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Abstract— This tutorial paper introduces hybrid feedback
control through a self-contained examination of hybrid con-
trol systems modeled by the combination of differential and
difference equations with constraints. Using multiple examples,
it illustrates the power of hybrid feedback control, which stems
from the integration of continuous and discrete dynamics,
where state variables update instantaneously at specific events
while flowing continuously otherwise. The paper defines hy-
brid closed-loop systems as interconnected hybrid plants and
controllers with designated inputs and outputs, and formalizes
their solutions. It summarizes key properties of hybrid systems
and reviews various control strategies, including supervisory
control with logic variables to select feedback controllers, event-
triggered control to minimize control input updates, and strate-
gies using multiple Lyapunov-like functions for stabilization.
Pointers to further reading and other strategies in the literature
are provided.

I. INTRODUCTION

Control theory provides powerful tools for the design of
feedback control algorithms that assure the provable satisfac-
tion of key dynamical properties, such as stability, attractiv-
ity, invariance, optimality, and robustness, to just list a few.
The classical setting for the system to control, usually called
the plant, is for it be given in terms of a continuous-time
system or of a discrete-time system. Differential equations
effectively capture the evolution of plants with continuously
evolving variables with finite dimension. In such continuous-
time setting, the control algorithms resulting from using
control theory tools are usually of continuous-time nature,
given in terms of static maps (e.g., state-feedback laws) or
differential equations. When the variables evolve in discrete
time, difference equations are a suitable modeling frame-
work, naturally leading to discrete-time control algorithms.
An emerging control theoretical approach that exploits the
capabilities of continuous-time and discrete-time control is
hybrid feedback control [1], [2], [3], [4], [5], [6]. Hybrid
feedback control can lead to control algorithms that outper-
form the capabilities of purely continuous-time and discrete-
time controllers due to allowing
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e Variables that flow continuously over ordinary time; and

 Variables that instantaneously jump to new values upon
events.

As argued in [6], control algorithms with such hybrid dynam-
ics can implement feedback strategies that combine behavior
that is typical of continuous-time controllers and of discrete-
time controllers. In addition, a hybrid control algorithm can
orchestrate multiple controllers to solve a complex problem,
by using each controller to solve a small piece of the whole
problem [2], [7], [8], [9], [10], [11]. Conveniently, a hybrid
control algorithm has the capability of resetting its variables
when certain events occur. For instance, upon communication
or sampling events, memory states in the algorithm can be
reset so as to store the new information [12], [13], [14],
[15]. Another example is when events are associated to faults,
upon which a hybrid control algorithm can reconfigure itself
to cope with a faulty system. The power of hybrid control
stems from its state allowing for the combination of logic
variables, timers, and memory states, along with the logic-
based conditions updating these variables so as to make the
proper decisions that would lead to the desired behavior of
the overall hybrid system [6].

This tutorial paper presents a self-contained introduction
to hybrid feedback control. Hybrid dynamical systems are
modeled in terms of hybrid equations/inclusions. These mod-
els combine differential equations and difference equations
with constraints. Motivated by several examples arguing the
need of hybrid models, this general modeling framework
is introduced in Section III. This section motivates the
combination of continuous and discrete dynamics using a
sample-and-hold control architecture, in which sampling and
hold events lead to instantaneous updates of state variables
while, in between such events, the state variables flow
continuously. Similarly, the problem of robustly and globally
asymptotically stabilizing a point on the unit circle is used
to motivate the need for a control algorithm that implements
hysteresis-based switching to update a logic variable select-
ing the feedback law to use. The conditions triggering the
events are captured by sets that constraint the state variables
during flows and at jumps, giving rise to the so-called hybrid
equations/inclusions model.

Also, in Section III, a hybrid closed-loop system is
defined as the interconnection of a hybrid plant and a
hybrid controller, both modeled within the same framework,
including inputs and outputs that are properly assigned to
define the interconnection. In addition, Section III introduces
a concept of solution that formalizes state trajectories for
such models. This notion is introduced in a tutorial manner,



building from solution notions for continuous-time systems
and for discrete-time systems. The concepts employed in
their definition, specifically, hybrid time, hybrid time domain,
and hybrid arc are introduced and exercised in the sample-
and-hold control problem. With the modeling framework laid
out, This section provides an overview of asymptotic stability
and its robustness.

The sections that follow introduce several hybrid feed-
back control strategies. Section IV introduces a supervisory
control strategy that features multiple feedback controllers
and involves a logic variable, along with a properly defined
logic, to determine which one of the feedback controllers
is to be used under the current conditions. In Section V, a
hybrid control strategy that updates the control input upon
events is introduced. This event-triggered control strategy can
be designed to minimize the rate of control input updates,
hence, saving computational resources. Section VI presents
a hybrid control strategy that exploits the availability of
multiple Lyapunov functions, and associated state-feedback
laws, for the asymptotic stabilization of a set. This strategy
synergisticaly steers the state of the plant by using the value
of the Lyapunov-like functions to select the state-feedback
law to employ. Section VII provides a list of references
related to hybrid feedback control that the reader might be
interested in to further explore this fascinating field.

II. NOTATION

Throughout this paper, we use R to represent real numbers
and R its nonnegative subset. The set of natural numbers
is denoted Nsq; namely, Nyo = {1,2,...}. The set of
naturals including zero is denoted N. The notation S; C So
indicates S; is a subset of So, not necessarily proper. Given
xr € R™ and y € R™, the notation [z y"]T is equivalent to
the convenient notation (z,y). Given z € R, its Euclidean
norm is denoted |x|. The distance from x € R"™ to a
nonempty set A C R™ is denoted |z|4 = infyca |z — yl.
We denote by A + 0B the set of all x € R"™ such that
|z —y| < § for some y € A. The closure of a set S C R”
is denoted S. A strictly increasing continuous function « :
R>¢ — R>o with (0) = 0 is said to be a class-X function.
An unbounded class-XC function is said to be a class-K
function. A function 8 : R>g x R>¢9 — Rx>q is a class-
KL function if it is nondecreasing in its first argument,
nonincreasing in its second argument, lim,~ o 5(r, s) = 0 for
each s € R>q, and lims_,o, B(r,s) = 0 for each r € Rx>q.
The notation Ly (c) stands for the c-sublevel set of the
function V: domV — R.

III. HYBRID FEEDBACK CONTROL SYSTEMS

This tutorial paper introduces hybrid feedback control
systems modeled as the combination of differential equations,
difference equations, and constraints. These elements govern
the evolution of a finite-dimensional state. Such a model
leads to a system that has state trajectories that may evolve
continuously and also exhibit jumps. Due to combination of
continuous and discrete behavior, the state of such a sys-
tem can involve continuous-valued variables — for example,

physical quantities like position and velocity — as well as
discrete-valued variables — for instance, logic variables that
determine the (discrete) mode of operation of the system.
In this section, we introduce a general model of a hybrid
feedback control system that involves two key systems: a
system to control, called the hybrid plant (Hp), and a control
algorithm, called the hybrid controller (H ).

We arrive to this model by fixing the ideas with concrete
applications.

Example 1 (Sample-and-Hold Control). Consider a
continuous-time control system with state &, input u, and
dynamics o

§=f(&u)
where ]?is the right-hand side. When the state & is measured,

a static state-feedback control law that might be able to
stabilize a desired setpoint £* is given by

= £c(§)
A sample-and-hold implementation of this feedback performs
the following tasks:

1) Every T* seconds, measure the state £, calculate £.(),
and update the input u to the result of the calculation;

2) In between such events, keep the input u constant, equal
to the value obtained at the previous calculation.

See Figure 1 for a schematic representation of the closed-
loop system.
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Fig. 1. A schematic representation of the sampled-data feedback control

system in Example 1.

To capture this implementation in a mathematical model,
we employ the following state variables:

o A timer state T that triggers the sampling and hold

events when T reaches T, and

o A memory state {, that updates u using a zero-order
hold (ZOH) mechanism:

— At each event, the memory state £, is reset to the
value obtained from calculating k() using the cur-
rent value of &;

— In between events, the value of the memory state {,
is kept constant.

The task in item I can be captured by the condition
T=T"

To trigger such events every T* seconds, the timer is reset to
zero after each such event. This mechanism can be captured



by the difference equation
=0

Since the memory state {, is to be updated to the result
of computing k.(§) for the current value of the state, the
memory Sstate is reset via

which is also a difference equation. At such events, the
physical state £ does not change, so it evolves according
to

r=¢
The (trivial) differential equation
ly=0

keeps the memory state constant in between events, while the
differential equation
7=1 (1)

makes the timer count the amount of time elapsed since the
last event.

Putting the equations and conditions above, the state vari-
ables &, 0, and T are updated via the difference equations

£h=¢ lh=re(§), 7= 2
at the events, which corresponds to
T=T" 3)

In between events, these state variables are updated via the
differential equations

é = f(&a HC(&))? é'u = 07

The condition indicating that there is no event — namely, that
the state variables should evolve continuously — is simply

T€[0,T%) (5)

F=1 )

Note that including T = T in this condition has no effect
on the evolution of the state since from such a point, the
timer cannot increase further continuously while satisfying
the condition in (5); hence, even though the conditions (3)
and (5) would overlap, the only possibility for the trajectory
to continue is for T to get reset to zero.

The system resulting from the model developed above is
a hybrid system due to combining differential equations,
namely, (4), difference equations, that is, (2), and constraints
—(5) and (3). The first constraint indicates when continuous
evolution — called flow — of the state variables is possible
according to the differential equations, and the second con-
straint determined when discrete evolution — called jump —
of those variables is possible using the difference equations.

