinuous. All set-
valued analysis terminology used here is from [23], see also
[24, Chapter 5] or [25]. The outer semicontinuity and local
boundedness of F amounts to the graph {(x, y) ∈ R2n | y ∈
F (x)} of F being closed and the set

⋃
x∈S F (x) being

bounded for every bounded S ⊂ Rn.
Let S ⊂ Rn be a set. Two notions related to strong forward

invariance are defined next:
The differential inclusion (1) has no finite-time blow-up
relative to S if there exists no solution ϕ : [0, T ) → Rn

of (1) such that ϕ(t) ∈ S for all t ∈ [0, T ) and either
limt→T ∥ϕ(t)∥ = ∞ or there exists a sequence ti ↗ T
such that limi→∞ ϕ(ti) ̸∈ S.

The case of S = Rn deserves a slightly different name:
The differential inclusion (1) has no finite-time blow-up
to ∞ if there exists no solution ϕ : [0, T ) → Rn of (1)
such that limt→T ∥ϕ(t)∥ = ∞.

Sufficient conditions for no finite-time blow-up to ∞ include:
(i) linear growth of F : the existence of a, b > 0 such that

F (x) ⊂ (a+ b∥x∥)B ∀x ∈ Rn;

(ii) existence of a compact and global asymptotically stable
set for (1);

and more. Mappings F that satisfy the Basic Assumptions
and have linear growth are often called “Marchaud map-
pings” [1].

A basic existence result for (1), which can be found
in [26], and some relationships between strong forward
invariance and finite-time blow-up are summarized next.

Theorem 2.3: (existence and completeness) Let O ⊂ Rn

be an open set. Then:
(a) For every x0 ∈ O there exists T > 0 and a solution

ϕ : [0, T ] → O of (1) with ϕ(0) = x0.
(b) If (1) has no finite-time blow-up relative to O then every

solution to (1) can be extended to be forward complete,
and O is strongly forward invariant for (1).

(c) If (1) has no finite-time blow-up to ∞ and O is strongly
forward invariant for (1) then (1) has no finite-time blow
up relative to O.

The property concluded in (b) above is sometimes called
forward completeness of (1) on O. The implication opposite
to Theorem 2.3(b), from strong forward invariance to no
blow-up is not true in general. For example, the differential
equation ẋ = x2 on R has the open set O = R strongly
forward (and backward) invariant but no solution from x0 >
0 is forward complete: they all blow-up in finite time.

Let O ⊂ Rn be an open set. A function ω : O → (0,∞) is
proper with respect to O if it is continuous and ω(xi) → ∞
for every sequence of points xi ∈ O such that ∥xi∥ → ∞
or xi → x for some x ̸∈ O.

Theorem 2.4: (Lyapunov characterization of forward
completeness) Let O ⊂ Rn be open. Then, the following
are equivalent:
(a) (1) has no finite-time blow-up relative to O;
(b) (1) is forward complete on O;
(c) For every proper with respect to O function ω : O →

(0,∞), there exist class-K∞ functions α1, α2 and a
smooth function V : O → (0,∞) such that:

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)), (2)

∇V (x) · f ≤ V (x) ∀f ∈ F (x),

for all x ∈ O.

The equivalence of (b) and (c) follows from the general-
ization [7, Theorem 8.1] to hybrid dynamics of [9, Theorem
2] given for differential equations with perturbations.

The next background result is a converse Lyapunov result
for a hybrid inclusion; see [6, Theorem 3.13], [24, Corollary
7.32]. A symbolic representation of a hybrid inclusion is

x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G(x).
(3)

Roughly, solutions to (3) may flow according to (1) while
in C, and jump according to the difference inclusion x+ ∈
G(x) from D. A formal definition of a solution to (3), of
Hybrid Basic Assumptions, which generalize Assumption 2.2



to the setting of (3), and stability concepts for (3) used below
are as in [24]. In casual words, global pre-asymptotic stability
of a set A means that solutions that start close to A remain
close to it, all solutions are bounded, the forward complete
ones converge to A, and “pre” allows for maximal solutions
to (3) to be not forward complete. The function dA below is
the distance from A.

Theorem 2.5: (hybrid converse Lyapunov) Suppose that
the data (F,C,G,D) of (3) satisfies the Hybrid Basic
Assumptions. Let A ⊂ Rn be a nonempty compact set that
is globally pre-asymptotically stable for (3). Then, there
exist class-K∞ functions α1, α2 and a smooth function
V : Rn → [0,∞) such that (2) hold for all x ∈ Rn, with
ω(x) = dA(x), and

∇V (x) · f ≤ −V (x) ∀x ∈ C, ∀f ∈ F (x);

V (g) ≤ 1

e
V (x) ∀x ∈ D, ∀g ∈ G(x).

