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A B S T R A C T

Using computational methods to produce and interpret multiple scientific representations is now 
a common practice in many science disciplines. Research has shown students have difficulty in 
moving across, connecting, and sensemaking from multiple representations. There is a need to 
develop task-specific representational competencies for students to reason and conduct scientific 
investigations using multiple representations. In this study, we focus on three representational 
competencies: 1) linking between representations, 2) disciplinary sensemaking from multiple 
representations, and 3) conceptualizing domain-relevant content derived from multiple repre-
sentations. We developed a block code-based computational modeling environment with three 
different representations and embedded it within an online activity for students to carry out in-
vestigations around the earthquake cycle. The three representations include a procedural repre-
sentation of block codes, a geometric representation of land deformation build-up, and a 
graphical representation of deformation build-up over time. We examined the extent of students’ 
representational competencies and which competencies are most correlated with students’ future 
performance in a computationally supported geoscience investigation. Results indicate that a 
majority of the 431 students showed at least some form of representational competence. How-
ever, a relatively small number of students showed sophisticated levels of linking, sensemaking, 
and conceptualizing from the representations. Five of seven representational competencies, the 
most prominent being code sensemaking (η2 = 0.053, p < 0.001), were significantly correlated to 
student performance on a summative geoscience investigation.

1. Introduction

Computational methods have been increasingly incorporated into modern science practice (Henderson et al., 2007, pp. 195–196), 
changing the ways science research is carried out. There is a critical need to design student-appropriate learning experiences that 
leverage computational tools in ways that capture the essence of scientists’ authentic practices (NGSS Lead States, 2013). The inte-
gration of science and computation is important because it allows educators to exploit the substantial overlap between computational 
practices and important skills in other subject areas (Waterman et al., 2020). To this end, many educational researchers have oper-
ationalized computational thinking for K-12 students (Grover & Pea, 2013; Wang et al., 2022; Weintrop et al., 2016). However, there 
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remains a need to identify effective methods for engaging students in scientific ways of investigating and reasoning that rely on 
computational methodologies while learning domain-specific content.

One area of research that has shown promise in the design of computationally integrated science activities is related to the study of 
multiple representations (Schnotz, 2014, pp. 72–103; Seufert, 2003). Several forms of representations (e.g., graphs, physical models, 
computational models, mathematical models, etc.) have been utilized for students to develop, clarify, and communicate knowledge 
about scientific phenomena (Evagorou, Erduran, & Mäntylä, 2015; Pauwels, 2006). However, there is considerable evidence to show 
that learners often fail to exploit the advantages of using multiple representations in science learning. Challenges include under-
standing the form of a representation, understanding the relationship between the representation and the domain, and understanding 
how to relate representations (Ainsworth, 2008). To help students effectively use multiple representations for science learning, re-
searchers have begun to focus on building students’ representational competencies, or the knowledge and skills that enable students to 
reason and solve domain-relevant tasks. Representational competencies have been shown to simultaneously support student learning 
of representations and learning of domain knowledge (Ainsworth, 2006; Council, 2006; de Jong & van Joolingen, 1998; Gilbert, 2005; 
McElhaney et al., 2015). By investigating the design of instructional activities, Rau (2017) found that effective learning activities 
support students in acquiring representational competencies and developing scientific understanding from the representations.

The field of geoscience, which focuses on understanding Earth’s systems and processes, is increasingly leveraging computational 
techniques to research the planet’s complex systems (Medunić et al., 2022). In geoscience, where large data sets and 
difficult-to-comprehend spatial and temporal scales pose challenges to student learning (Cheek et al., 2017), visualizations are often 
used to investigate Earth phenomena. For example, many seismic and geodesy organizations leverage networked observatories, such as 
GPS stations, that automatically collect large, high-quality seismic data around the globe to provide insight into Earth systems 
(Karpatne et al., 2019). If students are to engage in modern, authentic geoscience methods, they must be able to interpret multiple 
visualizations produced from models and data (Lore, Lee, & Pallant, 2024). Additionally, Earth science curricula in the US is still 
commonly organized into discrete bits of content, often with limited integrative connections (Whitmeyer et al., 2007). Geoscience is 
therefore an ideal context for developing students’ representational competencies while simultaneously learning domain content 
through the representations.

In this study, we use multiple dynamically linked representations (MDLRs) to engage students in investigations about the earth-
quake cycle based on GPS data of land motion. The three representations used in the investigations are a procedural representation of 
block codes, a geometric representation of land deformation build-up, and a graphical representation of deformation build-up over time. 
We focus on three representational competencies necessary to carry out earthquake cycle investigations: linking, sensemaking, and 
conceptualization. Students’ investigations are organized in competency-building steps in an activity sequence designed to engage 
students in computationally mediated investigations. The goal of the activity is to deepen students’ understanding of the factors 
influencing the frequency and magnitude of earthquakes. Two research questions were addressed in this study.

(1) To what extent do students link, make sense of, and conceptualize procedural, geometric, and graphical representations in the 
context of the earthquake cycle?

(2) How does the extent of students’ representation linking, sensemaking, and conceptualization in the activity correlate with their 
performances in a computationally mediated geoscience investigation?