In several applications, sampling may occur aperiodically.
Aperiodic sampling can be used to model packet dropouts in
networked systems, jitter in digital devices, or even denial
of service attacks. In these contexts, a typical assumption
consists of supposing that the sampling time varies in a

bounded interval [T, T), where 0 < T < T. To capture this
behavior, we modify the hybrid system obtained by combining
(2)—-(4) with (3)—(5) as follows. We let the timer state T flow
according to (1) as long as

7 €10,T] (6)
and trigger a sampling event whenever
T €[T,T) (N

the flow and jump dynamics of the states & and {, are
unchanged. As a consequence, the time elapsed in between
events is no smaller than T and no larger than T.

Example 2 (Global and Robust Control on the Unit Circle).
Consider the problem of globally and robustly asymptotically
stabilizing a point-mass evolving on the unit circle to a
desired point on the circle. Denoting the unit circle by
S!, the evolution of the position of the point-mass, denoted
€= (£&,&) €S, is given by
: 0 —1 1

where u € R is the control input. Without loss of generality,
let

& = (1,0)

be the setpoint of interest. This point corresponds to the in-
tersection between the unit circle and the horizontal positive
semi axis.

To design a feedback law that accomplishes the desired
goal, a suitable (energy-like) quantity to consider initially is

V(E)=1-¢& Vees!

since it vanishes at £* and is positive everywhere else. The
static state-feedback law

u=ko(&) == —& )

leads to the following continuous change of 'V, typically
denoted as V :

(wwom© | ] o) =-a-a)

Along solutions to the closed-loop system resulting from
using (9) in (8), with initial condition & such that & is not
equal to —1, solutions approach the setpoint £*. However, the
solution from (—1,0) remains at its initial condition for all
time. Consequently, the feedback law in (9) does not induce
global asymptotic stability — formally, this feedback ensures
that the setpoint £* is almost globally asymptotically stable,
with basin of attraction equal to S* \ {—£*}.

A way to globally asymptotically stabilize the desired
setpoint is via a state-feedback law that is discontinuous.
To this end, consider the feedback

u = —sgn(&2) =: K1 (§)

where sgn is equal to 1 if its argument is positive, —1
if it is negative, and arbitrarily in the set {—1,1} when

(10)



its argument is zero. With this feedback, the solutions to
the resulting closed-loop system converge to £* from each
initial condition in S*. However, this feedback is not robust
to measurement noise. In fact, there exists arbitrarily small
measurement noise that, for initial conditions nearby —&¥,
solutions remain nearby —&*. Specifically:
o For initial conditions £(0) with &2(0) < 0, this feedback
leads to solutions that evolve towards £* counterclock-
wise;

e On the other hand, for initial conditions with £2(0) > 0,
this feedback leads to solutions that evolve towards &*
clockwise.

As a consequence, from initial conditions arbitrarily close
to —E&*, there exists an arbitrarily small measurement noise
signal t — m(t) that changes sign appropriately so that
—sgn(&a + m) is always keeping trajectories around —&*.

Fortunately, robust and global asymptotic stability can be
obtained by using a hysteresis-based logic to combine the
state-feedback law in (9) with a feedback law that drives
the system away from —&*. To this end, a logic variable
can be used to select which feedback law should be used,
depending on the location of the state &, so as to guarantee
global asymptotic stability in the presence of arbitrarily
small measurement noise. An overview of the logic is as
follows: denoting the logic variable by q, and its possible
values being q = 0 when the law ko in (9) is used and
q = 1 when the other law, k1, is used,

1) If ¢ = 0, then apply ko unless & gets to a neighborhood
of —&* of size eg > 0, in which case q is reset to 1;

2) If ¢ =1, then apply k1 until £ leaves a neighborhood
of —&* of size €1 > €y, in which case q is reset to 0.

The discrete update of q at each reset event is given by

gt =1—¢ (11)

In between such resets, q remains constant — hence,

¢=0 12)

Using this algorithm, the input to (8) is given by

u = rg(§)

where q € {0, 1} is dynamically updated using the hysteresis-
based logic outlined above, leading to a hybrid feedback
controller. The interconnection between (8) and this hybrid
controller results in a hybrid closed-loop system that com-
bines the differential equations in (8) and (12), capturing
the flow. The jumps of the hybrid system are captured by
the difference equation (11) modeling the resets of q, the
trivial update £+ = & for the state & (as it should not
exhibit changes at reset times), and the conditions in the
logic triggering the updates.

Example 3. Consider the problem of robustly and globally
asymprotically stabilizing the compact set Ap = {0,6} for
the continuous-time plant

Z=u wue€[-1,1].

The main difficulty in achieving this goal is that the set Ap is
not connected. A possible state-feedback law ensuring global
asymptotic stability of Ap is given by

K(2) = {—sat(z) ifz <3

ifz >3 (13

—sat(z — 6)
where sat is the unitary saturation function. With this
feedback law, solutions initialized in (—oo, 3] converge to 0,
while solutions initialized in (3, 00) converge to 6. Moreover,
since the closed-loop system behaves linearly around 0 and
6, stability of the set Ap follows. However, notice that (13)
is discontinuous at z = 3, leading to lack of robustness
to vanishing perturbations. In particular, arbitrarily small
measurement noise can trigger arbitrarily fast switching
and prevent solutions that start from 3 to approach the
set Ap. A possible strategy to overcome this drawback
consists of introducing a hybrid controller preventing the
feedback law (13) from switching too fast, thereby ensuring
global asymptotic stability of Ap robustly in the presence
of measurement noise. This is illustrated in the forthcoming
Example 6.

A. Hybrid Equations/Inclusions

For simplicity, we start by formulating a model of a
hybrid closed-loop system that does not have inputs. The
model capturing the dynamics of sample-and-hold control
in Example 1 is one such example. For such closed hybrid
dynamical system, the state of the system is denoted z € R”.
The flow of the state is governed by a differential equation
of the form

i = F(x) (14)

when

reC 15)

The function F' is called the flow map and the set C, subset of
R™, is called the flow set. Jumps of the state are determined
by the difference equation

T = G() (16)

when

zeD 7)

The function G is called the jump map and the set D, also
a subset of R", is called the jump set.

The sample-and-hold control system in Example 1 can be
written as in (14)-(17). The state of the system is given by

z=(§4y,T)

Suppose that the dimension of £ is n¢ and that the dimension
of ¢, is m¢. Since the timer is a scalar quantity, the state x
takes values from R™ with n := n¢ + m¢ + 1. Then, from
(4), the differential equation governing = during flows is'

T = (éaém%) = (f(gagv)voa 1)

Note that here we use the equivalent notation [z Ty T]T = (z, ).



from where the function F' in (14) is given by

Fa) = (f(&,40),0,1)

Note that 0 in F' has dimension ¢ X 1. According to (5) and
the discussion below it, flows are allowed when 7 € [0, T].
Hence, the flow set C is given by

C:={xeR":7€[0,T7]} =R" xR™ x [0,T"]
Following (2), the update of x at jumps is given by
ot = (& ke(€),0)
from where the jump map is given by
G(x) := (& ke(£),0)

Such updates should only be allowed when (3) holds. This
condition is captured by the jump set

D:={zeR":7=T"} =R" x R™ x {T"}
The combination of equations and constraints in (14)-(17)
leads to a hybrid closed-loop system, which is denoted H

and has data (C, F, D, G). This system can be conveniently
written as

rzeC
zeD

z = F(x)
zt = G ()
which we refer to as a hybrid equation. At times, F' might
be set valued, in the sense that given x, F'(x) returns more

than one value, namely, a set; similarly for G. Set valuedness
in these maps allow to conveniently capture uncertainty.

H

For example, if the continuous-time system in Example 1
includes uncertainty, such as measurement noise w and
additive disturbance d, then the flow of ¢ under the effect of
the sample-and-hold controller would be given by

£=J(&) +d
and the jumps of ¢, by
gj}r = ke(§ +w)

When these disturbances are bounded as |w| < p,, and |d| <
pd, their effect can be characterized by analyzing the set-
valued dynamics

€€ f&,4,) + paB

and
0F € ke(€+ puwB)

respectively, where f(§,£,) + paB collects all the sums
between points in f(,¢,) and those in pgB. In this case,
the resulting flow and jump maps are set valued, so H is
written as

rzeC
zeD

& € F(x)
zt e G(x)

which we refer to as a hybrid inclusion.

H (18)

B. Hybrid on Hybrid: Hybrid Plant and Hybrid Controller

The hybrid equation/inclusion formulated in the previous
section might be hybrid due to the plant or the control
algorithm being truly hybrid. For instance, the model of
sample-and-hold control outlined in Example 1 is hybrid due
to the controller being hybrid. However, there are numerous
examples of plants that have hybrid dynamics, such as spik-
ing neurons [16], walking robots [17], networked systems
[12], [13], to just list a few. In general, H could be the result
of interconnecting a hybrid plant and a hybrid controller.
Each one of these systems can be modeled independently,
as a hybrid equation or inclusion with inputs and outputs.
Hence, a hybrid control system is partitioned into two main
components:

e a hybrid plant, denoted H p, capturing the dynamics of
the system to be controlled and, if needed, dynamics
of other relevant mechanisms; e.g., signal conditioners,
sensors, interfaces to algorithms, etc.; and

e a hybrid controller, denoted Hpg, capturing the dy-
namics of the algorithms used for communication and
control, as well as dynamics of mechanisms that are
needed to define a complete model of the hybrid control
system.

