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A B S T R A C T

Interregional transport plays a significant role in haze formation with varying and disputable contribution extent. 
Current research on quantitatively analyzing interregional atmospheric pollution transport has mainly relied on 
meteorological and chemical models. However, these models are typically affected by uncertainties due to the 
assumptions and simplifications inherent in the numerical simulations and source emission estimations. In this 
study, a comprehensive optical flow framework is developed to offer a new perspective on quantitative char-
acterization of interregional transport of atmospheric pollution based on synergistic observations from geosta-
tionary and sun-synchronous satellites. In this framework, the high-frequency continuous aerosol observing 
images are regarded as video in computer vision, and an aerosol dynamic optical flow algorithm is proposed by 
incorporating aerosol-specific assumptions and constraints, overcoming the limitation that traditional optical 
flow methods are typically confined to rigid bodies. Results demonstrate that the developed optical flow 
framework could distinguish the aerosol transport process from other dynamic processes of aerosol development 
and accurately capture the fast-changing details of transport processes. Moreover, the satellite-based optical flow 
framework achieves aerosol transport results comparable to those of widely accepted model-based methods, 
demonstrating the physical interpretation of pixel-based optical flow results and highlighting its effectiveness in 
quantitative characterization of the atmospheric pollution transport process via the Aerosol Transport Index 
(ATI). Furthermore, a case analysis of long-term assessments of interregional transport of atmospheric pollution 
indicates that Beijing acts as a “sink” of atmospheric pollution, and a downward trend could be found from the 
annually averaged transported aerosol net loadings due to the emission reduction policy. Compared with model- 
based methods, the satellite-based optical flow framework is directly grounded in observations and does not rely 
on emission inventories that take years to update. Therefore, it not only helps improve understanding the pat-
terns of atmospheric pollution interregional transport, but also provides a more efficient and economical way to 
assess the effectiveness of regional joint control policy.
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1. Introduction

Atmospheric pollution, which is primarily contributed by anthro-
pogenic aerosols generated from human activities, can cause compli-
cated impacts on radiation budget and climate change (Albrecht, 1989; 
Knippertz et al., 2015; Masson-Delmotte et al., 2021; Ramanathan et al., 
2001). Additionally, atmospheric pollution, especially the fine partic-
ular matter, has a variety of adverse implications on human health, as 
one of the leading risk factors for global burden of disease, thereby 
influencing morbidity and mortality (Cohen et al., 2017; Kan et al., 
2012; Pope et al., 2002; Zhang et al., 2018). It is increasingly recognized 
that atmospheric pollution in a specific region include not only those 
from local sources but also a substantial proportion of exogenous aero-
sols from surrounding and distant sources delivered via transport pro-
cesses (Huang et al., 2020; Yu et al., 2012; Zhang et al., 2017). And the 
regional-scale transport process is usually complex that contributes to 
the local atmospheric pollution with varying extent under different 
meteorological and emission conditions, thus leading to uncertainties in 
the clarification of reasons for severe haze (Chang et al., 2019; Li et al., 
2015). Therefore, quantifying and characterizing the interregional 
transport of atmospheric pollution are necessary and undoubtedly 
meaningful for the regional atmospheric pollution joint control and 
policy making.

In recent decades, various studies have been conducted to describe 
and characterize the regional atmospheric pollution transport, where 
the most widely used type of methods have mainly relied on meteoro-
logical and chemical models, such as the backward trajectory models 
(Draxler and Hess, 1998; Stein et al., 2015), sensitivity analysis within 
chemical transport models (Yang et al., 1997; Zhao et al., 2015), source- 
oriented models (Zhang et al., 2014), direct calculation of transport flux 
through using chemical transport models (Berge and Jakobsen, 1998; 
Jenner and Abiodun, 2013; Wang et al., 2009), etc. Nonetheless, these 
model-based methods are typically affected by uncertainties due to the 
assumptions and simplifications inherent in the numerical simulations 
and source emission estimations, such that the atmospheric models do 
not always reliably capture the pattern and/or quantity of aerosols 
owing to highly complicated atmospheric physicochemical processes, 
thereby resulting in large variation in simulation results among different 
models.

Satellite-based remote sensing is efficient in providing spatially 
continuous aerosol observations at large scale. With the launch of new- 
generation geostationary satellites, such as the Himawari-8/9 and 
Geostationary Operational Environmental Satellite (GOES) series, the 
frequency of aerosol observations has increased remarkably to every 
5–10 min. Because the period over which aerosol fields change notably 
is usually approximately 30 min (Kikuchi et al., 2018; Prather, 2009), 
the temporally continuous aerosol images derived from geostationary 
satellites could be treated as video (Zhang et al., 2019). Accordingly, the 
computer-vision-based optical flow method, which is generally applied 
for motion detection and motion compensation based on the movement 
of brightness pattern of pixels from continuous image sequencies (Horn 
and Schunck, 1981), possesses huge potential for addressing the prob-
lem of how to estimate dynamic aerosol transport from static satellite 
aerosol observations (Zhang et al., 2020). Nevertheless, a series of 
challenges and difficulties must be overcome when incorporating the 
computer-vision-based optical flow method into the field of atmospheric 
aerosol research. The most critical problem is that optical flow methods 
were originally designed for a rigid body assuming that the form of the 
target object never changes during the motion process, whereas aerosols 
can develop and change over time via physicochemical processes or 
anthropogenic emissions. Moreover, the optical flow is typically calcu-
lated on intact images for utilizing spatiotemporally adjacent informa-
tion, which is significantly hindered by the substantial amount of data 
blank in satellite-derived aerosol products caused by cloud cover or high 
reflected land surface (Gupta et al., 2019).