2. Background

Visual representations have become increasingly important in the practice of science. Scientists use visual representations to 
reproduce or model nature, as well as to solve problems, fill gaps in knowledge, and facilitate the transfer of knowledge (Lynch, 2006). 
Visual representations include symbols, objects, maps, simulations, and graphs. They can be used as primary data (e.g., results from a 
simulation) to help in concept development, to find patterns and relationships, and to give form to abstract concepts (Evagorou, 
Erduran, & Mäntylä, 2015). Therefore, visual representations and the computational practices involved in creating and interpreting 
them play a critical role in developing, clarifying, and transmitting scientific knowledge (Evagorou, Erduran, & Mäntylä, 2015; 
Pauwels, 2006).

Visual representations are now commonly used in the teaching and learning of science. Different types of representations are often 
combined as multiple representations, which can support the development of higher-quality conceptual models (Sell et al., 2006). 
Learning can be facilitated by working with multiple visual representations because they can: 1) complement each other in terms of the 
information they convey, 2) constrain the interpretation of each other, and 3) aid in constructing a deeper understanding of the domain 
under study (Ainsworth, 2006). Several studies have shown that using multiple representations that are conceptually linked to one 
another can deepen students’ learning of discipline-specific knowledge (Ainsworth et al., 2002; Rau et al., 2017). As research on 
multiple visual representations has grown, the focus has shifted from whether learning with multiple representations is effective to 
what factors influence their effectiveness in teaching and learning (Ainsworth, 2006).

Several challenges exist in designing competency-building activities with multiple representations. Students first encountering a 
new representation often show difficulty moving across or connecting multiple representations (Rau et al., 2015; van der Meij & de 
Jong, 2006). At first, there is a high cognitive load associated with understanding how the representations represent the phenomena 
under study, how to translate between representations, and how representations are related to each other (Ainsworth, 2008; Spiro & 
Jehng, 1990). Students also need assistance mapping between visual features and concepts (Ainsworth et al., 2002; Rau et al., 2014). In 
particular, students with low prior knowledge often require support in moving beyond a focus on superficial surface features towards 
more conceptually relevant visual information (Bodemer & Faust, 2006; Stern et al., 2003).
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To support students in building representational competency, instructional activities can be designed to make explanation-based 
processes explicit. Previous research has produced several principles for the instructional design of activities that support students’ 
development of representational competencies. These include having students: 1) verbally explain the perceptual features of each 
representation and the complementary information between representations, 2) actively compare perceptual features across repre-
sentations, and 3) receive scaffolded support in identifying relevant perceptual features (Rau et al., 2017). Our goal in this study was to 
use these design principles to engage students in an activity sequence that scaffolds students in developing representational compe-
tency through the use of MDLRs in computationally mediated scientific investigations in a geoscience context.

3. Theoretical framework

Several types of representational competencies are identified in the literature, each of which describes possible ways in which a 
learner may use a representation to access and reason about scientific concepts (Pande & Chandrasekharan, 2017). Each competency 
provides a unique way for classifying and analyzing students’ uses of and reasoning about representations along with reasoning 
difficulties (Schönborn & Anderson, 2009). In this study, we engaged students in using MDLRs to investigate the phenomena of the 
earthquake cycle. We investigated students’ representational competencies and their ability to reason as a result of using an activity 
sequence that scaffolds representational linking, sensemaking, and conceptualization.

Representational linking describes the ability to interpret and translate between different types of scientific representations. Students 
need to be able to establish relations between corresponding representations and identify overlapping information shown between 
them. In this study, the representations are dynamically linked, meaning learners act on one representation and see the results of those 
actions in another (Ainsworth, 2008). Dynamic linking supports students in making surface-level connections between the repre-
sentations; however, the student must still connect the domain-relevant conceptual aspects of the representations.

Representational sensemaking involves learning how to identify domain-relevant concepts in perceptual features and how those 
features are connected across multiple visual representations (Ainsworth, 2006; DeLoache, 2000; Eilam and Ben-Peretz, 2012; 
Schnotz, 2014, pp. 72–103). Through sensemaking, students learn to sort out conceptual features from surface features by explaining 
their mappings to concepts (Ainsworth, 2006; Rau et al., 2014; Seufert, 2003) related to the underlying domain being represented.

Representational conceptualization is the ability to explain domain-relevant concepts using scientific representations (Rau, 2017). 
This competency involves determining which representations can be used to explain abstract scientific concepts. While sensemaking 
involves relating the representations to each other and the domain, conceptualization involves understanding how to best solve a 
specific conceptual task using or creating the appropriate type of representation (Edelsbrunner et al., 2023).

Implementing instruction that includes MDLRs requires careful consideration of the design of the representations and the scaf-
folded activity sequence that prompts students to make sense of the representations as they relate to each other and to the domain. 
Neither generalized representational competencies nor computational practices can be built through just one question or one activity. 

Fig. 1. The GeoCoder model shows block code (procedural representation, left), the Deformation Simulation (geometric representation, upper 
right), and the deformation over time graph (graphical representation, bottom right).
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The goal of developing an activity sequence for building representational competency targets an important educational problem and 
addresses the lack of resources for authentically integrating computational investigations with geoscience content.

