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This paper describes a measurement of the jet radius dependence of the dijet momentum balance between
leading back-to-back jets in 1.72 nb~! of Pb4Pb collisions collected in 2018 and 255 pb~! of pp collisions
collected in 2017 by the ATLAS detector at the LHC. Both datasets were collected at ,/sxy = 5.02 TeV. Jets
are reconstructed using the anti-k, algorithm with jet radius parameters R = 0.2, 0.3, 0.4, 0.5, and 0.6. The dijet
momentum balance distributions are constructed for leading jets with transverse momentum pr from 100 to
562 GeV for R = 0.2, 0.3, and 0.4 jets, and from 158 to 562 GeV for R = 0.5 and 0.6 jets. The absolutely
normalized dijet momentum balance distributions are constructed to compare measurements of the dijet yields
in Pb+-Pb collisions directly to the dijet cross sections in pp collisions. For all jet radii considered here, there
is a suppression of more balanced dijets in Pb+Pb collisions compared with pp collisions, while for more
imbalanced dijets there is an enhancement. There is a jet radius dependence to the dijet yields, being stronger
for more imbalanced dijets than for more balanced dijets. Additionally, jet pair nuclear modification factors
are measured. The subleading jet yields are found to be more suppressed than leading jet yields in dijets. A
jet radius dependence of the pair nuclear modification factors is observed, with the suppression decreasing with
increasing jet radius. These measurements provide new constraints on jet quenching scenarios in the quark-gluon

plasma.
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I. INTRODUCTION

The physics aim of the heavy-ion program at the Large
Hadron Collider (LHC) [1-3] and the BNL Relativistic Heavy
Ton Collider (RHIC) [4-8] is to produce the quark—gluon
plasma (QGP) and measure its properties. The QGP is an
ultrahot and ultradense state of matter in which quarks and
gluons are no longer confined in color-neutral hadrons (for
a recent review, see Ref. [9]). To understand the properties
of the QGP at short distances, high transverse momentum
(pr) probes such as jets are used [10,11]. Jets traversing the
QGP experience jet quenching, characterized by a reduction
in the overall jet energy compared with expectations from
pp collisions. This phenomenon is understood to arise from
radiative and collisional energy loss, reducing the jet pp by
moving the energy of the initial parton to wider angles, with
some of it ending up outside the predefined jet cone [12].
Jet quenching is typically quantified by the overall rate of
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jets in a given centrality! interval in Pb+Pb collisions and
at a given pr compared with geometric expectations based
on measured cross sections in pp, commonly known as the
nuclear modification factor,

1 dNAA da,'ﬂﬂ
Ria = ——— [ [ (1) =2 ). ()
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where N44 is the total number of minimum-bias Pb+Pb
events and (Ty4) is the mean nuclear thickness function [13]
for the centrality interval. This normalization accounts for
the geometric enhancement in hard scattering rates in Pb+Pb
collisions with respect to pp collisions. The jet yield in Pb+Pb
collisions is Nj’éf‘, and the jet cross section in pp collisions is
oP, both measured as a function of the jet pr. In the most
central Pb+Pb collisions, R4 is observed to be approximately
0.5, dependent on the jet pr and jet radius, up to a pr of ap-
proximately 1 TeV [14—17]. Measurements of the suppression
of jets of different radii are of great interest to understand
where the lost energy is with respect to the jet axis, how the
energy is distributed among the jet particles, and to measure
the possible response of the QGP to the presence of the jet

!Centrality characterizes the degree to which the colliding nuclei
overlap. The most central collisions have a large overlap and the
highest particle multiplicities, while the most peripheral collisions
have only a minimal overlap and have particle multiplicities closer to
those of pp collisions at the same nucleon—nucleon collision energy.
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[18,19]. For pr > 400 GeV in central collisions, CMS has
measured no significant dependence of the jet R4y on the
jet radius [15]. At much lower momentum (pr < 100 GeV),
measurements from ATLAS [20] found a modest decrease
in jet quenching (an increased jet yield) with increasing jet
radius. In contrast, recent measurements from ALICE [21]
in a similar momentum region suggest that jet quenching
increases with increasing jet radius. For recent reviews of jet
quenching, see Refs. [11,22].