Following the model of H in (18), a hybrid plant Hp is
given by

(z,u) € Cp 2 € Fp(z,u)
Hp : (2,u) € Dp 2T e Gp(z,u) (19)
y = h(z)

where z is the state, v the input, and y the output. Similar
to the data of H in (18), the data of Hp is given by
(Cp,Fp,Dp,Gp,h). In the same spirit, a hybrid controller
‘Hx is given by

(Uﬂ?) € OK 77 S FK(”ﬂ?)
HK : (Uﬂ?) € DK 77+ S GK(Uvn) (20)
¢ = &kv,n)

where 7 is the state, v the input, and ( the output. If the
controller Hx involves continuous dynamics only, then the
jump set is empty (and the jump map is arbitrary), in which
case the controller reduces to

HK . { (Uﬂ?) € CK 77 i FK(UJY) (21)

¢ K(v,1m)
In a simpler setting, when Hy is a static control law, for
example, a proportional controller, a neural network, or a
look-up table, it reduces to

Hi ¢ =

where v = z or v = y.
These constructions will be employed in the upcoming
sections introducing hybrid control strategies.

K(v) (22)

C. Notion of Solution

A notion of solution for a dynamical system defines
the properties required for a function of time to qualify



as a solution to the system. For instance, for the closed
continuous-time system

&= F(x)

a notion of solution characterizes the properties that functions
of the form ¢ — x(t), typically defined for ordinary time ¢
in subsets of R, for it to be a solution to the system. If
the initial condition is z,, then ¢ — z(¢) needs to satisfy
x(0) = xo. Furthermore, it needs to be smooth enough for

d
Za(t) = F(a(t)

to hold over its domain of definition, namely, dom x C R>.
If the state is constrained to the set C, then the function z
needs to further satisfy x(t) € C, at least for ¢’s in the
interior of dom z.

Similarly, for the (open) continuous-time system

&= F(z,u)
a solution is given by a pair
t e (2(t), ul?))

such that (0) = z,, the functions z and u are defined over
the same domain, and satisfy

d
Ea:(t) = F(z(t),u(?))

over domz = domwu = dom(z,u), where the function u
should be regular enough for the integral in

x(t) = zo —l—/o F(xz(s),u(s))ds

to be well defined for all ¢ € dom(x,u). Due to having
state variables that may evolve continuously and discretely,
a notion of solution to a hybrid system needs to allow for
intervals of flow and jumps. We start by introducing this
notion for the case of closed hybrid dynamical systems H
given as in (18), for which we go back to the sample-and-
hold control system in Example 1.

The timer state 7 in the sample-and-hold control system
triggers events when 7 = 7. When the initial value of
the timer is zero, then a solution to this system evolves
continuously until it reaches 7™, upon which it gets reset
to zero. This cycle repeats indefinitely leading to infinitely
many events over time. A convenient way to parameterize the
evolution of the timer state is by using two time parameters:

e A continuous-valued parameter ¢ € R>g that counts
time, and

e A discrete-valued parameter j € N that counts the
number of jumps in the solution so as to parameterize
the jumps.

The parameter ¢ plays the role of ordinary time ¢. The
parameter j plays a role similar to that of the discrete
parameter — usually denoted as k£ — used in discrete-time
systems. However, no discretization is involved in the notion
of time used in this paper. With this hybrid time notion, the

timer starting from zero is defined over intervals of flow
[0, 7%, [T*2T*, ... , [JT%G+1)T7,

where 7 € N. As each interval is associated to a different
value of the jump counter j, these intervals can be indexed
by j. Then, the domain of definition of the solution would
be
doma = | J (GT*, (G + DT") x {j})
JEN

One advantage of using closed intervals indexed by the jump
counter is that the value of the timer right before and right
after the event are included in the function defining the
solution. Specifically, the timer component of the solution
would then be parameterized by ¢ and j, as

T(t,j) =t —jT" V(t,j) € domz

Note that this function is such that, for each j € N,
t—7(t,5)

is continuously differentiable and satisfies

aT(tv‘j) = 17 T(taj) € [OvT*]

over the interior of the intervals of flow, namely, (7%, (j +
1)T™*). Moreover, for each jump time, namely, for each
(t,7) € R>¢ x N such that ¢t = (§ + 1)T, it follows that

T(t,5) =T"

and
T(t,j+1)=0

Hence, the function 7 defined above qualifies as the timer
component of a solution to the hybrid dynamical system
modeling the sample-and-hold control system defined in
Example 1.

In general, the combination of the parameters ¢ and j gives
rise to the notion of hybrid time and hybrid time domain.
Following the discussion for the example above, a solution
to H in (18) is defined on a hybrid time domain. A hybrid
time domain is the union of intervals of the form

[t tiv1] x {5}

possibly with the last interval being open to the right, for
some nondecreasing sequence t;. To define a solution to (18),
functions

z :domx — R"

with dom x being a hybrid time domain and, for each j € N,
t— xz(t,j)

being locally absolutely continuous, are considered. Such
functions are called hybrid arcs.

A hybrid arc x defines a solution to H = (C, F, D, G) if
(S0) x(0,0) € C or z(0,0) € D;

(S1) For each j € N such that IJ =
{t eR>p : (t,j) € doma} has a nonempty interior



int(17), = satisfies
z(t,j) € C for all ¢ € int(17)
and

d .
—x(t,j) € F(x(t, 7)) for almost all ¢ € I

dt
(S2) For each (t,j) € domx such that (¢,5 + 1) € dom,
x satisfies
x(t,j) € D
and

x(t,j+1) € G(z(t,j))

A solution x to H is said to be nontrivial if domzx
contains at least two points; complete if dom x is unbounded;
bounded if the set rgex := {x(¢,j) : (¢,j) € domz} is
bounded; precompact if complete and rge z is bounded; Zeno
if it is complete and the projection of domx onto Rx>q
is bounded; discrete if nontrivial and domz C {0} x N;
continuous if nontrivial and domz C R>¢ x {0}; maximal
if there does not exist another solution z’ such that z is a
truncation of x’ to some proper subset of dom z’.

The following example illustrates the definition of solution
above.

Example 4 (Resettable Timer). The dynamics of the timer
state T in the sample-and-hold control system in Example 1
do not depend on the other state variables. Hence, its
dynamics are captured by the hybrid system

7€ C:=[0,T*
T e D:={T*}

T =F(r):=1
T =G(r):=0
Given an initial condition 17, € C, the function

T(t,j) =t —jT" + 7 Y(t,7) € domT

is a hybrid arc, where dom T is given by
([0, 7" — 1] x {0} U
U UG =7, G+ DT = 7] x {5})
JEN\{0}
Moreover, it is also a solution to it. In particular, item (SO)

holds since T, € [0, T*]. Moreover, for j =0, IS = [0,T* —
To|- If To < T*, then I,(_) has a nonempty interior,

r(t,0) e C  vtel?

and

d
ET(t,j) =1 forallt €I

Hence, (S1) holds for j = 0. Proceeding similarly, (SI) holds
Sor each j € N\ {0}. Finally, (S2) holds at each jump. In
fact, at each jump time in domT, namely, at each (t,j) €
dom7 with tjy1 = (j+ 1)T* — 70, j € N, it follows that
(t,j+1) € domr,

~(tj41,4) =T" € D

and
T(tj+1,j + 1) = 0

Furthermore, the solution is nontrivial since its domain has
at least two points, maximal since it cannot be further
extended, and complete due to its domain being unbounded.

See [18], [6] for more details.

Unlike continuous-time systems or discrete-time systems,
existence of solutions to hybrid dynamical systems requires
that the data of H plays well nicely to allow either flow
or jumps. For starters, since jumps are always possible from
points in the jump set D, there exist at least one solution that
jumps from each point in D. From points in the flow set C'
that are not in the jump set D, namely, points in the set C'\
D, flow is possible if the flow map generates solutions that
stay in C' — see [18, Proposition 2.10]. Under the following
mild assumptions, known as the hybrid basic conditions, flow
from C'\ D can be guaranteed using the tangent cone to the
set C, denoted T¢.

The hybrid closed-loop system H = (C,F,D,G) in
(18) satisfies the hybrid basic conditions if
(A1) C and D are closed subsets of R";

(A2) F:R™ = R" is outer semicontinuous and locally
bounded relative to C, C C dom F, and F(z) is
convex for each x € C;

(A3) G : R™ = R” is outer semicontinuous and locally
bounded relative to D, and D C dom G.

Note that a map F' is outer semicontinuous if its graph is
closed and is locally bounded if, for each compact set K C
dom F, there exists a compact set K’ such that F(K) C K.
For more details, see [18, Chapter 5].

The following existence result follows — see [18, Proposi-
tion 6.10].

Let H = (C, F, D, G) as in (18) satisfy the hybrid basic
conditions. Take an arbitrary z, € C U D. If z, € D
or
(VC) there exists a neighborhood U of z, such that for
every xt € UNC,

F(z)NTo(x) # 0,

then there exists a nontrivial solution x to H with
2(0,0) = z,. If (VC) holds for every point in C'\ D,
then there exists a nontrivial solution to H from every
initial point in C'U D, and every maximal solution z
satisfies exactly one of the following conditions:

(a) x is complete;

(b) domx is bounded and the interval I/, where
J = sup{j : (¢,j) € domz}, has nonempty in-
terior and ¢ — z(t,J) is a maximal solution to
Z € F(z), in fact lim;_,7 |z(¢, J)| = oo, where
T =sup{t : (t,j) € domuz};




(©) «(T,J) ¢ CUD, where (T, J) = supdomz.
Furthermore, if G(D) C C U D, then (c) above does
not occur.