4. Materials and methods

4.1. The curriculum

This study was situated within an online curriculum called “Assessing Seismic Hazards and Risk with Code,” the seismic module 
hereafter, developed for middle and high school students to carry out computationally supported scientific investigations using 
MDLRs. The earthquake cycle, the focus of the activity, is the phenomenon in which earthquakes repeatedly occur on the same fault as 
the result of continual accumulation of deformation and periodic deformation release. The seismic module is delivered to students as 
web-based interactive pages that include background information, instructions, the GeoCoder model (described below), and open- 
response and multiple-choice questions. The activity described in this study consisted of eight pages. In this paper, we focus on 
four pages that most directly relate to students exhibiting representational competency. The activity scaffolds student use of and 
interpretation of three dynamically linked representations within the GeoCoder model: block code, a geometric simulation called the 
Deformation Simulation (DS), and a graph. Each page is intended to engage students in investigations and questions that prompt them 
to relate the representations to each other and to earthquake cycle content.

4.2. The GeoCoder

To engage students in computer programming related to an investigation of factors related to the earthquake cycle, we developed 
the GeoCoder, a block-based programming workspace combined with a simulation of ground deformation and a graph depicting the 
amount of deformation (Fig. 1).

4.2.1. Procedural representation: Block code
The programming workspace is similar to other block-based programming environments such as Scratch (Resnick et al., 2009) and 

Google’s Blockly software, from which the GeoCoder blocks were derived and adapted, where students build code from a selection of 
pre-made blocks. GeoCoder blocks were designed to produce unique visual outputs as the code is run. Blocks can result in the execution 
of the DS or data plotted in the graph. Using block code allows an easy-to-understand syntax that is not available with other coding 
languages, such as JavaScript. In addition, we contextualize the wording of the blocks to provide more information to students about 
the process of the earthquake cycle.

We refer to the block code as a “procedural representation” because the order and syntax of the blocks describe the actions and 
events that take place as the model runs. By combining the syntax of the blocks and the order in which they are executed, the code 
describes which events occur in the other representations. Each block is highlighted as it is executed, making it easier for students to 
make connections between how the execution of the code affects the outputs in the other representations.

4.2.2. Geometric representation: Deformation Simulation
The Deformation Simulation, shown on the right side of the GeoCoder (Fig. 1), represents the deformation of land along a fault due 

to the differential movement of two tectonic plates. Several features of the DS have been designed to contextualize the visualization 
around earthquakes. The green dots represent GPS stations (used by scientists to measure plate movement) and the orange line 
represents a fault. The grid lines help students see how land deforms as tectonic plates move. When the code is run, the two plates in the 
DS slide past each other based on the speeds set in the code. The movement of the plates causes the land to deform as represented by the 
grid lines that bend and stretch along the fault. The deformation is a product of the two sides of the fault being locked together due to 
the frictional forces between them while the rock that makes up the land bends and stretches. Once the deformation becomes too great 
and reaches a breaking point, an earthquake occurs. To represent this, the grid lines snap and become straight again with the lines 
offset from their original position.

The background equation governing the functioning of the DS is based on the Savage and Burford (1973) model of deformation 
along a linear fault experiencing perfect strike-slip motion. The model contains several parameters associated with deformation along a 
fault (time, locking depth, distance from the fault, and horizontal displacement). To simplify the equation for the GeoCoder, many 
parameters were set to constant values. We chose two parameters for students to vary–speed of differential plate movement and 
friction level between the plates–because of their importance to the earthquake cycle.

We refer to the DS as a “geometric representation” because it is a mathematical calculation shown as movement in a grid. The goal 
of this representation is to give students a mental model of land deformation. The DS is a bird’s eye view of land around a fault. As one 
plate moves north and the other moves south, students can visualize how deformation builds up over time and eventually releases as an 
earthquake.

4.2.3. Graphical representation: deformation over time graph
The third GeoCoder representation is the graph of deformation over time shown on the bottom right side of the GeoCoder. The x- 

axis is time and the y-axis is the amount of deformation with three levels marked: low, medium, and high. As the model runs, the graph 
automatically updates based on the amount of deformation in the DS. As the model runs, the line in the graph increases until the 
deformation exceeds the maximum deformation level set in the code. When an earthquake occurs, the line drops to zero, indicating the 
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complete dissipation of deformation. The slope of the line in the graph indicates the speed of deformation build-up on the land surface, 
and the level it reaches before an earthquake indicates the friction level that students set in the code. Depending on the plate speeds 
and friction level students define in the code, multiple earthquakes are possible throughout a single run, and the graph will have a saw- 
toothed pattern.

The graph serves as an abstract representation of deformation build-up over time. Its value comes from recording the differential 
speed, level of maximum deformation, and the number of earthquakes that occur throughout a simulation run.