Jets are largely produced in pairs in 2 — 2 partonic
scattering processes. The quantum chromodynamics (QCD)
evolution of the partons after the scattering gives rise to
back-to-back jets, referred to here as “dijets.” The two jets
are expected to experience asymmetric energy loss due to
traversing unequal path lengths in the QGP [23], driven by
the geometry of the overlapping nuclei and the relative orien-
tation of the jet trajectories through the QGP. Measurements
of the azimuthal anisotropy of jets [24] have shown that the
geometry of the overlapping nuclei affects the relative rates of
jets measured in Pb+Pb collisions. Additionally, jets are also
expected to experience jet-by-jet fluctuations in the energy-
loss process [25]. While single jets can be used to study jet
quenching, dijets can also be used as a complementary probe.
The measurement of the pt balance of dijets provides a way to
constrain the relative importance of fluctuations and geometry
in jet quenching. The shape modification of jets in dijets has
been less studied than for single jets, where the jet shape is
the distribution of charged-particle transverse momentum as
a function of the angular distance to the jet axis. Studying jet
shapes, CMS observed a redistribution of the charged-particle
transverse momentum with an enhancement at larger angular
distances with respect to the jet axis, when comparing Pb+Pb
to pp collisions [26]. In this context, measurements of the jet
radius dependence of the dijet balance are especially interest-
ing and can provide different sensitivity to the location of the
lost energy than is available with single jet measurements.

To compare the transverse momenta of the two jets that
comprise a dijet, the leading dijet momentum balance

Xy = pra/Pri )

is measured. The leading dijet is constructed using the two
highest-pr jets out of the set of jets in an event, pr; is the
transverse momentum of the highest-pr (leading) jet, and pr»,
of the second-highest-pr (subleading) jet.

In pp collisions, the showering process in vacuum and
higher-order scattering processes can lead to imbalanced dijet
transverse momenta. However, the most probable situation is
that the jets are nearly balanced in pt [27,28]. Previous dijet
measurements in Pb+-Pb collisions have shown that jets are
more likely to be more imbalanced in Pb+-Pb collisions than
in pp collisions [27-30].

Early dijet publications reported only the dijet momentum
balance normalized by the measured dijet yields [27,29,30], to
study the changes in the shape of the x;j distribution as a func-
tion of the heavy-ion collision centrality. Reference [28] ad-
dressed the absolute rate at which R = 0.4 dijets are produced
in Pb+Pb collisions, assessing whether leading dijets are sup-
pressed at levels similar to those for inclusive jets [14]. This
paper extends the studies of Ref. [28] by varying the jet ra-

dius parameter, with leading dijets being measured in Pb+Pb
and pp collisions at /s = 5.02 TeV. The measurements
use 1.72 nb~! of Pb4-Pb collisions collected in 2018 and
255 pb~! of pp data collected in 2017 with the ATLAS de-
tector [31] at the LHC.

Jets are reconstructed using the anti-k, algorithm [32] with
radius parameters R = 0.2, 0.3, 0.4, 0.5, and 0.6. The analysis
is conducted independently for each of the jet radius values.
In each case, the leading dijets are constructed from the two
highest-pr jets in the event and are required to have the two
jets nearly back-to-back in azimuth with |¢; — ¢| > 77/8
and |y| < 2.1.7 Leading jets are reported with py values from
100 to 562 GeV for R = 0.2, 0.3, and 0.4 and from 158 to
562 GeV for R=0.5 and 0.6. To be consistent with
Refs. [27,28], subleading jets are reported down to xj values of
0.32 for each leading jet pr selection. Events in which the two
highest-pr jets do not meet the selection criteria are discarded.