III. CONVERSE RESULTS

This section contains the main results of the paper. Recall
that Assumption 2.2 is in place.

A. Time-varying Lyapunov-like function

The result below first gives a sufficient condition for strong
forward invariance of a closed set K in terms of a smooth
time-varying Lyapunov-like function that does not increase
faster than exponentially. The condition turns out necessary
when K is compact and then the Lyapunov-like function is
in fact decreasing. Key steps in the proof are augmenting the
differential inclusion (1) to form a hybrid inclusion

(x, τ) ∈ Rn × [0, 1]

[
ẋ
τ̇

]
∈
[

F (x)
1

]
,

(x, τ) ∈ Rn × [0, 1]

[
x+

τ+

]
∈
[

K
0

]
.

(4)

The x part of a solution to (4) flows according to (1) until
the timer τ reaches 1, and then x jumps into K and the timer
resets. This results in the augmented invariant set

A := K × [0, 1]

being globally pre-asymptotically stable for (4), and one can
invoke the hybrid converse result, Theorem 2.5.

Theorem 3.1: (time-varying certificate of invariance) Let
K ⊂ Rn be closed. If
(a) there exist an open neighborhood N ⊂ Rn+1 of K ×

[0, 1], λ ∈ R, and a continuous function V : N → R
that is continuously differentiable on N \ (K × [0, 1])
such that
(i) V (x, τ) = 0 for all (x, τ) ∈ ∂K × [0, 1],

(ii) V (x, τ) > 0 for all (x, τ) ∈ N \ (K × [0, 1]),
(iii) ∇V (x, τ) · (f, 1) ≤ λV (x, τ) for all (x, τ) ∈ N \

(K × [0, 1]) and all f ∈ F (x),
then
(b) K is strongly forward invariant for (1).

If K is nonempty and compact, and (b) holds, then there
exist an open neighborhood N ⊂ Rn+1 of K × [0, 1] and
a smooth function V : N → [0,∞) such that (i), (ii) above
hold and
(iv) ∇V (x, τ) · (f, 1) ≤ −V (x, τ) for all (x, τ) ∈ N and

all f ∈ F (x).

Pre-asymptotic stability of a compact set, under hybrid
basic assumptions, is robust; see [24, Theorem 7.21]. From
the proof of Theorem 3.1, one can then deduce that the strong
forward invariance of a compact K for (1) is robust, in the
following sense: there exists a continuous ρ : Rn → [0,∞)
such that ρ(x) > 0 if x ̸∈ K such that K is strongly forward
invariant for

ẋ ∈ Fρ(x), (5)

where the inflation Fρ : Rn ⇒ Rn of F is the set-valued
mapping given at each x ∈ Rn by

Fρ(x) := conF (x+ ρ(x)B) + ρ(x)B. (6)

B. Autonomous Lyapunov-like function

For any set K ⊂ Rn, K is strongly forward invariant for
(1) if and only if Rn \K is strongly forward invariant for

ẋ ∈ −F (x). (7)

Below, no blow-up to ∞ is assumed about (7), and not (1).
If F has linear growth, so does −F , and then both inclusions
(1) and (7) have no finite-time blow-up to ∞.

Theorem 3.2: (autonomous certificate of invariance)
Suppose that (7) has no finite-time blow-up to ∞. Let K ⊂
Rn be a nonempty closed set. The following are equivalent:
(a) K is strongly forward invariant for (1).
(b) There exists a continuous function V : Rn → [0,∞)

that is smooth on Rn \ K such that V (x) = 0 if and
only if x ∈ K and

∇V (x) · f ≤ V (x) ∀x ∈ Rn \K, ∀f ∈ F (x).

The key step in the proof of the implication from (a) to (b),
is observing that the open complement of K, O := Rn \K,
is invariant for (7) and this property admits a Lyapunov-like
characterization by a function V as in Theorem 2.4. Consid-
ering 1/V (x) on O and extending the resulting function to
Rn produces the function required in (b).

For a compact invariant set K, one can dispose of the
extra assumption of no blow-up to ∞, with the price to pay
being that the Lyapunov-like function is constructed not on
Rn but on a neighborhood of K.