These three representations are dynamically linked because actions performed on one representation (the block code) are auto-
matically shown in both other representations (the DS and graph) (van der Meij & de Jong, 2006). The blocks were specifically 
designed so that each block, when highlighted during a run, produces a visual output in the DS and the graph. The three represen-
tations together show overlapping information, such as the build-up of deformation over time in the DS and graph. Yet each repre-
sentation also shows unique information, such as the block code syntax indicating why earthquakes repeatedly occur. The additive 
value of all three dynamically linked together gives a more rounded and robust model of the earthquake cycle than any of the rep-
resentations individually.

4.3. The activity sequence

The four focal pages of this activity scaffold two parallel learning goals: 1) building representational competency and 2) learning 
about the earthquake cycle. The pages interweave questions pertaining to these learning goals in order to develop students’ abilities to 
conduct and explain investigations around the earthquake cycle. For example, in order to learn about the controlling factors of the 
earthquake cycle, the curriculum slowly walks students through the control of variables method over the course of three pages to 
investigate the independent effects of plate speed and friction level on the earthquake cycle. While doing this, students are prompted to 
link the outputs of multiple representations to describe the effects of the variables on the occurrence of earthquakes. The activity starts 
simply, with only a few blocks available to build code and only the DS visible. As the activity progresses, the deformation over time 
graph is made visible, and additional blocks are used, which produce additional features in the DS and graph. By going back and forth 
between questions regarding representational competencies and the earthquake cycle, we aim to slowly build students’ abilities to 
investigate and make sense of the earthquake cycle phenomena. The four pages of interest are described in more detail below (Fig. 2).

On Page 1, the curriculum prompts students to identify links between the block code and the DS. Using one function block and two 
number blocks, students input data of specific GPS sites from around California into the program and observe the grid lines of the DS 
bend and stretch based on those data. On this page earthquakes are disabled and the grid lines deform for the entirety of the run and 
never break. Students are prompted to run multiple iterations with plate speeds from different GPS stations to explore the relationship 
between differential plate speed and the amount of land deformation. As this is the first time students use block code to run the DS, the 
curriculum focuses on linking the procedural code blocks and the geometric DS representation by asking the following question (Q7): 
“What happens every time the ‘Increase deformation … ’ block is executed?” In answering this question, students exhibit their ability 
to link the function of the block code to the output visualization in the DS.

On the second page, students are prompted to link deformation shown in the DS to the deformation over time graph. To do this, 
students are instructed to add two function blocks to the code they previously built that will: 1) create a graph of deformation over time 
and 2) plot data from the DS on that graph. In this case, as the code is executed, it shows not only the progressive bending and 
stretching of the grid lines in the DS as on page 1, but also the line on the graph linearly increasing over time, reinforcing the idea that 
deformation is increasing. To help students link the visualizations of these representations, Q12 asks, “In this snapshot, which part of 

Fig. 2. The activity sequence. Two parallel and interacting scaffolded sequences were designed into the focal activity.
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the graph corresponds to the amount of deformation shown in the grid?” Students are then prompted to link the block code with the 
deformation over time graph in Q13, which asks, “Describe what happens in the graph during each iteration (when you run through 
each 20-year time segment).” By the end of this page, students have interacted with all three representations and attempted to link each 
representation to the others.

On the third page, students add several blocks to the code to produce earthquakes in the DS. These blocks include a conditional 
statement and a function block, which allows them to set the friction level between the two plates. When the code is run with these new 
blocks, the grid lines bend and stretch up to a friction limit, which is defined in the conditional, and then break and snap back to 
straight. This breaking and snapping represents the phenomena in which earthquakes on the fault are the result of periodic defor-
mation release and how the land disconnects on each side of the fault at that moment. Three sensemaking questions (Q17, Q18, Q23) 
prompt students to relate each of the representations to earthquake cycle concepts. The representational conceptualization question 
(Q19), “Why do earthquakes repeatedly occur?” asks students to use any of the representations in the GeoCoder to explain the 
earthquake cycle phenomenon.

The fourth focal page in the activity, hereafter referred to as the “performance task”, serves as an embedded assessment of students’ 
knowledge of the earthquake cycle after completing the previous pages of the seismic activity. This task engages students in an 
investigation where they use the GeoCoder to explain the earthquake cycle along a fault at three different locations in California 
(Table 2). In each location, we provided a pair of GPS stations with their actual velocities and the estimated friction level along the fault 
between the stations. Students are prompted to enter the speeds and friction levels for the three pairs of stations into the code to 
simulate the earthquake cycle in each location. The four questions on this page assess students’ ability to conduct the investigation 
using the GeoCoder, interpret the representations, and apply their understanding to earthquake cycle concepts. These questions engage 
students in using the representational competencies from earlier in the activity.

4.4. Participants

During the spring semester of the 2023 school year, the seismic module was implemented by four teachers at a suburban high 
school in Colorado, two teachers at an urban middle school in Illinois, and one teacher at a suburban middle school in Illinois. Of the 
431 students who completed the pre-test, 25% were 6th graders, 40% were 8th graders, 32% were 9th graders, and 1% were 10th 
graders. Forty-eight percent of students identify as female, 44% as male, 3% as non-binary, and 1% preferred not to answer. Eight- 
seven percent of students spoke English as a first language. Many of the students (79%) had used computers to learn science prior 
to the module; 55% had prior coding experience.