In this study, a comprehensive optical flow framework, where a 

novel aerosol dynamic optical flow algorithm is proposed to quantify 
aerosol transport using multi-satellite synergistic observations, is 
developed to provide a satellite perspective to quantitatively charac-
terize interregional transport of atmospheric pollution. Specifically, the 
high-frequency aerosol observations with improved spatial coverage 
and accuracy are firstly generated by merging data from geostationary 
and sun-synchronous satellites and fusing the retrievals of active and 
passive sensors. The aerosol dynamic optical flow algorithm is then 
proposed by incorporating the aerosol variation over time and topo-
graphical information into the classic optical flow model. Additionally, 
an aerosol transport index (ATI), combined with a transported loading 
calculation scheme, is proposed and utilized to establish the physical 
interpretation of the optical flow results, and corresponding results from 
coupled meteorological–chemical model simulations are employed for 
comparison and discussion. Furthermore, the boundary transport 
contribution and net transported aerosol loadings for Beijing is analyzed 
and discussed to demonstrate the effectiveness and efficiency of optical 
flow framework in characterizing the interregional transport patterns of 
atmospheric pollution.

2. Datasets and study area

2.1. Satellite-derived datasets

Himawari-8 is a new-generation geostationary (GEO) meteorological 
satellite that carries the Advanced Himawari Imager (AHI) sensor, which 
was launched by the Japan Aerospace Exploration Agency. This in-
strument was specifically designed to provide complete coverage of the 
Asian-Pacific area, with a resolution of 10 min and centered on the 
equator at around 140.7◦ E. (Bessho et al., 2016; Yoshida et al., 2021). In 
this study, the adopted Himawari-8 AHI AOD datasets at 550 nm, pos-
sessing a spatial resolution of 5-km and a temporal resolution of 10 min, 
was retrieved by the GeoMRA algorithm proposed in our previous 
research, which demonstrates better accuracy and higher spatial 
coverage, combined with smoother spatiotemporal variations (Zhang 
et al., 2022), comparing to the officially released AOD products. To 
minimize error propagation caused by erroneous AOD pixels from 
original AOD data, a stricter cloud screening process is applied. Specif-
ically, the 10-min cloud mask derived from the Himawari-8 cloud 
products is utilized to further screen the corresponding 10-min AOD 
dataset to eliminate possible impacts from cloud contamination on 
aerosol observations (Ishida and Nakajima, 2009). The cloud screened 
AHI AOD dataset is generated by excluding the original AHI AOD value 
on those pixels where the corresponding cloud mask data are marked as 
cloud flag.

The Moderate Resolution Imaging Spectroradiometer (MODIS) 
operating on the Terra and Aqua satellites follow sun-synchronous orbits 
(SSO) and pass over the equator at approximate 10:30 and 13:30 local 
time, respectively. This allows them to provide accurate global scale 
observations of aerosols twice a day. The AOD dataset derived from the 
dark target (DT) algorithm is generally accurate in densely vegetated 
areas, whereas the AOD dataset derived from the deep blue (DB) algo-
rithm has unique benefits for retrieving aerosol information over high- 
reflected land surfaces (Christopher and Jones, 2010; Hsu et al., 2013; 
Levy et al., 2007). Thus, the MODIS DT_DB_merged_AOD datasets with 
10-km spatial resolution and relatively high quality assurance flags, 
obtained from the Terra and Aqua MODIS aerosol products (i.e., MOD04 
and MYD04), were utilized in this study to obtain AOD datasets derived 
from SSO satellites with assured accuracy and higher data completeness 
(Huang et al., 2019; Mhawish et al., 2017), to provide supplementary 
aerosol observing information during the subsequent GEO AOD recov-
ery process.

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 
onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 
Observation (CALIPSO) platform is an active-scanning-mode SSO sat-
ellite sensor, which can provide aerosol profile measurements at around 
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01:30 a.m. and 1:30 p.m. local time. This study utilized both the daytime 
and nighttime aerosol data, extracted from the CALIOP aerosol profile 
product (APro), to assist in improving spatial completeness for GEO AOD 
datasets, through leveraging their unique advantages in monitoring 
aerosols under thin cloud, haze, and nocturnal situations (Campbell 
et al., 2012). Moreover, the daytime CALIOP vertical feature mask 
product was adopted to generate precise cloud/aerosol identification 
information for conducting further cloud screening on AOD products 
derived using passive optical sensors mentioned above, particularly in 
situations involving optically transparent clouds (Kacenelenbogen et al., 
2011; Vaughan et al., 2009).

All the satellite-based datasets utilized in the experiment, which are 
summarized and listed in Table 1, follow the data integration strategy 
that involves initially reprojecting all the datasets into the World 
Geodetic System 1984 geographic coordinate system, followed by 
resampling to maintain consistency with the 5-km spatial resolution of 
the AHI geographic grids.

2.2. Study area

As illustrated in Fig. 1, the Beijing–Tianjin–Hebei (BTH) region on 
the North China Plain is selected as the representative experimental area 
in this study. The BTH region, which has undergone rapid industriali-
zation and urbanization in recent years, periodically suffers atmospheric 
pollution episodes (Cai et al., 2017a). And the unique topographic 
characteristics of BTH, with its partial enclosure by the mountains to the 
west and north, blocks the dispersion of atmospheric pollutants to a 
certain extent, thereby leading to the aggravation of atmospheric 
pollution during the haze period, especially in Beijing and part of 
southern Hebei regions (Han et al., 2015). Thus, it is significant to 
characterize the interregional atmospheric pollution transport in the 
BTH region, and provide accurate estimations for interregional transport 
contribution of pollution to develop effective joint emission control 
strategies.

3. Research methodology

As shown in the schematic diagram as Fig. 2, the comprehensive 
framework is developed to provide observation-based quantification of 
aerosol transport. The 10-min AOD datasets with improved accuracy 
and spatial coverage are obtained by spatiotemporally fusing the ob-
servations from the Himawari-8, MODIS, and CALIOP satellites 
following the Bayesian maximum entropy (BME) theory. The aerosol 
dynamic optical flow algorithm is subsequently developed and applied, 
based on temporally successive AOD images, to quantitatively estimate 
the velocity field for each valid AOD pixel. The aerosol transport index 
(ATI), as well as the corresponding transported loading calculation 
scheme, is accordingly proposed to offer a consistent description be-
tween the pixel-based optical flow results and the model simulated 

results, where selected results from the Weather Research and Fore-
casting–Community Multiscale Air Quality (WRF-CMAQ) model simu-
lation are applied for comparison and discussion of the physical 
interpretation of the optical flow results. Specific descriptions of the 
related methodologies used in this study are described in the following.