The primary observable for this measurement is the
two-dimensional yield of leading dijets (V) meeting the
selection criteria described above:

dszair
dpridpra’

Analogously to Rs4 in Eq. (1), the pair nuclear modi-
fication factors for dijets as a function of the leading and
subleading jet pr can be defined as

3
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where (T4) and Neyw™ are defined the same way as in Eq. (1),
L,, is the integrated luminosity of the pp collisions [33],
and N and N/ are the dijet yields in pp and Pb+Pb
collisions, respectively. By integrating over pr, (pr1), one
can access information from RY" (pr1) [RY (p12)] about the
differential rate of dijet production in leading (subleading)
jet pr bins. Comparison of these two quantities at a fixed jet

pr provides information about the suppression of leading and

2ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the center of the detector, and the
z axis along the beam pipe. The x axis points from the IP to the center
of the LHC ring, and the y axis points upward. Cylindrical coordi-
nates (r, ¢) are used in the transverse plane, ¢ being the azimuthal
angle around the z axis. The pseudorapidity is defined in terms of
the polar angle 6 as n = —Intan(6/2). The rapidity is defined as
y=0.5In[(E + p;)/(E — p;)] where E and p, are the energy and z
component of the momentum along the beam direction, respectively.
Transverse momentum and transverse energy are defined as pr =
psin6 and Er = E sin 0, respectively. The angular distance between
two objects with relative differences An in pseudorapidity and A¢
in azimuth is given by AR = [(An)? + (A¢)?]'/>.
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subleading jets in a dijet. These quantities were first shown in
Ref. [28].

Additionally, projections of the two-dimensional
(pr.1, P12) distributions can be used to construct xj
distributions as a function of pt; and pr,. The x; values,
as defined in Eq. (2), are reported for 0.32 < x5 < 1.0 for
selections in pr,;. This paper presents results of the absolutely
normalized xy distributions in pp collisions:

pp

1 pair
e 6
Lpp dx; ©
and in Pb+Pb collisions:
1 dNﬁﬁr o
(Taa)NA2Y dxy

Similarly, the dijet-yield-normalized x; distributions are de-
fined as

1 deair
Npair dx]

with a normalization that was used in previous dijet measure-
ments [27-30].

The absolutely normalized x; distributions allow a direct
comparison between the dijet rates measured in Pb+Pb and
pp collisions. This comparison is quantified by the ratio:

P, AN, 1 dNPE ©
M TN dxy Ly dxy )

Finally, the absolutely normalized x; distributions can be
integrated over the measurement range of 0.32 < x; < 1.0
(and the corresponding ranges in pr; and prp) to construct
the absolutely normalized dijet yields in Pb+Pb collisions:

1 /p N

, ®)

o ———dpm, (10)
(Taa)NAY Jo32xpr, dpradpro
and the dijet cross sections in pp collisions:
1 Pr,1 d2nNre
— ————dp. (11
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II. ATLAS DETECTOR

The ATLAS detector [31] at the LHC is a multipurpose par-
ticle detector with a forward—backward symmetric cylindrical
geometry and a near-4 coverage in solid angle. It consists of
an inner tracking detector surrounded by a thin superconduct-
ing solenoid, electromagnetic and hadron calorimeters, and a
muon spectrometer. The inner-detector system is immersed
in a 2 T axial magnetic field and provides charged-particle
tracking in |n| < 2.5. The high-granularity silicon pixel de-
tector covers the vertex region and typically provides four
measurements per track, with the first hit typically being
in the insertable B-layer installed before Run 2 [34,35]. It
is followed by the silicon microstrip tracker (SCT), which
usually provides eight measurements per track. These silicon
detectors are complemented by the transition radiation tracker,
a drift-tube-based detector, which surrounds the SCT and has
coverage up to |n| = 2.0.