4.5. Analyses

4.5.1. Scoring of representational competency items
Students’ responses to multiple-choice (MC) and open-response (EX) questions in the seismic module were collected automatically. 

Throughout the entire activity, students were asked 44 MC, EX, and snapshot questions. For this study, we focus on 11 of the questions 
as they highlight the representational linking, sensemaking, and conceptualization tasks that students completed in the activity. 
Questions 7, 12, and 13 prompted representational linking. Questions 17, 18, and 23 prompted representational sensemaking. 
Question 19 prompted representational conceptualization (Table 1and 2).

The MC items were scored automatically and given a 1 for correct and 0 for incorrect. EX items were scored as follows: 0 (no 
information), 1 (non-normative), 2 (normative but simple), 3 (normative with simple linking, sensemaking, or conceptualization), and 
4 (normative with complex linking, sensemaking, or conceptualization). For example, Score 2 was assigned to students’ explanations 
that mentioned one of the representations or concepts but did not make any link between them. Score 3 was assigned to students’ 
explanations that recognized the connection between representations or concepts but did not fully elaborate on the explicit connection 
between them. Score 4 was assigned to students’ answers that showed strong competency in linking or sensemaking. The progression 
within this rubric can be viewed as higher sophistication in students’ representational competency, leading to higher levels of un-
derstanding of both the representations themselves and the earthquake cycle.

To illustrate scoring, we use Question 7, which asks students to describe the changes in the DS as they run through the code one 
block at a time. This question targeted students’ ability to link changes in the DS to the execution of the code blocks as they step 
through the code over and over again. The rubric developed to score student explanations to this question sorted student descriptions 
into five levels. Score 0 was given to students who did not provide any information, such as blank or off-topic ideas. Score 1 was given 

Table 1 
Questions in the performance task on the last page of the activity. EX = open response question. MC = multiple choice question.

No. Type Question

41 EX How many earthquakes occurred at the fault between each pair of stations over 500 years?
42 EX Compare the graphs and explain why the area along the fault between P513 and P544 GPS stations has less frequent earthquakes than the other two 

locations.
43 EX The Salton Sea, which is between stations P491 and CACT, has experienced many small earthquakes over the years. Using evidence from your 

experimentation, explain why this is true.
44 MC Between which set of stations would you expect the largest earthquake to occur?
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to students whose responses included non-normative ideas, such as “It changes the code.” Score 2 was given to the response “The 
ground in the simulation moves” because it describes only the outcome of the DS and not any effect of running the code on the DS. 
Score 3 was given to the response “The simulations starts moving” because it does mention a simple connection about how the code 
affects the outcome in the DS. Score 4 was given to the response “Each time you click the step button, station 3 moves up, while station 
1 and 2 move down” because it explicitly mentions how the code affects the DS outcome and makes a reference to the execution of the 
code.

4.5.2. Scoring of performance task items
We combined the scores of the four questions in the performance task to gain an overall score of students’ ability to conduct, 

interpret, and explain computationally mediated investigations of the earthquake cycle. We scored the MC item 1 for correct and 0 for 
incorrect. The EX items were scored as follows: 0 (no response), 1 (non-normative response), 2 (normative with simple causal or 
functional response), and 3 (normative with complex causal or functional response).

4.5.3. Mixed effects general linear modeling
We used a mixed-effects general linear model to analyze the student performance score on the performance task. We created the 

performance score as a sum of the scores each student received on the four performance task items. We entered five student variables as 
fixed effects, including race (White vs. Non-White), English (first vs. second language), gender (male vs. female/non-binary), prior 
experience with using computers for science learning (yes vs. no), and prior experience in computer programming (yes vs. no). We 
chose to include female and non-binary students together because they are two genders who are underrepresented in STEM disciplines. 
We want our results to speak to the representational competency ability of these underrepresented genders, rather than understanding 
each gender individually. We entered the teacher variable as a random effect to account for variations that occur across teaching 
contexts. Fixed effects entered into the mixed effects general linear model were student scores related to three representation linking 
items (i.e., code to DS, DS to graph, and code to graph), three representation sensemaking items, and one representation conceptu-
alization item. We used the partial eta squared (η2) values along with p values to determine the significance and magnitude of each 
variable. We interpret the size of the effects using η2 = 0.01 as a small effect, η2 = 0.06 as a medium effect, and η2 = 0.14 as a large 
effect.

Table 2 
Percentage of responses in each score by question and the type of representational competency assessed with each question.

No. Type Connection Score

0 1 2 3 4

7 EX Code–DS Linking 2 9 27 46 17
12 MC DS–Graph Linking 64 36 N/A N/A N/A
13 EX Code–Graph Linking 1 13 46 21 19
17 EX DS Sensemaking 0 25 44 29 2
18 EX Graph Sensemaking 2 21 43 31 3
19 EX Conceptualization 1 31 52 16 N/A
23 EX Code Sensemaking 0 4 45 18 32
41 EX Content 0 48 22 30 N/A
42 EX Content 5 55 27 13 N/A
43 EX Content 7 45 27 20 N/A
44 MC Content 38 62 N/A N/A N/A

Table 3 
Mean performance task scores by student variables.