3.1. Satellite-derived AOD data recovery

The computer-vision-based optical flow method was originally 
designed for intact natural images with complete valid pixels. Therefore, 
the substantial amount of data blanks in satellite-derived AOD products, 
primarily caused by cloud obscuration and the intrinsic limitations of 
aerosol retrieval algorithms, leads to failure of the optical flow algo-
rithm in most cases. To overcome this problem, prior to the optical flow 
calculation, the spatiotemporal fusion blending GEO with SSO satellite 
observations based on BME theorem has been applied to dramatically 
improve the spatiotemporal coverage of Himawari-8 AHI 10-min AOD 
datasets with ensured accuracy and reconstructed aerosol diurnal vari-
ation trends. The related algorithms, described in our previous studies 
(Xia et al., 2023; Xia et al., 2021; Zhang et al., 2023), include the 
following two main procedures, as shown in Fig. 2.

The data preprocess aims to guarantee the spatial and temporal 
consistency as well as the data reliability from multi-source satellite 
observations, primarily including data integration, temporal matching, 
and further cloud screening. It is of vital significance to minimize the 
effects of erroneous AOD pixels resulting from misidentifying clouds as 
aerosols, because the abnormal values from the AOD images probably 
lead to error propagation during the AOD recovery process and possibly 
create huge uncertainty in the pixel-based optical flow calculation. 
Thus, the 10-min AHI AOD dataset has undergone initial screening using 
matching 10-min cloud mask, and subsequently examined strictly by the 
threshold of adjacent spatiotemporally error variance (Kikuchi et al., 
2018). In addition to that, the cloud mask derived from passive satellite 
sensors may misidentify thin clouds as aerosols, leading to erroneous 
values in the AOD products. In contrast, active satellite sensors offer 
unique advantages in discriminating between aerosols and clouds. To 
enhance the reliability of our AOD data, we adopt the cloud mask 
derived from CALIOP to conduct further cloud screening on Aqua 
MODIS AOD data and temporally adjacent AHI AOD data within thirty 
minutes before and after the CALIOP passing time. This additional 
screening aims to minimize error propagation during the subsequent 
AOD fusion and optical flow calculations. In terms of spatial data inte-
gration, both CALIOP-derived data and MODIS data are first reprojected 
into the same geographic coordinate system and then resampled to 
match the AHI 5 km geographic grids. The CALIOP data is morpholog-
ically dilated to 0.5◦ on both side of observing nadir track for better 
spatial coverage, which is described in details in our previous study (Xia 
et al., 2021). Although the CALIOP-based cloud screening can only be 
applied to a portion of AHI AOD data due to the relatively limited spatial 
coverage and observing frequency of CALIOP data, yet this step could 
reduce the number of erroneous AOD values in the original AHI AOD 
data to a certain extent, contributing essentially to more reliability in the 
subsequent data fusion process and optical flow calculation by avoiding 
potential error propagation.

The GEO-SSO BME AOD recovery is a data fusion algorithm that 
merge the aerosol observations from different satellites based on the 
BME theorem (Christakos, 2002; Christakos and Li, 1998; Spadavecchia 
and Williams, 2009). This algorithm utilizes AOD data from multiple 
sources, including SSO passive sensor MODIS, SSO active sensor CAL-
IOP, and GEO passive sensor AHI, to sufficiently excavate complemen-
tary information. To be specific, the AOD expectation for a missing pixel 
is estimated by constructing the posterior probability density function 
through valid spatiotemporally adjacent AOD pixels and modeling the 
joint probability density function via a statistical spatiotemporal 
covariance model for autocorrelation of AOD soft data. The AOD prob-
abilistic soft data for AHI, CALIOP, and MODIS is constructed by the 

Table 1 
Summary of all the satellite-derived datasets adopted in the aerosol dynamic 
optical flow calculation.

Instrument Dataset Spatial 
Resolution

Temporal 
Resolution

Description

Himawari- 
8 AHI

GeoMRA AOD 5 km 10 min (Zhang 
et al., 2022)

CLP_L2 5 km 10 min Version 1.0
Terra 

MODIS MOD04_L2 10 km daily (a. 
m.)

Collection 
6.1

Aqua 
MODIS MYD04_L2 10 km daily (p. 

m.)
Collection 
6.1

CALIOP
CAL_LID_L2_05kmAPro 5 km daytime/ 

nighttime Version 4.2

CAL_LID_L2_VFM 5 km daily (p. 
m.) Version 4.2
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weight via corresponding inversed spatiotemporal distance, where the 
data accuracy discrepancy arising from different satellite AOD datasets 
is incorporated (Tang et al., 2016). The basic principles for AOD fusion 
via BME theorem are provided in Supplementary Material Text S1, while 
elaborate procedures and specific parameters can be referred in our 
previous studies (Xia et al., 2023; Zhang et al., 2023). The GEO-SSO BME 
AOD recovery procedure can provide a 10-min dataset with better 
spatial completeness and ensured accuracy, combined with the recon-
struction of aerosol diurnal variation trends to a certain extent. It needs 
to be mentioned that the subsequent optical flow method is applied to 
valid AOD pixel only if its surrounding zones in both temporally adja-
cent AOD images are filled by complete valid AOD values in this study, 
since the optical flow algorithm is typically applicable for intact images. 
In other words, the higher spatiotemporal coverage the more areas are 
applicable for the subsequent optical flow algorithm, on the premise that 
the recovered AOD data possesses comparable data accuracy as the 
original AOD data before fusion. Moreover, as some data gaps remain in 
the 10-min AOD dataset even after the recovery process, which priori-
tizes data reliability, a smaller size of calculation zone could enable 
more AOD pixels to fulfill the prerequisites for optical flow calculation.