Corollary 3.3: (local autonomous certificate of invari-
ance) Let K ⊂ Rn be a nonempty compact set. The following
are equivalent:
(a) K is strongly forward invariant for (1).
(b) For any bounded and open neighborhood U ⊂ Rn of

K there exists a continuous function V : U → [0,∞)
that is smooth on U \K such that V (x) = 0 if and only
if x ∈ K and

∇V (x) · f ≤ V (x) ∀x ∈ U \K, ∀f ∈ F (x).



C. Lipschitz dynamics

Under the Lipschitz assumption, the assumption of con-
vexity of the values of F can be dropped. Indeed, under all
other conditions from Basic Assumptions, and with Lipschitz
continuity of F , it follows from the Filippov-Ważewski
relaxation theorem (see, for example, [27, Theorem 10.4.4])
that strong forward invariance for (1) implies that property
for the “relaxed” inclusion ẋ ∈ conF (x), which satisfies all
Basic Assumptions and is Lipschitz continuous.

The previous two converse results, Theorem 3.1 and The-
orem 3.2, rely on already available results on the existence
of smooth Lyapunov or Lyapunov-like functions certifying
certain properties. Below, a natural candidate for a Lyapunov-
like function, namely the distance from the invariant set K,
requires a smoothing procedure.

Theorem 3.4: (autonomous certificate of invariance)
Suppose that F is Lipschitz continuous on Rn. Let K ⊂ Rn

be a nonempty compact set. The following are equivalent:
(a) K is strongly forward invariant for (1).
(b) There exists a continuously differentiable function V :

Rn → [0,∞), smooth on Rn \K, such that V (x) = 0
if and only if x ∈ K, and λ > 0 such that

∇V (x) · f ≤ λV (x) ∀x ∈ Rn, ∀f ∈ F (x).

The proof of the implication from (a) to (b), relies
on distance function dK(x) := miny∈K ∥x − y∥. Its
Dini/contingent derivative satisfies

DdK(x; f) := lim inf
v→f,t↘0

dK(x+ tv)− dK(x)

t
≤ LdK(x),

where L is a Lipschitz constant for F . The function dK
is Lipschitz continuous, hence differentiable almost every
x ∈ Rn, and at such x,

∇dK(x) · f ≤ LdK(x).

This inequality, and the smoothing of dK using [28, Lemma
16], inspired by an earlier result by [29], leads to function
that, when squared, provides the desired V . This function
additonally satisfies, for every x ∈ Rn,

a1(dK(x))2 ≤ V (x) ≤ a2(dK(x))2 (8)

for 0 < a1 < a2 and

∥∇V (x)∥ ≤ 3dK(x). (9)

Bounds (8), (9) are expected to be useful in application of
the Lyapunov-like functions as above to interconnections.

D. Strongly robust invariance

Strong forward invariance of a compact set is robust, in
the sense that it persists for the inflated dynamics (5) given
by the inflation (6), where the inflation size ρ vanishes on
the compact set. This subsection addresses strong robustness,
where the inflation size is positive everywhere.

The result below is a minor variation of the nice obser-
vation in [8, Theorem 19], and a special case of a hybrid

inclusion version of [8, Theorem 19], provided in [18,
Proposition 3.8]. It pertains to the differential inclusions

ẋ ∈ L(x) + ρ1(x)B, (10)

ẋ ∈ L(x) + ρ2(x)B. (11)

Proposition 3.5: (from invariance to stability) Let L :
Rn ⇒ Rn satisfy the Basic Assumptions and be locally
Lipschitz continuous. Let ρ1 : Rn → (0,∞) be continuous
and ρ2 : Rn → (0,∞) be locally Lipschitz continuous and
such that ρ2(x) < ρ1(x) for all x ∈ Rn. If a set X ⊂ Rn

is strongly forward invariant for (10) then its closure X is
(locally) asymptotically stable for (11).

The next result can be deduced from [28, Lemma 8], which
extracted the essential conclusion from [29, Proposition 3.5],
and [24, Lemma 7.36].

Lemma 3.6: (Lipschitz inflation) For any continuous
function ρ : Rn → (0,∞) there exist
(i) a set-valued mapping L : Rn ⇒ Rn that satisfies the

Basic Assumptions and is locally Lipschitz continuous;
(ii) continuous functions ρ0, ρ1 : Rn → (0,∞)

such that, for every x ∈ Rn,

F (x) ⊂ Fρ0
(x) ⊂ L(x) ⊂ L(x) + ρ1(x)B ⊂ Fρ(x). (12)

This lemma lets one overapproximate F with a Lipschitz
L, as described in (12). Combined with Proposition 3.5, this
leads to the result below.