Variables n M SD t p

Gender
Female and other 233 5.82 2.24 0.59 0.55
Male 198 5.70 2.03
Race
Non-White 151 5.58 2.15 −1.34 0.18
White 294 5.86 2.13
English
Second language 43 5.77 2.17 0.01 0.98
First language 388 5.76 2.14
Prior uses of computers for science learning
Yes 81 5.49 2.13 −1.25 0.21
No 350 5.83 2.14
Prior computer programming experience
Yes 188 5.58 2.10 −1.57 0.12
No 243 5.91 2.17
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5. Results

Our first research question was to identify the extent to which students link, make sense of, and conceptualize procedural, geo-
metric, and graphical representations in the context of the earthquake cycle. Table 3 shows the scoring results for each of the 11 
questions in this study, including the type of question and the targeted representational competency. The percentage of responses in 
each score is shown.

In seven questions addressing representational competencies, we found that a majority of students were able to demonstrate some 
form of representational competence. However, few students showed strong competency in linking, sensemaking, and conceptualizing 
from the representations. In only one of the seven questions (Q7, code–DS linking) did over half of students make at least a simple 
connection (Score 3 or 4).

5.1. Descriptive statistics on representational competencies

5.1.1. Representational linking
The representational linking questions (Q7, Q12, and Q13) centered around students’ ability to link the correlated visual output of 

two representations. Sixty-three percent of students made a simple connection between code and DS in Q7 and 40% did between code 
and graph in Q13. On Q7, 46% of students made a simple connection (Score 3) and 17% made a complex connection (Score 4). For 
example, in response to the question “What happens [in the DS] every time the ‘Increase deformation … ’ block is executed?” a sample 
Score 4 response is “It moves the plate 25 mm every year for 500 years.” This response shows a sophistication in linking the elements of 
the code (eg. the data block specifying speed at 25 mm/year), the DS (eg. the plate motion), and the dynamic effect the changing code 
has on the output of the DS. Many of the responses earning a score of 4 included the values of plate speed in their answer to show their 
understanding of how those values in the code manifested in the speed at which the plates shift past each other.

5.1.2. Representational sensemaking
The representational sensemaking questions (Q17, Q18, and Q23) prompted students to relate the visual output of each repre-

sentation to earthquake cycle concepts. Question 17 prompted students to sensemake using the DS, Q18 prompted students to sens-
make using the deformation over time graph, and Q23 prompted students to sensemake using the code. Of these three questions, 
students did best relating the code to content (Q23), with 32% of responses including a sophisticated connection. This question, which 
asked students “What is the requirement for triggering an earthquake?” mirrored the language in the block code. An answer of 
“Deformation to the point of breaking” was scored as a 3 because the response describes the general relationship, but with no specific 
evidence from the representations. The response, “The requirement for triggering an earthquake is that the land deformation passes the 
max deformation determined by the amount of friction in the plates” scored 4 because the student is directly relating the procedural 
structure of the code to explain the phenomenon. It is clear this student has comprehended the meaning of the syntax in the code blocks 
enough to apply it in answering this question.

The DS sensemaking (Q17) and graph sensemaking (18) proved more difficult for students. Only two percent of students were able 
to make a sophisticated connection (Score 4) between the DS and geoscience content and 3% of students were able to make a so-
phisticated connection between the graph and content. In these two questions, students struggled to ground the representations in the 
domain-relevant language, despite the multiple visual and textual aids. For example, students’ language often described only the 
surface features of the DS such as “one half goes up and one goes down” rather than the domain-relevant conceptual features that the 
DS was representing, making no mention of how the representation connects to land deforming due to plate movement.

Table 4 
Mixed effects general linear model results.

Question Source df F p Partial Eta

Squared

– Intercept 1 70.77 *** 0.154
– Gender1 1 0.13 0.72 0.000
– Race1 1 0.38 0.85 0.000
– English second language1 1 0.75 0.39 0.001
– Prior uses of computers for science learning1 1 0.47 0.50 0.001
– Prior computer programming experience1 1 0.001 0.97 0.000
Q7 Code-DS linking1 1 2.58 * 0.025
Q12 DS-graph linking1 1 4.28 * 0.011
Q13 Code-graph linking1 1 0.59 0.67 0.006
Q17 DS sensemaking1 1 2.46 * 0.024
Q18 Graph sensemaking1 1 0.77 0.54 0.008
Q23 Code sensemaking1 1 5.60 *** 0.054
Q19 Conceptualization using representations1 1 3.49 * 0.026
– Teaching context2 6 1.18 0.31 0.018

Note: 1Fixed effect, 2Random effect; *p < 0.05, **p < 0.01, ***p < 0.001.
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5.1.3. Representational conceptualization
The sole question assessing students’ ability to relate earthquake cycle concepts to the representations overall is Q19. This question 

asks, “Why do earthquakes repeatedly occur?” Students could draw their explanations from any, or multiple, of the representations in 
the GeoCoder. For example, students could describe the loop function in the code, which causes deformation to build up, even after an 
earthquake occurs. Or they could explain how the lines in the DS begin to bend and stretch directly after an earthquake. Or they could 
use the graph to describe how deformation immediately builds up again after an earthquake. In this question, 16% of students earned a 
top score of 3 by using evidence from any one of the representations to effectively answer this question. Fifty-two percent of students 
earned a score of 2 on this question because they were able to identify evidence from the representations that could answer this 
question, but were unable to use the evidence to explain the phenomenon.