D. Notions and Analysis Tools

Tools for the analysis of asymptotic stability for hybrid dy-
namical systems relying on Lyapunov methods are available
in the literature [18]. Asymptotic stability for the (closed)
hybrid inclusion in (18) is most useful when defined relative
to a set, rather than just a point. For instance, suppose that
the goal of the sample-and-hold controller in Example 1 is
to guarantee stable convergence of £ to a setpoint £*. Since
the hybrid system model of the resulting closed-loop system
given in Section III-A includes the memory state storing the
values of the input and the timer state triggering the events,
the values to which those components should converge to
should be specified. A particular choice for ¢, is for it
to converge to a constant denoted ¢ that depends on the
setpoint £* — for instance, when the setpoint £* is zero and
the feedback law k. is linear, then ¢, should converge to
zero. Regarding the timer state, it should simply remain in
the allowed range [0, 7*]. Then, the set of interest for this
system is

A= {7} x {6} x

Note that this set is a subset of the state space of the
hybrid closed-loop system provided in Section III-A. For the
stabilization problem in Example 2, the set to stabilize is
given by the point {(1,0)} x {0, 1} in the space S' x {0,1}
resulting from the state of the closed loop resulting from
using the hybrid controller therein featuring a logic variable
q taking values from {0, 1}.

Denoting by A the set of interest for the analysis of H
as in (18), asymptotic stability and its robustness are key
properties of interest. Asymptotic stability is defined as the
property of solutions that start close to the set, stay close
to the set — called stability — and the property that solutions
converge to the set — called attractivity. These notions are
defined in a way that completeness of maximal solutions is
not required. In light of this generality, attractivity is referred
to as pre-attractivity.

Specifically, the set A is stable for H if, for each € > 0,
there exists § > 0 such that each solution x to H with

[2(0,0)[a <0

[0,77]

satisfies
|‘T(t7 .7) |.A S £

The set A is pre-attractive for H if there exists g > 0 such
that every solution = to H with

|2(0,0)]a < p

is such that (¢,5) — |z(t,j)|a is bounded and if = is
complete then

Y(t,j) € domx

li t,j =0
(t,j)edomlrzr,l t+j— 00 |x( ’j)|A

If 1 can be selected arbitrarily large, we say that A is

globally pre-attractive for H. Then, when A is both stable
and pre-attractive for H, we say that A is pre-asymptotically
stable for H. In the case that every maximal solution is
complete, pre-attractivity can simply be called attractivity
— in such case, a pre-asymptotically stable set A is said to
be asymptotically stable.

It can be shown that, when H satisfies the hybrid basic
conditions and A is compact, pre-asymptotic stability of A
for H can be characterized by the following bound: there
exists a class-CL function 3 such that, for each solution x

to H,
lz(t, 5)]a < B(2(0,0),t + 5)

Remarkably, under the said assumptions, this property is pre-
served, semiglobally and practically, under sufficiently small
perturbations to H. In fact, the following property, stated
loosely, holds: for each compact set of initial conditions K
and each ¢ > 0, for perturbed solutions x5 to H from K
under the effect of small enough perturbations satisfies [18]

|x5(t7j)|A < B(.’L'(;(0,0),t-i-j) +e

V(t,j) € domz (23)

V(t,j) € domzs

(24)
Perturbations may affect the measurements, the feedback
law, or the models of the continuous and discrete dynamics.
This robust pre-asymptotic stability property implies that
perturbed solutions converge to an e-neighborhood of A
(when complete).

Tools for the certification of these properties are avail-
able in the literature. In particular, methods for establishing
asymptotic stability and robustness are well documented in
[18] — see Chapters 3, 7, and 8 and the references therein.

Remark 1 (About Other Hybrid Systems Frameworks).
The framework introduced is general enough to capture the
differential automata model introduced in [19], the hybrid
automata considered in [20], [21], and the hybrid system
models in [1], [22], [23], which explicitly divide the state
into a continuous-valued state component and a discrete-
valued component. In particular, similar to the control strat-
egy in Example 2, the discrete state component describes the
mode of operation of the system (e.g., “on or off” or “high
or low”). The framework introduced in this paper can also
model impulsive systems [24] and switched systems [25] for
specific switching signals.

IV. SUPERVISORY AND UNITING CONTROL
A. Motivation

In some applications, it is very difficult (or even impos-
sible) to design a single controller to accomplish a desired
task. This is typically the case when the dynamics of the plant
are too complex for a single controller to handle it globally
[26] or when good performance for multiple operating modes
is hard to ensure [27]. Another relevant scenario in which
combining multiple controllers is paramount is when topo-
logical constraints rule out the existence of a smooth global
stabilizer [28], [29]. This last issue is made more concrete via
the example given next, which appeared in [6, Section 1.2.3].



Example 5 (Revisiting Example 2). Consider the system
evolving in the unit circle given in (8). This system models a
particle traveling on the unit circle centered at the origin of
the plane; z denotes the position of the particle on the plane.
The sign of the control input u determines the direction of
motion of the particle. In particular, when u > 0 the particle
moves counterclockwise and it moves clockwise otherwise.
Suppose one wants to design a feedback law rendering the
setpoint z* := (1,0) € S globally asymptotically stable. A
natural feedback law that one might consider to enforce this
property is as follows

k(z) = —z.

The main rational behind this feedback law is that when
zo > 0, u < 0 (the particle moves clockwise) and when
2o < 0, u > 0 (the particle moves counterclockwise). It
can be easily observed that by using the above feedback
controller, solutions to the closed-loop system starting away
from —z* converges to z* and solutions starting close to
z* stay close to it. However, solutions starting from —z*
are stuck and never approach z*. Unfortunately, it turns out
that asymptotic convergence to z* cannot be extended to the
entire set S' by preserving continuity of the state feedback
law. This is a major issue since discontinuous feedback
laws are overly sensitive to small perturbations such as
measurement noise. A possible approach to overcome this
limitation is to use two different control laws depending on
the value of the state z. In particular, in a connected subset
of S! not including —z* but including z* in its interior, say
V, one selects k(z) = —za. Away from V, & can be any law
driving solutions to V. These two controllers can be patched
together via a supervisory algorithm. In Example 7, we show
how the tools introduced in this section can be adopted to
build a hybrid controller ensuring global asymptotic stability
of the point z*, while avoiding the use of discontinuous
feedback laws.

An effective approach to coordinate multiple controllers
consists of relying on a supervisory control paradigm. In this
setting, a specific object, called the supervisor, is employed
to make a decision about which controller needs to be
adopted. In particular, the supervisor assigns each controller
to a specific region of the state space and decides when
to operate a switch. Next, we make this architecture more
precise and show how it can be modeled as a hybrid
dynamical system.

B. Modeling

For simplicity, we consider a continuous-time plant de-
fined as

Hp: (z,u) € Cp =R"P x R™P 2 € Fp(z,u)
(25)

and assume that the plant state z can be measured. In this

setting, we suppose that there exists a family of continuous-

time controllers

HK,q qu:: {0713-'-aqmax}

Hr,1

¢

Hp

supervisor Hs

Fig. 2. A schematic representation of a supervisory control-based closed-
loop system.

Hi,2

with dynamics

HK,q . { (57”) € CK,q 5 € FK,q(gu'U)

C = K q (57 ’U) .
The case when the controllers Hg , are genuinely hybrid
can be dealt similarly, yet with a larger notational burden;
see [6, Chapter 8]. The selection of the controller H g 4 from
the given family is determined by the following supervisory

algorithm:
(q,vs) € Cs
R R

The state ¢ is a logic variable that defines which controller
Hg,q is active. In particular, when ¢ = ¢* € (@ and
(¢*,vs) € Cs, flow is possible and H 4+ controls Hp.
When ¢ = ¢* € Q and (¢*,vs) € Dy, a jump occurs and ¢
is reset to a point in G4(g*,vs), which determines the new
controller Hg , to be used. A schematic representation of
the proposed supervisory control architecture is depicted in
Fig. 2. The definition of Cjs, Ds, and G4 should guarantee
that (Gs(q,vs) x {vs}) C Cs U D; for each (q,vs) € Ds.
Note that the resulting controller is hybrid and can be written
as Hx in (20) with state n = (&, q).

An example of application of the supervisory control
paradigm is given next.

(26)

g =0

qt € Gs(q,vs). 27

Example 6 (Example 3 Revisited). We now show how a
supervisory controller can be employed to come up with a
robust feedback law for the stabilization problem considered
in Example 3. To this end, the plant in Example 3 is modeled
as the hybrid plant Hp defined by

Fp(z,u)=u, Cp=Rx][-1,1]

Dp = 0 and Gp can be selected arbitrarily since no
jumps in the state z occur. As pointed out in Example 3,
lack of robustness is related to (13) being discontinuous
at z = 3. A possible strategy to overcome this drawback
consists of introducing a supervisor to handle the inherent
“switching” mechanism implemented (13). In particular, by
suitably designing the supervisor, one can prevent u from
switching too often. In this specific case, the controllers H q

are static controllers and @ = {0,1}. More in particular
ko(z) = —sat(z), k1(z) = —sat(z — 6).

The logic to be implemented by the supervisory algorithm is



as follows
o If ¢ =0 (kg is active) and z < 4, then do not switch

o If ¢ =0 (Ko is active) and z > 4, then switch to k1
o If g =1 (K1 is active) and z > 2, then do not switch

e If g =1 (k1 is active) and z < 2, then switch to K.
This logic leads to the supervisor defined by the following
data

Gs(q,vs) =1—¢

Cs = ({1} x (—00,4]) U ({2} x [2,00))

Dy = ({1} x (4,00)) U ({2} x (=00,2)).
It can be verified that the proposed supervisory controller
ensures that the set A == Ap x Q) is GAS for the closed-
loop system. Moreover, it turns out that maximal solutions

to the closed-loop system converge to a neighborhood of A
in the presence of small perturbations.

The interconnection of supervisor Hs with controllers
Hi,q» ¢ € Q, can be thought as a hybrid controller Hx =
(CK,FK,DK,GK,IQ) with state n = (q,f) € Q x R"K,
input v € R, and data

Fie(n,v) = [ Fraln UJ (8)

GK(%U) = (Gs(%gav)’g)
¢ =r(n,v) = rq(§,v).