Theorem 3.7: (certificate of strongly robust invariance)
Let K ⊂ Rn be a nonempty and compact set. If
(a) K is strongly robustly strongly forward invariant, i.e.,

there exists a continuous function ρ : Rn → (0,∞)
such that K is strongly forward invariant for (5),

then
(b) there exists a smooth function V : Rn → [0,∞),

positive definite with respect to K and proper, and a
neighborhood N ⊂ Rn of K, such that

∇V (x) · f ≤ −V (x) ∀x ∈ N, ∀f ∈ F (x).

IV. CONNECTIONS AND APPLICATIONS

A. Barriers and safety

Consider Xg, Xb ⊂ Rn with Xg∩Xb = ∅. The differential
inclusion (1) is safe with respect to (Xg, Xb) if there exists
no solution from Xg that reaches Xb. Some immediate
connections of the concept of safety to the concept of strong
forward invariance are as follows: Obviously, for any set
K ⊂ RN , (1) is safe with respect to (K,Rn \K) if and only
if K is strongly forward invariant for (1). More broadly, with
Xg, Xb as above, if there exists a strongly forward invariant
set K ⊂ Rn for (1) such that

Xg ⊂ K ⊂ Rn \Xb, (13)

then (1) is safe with respect to (Xg, Xb). The opposite impli-
cation is true too: if (1) is safe with respect to (Xg, Xb), then
the strongly forward invariant (essentially by its definition)



infinite horizon reachable set from Xg plays the role of a set
K such that (13) holds.

A natural sufficient condition for safety, dating back to
[30] and given originally for a differential equation, involves
a continuously differentiable function B : Rn → R such that
B(x) ≤ 0 for x ∈ Xg , B(x) > 0 for x ∈ Xb, and

∇B(x) · f ≤ 0 ∀x ∈ Rn, ∀f ∈ F (x). (14)

Such B is said to be a barrier function. Naturally, (14)
renders the set

K := {x ∈ Rn : B(x) ≤ 0} (15)

strongly forward invariant. This property, and safety with
respect to (Xg, Xb), remains true if (14) is changed to a
strict inequality but only at each x ∈ ∂K.

Already in [30], (14) was shown to be necessary, for a
differential equation, and subject to compactness of Xg , Xb

and of the whole state space, and a further somewhat restric-
tive assumption. Versions and extensions of this sufficient
condition, and converse statements, appear in [31], [14], [32],
[15], [19] [8], and [16]. For example, in the current setting of
a differential inclusion subject to the Basic Assumptions, [19]
provides a necessary and sufficient condition for safety with
a time-varying, lower semicontinuous, and nonincreasing
barrier function. Characterizations of strongly robust safety
are discussed below, after Proposition 4.2.

The converse results producing barrier functions yield
functions that are not increasing. Most of these results cannot
be immediately applied to a strongly forward invariant closed
set K =: Xg and its complement Xb := Rn \ K, because
such Xb is not closed and because often, for example in
[31], [14], the state space itself is compact and not Rn,
and further other assumptions are made. In fact, for the
simple example of ẋ = x for which K := {0} is strongly
forward invariant there is no positive definite function that is
nonincreasing along all solutions. Accordingly, the converse
results in Section III allow for a not-too-fast increase.

One path to applying the converse results in Section III in
the context of safety is as follows. Following [1], given a set
S ⊂ Rn, the (strong forward) invariance kernel of S is the
largest closed subset of S that is strongly forward invariant
for (1). From [1, Theorem 5.4.2], it follows that:

Theorem 4.1: (invariance kernel) Let F : Rn ⇒ Rn be
Lipschitz continuous. Then for any closed S ⊂ Rn there
exists the (possibly empty) invariance kernel. It consists of
all initial conditions in S from which all solutions stay in S.

Thus, if Xb is open and if the invariance kernel of Rn\Xb

contains Xg , then (1) is safe with respect to (Xg, Xb).

Proposition 4.2: (invariance kernel for safety) Let F :
Rn ⇒ Rn be Lipschitz continuous. Let Xg, Xb ⊂ Rn

be nonempty and suppose that (1) is safe with respect to
(Xg, X̃b), where X̃b is an open set containing Xb. Then,
K ⊂ Rn defined as the invariance kernel of Rn \ X̃b is
nonempty and a strongly forward invariant for (1) closed set
such that (13) holds.

Now, one can apply the results in Section III to K.
The additional margin of safety assumed in Proposition 4.2,
through the open set X̃b, resembles what is sometimes done
in the barrier/safety literature, like [14], or can be deduced
from robustness assumptions, like in [8].