5.2. General linear model analysis results

To investigate our second research question (How does the extent of students’ representation linking, sensemaking, and concep-
tualization in the activity correlate with their performances in a computationally mediated geoscience investigation?), we conducted 
mixed effects general modeling. The results of this analysis (Table 4) showed that students’ performance task scores were not affected 
by student demographic variables such as gender, race, English language learner status, prior uses of computers for science learning, 
and prior computer programming experience. Nor did students’ performance task scores depend on the teaching context variable. The 
only significant correlations were with five representational competency items answered by students. The most prominent effect was 
code sensemaking (η2 = 0.054, near medium effect), indicating the importance of students understanding how the code procedure 
relates to the earthquake cycle. The next significant effect was student performances on DS sensemaking (η2 = 0.024, between small 
and medium effect). Other significant effects were found in code to DS linking (η2 = 0.025, medium effect), conceptualization using 
representations (η2 = 0.026, medium effect), and DS to graph linking (η2 = 0.011, near small effect).

6. Discussion

This paper reports on the extent of the connections students make between multiple dynamically linked representations and on the 
representational competency scores that correlate with their performance in conducting and explaining a computationally mediated 
geoscience investigation. The goal of this study was to engage students with MLDRs so that they could develop necessary represen-
tational competencies in the context of investigating the earthquake cycle. In discussing the results of this study, we focus on students’ 
expression of representational competencies, which competencies significantly correlated with students’ performance task scores, and 
how representations in a scaffolded activity sequence enabled students’ use of a computational tool for geoscience investigations.

6.1. Students’ representational competencies

Several studies on multiple representations have reported success in building students’ understanding of domain knowledge 
(Ainsworth, 2008; de Jong & van Joolingen, 1998; McElhaney et al., 2015). Presenting information in multiple modalities (e.g., 
simulations, images, graphs, and maps) is advantageous to learners because it allows them to actively map and process complementary 
information from each representation (Ainsworth, 2006). By engaging learners in integrating different representations, they actively 
construct a conceptual image that illustrates relationships between different kinds of information from diverse representations into a 
coherent structure (Schnotz & Rasch, 2005). However, before learning from the representations, students must fully grasp the in-
tricacies and nuances associated with linking between the representations. In this study, many students were able to describe the 
dynamic links between each of the representations. Students were able to point out the automatic effect of the code on the geometric 
and graphical representations and articulate which code blocks caused specific changes in the outputs during the model run. They were 
also able to link the changing outputs of the geometric and graphical representations together, identifying how those representations 
provided complementary information of increasing deformation over time due to plate movement. Students who did not notice the 
visual cues between representations were the ones who had trouble linking between them, a result in line with Anzai (2001) and 
Schoenfeld et al. (1993).

Another essential competency defined in the literature necessary to build domain knowledge using multiple representations is 
sensemaking. Sensemaking involves using the perceptual features of representations to develop a conceptual understanding of domain- 
relevant material (Rau et al., 2017). Students who exhibited sophisticated sensemaking were able to see the conceptual aspects of the 
representations rather than only the surface-level aspects. For example, when explaining how the Deformation Simulation connects to 
the earthquake cycle, students who showed strong sensemaking used contextualized words such as “plates,” “north and south,” “land,” 
and “transform boundary.” These students also correctly identified events in the representations, such as how the snapping of the 
gridlines in the DS represents an earthquake. Students who showed weak sensemaking used descriptive words such as “two halves,” 
“gridlines,” and “up and down.” Research suggests that being able to reason about how each representation relates to domain-relevant 
concepts that are not explicitly shown displays high sensemaking competency, and it is a significant result that many students in this 
study were able to exhibit this ability.

The third representational competency studied in this paper is conceptualization. Conceptualization competencies detail the 
knowledge and skills students use to explain real-world phenomena using representations and why a particular visual representation 
could be chosen for a task. In previous research (Mayer, 2005; Schnotz, 2014, pp. 72–103), conceptual competencies are involved 
when students select information for further processing by identifying meaningful visual features and mapping these to conceptual 
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knowledge. This study found that many students were able to identify evidence from one or more representations in the GeoCoder to 
answer conceptualization questions, yet few students were able to use the evidence to effectively explain the phenomena. In other 
words, students identified the relevant aspects of the representations to be used in the explanation yet could not extend their inter-
pretation to write an effective explanation. This result is unsurprising, as we believe the conceptualization competency is the most 
difficult for students to achieve. It requires that students understand what the question is asking, what evidence can answer that 
question, and which representations can be used to gather that evidence.