The interconnection between the plant H p and the controller
Hix is defined via the following relationships

, u=_(.

This results into the hybrid closed-loop system H =
(C,F,D,G) with state z = (z,7) € R"" x @ x R"¥,
where

vV=z

C = {reR"™ xQxR"¥:(n,z)eCk}
F(z) = (Fp(z,rq(n,2)), Fr(n, 2))

G(x) = (2Gk(®,2))

D = {zeR"™ xQxR"<: (n,z) € Dk}.

We are interested in the following control problem.

Problem 1. Given a compact set Ap C R"? x R"¥ and
a closed set X C R"" x R"¥, design Cy, Ds, and Gg
such that C U D = X x Q and the set A .= Ap X Q is
globally asymptotically stable (GAS) for the hybrid closed-
loop system H.

The set X can be interpreted as a region of operation
assigned for the (z,£)-component of the closed-loop system
state. The set Ap may represent a desired setpoint or a
region defined in the (z,&)-coordinates that one wants to
asymptotically stabilize; this can be seen as the main control
task.

In the next subsection, we show how, under some rea-
sonable assumptions on the controller and plant data, a

supervisory control algorithm solving Problem 1 can be
designed.
C. Construction of the Supervisory Algorithm

To solve Problem 1, we consider the following assumption

[91. [5].

Assumption 1. There exists a collection of closed sets
{U,}qecq, where for all ¢ € Q, Uy C Ck q, such that:

1) Uv,=X
q€Q
2) Forall g € Q, let

z FP(Za'% (572))
: C : 1
Hq (2,€) € Ck q [5} € { Fr.q(&,2)
the following properties hold
(a) The set Ap is GpAS for H,

(b) Each maximal solution to Hy is complete or
ends in

H, =2,UX\ (CkqU®,)
where, for all q € Q,
(I)q = U \I/l
1€Q,i>q

(c) No maximal solution to H, starting in ¥,
reaches

X\ (Ck.qU®g) \ Ap.

The set

Y, =X\ (CiqUd,) (29)

appearing in items 2b and 2c represents the set from which
a controller with index smaller than ¢ can be activated.

Item 1 is instrumental to guarantee that the sets C and
Dy can be designed such that C U D = X. In particular,
item 1 assures that for any (z,£) € X, there exists ¢* €
@ such that (2,£) € ¥4 C Ck . Namely, from any
initial condition in X, there exists at least a controller in
the family (26) that can be activated. Item 2a ensures that
complete maximal solutions with constant ¢ approach the
set Ap. Notice that this is a milder property than the global
asymptotic stability of .Ap required in Problem 1. Indeed,
item 2a only ensures that any maximal solution is bounded
and that complete solutions approach A p. Item 2b guarantees
that each maximal solution either converges to Ap or ends
in a set where a controller with an index different than ¢ can
be activated. This property enables the hybrid supervisor to
ensure completeness of maximal solutions of the closed-loop
system. Item 2c combined with item 2b ensures that maximal
solutions end in a set where a controller with a larger index
can be activated. This prevents the supervisor to switch back
and forth from different controllers. Moreover, for ¢ = ¢max,
item 2 implies that maximal solutions converge to Ap and
that the set in item 2c is empty for ¢ = 0.



Based on Assumption 1, we select the following data for
the supervisory algorithm

Co=J g} x Cxa), Do=J (a} x Hy).

q€Q q€Q

G - {ieQ:vs €V,;} ifvs € P,UT,
SOV e Qi g vs € Wy) ifu, € HA\(@,UT,)
(30)
where T, is defined in (29). The rational behind the proposed
construction is as follows. When (z,1) € Ck g+, for some
g* € (@, then controller Hg 4 controls Hp and flow
is possible. When (z,17) € Hg+, jumping is possible. In
particular, if (z,7) € @4 U Ty+, then ¢ jumps to a value
i € @ such that (z,n) € U,. This ensures that after the jump,
only flowing is possible. Moreover, based on Assumption 1
items 2.b and 2.c, the resulting solution flows until it reaches
the set ¥;. Differently, if (z,7) € Hy\ (®,UY,), then g may
jump to a value i € @, with ¢ > ¢, such that (z,7n) € ¥,.
This, again, ensures that after the jump, only flowing is
possible and the above rationals based on Assumption 1
follow. Assumption 1 leads to the following result.

Let Assumption 1 hold. Let the data of the supervisor
Hs (27) be defined as in (30). Then, the set

A=Ap xQ
is GAS for the hybrid closed-loop system H.

Example 7 (Example 5 Revisited). We now show how the
proposed supervisory control paradigm can be used to deal
with the global stabilization problem dealt in Example 5. In
particular, based on the rationale outlined in Example 5, we
consider the following family of static feedback controllers

z€Ckpo={z€S"1 21 <1},
z€Ck1={z€S" 21> a0},

ko(z) = —21 31)
k1(z) = — 29
where ¢y € (—1,0) and c; € (co,0). In this case, X = S'. In
particular, the “almost” globally stabilizing feedback law k1
introduced in Example 5 is used when in C 1, while when
in Ck o, ko is used. Next we illustrate how the proposed
selection of the family of controllers (31) enables to fulfill
all the items in Assumption 1. This in turn ensures that the
set A :={(1,0)} x{0,1} is GAS for the closed-loop system.
Item 1 is fulfilled with Vo = Cko and ¥ = Cg 1.
Concerning item 2a, notice that having restricted ki to
operate only within the set Cgs i it ensures GpAS of the
set Ap = {(1,0)} for Hi. On the other hand, maximal
solutions to Hgy are not complete (and bounded), which in
turn ensures that the set Ap is GpAS for Ho. Thus, item
2a is fulfilled. Now observe that maximal solutions to Hoy
converge in finite hybrid-time in the set V. Furthermore,
maximal solutions to H1 are complete and converge to Ap.
This ensures the satisfaction of item 2b. Finally, notice that
item 2c holds since for ¢ = 0 the set in item 2c is empty and
solutions to H, starting in V1 converge to Ap. A simulation
showing the effectiveness of the proposed control strategy in
stabilizing the set A is shown in Fig. 3. In this simulation,

—21
0.5 —2Z2

-0.5

Fig. 3. Simulation results for the system in Example 7 with initial condition
z(0,0) = (—1,0) and ¢(0,0) = 1. The solution converges to A with two
jumps: one at the initial condition and another when z is on the boundary
of C K,0-

co = —0.75 and c; = —0.25.

D. Application to the Global/Local Uniting Problem

In some applications, the design of a single controller
ensuring global asymptotic stability and a local level of
performance is hard to perform. Indeed, although several
tools to design (globally) asymptotically stabilizing feedback
controllers exist, the design of global controllers performing
“optimally” is less obvious. However, the design of con-
trollers ensuring local asymptotic stability and a specified
level of performance locally can be addressed by relying on
linearized models. In these situations, an effective solution
consists of uniting the local controller with a global con-
troller. This problem, commonly called “the uniting problem”
has received the attention of researchers over the last twenty
years. Fundamental results about the uniting problem of
continuous-time controllers can be found, e.g., in [30], [31].
The application of this technique to a practically relevant
problem has been developed in [27]. The problem of uniting
two output feedback hybrid controllers has been explored in
[32]. A complete overview about the uniting problem can be
found in [6, Chapter 4].

The task of uniting a global and a local controller can
be achieved (robustly) by suitably designing a supervisor
that selects the most appropriate controller depending on
the value of the plant state. This is illustrated next. To this
end, we consider again the continuous-time plant (25). For
simplicity, we suppose the two controllers are static state
feedback laws, the case of dynamic feedback controllers can
be worked out similarly. In particular, we assume that there
exist two static state feedback controllers ki, ko: R —
R™# gsuch that:

e k1 locally stabilizes the origin of Hp and produces
efficient transient responses;

o ko globally stabilizes the origin of Hp but with unsat-
isfactory performance.

Our goal is to globally stabilize the origin of # p while using
ko far from the origin and ~; close to the origin. In particular,
suppose that x; is used when z € Cjg; and that ko is used
when z € Cg 5, where Cs; and Cg o are selected later. Let
Dg1 == R?\ Cg1 and Dgo = R"? \ Cgo; see Fig. 4
for a pictorial representation of the sets Cs 4, Ds 4. Then,
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Fig. 4. Sets for the uniting hybrid controller.

the switching policy to be implemented by the supervisory
algorithm is as follows.

o If k; is active and z € Cg 1 do not switch
o If k1 is active and z € Dg 1 switch to ko
o If Ky is active and z € Cs 2 do not switch

o If Ko is active and z € Dg o switch to k;.
The proposed feedback law can be thought as a hybrid
controller Hx = (Ck, Fx, Dk, Gk, k) with state ¢ € Q =
{1,2}, input v € R"”, and data
Ck = (Cs1 x {1}) U (Cs2 x {2})
Dg = (Dsa x {1}) U (Ds,2 x {2})
FK (Qa ’U) =0
Gk(g,v) =3—¢
k(q,v) = Kq(v).
The interconnection of (32) with (25) is obtained by selecting
v = z and u = K and leads to the hybrid closed-loop system
H = (C, F, D, Q) with state = := (z,q) € R"? x {1,2} and
data

(32)

C =0k
D = Dg
F(z) = (Fp(z,kq(2), Fx(q))
G(z) = (2,Gk(q)).
For the hybrid controller to work as intended, there needs

to be a relationship between Cs; and Dg 2. In particular,
solutions to

(33)

Z € Fp(z,k1(2)) (34)

starting in Dgo need to remain in a closed set that is
contained in the interior of C's ;. Moreover, any solution
to (34) starting in Cg; and remaining therein need to
converge to the origin. Since x; locally stabilizes the origin,
these two properties can be guaranteed by selecting Cs i
as a closed neighborhood of the origin contained in the
basin of attraction of x; and Dg 2 as a sufficiently small
neighborhood of the origin strictly contained in Cg ;.