3.2. Aerosol dynamic optical flow algorithm

The optical flow literarily indicates that the object motion projects to 
two-dimensional plane causing the brightness variation (Fleet and 
Weiss, 2006; Gibson, 1950), while the classic optical flow method is to 
estimate the motion velocity of object based on video images, under a 
basic assumption of brightness conservation that the intensity (or 
grayscale value) of one same pixel remains constant within two suc-
cessive video frames (Barron et al., 1994; Lucas and Kanade, 1981). It 
can be typically expressed by: 
I(x+ dx, y+ dy, t+ dt) = I(x, y, t) (1) 

where the I(x, y, t) represents the brightness of one pixel with coordinate 
(x, y) in the current frame image at time t, while the I(x +

dx, y + dy, t + dt) represents the brightness of this pixel with a 
displacement (dx, dy) in the next frame image after a relatively short 
time interval dt. With a first-order Taylor development on the left term 
of Eq. (1), the classic optical flow constraint equation could be obtained 
as: 
∂I
∂x u+ ∂I

∂y v+ ∂I
∂t = 0 (2) 

where the u≜dx/dt and v≜dy/dt is the apparent motion velocity that 
remains to be solved, while the ∂I/∂x, ∂I/∂y, and ∂I/∂t represents the 
spatial and temporal gradient of brightness, respectively. These two 
unknown velocity components (u, v) cannot be uniquely solved by Eq. 
(2) alone, which is called the aperture problem of optical flow calcula-
tion (Beauchemin and Barron, 1995). A supplementary regularization 
term is thereby introduced as a smooth constraint on the velocity field, 
deducing the final cost function J for the variational optical flow method 
could be constructed as follows: 

min
(u,v)

J = Jcon + λJreg =
∫∫

Ω

[(
∂I
∂x u +

∂I
∂y v + ∂I

∂t
)2

+ λ

(
|∇u|2 + |∇v|2

)]
dxdy

(3) 

where Jcon is called the data constraint term; Jreg is typically called the 
regularization term; Ω represents the whole image plane; ∇u,∇v in-
dicates the spatial gradient of velocity field; and λ is a weight to balance 
the smooth constraint.

However, an aerosol field develops and changes temporally owing to 
physicochemical processes and/or anthropogenic emissions, which 
means that AOD values (pixel brightness) will change during transport, 
thereby failing to satisfy the fundamental assumption of classic optical 
flow methods. Considering the characteristics of aerosol development, 
we propose a novel aerosol dynamic optical flow algorithm that con-
structs an aerosol-specific core assumption, which can be expressed as 
follows: 
I(x+ dx, y+ dy, t+ dt) = A(x, y, t) • I(x, y, t)+B(x, y, t) (4) 

where the AOD value I(x, y, t) at time t could have a linear variation after 
moving to (x + dx, y + dy) after a relatively short time interval dt, and 
the linear variation coefficients A and B are the function of space and 
time. If dominant physical or chemical processes occur during aerosol 
transport that lead to the increase in aerosol loading, such as newly 
emitted pollution or new particle formation processes, the AOD value 
I(x + dx, y + dy, t + dt) after displacement will be larger than the orig-
inal AOD value I(x, y, t). Conversely, if processes that allow the decline 
of aerosol loading during aerosol transport take place, such as pollution 
diffusion or aerosol deposition processes, the AOD value after 
displacement will be smaller than the original AOD value. And the 
constraint equation could be similarly obtained as: 

Fig. 1. The topographic elevation of the experimental area, combined with its location in East Asia.
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∂I
∂x u+ ∂I

∂y v+ ∂I
∂t −(aI+ b) = 0 (5) 

where a = limdt→0(A − 1)/dt and b = limdt→0B/dt. In order to solve this 
optimization problem, two introduced variables are constrained by the 
additional regularization terms that the coefficients of variation of 
brightness (AOD value) remains spatially smooth. It should be noted that 
in situations where the topography changes drastically, the linear vari-
ation coefficients among the spatially adjacent pixels may become un-
correlated. To address this, a weight penalty is exerted on spatial 

gradient of variation coefficients on the pixel with relatively large 
terrain height gradient, by convolutionally multiplying the inverse of 
terrain height gradient as a weight function on the regularization term to 
mitigate their contradictory effects on the cost function. Assuming ∇a 
and ∇b indicate the spatial gradients of variation coefficients of AOD 
value and ω represents the global weight function based on the terrain 
height gradient ∇h, the cost function for aerosol dynamic optical flow 
could be expressed as follows: 
min

(u,v,a,b)
J = Jcon + λreg • Jreg + λvar • Jvar (6) 

Fig. 2. Flowchart of quantifying the aerosol transport based on satellite observations, primarily including satellite-derived AOD recovery, the aerosol dynamic 
optical flow algorithm, comparison and evaluation against WRF-CMAQ model simulations, and the proposal of ATI combined with its application in interregional 
transport of atmospheric pollution.
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Jvar = Ja + Jb =
∫∫

Ω

ω(∇h)*
(
|∇a|2

)
dxdy+

∫∫

Ω

ω(∇h)*
(
|∇b|2

)
dxdy

(7) 
The aerosol dynamic optical flow algorithm is particularly designed 

for aerosol transport estimation, where the brightness change of image 
pixels is considered during the calculation process of the velocity field, 
which reflects the development and variation of aerosols during the 
aerosol transport process. According to the Lax-Milgram lemma (Aubin, 
2011), it has been proven that the optimization problem for the function 
styles like cost function J has a unique solution (Schnorr, 1991), satis-
fying the assumption in regularization terms that the variation co-
efficients of pixel brightness (AOD value) remain spatially smooth in Eq. 
(7), which is the main reason that linear function rather than other high- 
order functions is adopted to approximate the AOD variation during 
transport. Moreover, the multiscale pyramid iteration algorithm is 
applied to estimate the velocity field from coarse to fine, as illustrated in 
Fig. 3, to address the limitation that the intervals of displacement and 
time have to be sufficiently small to meet the approximation require-
ment from the first-order Taylor expansion (Brox et al., 2004; Cai et al., 
2017b; Ruhnau et al., 2005). Specifically, the optical flow algorithm 
operates on a constructed three-layer pyramid image pairs AODt and 
AODt+1. The optical flow algorithm starts from the highest image pair in 
the pyramid with the lowest spatial resolution (Level 2) and computes 
velocity field denoted as (u2, v2). The Level 2 velocity field is then pro-
jected to Level 1 of the pyramid with finer resolution, denoted as 
(û2 , v̂2). The velocity field (u1, v1) between the resampled AODt on Level 
1 and resampled AODt+1 on Level 1 is calculated by summing the initial 
velocity field (û2 , v̂2) and the optical-flow-derived velocity increments 
(Δu1,Δv1) as (û2 + Δu1, v̂2 + Δv1). Similarly, this process is iterated to 