In the context of strongly robust safety for (1), made
precise in the result below, [17] states a converse result
that yields a continuously differentiable barrier B that is
nonpositive on Xg , positive on Xb, and ∇B(x) · f < 0
for all x in the boundary of K in (15). This generalizes
earlier results, [15, Theorem 1] and [8, Theorem 16], from
differential equations or Lipschitz differential inclusions, to
more general dynamics. The proof of [17, Theorem 2] relies
on an unpublished converse result [33] with a technical proof.
Under stronger assumptions, a version of [17, Theorem 2]
and a generalization of [8, Theorem 16] can be deduced from
Theorem 3.7. This is done below, where the construction of
V from [8] is applied to a Lipschitz inflation of F .

Theorem 4.3: (certificate of safety) Let Xg, Xb ⊂ Rn

and suppose that (1) is strongly robustly safe with respect
to (Xg, Xb), in the sense that there exists a continuous
function ρ : Rn → (0,∞) such that (5) is safe with respect
to (Xg, Xb). Suppose that R is bounded and such that
R ∩ Xb = ∅, where R is the (infinite horizon) reachable
set from Xg for (5). Then, there exists a smooth function
B : Rn → [0,∞) and c > 0 such that

(i) B(x) < 0 for all x ∈ Xg , and B(x) > 0 for all x ∈ Xb.
(ii) ∇B(x) · f ≤ −c for all f ∈ F (x) and x such that

B(x) = 0.

B. State constraints

In anticipation of treating, in future work, strong forward
invariance for hybrid inclusions, some of the results from
the previous section are now extended to the setting of a
differential inclusion with a constraint:

x ∈ C ẋ ∈ F (x). (16)

The following is posed throughout this subsection:

Assumption 4.4: C ⊂ Rn is a nonempty and closed set.

Solutions to (16) are solutions ϕ : I → Rn to ẋ ∈ F (x)
that also satisfy ϕ(t) ∈ C for all t ∈ I .

Proposition 4.5: (time-varying certificate of invariance)
Let K ⊂ Rn be closed. If

(a) there exists an open neighborhood N ⊂ Rn+1 of (K ∩
C)× [0, 1], λ ∈ R, and a continuous function V : N →
R that is smooth on an open set containing (C ∩N ) \
(K × [0, 1]) such that
(i) V (x, τ) = 0 for all (x, τ) ∈ (C ∩ ∂K)× [0, 1],

(ii) V (x, τ) > 0 for all (x, τ) ∈ (C∩N )\(K× [0, 1]),
(iii) ∇V (x, τ) · (f, 1) ≤ λV (x, τ) for all (x, τ) ∈ (C ∩

N ) \ (K × [0, 1]) and f ∈ F (x),
then

(b) K is strongly forward invariant for (16).



If K is nonempty and compact, and (b) holds, then there
exist a an open neighborhood N ⊂ Rn+1 of K × [0, 1] and
a smooth function V : N → [0,∞) such that (i), (ii) above
hold and
(iv) ∇V (x, τ) ·(f, 1) ≤ −V (x, τ) for all (x, τ) ∈ N ∩(C×

[0, 1]) and f ∈ F (x).

The proof of Proposition 4.5 is essentially the same as that
of Theorem 3.1. The difference is that the hybrid system (4)
that augmented (1) in the proof of Theorem 3.1 requires here
a different flow set. The first occurrence of (x, τ) ∈ Rn ×
[0, 1] in (4) needs to be replaced here by (x, τ) ∈ C× [0, 1].

Proposition 4.6: (autonomous certificate of invariance)
Suppose that ẋ ∈ −F (x), x ∈ C has no finite-time blow-up
to ∞. Let K ⊂ Rn be a nonempty closed set. The following
are equivalent:
(a) K is strongly forward invariant for (16).
(b) There exists a continuous function V : Rn → [0,∞)

that is smooth on Rn \ (K ∩C) such that V (x) = 0 if
and only if x ∈ K ∩ C and

∇V (x) · f ≤ V (x) ∀x ∈ C \K, f ∈ F (x).

The proof of Proposition 4.6 is similar to that of Theo-
rem 3.2. One considers the open set O := Rn \ (K ∩C) and
relies on [7, Theorem 8.1], rather than on its consequence
stated in this paper, Theorem 2.4. The hybrid inclusion to
which one applies [7, Theorem 8.1] is

x ∈ C ∩O ẋ ∈ −F (x)
x ∈ O x+ = y

where y ∈ Rn \ (K ∩C) is any a priori picked point. As for
Corollary 3.3, one can dispose of the extra assumption of no
blow-up and obtain a local result.
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