Next we provide sufficient conditions for the compact set

A={0} x{1,2} (35)
to be GAS for the hybrid closed-loop system .

Assume that there exist oy, ag € Koo, positive definite
functions p1, p2, a closed neighborhood U4/ C R"™? of
the origin, and two continuously differentiable functions
Wi, Wa: R — R>( such that
D) au(lz]) < Wilz) < aa([2)),
R"P
2) (VWi(2), fp))
Fp(z,k1(2))
3) (VW2(2), fp)) <
Fp(z, k2(2)).
Let Cs,1 = U and Dg 1 = R \ Cg ;. Select Dg o C
Ly, (¢) compact and containing the origin in its interior,
where ¢ > 0 is such that

LW1 (C) cu.

Finally, let Cs o = R"? \ Dg . Then, the set A defined
in (35) is GAS for the hybrid closed-loop system H with
data defined in (33).

Vi € {1,2},z €
< —pil), Ve € Uy €

—p2(|Z|>, Vz € RanfP €

E. Further Reading

We presented the main ideas about supervisory control and
showed how those can be used to solve challenging control
problems by relying on a systematic design approach. The
generalization of the architecture we presented to the case
of hybrid controllers can be found in [28]. For a complete
overview on supervisory control, the reader is referred to
[6, Chapter 8]. Supervisory control has a long history that is
difficult to summarize in a short literature review. First results
about this topic can be traced back in the work by S. Morse;
see, e.g., [33] and [34]. The use of this paradigm has been
explored in several fields of application such as aerospace
[35], power electronics [36], [37], and optimization [38], just
to mention a few. Further results on the global/local uniting
problem can be found in [39], [40], [41]. A uniting local-
global strategy for fixed-time state estimation is presented in
[42].

V. EVENT-TRIGGERED CONTROL
A. Motivation

Event-Triggered Control (ETC) is best described as a “de-
liberate, opportunistic aperiodic” sampling strategy whose
aim is to increase the average sampling time of the closed-
loop system without compromising control performance
(cf. [43]). The goal of the present section is not to provide a
comprehensive overview of ETC, but rather to highlight the
importance of modeling ETC systems in the framework of
hybrid dynamical systems.

To this end, we present hybrid system models for the
event-triggered controllers described in [44] and [45]. Even
though these controllers were not initially conceived under
the framework of hybrid dynamical systems, we show that
modeling the resulting closed-loop systems under that frame-
work is helpful in identifying potential pathological solu-
tions, such as solutions with arbitrarily small intersampling
time. We also present two standard approaches to remove



pathological solutions, but we show that they require a trade-
off between control performance and sampling frequency.
Finally, we present some simulation results that underscore
the potential of Model-Based ETC in increasing the average
sampling time without compromising performance.

B. Send-On-Delta (SoD)

In this section, we present the send-on-delta approach as
developed by [44] from the perspective of hybrid dynamical
systems. Consider the problem of sampled-data control of a
continuous-time plant with state z € R™ and dynamics

2= Fp(z,u), (36)

where u € R™ is the input. While the standard approach is
to use periodic sampling, it was shown in [44] that there is
some benefit to using a more opportunistic sampling strategy.
Send-on-Delta (SoD) constitutes one such strategy, where
sampling events are triggered when the difference between
the current value of the state z and the value at the previous
sampling event 7 exceeds a threshold §, and the actuation
signal is kept constant in between events. The hybrid closed-
loop system that represents the interconnection between the
SoD controller and the continuous-time system (36) is given
by

_F
() € C {5 Op<z,n<n>>
’[’I =
(37)
(zn) € D 2T =z
z
where k is a feedback law and
C={(z,n) eR?™: |z —n| <o
(emeR zon<e)

D ={(z,n) e R* : [z —n| > 4}.

Anticipating the controller design in the next section,
assume that there exists a smooth function V : R — R
satisfying

aflz]) < V(z) <a(lz])
VV(2) " Fp(z,5() < —al|z]) +7(In — 2))

for each (z,7) € R?*", where v, ,a,@ € Ku. It follows
from [46, Theorem 1] that there exists a class-Coo function
6 such that the set A :== V71([0,¢]) x R"™ with € = 6(6)
is stable for (37), and each precompact solution to (37)
approaches V=1([0,¢]) x (V=1([0, ¢€]) + &B).

While the application of continuous-time feedback to the
system (36) would render the origin asymptotically stable
under assumption (39), its SoD implementation will, at best,
render the origin practically stable, in the sense that solutions
do not necessarily converge to the origin but rather to a
neighborhood of the origin. This neighborhood can be made
arbitrarily small by tuning of the controller parameter ¢.

(39)
(40)

C. Lyapunov-Based ETC

Similarly to the previous section, suppose that we are
given a feedback law z — k(z) that asymptotically stabilizes
the origin for the plant (36), and a Lyapunov function z —

V(z) satisfying (39). Lyapunov-based ETC revolves around
the idea of sampling the output of a plant only if some upper
bound to the derivative of the given Lyapunov function is
violated. There are a multitude of possible Lyapunov-based
ETC strategies, but we will focus our attention on the event-
triggered controller in [45], which has shaped much of the
research on ETC since its publication.

Following the controller design in [45], we derive the
hybrid closed-loop system:

2=FP(27'€(77))
(z,m) eC {7,7 _0

2t =z @D
(z,m) €D {77+=Z

where

C={(zn) €R* :y(In - z|) < oa(l2])}
D ={(z,n) € R*" :7(In — z[) > oa(l2])}.

and o € (0,1) is a controller parameter. In this case, [46,
Theorem 1] can be used to show that the set 4 := {0} xR™ is
stable and each precompact solution converges to {0} x {0}.
The key problem with this implementation is that it has a
complete discrete solution at {0} x {0}, which means the
existence of solutions with arbitrarily fast sampling under
the influence of state perturbations cannot be ruled out, as
discussed in the next section.

D. Minimum Intersampling Time

In ETC, one forgoes direct control over sampling events
with the hope that, by sampling “only if needed”, it is
possible to increase the average sampling time without
compromising performance. However, there is the risk that
events happen too frequently. For example, the existence
of Zeno solutions in ETC is particularly pathological as
there is no hardware in a sampled-data control system that
is able to handle arbitrarily fast sampling. Therefore, the
design of event-triggered controllers is often coupled with
some guarantees on the existence of a lower bound to the
intersampling time.

One of the key advantages in modeling event-triggered
controllers using the hybrid systems framework is that it
helps with the identification of potentially pathological solu-
tions. For example, even though [45, Theorem III.1] proves
that there is a uniform lower bound to the intersampling time,
it does so by excluding solutions starting from the origin.
It was shown in [47] that, if the Krasovskii regularization
of a system has a complete discrete solution, then there
exists a solution with arbitrarily small intersampling time
under the influence of arbitrarily small state perturbations.
On the other hand, notice that the hybrid system (37) satisfies
the condition G(D) N D = (), where G(z,1) = (z,z)
denotes the jump map of (41), and, for that reason, each
maximal solution has a lower bound to the intersampling
time (cf. [48]). The way to address the existence of complete
discrete solutions in (41) is to remove them, either by



temporal regularization, or by spatial regularization.

1) Temporal regularization: Temporal regularization
refers to the implementation of a timer within the controller
that blocks sampling events until a certain time 7" > 0 has
passed. Following the strategy in [46], we extend the state
variable in (41) by including a timer variable 7. The hybrid
closed-loop system under temporal regularization becomes:

2= Fp(z,5(n))

ieC ({n=
7= p(7)
(42)
Z+*Z
ieD nt ==z
Tt =

where T = (2,7, 7),
C = (C x Rxg) UR?" x [0,T],
D =D x [T, +),

and, for each 7 > 0,

0,1  ifr=1*
p(r) =41 if 7€[0,77%)
—74T ifr>T*

with T* > T. It follows from [46, Theorem 3] that, if A
is pre-asymptotically stable for (41), then A x [0,7*] is
semiglobally practically stable, in the sense that, for each
compact set of initial conditions and each e > 0, there
exists 77 > 0 such that each solution to (42) approaches
(A x [0,T7]) + €B.

2) Spatial Regularization: In spatial regularization, one
defines a neighborhood around complete discrete solutions
that turns off events. Following a similar approach to [49],
the hybrid closed-loop system (41) is modified as follows:

(o) € 8 { = Fp(z,5(1))

=0
(43)
~ 2t =2
(z,m) €D { +
nt=z

where

Cj = {(z:n) €v(In —2]) <oallz]) + v}
D ={(z,n) € v(In = z[) = oa(|z]) + v},

where v > 0. In this case, it follows from [46, Theorem 1]
that there exists a class-Ko, function ¢ such that the set
A = V71([0,€]) x R™ with € := 6(v) is stable and each
precompact solution to (43) approaches AN C.

We conclude that, in general, in order to prevent arbitrarily
fast sampling in the presence of perturbations it might be
necessary to trade asymptotic stability for practical stability.
The event-triggered controller in [50] is a notable exception
to this trade-off. However, if one finds that practical stability
is an acceptable solution for a given control problem, then
it might be worth to consider a model-based ETC solution.