the Level 0 image pair with original spatial resolution to obtain the final 
velocity field (u0, v0). Corresponding step-by-step procedures for this 
algorithm is described in the Supplementary Material Text S2. Besides, it 
needs to be mentioned that the proposed aerosol dynamic optical flow 
algorithm was applied in this study only to valid AOD pixels under at 
least slight pollution conditions (i.e., AOD > 0.4), because the optical 
flow method typically invalidates on spatially uniform images without 
textural features. This is considered acceptable because the focus of 
aerosol transport is on polluted air masses, which account for the ab-
solute majority of transport contribution, rather than on the flow of 
clean air masses. Moreover, as the minimal typical spatial scale for AOD 
variation is approximately 40 km (Zhao et al., 2019), the half-length of 
sliding calculation window is selected as 50 km in this study to ensure 
discernable AOD spatial gradients within the window, thereby ensuring 
the effectiveness of optical flow algorithm.

3.3. WRF-CMAQ model simulation

The model-simulated hourly AOD datasets used in this study are 
obtained via WRF-CMAQ model simulations. Double-nesting domains 
are adopted in the model simulations, where the external domain 
covered East Asia with 27 km horizontal resolution, and the internal 
domain covered the BTH region at 9 km horizontal resolution. Most of 
the model configurations and emission inventory align with those uti-
lized in our previous research (Ding et al., 2022; Ding et al., 2019), 
which are described in Supplementary Material Text S3. Moreover, the 
model-derived AOD segment in each vertical layer is the vertical inte-
gration of the aerosol extinction coefficient in that layer, which is 
calculated using the model-simulated mass concentration of each aero-
sol species and the corresponding mass extinction coefficient under 

Fig. 3. Schematics of aerosol dynamic optical flow method combined with multiscale pyramid iteration procedures. The grids with solid lines for current frame AODt 
and next frame AODt+1 represent AOD image pairs with different resolutions, and the dashed lines indicate the resample procedure during image pyramid 
construction.
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different humidity conditions, in accordance with the GOES-Chem AOD 
calculation algorithm (Jaeglé et al., 2011; Koepke et al., 1997; Martin 
et al., 2003). Validation of the model-simulated column AOD is con-
ducted against AERONET AOD observations during the experimental 
period, as illustrated in Supplementary Material Fig. S1.

3.4. Aerosol transport quantification strategy

To quantify aerosol transport using the aerosol dynamic optical flow 
calculation based on temporally continuous AOD observations, an 
aerosol transport index (ATI) is defined in this study to quantitatively 
characterize the aerosol transport process, similar as the flux calculation 
approach using model simulations (Chakraborty et al., 2021; Chang 
et al., 2018). To provide a consistent description between the satellite- 
based optical flow results and the model-based results, the optical 
flow derived ATI and the model-derived ATI are unified spatially and 
temporally. As illustrated in Fig. 4, the optical-flow-derived ATI, which 
is an hourly summation of 10-min optical flow results, is calculated by 
firstly summing six 10-min calculation results in one hour, and then 
converting the length unit. 

OpticalFlow ATI(x,y) = 1
H •

∑6
t=1Column AOD(x,y,t) • OF Vel(x,y,t)̅̅̅̅̅̅̅→

• λ (8) 

where AOD(x,y,t) is the valid AOD value extracted from the AHI 10-min 
AOD dataset after recovery process located on (x, y) at time t; H is a 
constant indicating the height of entire AOD column; OF Vel(x,y,t)̅̅̅̅̅̅̅̅→ is the 
pixel-based vector of the optical flow motion displacement for 10 min 
located on (x, y) estimated between the current AOD image (AODt) and 
subsequent AOD image (AODt+1); λ is a scaling constant that converts 
the unit of optical flow length from pixels to kilometers; and t ∈ [1, 6]
represents the six 10-min observing moments in one designated hour. 
The model-based ATI is obtained by summing the simulated results of 
each vertical layer for the entire vertical column and then normalizing it 
to unit height, which can be expressed as: 

Model ATI(x,y) = 1
H •

∑14
h=1AOD(x,y,h) • Wind Vel(x,y,h)̅̅̅̅̅̅̅̅̅→ (9) 

where AOD(x,y,h) is the hourly averaged WRF-CMAQ model simulated 
AOD vertical segment located on (x, y) in the vertical layer h for the 
corresponding hour, Wind Vel(x,y,h)̅̅̅̅̅̅̅̅̅̅→ is the vector of WRF-simulated hor-
izontal wind velocity located on (x, y) in the vertical layer h, and h ∈

[1, 14] represents the 14 sigma vertical layers defined in the WRF-CMAQ 
model configuration.

The ATI can be physically interpreted as aerosol mass extinction 
coefficient (αext, unit: km2/g) multiplying the aerosol mass transport flux 
(F, unit: g • km−2 • hour−1) as Eq. (10). 
ATI = ϵext • Vel = αext • C • Vel = αext • F (10) 

where ϵext here represents the aerosol extinction coefficient; Vel is the 
aerosol horizontal motion velocity; C is the aerosol mass concentration. 
As the aerosol mass extinction coefficient depends on the composition 
and size distribution of atmospheric pollutants, the ATI is proportional 
to F for the same atmospheric pollution plume, in which the aerosol 
mass extinction coefficient is a constant. Therefore, the ATI proposed in 
this study could be considered as a proxy that proportionally represents 
the aerosol mass transport flux to a certain extent. The derivation pro-
cesses with corresponding explanations and references are included in 
the Supplementary Material Text S4. It should be noted that the ATI 
defined in this study represents the vertically normalized aerosol 
transport flux, since the optical flow algorithm is based on column AOD 
dataset without information about aerosol vertical distribution. In 
practical applications, the index ATI should be used in conjunction with 
the column height H rather than being used individually. Accordingly, 
the total aerosol loading crossing the entire grid boundary, illustrated as 
the shaded surface perpendicular to the ground surface in Fig. 4, over a 
period of time T can be calculated by multiplying the ATI by the cross 
sectional area of grid boundary and time, as expressed in Eq. (11). 
Transported Aerosol Loading = ATI • (L • H) • T (11) 