6.2. Representational competency correlation with performance

This study found that all three representational competencies are significantly correlated with future performance. Students who 
showed strong ability in linking, sensemaking, and conceptualizing the representations in the three pages of the focal activity scored 
higher on the questions in the performance task. Students who did not score well on the representational competency questions did not 
do well in the performance task. This finding adds to the growing body of evidence that developing proficiency in representational 
competencies is crucial for students to effectively learn scientific concepts across various disciplines.

This study found students’ levels of responses to all but two competency questions are significantly correlated with performance 
task scores. Interestingly, these two questions involved linking graphical representation to code (Q13) and sensemaking of graph 
(Q18). This indicates that successfully linking and sensemaking with the graph was important but not significant in determining 
student performances on the performance task. It is well known that students struggle to read and interpret graphs, and this finding 
could speak to the affordances of particular representations to help build a mental model of scientific phenomena. The graph is the 
most abstract representation in GeoCoder. Both the DS and the syntax of the code convey more information about the processes of the 
earthquake cycle than the graph does. It is possible that information from the graph was not useful for students in building their mental 
model of the earthquake cycle. This finding is in line with previous studies which show that although curriculum designers may 
perceive equivalent and useful information in multiple representations, students may not (Ainsworth, 1999; Ainsworth et al., 2002). 
Additionally, Kuo et al. (2017) demonstrated that students often prefer to use only one or two representations in tasks despite being 
asked to use multiple. As code and DS other representations were possibly more useful to students, they relied on those to build their 
understanding.

6.3. Design considerations

Cory and Garofalo (2011) highlighted two essential design considerations when building a curriculum with technology-based 
representations: (1) the careful curation required to select and sequence the representations and (2) the instructional design 
required to scaffold and guide students’ use of the technology. In this study, we deliberately sequenced the representations and 
representational competency questions to help students link, sensemake, and conceptualize the representations and the earthquake 
cycle content. We introduced the representations and the visual cues that connect them in sequenced pages so as not to overwhelm 
students when first using them. For example, the graph was not shown on the first page of the activity so that students could focus only 
on the block code and DS. Additionally, when the graph was added on the second page, earthquakes were still not included in the 
function of the model to help students focus on making connections between the rise of the deformation as represented on the Y-axis of 
the graph and the bend of the lines in the DS. The full functionality of the model, with earthquakes, was added on the third page of the 
sequence.

To go along with the step-by-step introduction of model features, the curriculum slowly scaffolded students in linking, sense-
making, and conceptualization using the representations. As Ainsworth (2006) points out, in order to utilize a representation, learners 
must first understand how the information is encoded in the representation, how it relates to its context or domain, and how to choose 
the best representation according to the problem. Only after students understand these elements of the representations can they 
effectively engage in scientific inquiry. Other researchers have studied how the order of introduction of representational competencies 
affects learning (Rau et al., 2017). In this study, we show an example of one way to sequence competencies. Linking is first because in 
making connections across representations, learners develop mental models that may lead to a deeper understanding of the domain 
(Ainsworth & van Labeke, 2004). Linking is followed by sensemaking and conceptualization because those competencies require 
students to operationalize their knowledge of the representations. This study cannot speak to the efficacy of this sequence compared to 
a different sequence, but we believe learning about the representations is required before learning from the representations.

7. Limitations

There are several limitations in this study. First, although we found that students were successful in exhibiting representational 
competencies, there is considerable room for improvement. To some extent, the low scores may reflect the noted struggle that students 
have when encountering new representations, especially when investigating complex systems such as the earthquake cycle. Also, there 
is only one question in the study assessing students’ conceptualization competency, and we have made conclusions about the cor-
relation between this competency and students’ future performance based only on this one question. It would be advantageous in the 
future to have more questions prompting students to exhibit their conceptualization competency. Additionally, there are no experi-
mental variations, and therefore we cannot say that there is a causal correlation between the three individual competencies and the 
learning outcomes on the performance task. Lastly, this study reports only a snapshot of students’ performance at one time and there 
are no pre-post tests or general abilities that would allow controlling for confounding variables. Future work could show whether 
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students are able to build representational competence throughout an authentic computational investigation such as this using pre- 
and post-assessments to measure their learning gains.

8. Conclusion

Multiple representations can play a significant role in engaging students in simultaneous learning of both computational practices 
and domain content. However, teachers are struggling to find ways to effectively integrate computational practices with disciplinary 
core ideas in science. The seismic module used in this study leveraged multiple dynamically linked representations to build students’ 
representational competencies while carrying out computationally-mediated geoscience investigations. In this study, the use of the 
three representations was scaffolded within the instructional activities so that students could slowly build representational compe-
tencies to conduct investigations within the computational learning environment. Research is warranted to further explore repre-
sentational competencies essential to building a deeper understanding of domain content knowledge. This is especially true when 
working in domains such as geoscience, where representations such as such as simulations, maps, and graphs allow students to study 
systems that occur across a wide range of spatial and temporal scales. This research may have a broad impact on teaching in many 
science domains as representational competencies are significantly correlated with future performance in science investigation tasks 
and using computational methods to produce and interpret multiple scientific representations is now a common practice in many 
science disciplines.
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