E. Model-Based ETC (MB-ETC)

Model-based ETC is an adaptation of the SoD approach
which leverages knowledge of the plant dynamics in order
to maximize the intersampling time. Instead of keeping the
value of the last sample stored in memory, a holding function
is used to propagate the value of the state from the last
sample. In this way, the closed-loop system runs mostly in
open-loop, since events are triggered only if the value of
the state deviates from the value of the predicted state by
an amount . Following the Model-based ETC approach, the
hybrid closed-loop system (37) becomes

z= FP(Zv 5(77))

(z,m) €C {ﬁ = Fp(n, k(1))

(44)

where C' and D are as in (37). Under the assumptions given
in Section V-B, the stability result does not change, but
one can expect the average intersampling time to increase
significantly.

Example 8 (Comparison between SoD and MB-ETC). To
illustrate the differences between the Send-on-Delta con-
troller (37) and its model-based implementation (44), we
borrow the example in [49, Section VL.A] of a jet engine
compressor. The dynamics are given by

32_ Gt

2 2

21:—22—
ZQZU

where z1 represents the mass flows, zo represents the pres-
sure rise and u is the throttle input. A feedback law that
stabilizes the origin for this system is given by
9 3
K(z) = 4z1 — 429 — 52% - 52%

Figure 5 represents the evolution of both the plant state z as
well as the controller variable 7 for a particular execution
of the hybrid closed-loop systems (37) and (44) under the
influence of an actuator fault that increases by 10% the
output signal relative to a given command u. We do this
because, otherwise, the system (44) would operate solely in
open-loop. We have set § = 0.1 which is a fairly large value
for two reasons: it becomes more apparent that the origin is
not asymptotically stable, as the system undergoes oscillatory
behavior in a neighborhood of the origin, and sampling
events are sufficiently spread apart so as not to overcrowd the
figures. It is possible to verify that the model-based ETC only
has two sampling events, whereas the pure SoD approach
exhibits much more frequent sampling. In addition, the MB-
ETC solutions does not oscillate as much as SoD.

F. Further Reading

The literature on ETC is vast as it spans more than
two decades worth of contributions. Therefore, rather than
an exhaustive list of works on ETC, we point the reader



z SoD
— — —n SoD 1
z MB-ETC
n MB-ETC 1
| 1
Or \éléek‘/:— W;%M#
0.2 . . . .
1 r T T T T
0.8% 8
I
0.6 ¥ 1
= 04F 1
Q 3
0.2 ¥ ]
f k ‘
o T N —% N
Q === —H=—7]
—0.2 I I . .
0 2 4 6 8 10
t
Fig. 5. Representation of the evolution of both plant state and controller

state with time for the hybrid closed-loop systems (37) and (44).

to a few key results. The work in [51] provides a good
starting point to anyone interested in ETC. An important
dynamic event-triggered controller has been proposed in [52]
which is shown to increase the average intersampling time
relative to static event-triggering mechanisms. The issue of
robustness in event separation has also been studied in [53].
A different approach to ETC where one does not have to
worry about event separation is Periodic ETC, which is
thoroughly studied in [54] and [55]. More details on model-
based ETC can be found in [56] and [43].

VI. SYNERGISTIC HYBRID FEEDBACK
A. Motivation

We have seen in Example 5 that there are dynamical sys-
tems for which global asymptotic stabilization of a setpoint is
not possible using continuous feedback, and we have devised
a Supervisory Hybrid Control approach in Example 7 which
solves that problem. Synergistic hybrid feedback is a hybrid
control solution that tackles the same problem but using a
different approach [57].

Synergistic hybrid feedback can be seen as a supervisory
control strategy in which the supervisor triggers controller
switching when the difference between the current value of
a Lyapunov function V,(z) and the lowest possible value
among a collection of Lyapunov functions satisfies

#(2777) = Vn(z) - mln{vﬁ(z) 'n € Q} > 5(2777)3

for a given positive function §. The function (45) is known
as the synergy gap, and Q is the set of all possible values
of n. If V(z,n) = V;(z) is positive definite with respect
to a compact set A and nonincreasing during flows, by
switching the current controller 7 to the minimizer of V,,(2)

(45)

we guarantee the decrease of the Lyapunov function during
jumps. Unlike supervisory hybrid control, the switching
regions are implicitly defined as the set of points for which
a decrease of the Lyapunov is guaranteed. To illustrate the
design principles of synergistic hybrid feedback controllers,
let us revisit Example 7 next.

Example 9 (Example 7 Revisited). Consider a logic variable
n € Q = {0,1}, and the following pairs of Lyapunov
functions and feedback laws on S':

Vo(z) =1 — 24, Kko(z) = —2z9,
o(2) 1 0(2) 2 46)
Vi(z) = a+B(1—22), ki(z)=z.
for each z == (z1,22) € S, where o and j3 are positive
constants. We define a hybrid controller as follows:
(z,m)eC  n=0,
(47)

(z,m) € D n" €argminV,(z),
qeQ
where § > 0 is a controller parameter and
C = {(2,77) €S' x Q:V,(2) —miéﬂ/:z(z) < 6} ,
qe

D = {(z,n) €S' x Q:V,(2) _Z%hglvq(z) > 5}.

The hybrid closed-loop system resulting from the intercon-
nection between (8) and (47) is given by

. 0 -1
(z,m) e C &= rn(2) [1 O]Z

=0 (48)

2t =z
z,m) €D
(z:m) {UJF € argmin e g Vo(2)
Given that kg alone is not able to globally asymptotically
stabilize (1,0), the question is then: are there values of «
and B such that

A={(z,n) €S xQ:2=(1,0), n=0}

is globally asymptotically stable for the hybrid closed-loop
system (48)?

Firstly, note that V(z,n) = V,(z) is positive definite
relative to A, thus V' is a Lyapunov function candidate with
respect to A. Secondly, the change in the value of V during
Jjumps is upper bounded by —9 by construction. Finally, the
change in the value of V' during flows is given by

y _22 lfn:Oa
V(Z,n)Z{_Zi Fn—1
1 n=1

In order to achieve global asymptotic stability of A, we need
to ensure that V(z,m) < 0 for all (z,n) € S* x Q\ A. This
can be achieved by selecting o and 3 such that

(49)

V(z;n) =0 = (z,n) e D\C
forall (z,n) € St x Q\ A. There exists § > 0 such that this



condition can be achieved if and only if

l<a<?2, 0<fB<2—a. (50)

As can be seen in Example 9, the key to global asymptotic
stability by synergistic hybrid feedback is guaranteeing that
1 is greater than zero for undesired equilibria of the hybrid
closed-loop system.

A strong motivation to pursue the development of hybrid
controllers in general — and synergistic hybrid feedback in
particular — stems from the fact that there is no continuous
feedback law that can globally asymptotically stabilize a
setpoint on a closed manifold, i.e., a compact manifold
without boundary (cf. [58]). Furthermore, it was proved
in [29] that, if there is no continuous feedback law that
can globally asymptotically stabilize a setpoint, then there
is no discontinuous feedback that can robustly globally
asymptotically stabilize it either.

Since most robotic systems have rotational degrees of
freedom, the aforementioned results suggest that the de-
velopment of hybrid controllers is essential for the control
of robotic systems. In this context, the development of
synergistic hybrid feedback is particularly relevant because
it provides a systematic way to design hybrid controllers that
can robustly asymptotically stabilize a setpoint on a closed
manifold.

B. Properties of the Hybrid Closed-Loop System

In this section, we provide a more formal definition of
synergistic hybrid feedback which is taken from [59] and
presented here for completeness. In this direction, let us
consider the problem of globally asymptotically stabilizing
a compact subset A of Z x Q for a system resulting from
the interconnection between

Hp - {(z,u)ecp Z2€ Fp(z,u) 51)
y=z
and
(Uan)ECK WEFK(Uﬂ?)
HK : (van) € DK 77+ € GK(”W) (52)

¢= H(’Uv 77)

by setting v =y and u = ¢, where Cp := ZxU and u € U
is the control input. The sets Z, Q and U are closed subsets
of some Euclidean space, and Fp is outer semicontinuous,
locally bounded, and convex-valued.

Definition 1. Given a compact subset A of Z x Q, a
feedback law (z,m) — k(z,m), a continuous function
(z,m) — V(z,n), and set-valued maps (z,n) = Q(z,n)
and (x,n) = Fk(x,n), we say that the hybrid controller
(k,V,Q, Fi) is a synergistic candidate relative to A for (51)
if the following conditions hold:

(C1) For each (z,m) € Z x Q, there exists g € Q(z,n) such

that V(x,g) < +o0.

(C2) Fx is outer semicontinuous, locally bounded, and
convex-valued.

(C3) The set-valued map Q is outer semicontinuous, lower
semicontinuous, and locally bounded;

(C4) The function k is continuous and
{(z,n) € Zx Q:V(z,n) < +oo} C dom k.
(C5) V is continuous, positive definite relative to A, and
V=L([0,¢]) is compact for each ¢ € R>y.

The synergistic hybrid feedback controller is derived from

the data (,V, Q, Fi) as follows:
(z:n) €Cx € Fr(zn),
(z,m) € D ¢" € pv(2,m),

with pv (z,n) = argmin{V(z,¢) : ¢ € Q(z, 1)} and

Ck ={(z;n) € Z2x Q:p(z,n) <6(z,m)}
Dg ={(z,n) € Z2x Q:p(z,n) = 6(z,m)}
where (z,7n) — (z,n) is a continuous function, and g is
defined in (45).
The conditions used to specify synergistic candidates

guarantee that the hybrid closed-loop system resulting from
the interconnection between (51) and (53), given by

(53)

Z € Fp(z,k(z,m))
77 € FK(Zan)

(z,m) e C {

(54)
2t =2

(e D {n* € pv(n)

with C' = Cx N Cp and D = D satisfies the hybrid basic
conditions and, consequently, establish the well-posedness
of (54). In addition, Condition (C5) sets the preliminary
assumptions for the stability analysis that follows.