Fig. 4. Schematics of the observation-based quantification of aerosol transport, together with the comparison strategy against the results simulated by the WRF- 
CMAQ model.
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where L is the grid length of geographic grid, and H is the column height. 
The unit for transported aerosol loading in terms of aerosol optical depth 
is 
(

km2/g
)
• g, which proportionally represents the aerosol mass loading 

transporting between spatially adjacent geographic grids over a certain 
period of time, as the αext could be considered as a proportional constant 
between transported aerosol loading and transported aerosol mass 
loading for the same atmospheric pollution plume. Thus, the ATI can be 
used to characterize the interregional transport patterns of atmospheric 

pollutants based on long-term observations, which provides 
observation-based data support for policy and decision on regional at-
mospheric pollution joint control, as demonstrated by the case analyses 
in the section 4.3.

Fig. 5. The 10-min optical flow results and hourly integrated ATI (arrows), together with the corresponding AOD maps (color shading), illustrating the atmospheric 
pollution transport process toward the north and northeast on 24 October 2017, combined with the model-based ATI results.
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4. Results and discussion

4.1. Satellite-based quantification of atmospheric pollution transport

The satellite-based 10-min optical flow transport results and hourly 
integrated ATI, together with the corresponding AOD maps, presented in 
Fig. 5, illustrate an atmospheric pollution transport processes during a 
haze event that occurred on 24 October 2017 over the BTH region. 
Similar to the conventional approach of representing the wind field in 
atmospheric physics and meteorology, the optical flow ATI estimated in 
this study is also indicated by arrows, where the transport direction and 
transport velocity calculated by the aerosol dynamic optical flow algo-
rithm are represented by the arrow direction and arrow length, 
respectively. It is shown that both optical flow and model-based esti-
mation results capture the atmospheric pollution transport process from 
southern Hebei Province toward the north and northeast in this case, 
which lead to the observed aggravation of air pollution in Beijing. 
Although physicochemical development and morphological variation of 
the polluted air mass occurred during the transport process, the aerosol 
dynamic optical flow method possesses the capability to distinguish the 
transport process from other dynamic processes of haze development. 
Moreover, it is crucial that the observing frequency exceeds the regular 
time interval over which an aerosol field might change obviously from 
the perspective of motion analysis, indicating that the proposed method 
can capture and describe the continuous spatiotemporal variations of 
atmospheric pollution transport, as clearly evident in Supplementary 
Material Animation S1. Additionally, the optical flow estimation results 
could further characterize the atmospheric pollution transport patterns, 
such as the loading of aerosol flowing into Beijing from southwestern 
Beijing boundary after noon, contributing significantly to the haze event 
in Beijing later in that day, is much larger than the inflow aerosol 
loading in the morning. However, the model-based results just describe 
the atmospheric pollution transport process in a relatively even way, 
namely quantifying the aerosol inflow transport process in an approxi-
mate rate, obtaining similar final haze result yet missing the fast- 
changing details of transport processes, which indicates that the aero-
sol dynamic optical flow algorithm based on high-frequency observa-
tions possesses unique advantages in capturing and characterizing the 
fast-changing processes of atmospheric pollution when comparing to 
the model-based method.

4.2. Comparison of the performance of the optical flow method and the 
model simulation

The satellite-based optical flow method could not only qualitatively 
capture the atmospheric pollution transport process, but also quantita-
tively describe the transport velocity for each pixel, thereby character-
izing the transported aerosol loading via the ATI for each geographic 
grid. The robustness and reliability of the adopted optical flow 
assumption equation with similar constraint and regularization terms 
have been demonstrated in a series of practical scenes, including motion 
estimation for both rigid body and fluids (Cai et al., 2017b; Molnár et al., 
2010; Ruhnau et al., 2005). Admittedly, the traditional optical flow 
verification approaches, typically including manual annotation for rigid 
motion and fluorescent tracking for nonrigid motion (Baker et al., 2011; 
Liu et al., 2008; Mayer et al., 2018), are not applicable for validation of 
the aerosol optical flow transport results. Since atmospheric aerosol is 
one type of fluids, we can neither precisely mark the displacement 
(probably with subpixel coordinates) for each AOD pixel between two 
temporally adjacent AOD frames, nor fluorescently label aerosols at such 
a large spatial scale and then track them through satellite images. Thus, 
in this study, selected results from WRF-CMAQ model simulation with 
ensured accuracy compared to the AOD observations are employed to 
calculate the ATI and transported aerosol loading as a reliable bench-
mark to cross-check the corresponding results derived from the optical 
flow algorithm. Validation against the AERONET observations shown in 

Supplementary Material Fig. S1 revealed that the accuracy of model- 
simulated AOD is not stable throughout the entire experimental 
period. The inferiority of the simulated results from the chemical 
transport models was primarily attributable to two aspects: the temporal 
shift during the model simulation and the uncertainty of emission 
sources that leads to over/underestimation of aerosol loading. Accord-
ingly, comparison of the hourly ATI estimated by optical flow method 
and that by model simulation is conducted for the longitudinal (u) and 
latitudinal (v) directions in this study, only when the WRF-CMAQ model 
obtained accurate AOD within the expected error envelope (Levy et al., 
2013; Sayer et al., 2014) and with almost no temporal shift. As illus-
trated in Fig. 6a and b, the comparison indicates that the optical-flow- 
derived ATI is well correlated with the model-derived ATI in both lon-
gitudinal and latitudinal directions, with a regression coefficient R2 over 
0.7. It demonstrates the effectiveness of the ATI in quantifying the 
aerosol transport rate, when utilizing pixel motion estimation in the 
proposed optical flow framework to represent the physical characteris-
tics of column aerosol flow.