Definition 2. Given a compact subset A of Z x Q, we say
that a synergistic candidate relative to A for (51) with data
(k,V,Q, Fk), is synergistic relative to A for (51) if:

(C6) The function V is Lipschitz continuous on a neighbor-
hood of C' and

V(ZaW)SUC(ZaW)SO V(Zan)ezx Q
for some function u.,

(C7) Let u;1(0) == {(z,n) € Z x Q : us(z,m) = 0}. The
largest weakly invariant® subset of

ZEFP(Zuﬁ(Zun))v UEFK(ZW) (55)
in uc_l(O), denoted by VU, is such that
inf{uv(z,n) : (2,n) € ¥\ A} > 0. (56)

2A set A is said to be weakly invariant for H if it is weakly backward
invariant and weakly forward invariant for H, which are properties defined
as follows: A is weakly backward invariant for # if for each z{} € A
and each T" > 0 there exist zp € K and at least one solution x to H
from zo such that for some (t*,5*) € domax with t* 4+ j* > T, x
satisfies z(t*,j*) = xo and z(¢,j) € A for all (¢,5) € domx such that
t+j < t*+4;*, and it is weakly forward invariant for # if for each x{in.A
there exist at least one solution x to H from x¢ such that z(t, j) € A for
all (t,j) € doma.



If Condition (C7) holds, then it is possible to select a
positive function (z,7) — d(z,n) satisfying u(z,n) >
d(z,m) for each (z,n) € ¥\ A, in which case we say that
(k,V,Q, Fi) has synergy gap exceeding 0. The following
theorem holds the key to most applications of synergistic
hybrid feedback.

Given a compact subset A4 of Z x Q and a continuous
function § : Z x Q@ — Ry, if (k,V,Q, Fk) is syner-
gistic relative to .4 for (51) with synergy gap exceeding
0, then the set A is globally pre-asymptotically stable
for (54). If each maximal solution to (54) is complete,
then A is globally asymptotically stable for (54).

In the following sections, we discuss more advanced
concepts of synergistic hybrid feedback and its applications.

C. Central vs Noncentral Synergism

The synergistic controller of Example 9 is said to be
noncentral, because it exhibits a preference over the value
of the logic variable, in the sense that, the controller always
switches to n = 0 in a neighborhood of (1,0). However, if
one is not careful with the controller design, it is possible for
the state of the plant to move away from the point (1, 0) when
the controller state n is equal to 1. It is possible to prevent
such behavior with the design of a centrally synergistic
controller, as the one in the following example.

Example 10 ([60]). Let Q = {q € S' : q"x < 7} for some
v € (—1,1), and consider the controller data (k,V,Q, Fi)
given by

0

Kk(z,m)=2z" [1 _01} V.V(z,1m)

T

1—7r'2
v =
(zm) 1—rTz4+k(1—nTx)

foreach (z,m) € S'xQ, where r € S! is the desired setpoint,
k > 0 is a controller parameter, and Q(z,n) = Q and
Fi(z,m) = 0. The derivative of V' along flows of the hybrid
closed-loop system is given by

V(Zv 77) = _(H(Z)VZV(Zvn))2

foreach (z,m) € S'x Q, where I1(z) == Iy—zz . It is shown
in [60, Corollary A.1] that the largest weakly invariant subset
in {(z,n) € S'x Q: V(z,n) =0} is ¥ = {(r,n)} and
in [60, Corollary 1] that

inf{p(z,) : (2,7) € W\ A} = =17

2/k+1+~

Hence, (k,V,Q, Fi) is synergistic relative to A .= {r} x Q
with synergy gap exceeding 0 for any positive continuous

Sunction § satisfying §(z,n) < 2/;_‘%_’_7

The controller in Example 10 has a few features that are
important to mention: 1) it allows for global exponential
stabilization of a setpoint on a circle, which is something
that cannot be achieved with continuous feedback; 2) it
enables global asymptotic stabilization of a setpoint on S™

without preference over the logic variable associated with
that setpoint; 3) the set Q is not discrete, which opens the
possibility of having nontrivial controller state dynamics.
Even though the vast majority of synergistic controllers have
a controller state that is constant during flows, there are some
advantages to having a dynamically changing controller state,
as shown in the following example.

Example 11 (Dynamic vs. Static Controller States). Con-
sider the controller data k, V, and Q) of Example 10. How-
ever, instead of Fi being identically zero, let us consider

Fi(z,m) = —T(n)(n)V,V(2,n)

for each (z,m) € S*' x Q, where II(n) == Iy — " for
each 1 € S is the projection operator that maps vectors in
R? to the tangent space to S' at m, and T is a continuous
nonnegative function on S* such that T'(n) = 0 for each n €
Q satisfying n'r > ~. With these dynamics, the derivative
of V is given by

V(Zan) = _(H(Z)VZV(Zvn))2 - |H(Q)qu(2777)|2

for each (z,m) € S* x Q. Hence, for any given (z,n) the
given controller dynamics guarantee that the derivative of
V' is less than or equal to the derivative of V' when the
controller variable remains static.

D. Synergistic Controllers with Arbitrarily Large Synergy
Gap

Definitions 1 and 2 accommodate the possibility that V' is
not necessarily finite. While this is not standard within the
literature on synergistic hybrid feedback, it is necessary in
order to encompass the results in [61], which we present in
this section.

Example 12. Let us consider once again the dynamical
system (8). The collection </ = {(¢y,Uy)}neo with Q =

{-1,1},

Z1

Pn(2) :

105 Vz = (21,22) € Uy

and U, = {x € S' : nuy # 1} defines a maximal atlas
for the manifold S'. The collection </ is a maximal atlas
for St because the domains of the charts cover the entire
manifold and the transition maps are smooth. In fact, ¢,
is the well known stereographic projection. One can use
these coordinate representations to asymptotically stabilize
a given setpoint v € S' almost globally by finding the
representation of the setpoint in the given coordinates and
then follow a straight path (in coordinates) from almost any
initial condition to the setpoint. The singularity of ¢, at
x = (0,n) is handled by switching to the other chart. The
key assumption in this controller design is that the setpoint
r is not at the singularity of any of the charts.

Under this assumption, the synergistic controller



(k,V,Q, Fi) data is as follows:

Vo o {3160 =P izt
’ 400 otherwise ’
wemy=aT || VeV,
1 0
Q(z,n) = Q,
Fr(z,nm) =0.

We have that V(z,n) = +0o when x = (0,7n), and in such
cases, it follows that V(x,g9) < +4oo for g = —n, thus

Condition (C1) is satisfied. Fx and Q satisfy (C2) and (C3),
respectively. The domain of k is precisely the set {(z,n) €
S x Q:V(z,n) < +o0}, hence condition (C4) is satisfied.
V is continuous and positive definite relative to A .= {r}xQ
and it is radially unbounded, thus condition (C5) is satisfied.
We conclude that (k,V,Q, Fr) is a synergistic candidate
relative to A. The change of V along flows is

V(z,n) = —[(2)V.V(z,n)|?
= —|l(2)V ¢, (2)(¢y(2) — ¢n(z))|2

which is equal to 0 if and only if z = r. Notably, for this
controller we have W = A, hence

inf{p(z,n) : (z,n) € ¥\ A} = +o0,

thus, not only is (k,V,Q, Fk) synergistic relative to A, but
it has synergy gap exceeding § for any bounded §.

The work in [61] not only provides the construction of
synergistic controllers for global asymptotic stabilization on
a smooth manifold, but also allows for arbitrarily large
synergy gap. The main disadvantage is that increasingly large
values of § require increasingly large actuation signals.

E. Further Reading

We have covered the definition and the main result of
synergistic hybrid feedback, and illustrated key features by
means of examples of global asymptotic stabilization on S*.
However, we are leaving out of this tutorial many other more
interesting applications of synergistic hybrid feedback which
we will summarize next. Synergistic control first came to
prominence in [62], where the problem of global attitude
tracking was tackled through unit-quaternion feedback. How-
ever, unit-quaternion feedback requires consistent reconstruc-
tion as in [63]. Another possibility is to use directly the
rotation matrix in the feedback law, as done in [64], [65]
or [66]. An application of quaternion-based synergistic hy-
brid feedback to quadrotor control can be found in [67].
To find out more about central and noncentral synergistic
controllers we refer the reader to [68] for the definitions,
and to [60] for its application to quadrotor control. More
recent developments on robust synergistic hybrid feedback
can be found in [59] where the application of synergistic
controllers for obstacle avoidance is also explored. Finally,
there has also been an ongoing effort to develop synergistic
hybrid observers, see e.g. [69].

VII. CONCLUSION

In addition to the references listed earlier in the further
reading sections, the following resources might be useful to
further learn about hybrid dynamical systems:

1) An earlier tutorial on hybrid dynamical systems pub-
lished in IEEE Control Systems Magazine, including
material on hybrid feedback control [5].

2) The Hybrid Equations Toolbox in [70] introduces a soft-
ware package for Matlab/Simulink for the computation
of approximations of trajectories to hybrid equations.

3) The book [18] introduces the hybrid dynamical systems
and presents a comprehensive theory for robust asymp-
totic stability of sets.

4) The textbook [6] provides a more in-depth exposition to
hybrid feedback control of the strategies covered by this
tutorial paper. It also includes a detailed presentation of
the Hybrid Equations Toolbox in [70], with pointers to
implementations of the simulator in Octave and Python.

The hybrid control strategies presented in this tutorial paper
are just a small sample of those available in the literature
such as reset integrators [71], passivity-based control [72],
throw-and-catch control [73], patchy control Lyapunov func-
tions [74], invariance-based control [75], [76], energy-based
control [77], model predictive control [78], [79], and many
others that can be found within the references listed above.
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