To some extent, a temporal shift usually exists in the model simu-
lation, as exemplified in Supplementary Material Animation S2. Thus, 
the daily total transported aerosol loading from the satellite-based op-
tical flow method is compared with that from the model simulation, 
which requires only that the daily averaged AOD from the WRF-CMAQ 
simulation is within the expected error envelope, while allowing a 
certain temporal shift in the model simulation. The daily total trans-
ported aerosol loading is estimated using all the valid values of ATI via 
Eq. (11) for each pixel in daytime in both the longitudinal (u) and the 
latitudinal (v) directions. Overall, approximately one hundred thousand 
matchups that meet the comparison criteria are included in the com-
parison. As shown in Fig. 7a and b, the daily total transported aerosol 
loading estimated via optical flow are slightly lower than those from the 
WRF-CMAQ simulation; however, they are well correlated with R2 

values of 0.647 and 0.734 in the longitudinal and latitudinal directions, 
respectively. This result indicates that the satellite-based optical flow 
method can achieve transported aerosol loading results comparable with 
those of widely accepted model-based methods, with a correlation co-
efficient R over 0.8.

4.3. Assessment of interregional transport of atmospheric pollution for 
Beijing

In the application case analyses illustrated in Fig. 8 and Fig. 9, at-
mospheric pollution inflow and outflow are estimated using the ATI for 
each boundary of Beijing, namely the Eastern boundary (marked in red), 
the Southern boundary (marked in grey), and the Northern and Western 
Boundary (marked in blue), which are defined based on both topo-
graphical factors and the bordering administrative cities. The calcula-
tion of inflow and outflow via ATI involves discretizing the vertical 
surface of the geographic grid according to the administrative boundary, 
as shown in Fig. 8b, where the vector linking inside and outside regions 
of a city is used to define the inflow and outflow of atmospheric pollu-
tion transport. Fig. 8c and d illustrate the daily averaged transported 
aerosol loadings for each boundary of Beijing, including aerosol inflow 
and outflow, on Oct. 24, 2017, which are calculated using ATI derived 
from both the optical flow and the WRF-CMAQ model. On this particular 
day, it is shown that the aerosol inflow overwhelms the aerosol outflow. 
The Southern Boundary of Beijing acts as the primary entrance for at-
mospheric pollution inflow, with the majority of pollutants stagnating 
locally. Only a minority of aerosols flows out through the Eastern 
Boundary of Beijing. The comparison results indicate there exist slight 
value differences of aerosol inflow/outflow loadings between optical 
flow method and model simulation in this case. These discrepancies may 
arise from the incapability of optical flow algorithm over slight pollution 
areas (such as part of the Northern and Western Boundary over the 
mountain regions) and potential biases in model simulated AOD (e.g., 
slightly overestimation in part of the Eastern Boundary in model 
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simulation). Despite these differences, the satellite-based optical flow 
method yields comparable aerosol transport patterns to those obtained 
by the model-based method on the day with ensured model simulated 
accuracy.

As illustrated in Fig. 9, the interregional transport characteristics of 
atmospheric pollution has been assessed for Beijing using the trans-
ported aerosol loading calculated via the optical flow framework based 
on 5-year satellite observations. The Fig. 9a and b illustrate the seasonal 
inflow and outflow transport contribution of each boundary of Beijing. 
As shown in Fig. 9a, the Southern boundary (Baoding and Langfang) is a 
main entrance for air pollution inflow, which takes up approximately 50 
% of the inflow atmospheric pollution for Beijing, where the maximum 
contribution ratio appearing in summer while the minimum 

contribution ratio appearing in autumn. As shown in Fig. 9b, the 
Northern and Western boundary (Zhangjiakou and Chengde) is a main 
entrance for air pollution outflow, especially in winter which possesses 
nearly half contribution for atmospheric outflow, followed by Southern 
boundary and then Eastern boundary. Moreover, the multi-year trend of 
the annually averaged transported aerosol net loadings for Beijing from 
2016 to 2020, as illustrated in Fig. 9c, can be obtain by subtracting the 
aerosol outflow loading from the aerosol inflow loading, where the 
positive/negative value indicates inflow/outflow dominance. The five- 
year net transport loadings show that atmospheric pollution inflows of 
Beijing typically exceed the outflows, indicating that Beijing acts as a 
“sink” of atmospheric pollution. The probable reason is that Beijing is 
half surrounded by western and northern mountains, where the 

Fig. 6. Comparison of optical-flow-derived ATI and WRF-CMAQ-derived ATI in the (a) longitudinal direction and (b) latitudinal direction only when the WRF-CMAQ 
model performs well with neither over/underestimation of aerosol loading nor obvious temporal shift.

Fig. 7. Comparison of optical-flow-derived estimations and WRF-CMAQ simulations of the daily total transported aerosol loadings in the (a) longitudinal direction 
and (b) latitudinal direction when the WRF-CMAQ model obtains relatively accurate daily averaged AOD.
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atmospheric pollution is possibly blocked by the bulging part of the 
plain. The trapped atmospheric pollution could be removed by vertical 
convection dilution effect resulted from relatively strong northwestern 
wind, or by the scavenging effect from precipitation. Furthermore, a 
generally downward trend could be found from the year-by-year trend 
of annually averaged transported aerosol net loadings from 2016 to 
2020, which demonstrates the effectiveness of emission reduction policy 
in BTH regions. Comparing to model simulation that requires high 
computational performance to calculate and consumes considerable 
human resources to update the emission source inventory, the satellite- 
based optical flow method, benefit from low-cost calculation and large- 
scale satellite observation, could offer a more economical and efficient 
way for assessing the interregional transport of atmospheric pollution 

and regional joint control policy.

5. Conclusion and future work

Interregional transport plays an important role in local atmospheric 
pollution with varying contribution extent under different meteorolog-
ical and emission conditions. Current studies on quantitatively 
analyzing interregional atmospheric pollution transport have mainly 
relied on meteorological and chemical models. However, these models 
are typically affected by uncertainties due to the assumptions and sim-
plifications inherent in the numerical simulations and source emission 
estimations. This study develops a comprehensive optical flow frame-
work to offer a new perspective to provide observation-based 

Fig. 8. The definition of three typical transport boundary of Beijing (a) with a discretization diagram of the vertical surface for inflow/outflow calculation (b). The 
daily averaged transported aerosol loadings for each boundary of Beijing as aerosol inflow and aerosol outflow on Oct. 24, 2017, which are calculated using ATI 
derived from optical flow (c) and WRF-CMAQ model (d).
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quantification of aerosol transport and characterize interregional 
transport patterns of atmospheric pollution using synergistic observa-
tions from geostationary and sun-synchronous satellite sensors. Experi-
mental results demonstrate that the proposed aerosol dynamic optical 
flow method possesses the capability to distinguish the transport process 
from other dynamic processes of aerosol development, and could cap-
ture and describe the continuous spatiotemporal variations as well as the 
fast-changing details of aerosol transport. Moreover, comparison of the 
atmospheric pollution transport results estimated via optical flow and 
via model simulations shows reasonable agreements with a correlation 
coefficient R over 0.8 in both longitudinal and latitudinal directions, 
highlighting the effectiveness of the developed optical flow framework 
in quantitative characterization of the atmospheric pollution transport 
process via the ATI and transported aerosol loadings. Furthermore, a 
case analysis of long-term assessments of interregional transport of at-
mospheric pollution for Beijing indicates that Beijing acts as a “sink” of 
atmospheric pollution, but a downward trend could be found from the 
year-by-year trend of annually averaged transported aerosol net load-
ings from 2016 to 2020, due to the emission reduction policy over the 
BTH regions. Compared with model-based methods, the satellite-based 
optical flow framework is directly grounded in observations and does 
not rely on emission inventories that take years to update. Benefiting 
from near-real-time and large-scale satellite observations, it not only 
helps improve understanding the patterns of atmospheric pollution 
interregional transport, but also provides a more efficient and 
economical way to assess the effectiveness of regional joint control 
policy.

In this study, the BTH region is selected as representative of areas 
having air quality concerns with typical topographic characteristics. 
Obviously, the proposed satellite-based optical flow framework is also 
applicable to extend to other regions with atmospheric pollution issues. 
Admittedly, certain limitations exist in current aerosol dynamic optical 
flow algorithm. For example, there is still a certain area of data blanks in 
AOD datasets that restrict the availability of the proposed algorithm. 
Besides, the aerosol transport discussed in this study represents the 
overall aerosol movement across the entire atmospheric column, since 
current calculations rely on column AOD fusion datasets due to the 
limitations in terms of spatial coverage and observing frequency asso-
ciated with the CALIOP aerosol profile observations. Future work could 
incorporate additional aerosol–cloud satellite and ground-based active 
sensors into the framework to recover additional aerosol information in 
the case of cloud obscuration, and to provide more vertical information 
for possible analyses on aerosol vertical distribution characteristics 
during transport. Additionally, combining the proposed satellite-based 
optical flow method with a traditional model-based method might 
help improve understanding the patterns of atmospheric pollution 
interregional transport and its contribution to local haze event.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rse.2024.114457.
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Jaeglé, L., Quinn, P.K., Bates, T.S., Alexander, B., Lin, J.T., 2011. Global distribution of 
sea salt aerosols: new constraints from in situ and remote sensing observations. 
Atmos. Chem. Phys. 11, 3137–3157.

Jenner, S.L., Abiodun, B.J., 2013. The transport of atmospheric sulfur over Cape Town. 
Atmos. Environ. 79, 248–260.

Kacenelenbogen, M., Vaughan, M.A., Redemann, J., Hoff, R.M., Rogers, R.R., Ferrare, R. 
A., Russell, P.B., Hostetler, C.A., Hair, J.W., Holben, B.N., 2011. An accuracy 

assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction 
product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. 
Phys. 11, 3981–4000.

Kan, H.D., Chen, R.J., Tong, S.L., 2012. Ambient air pollution, climate change, and 
population health in China. Environ. Int. 42, 10–19.

Kikuchi, M., Murakami, H., Suzuki, K., Nagao, T.M., Higurashi, A., 2018. Improved 
hourly estimates of aerosol optical thickness using spatiotemporal variability derived 
from Himawari-8 geostationary satellite. IEEE Trans. Geosci. Remote Sens. 56, 
3442–3455.

Knippertz, P., Evans, M.J., Field, P.R., Fink, A.H., Liousse, C., Marsham, J.H., 2015. The 
possible role of local air pollution in climate change in West Africa. Nat. Clim. 
Chang. 5, 815–822.

Koepke, P., Hess, M., Schult, I., Shettle, E.P., 1997. Global Aerosol Data Set.
Levy, R.C., Remer, L.A., Mattoo, S., Vermote, E.F., Kaufman, Y.J., 2007. Second- 

generation operational algorithm: retrieval of aerosol properties over land from 
inversion of moderate resolution imaging Spectroradiometer spectral reflectance. 
J. Geophys. Res.-Atmos. 112.

Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Patadia, F., Hsu, N.C., 
2013. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. 
Tech. 6, 2989–3034.

Li, P.F., Yan, R.C., Yu, S.C., Wang, S., Liu, W.P., Bao, H.M., 2015. Reinstate regional 
transport of PM2.5 as a major cause of severe haze in Beijing. Proc. Natl. Acad. Sci. 
USA 112, E2739–E2740.

Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y., 2008. Human-assisted motion 
annotation. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 
1-12, pp. 3911–3918.

Lucas, B.D., Kanade, T., 1981. An iterative image registration technique with an 
application to stereo vision. In: IJCAI'81: 7th International Joint Conference on 
Artificial Intelligence, pp. 674–679.

Martin, R.V., Jacob, D.J., Yantosca, R.M., Chin, M., Ginoux, P., 2003. Global and regional 
decreases in tropospheric oxidants from photochemical effects of aerosols. 
J. Geophys. Res.-Atmos. 108.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., 
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