The calorimeter system covers the pseudorapidity range
[n] < 4.9. In the region |n| < 3.2, electromagnetic calorime-
try is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin
LAr presampler covering |n| < 1.8 to correct for energy loss
in material upstream of the calorimeters. Hadronic calorime-
try is provided by the steel and scintillator-tile calorimeter,
segmented into three barrel structures in |n| < 1.7, and two
copper-LAr hadronic endcap calorimeters. The solid angle
coverage is completed with copper-LAr and tungsten-LAr
calorimeter modules (FCal), covering the forward regions
of 3.1 < |n| < 4.9. Minimum-bias trigger scintillators detect
charged particles over 2.1 < |5| < 3.9 using two hodoscopes
of 12 counters, positioned at z = £3.6 m along the beamline
from the center of the ATLAS detector, which are used for
the minimum bias triggers and data samples. The zero-degree
calorimeters (ZDCs) consist of layers of alternating quartz
rods and tungsten plates and are located symmetrically at
z = 2140 m and cover |5| > 8.3. In Pb+4Pb collisions, the
ZDCs primarily measure “spectator” neutrons: neutrons that
do not interact hadronically when the incident nuclei collide.

An extensive software suite [36] is used in simulation, in
reconstruction and analysis of real and simulated events, in
detector operations, and in the trigger and data acquisition
systems of the experiment. Events of interest are selected for
recording and offline analysis by the first-level (L1) trigger
system implemented in custom hardware, followed by se-
lections made by algorithms implemented in software in the
high-level trigger (HLT) [37-39]. The L1 trigger identifies
jet candidates by applying a sliding-window algorithm and
selecting events above an Er threshold of 30 GeV. These
events are then passed to the HLT trigger, which uses a jet
reconstruction and background subtraction procedure similar
to that used in the offline analysis and requires a minimum pr
of 100 GeV for anti-k; R = 0.4 jets. The jet trigger efficiencies
are evaluated separately for each of the jet radii considered
here. The py thresholds are set such that the triggers were fully
efficient for each R value over the pr range considered in this
measurement, with the highest threshold trigger sampling the
full luminosity. In addition to the jet triggers, a minimum-bias
sample was constructed using three different triggers, each
one corresponding to one of the following conditions: total Et
in the calorimeter less than 50 GeV at L1 and at least one track
reconstructed at HLT; total Et in the calorimeter between 50
and 600 GeV at L1; total Et greater than 600 GeV at L1.
More details about the triggering used in ATLAS heavy-ion
collisions can be found in Refs. [37-39].

II1. DATA AND MONTE CARLO SELECTION

The Pb+Pb data used in these measurements were col-
lected in 2018, and the pp data used were collected in 2017,
both at a per-nucleon-pair center-of-mass energy ./s,, =
5.02TeV. Events were selected by the minimum-bias and
jet triggers [37,40] described in Sec. II. Although only a
small fraction of the Pb+Pb events (<0.5%) contain multi-
ple collisions, these were suppressed utilizing the observed
anticorrelation, expected from the nuclear geometry, between
the total transverse energy deposited in both of the forward
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TABLE 1. The (T4) values and their uncertainties for the cen-
trality selections used in this measurement, obtained from the
TGLAUBERMC v3.2 modeling of the total transverse energy in the
forward calorimeters, TEFC4,

Centrality selection (Tan) £ 8(T4s) [mb™']

0-10% 23.35 + 0.20
10-20% 14.33 £ 0.17
20-40% 6.79 £ 0.16
40-60% 1.96 £+ 0.09
60-80% 0.39 £+ 0.03

calorimeters, ©EXC, and the energy in both ZDCs, which
is proportional to the number of observed spectator neutrons.
Events with multiple collisions, called pileup, are not rejected
in pp collisions.

The overlap area of the two colliding nuclei in Pb+4-Pb
collisions is characterized by the event centrality, which
is estimated from XELC4[41]. This measurement considers
five centrality intervals as defined according to succes-
sive percentiles of the EE{FC@ll distribution obtained from
minimum-bias collisions. The centrality intervals considered
in this measurement are 0-10% (largest TEEC, most cen-
tral collisions), 10-20%, 20-40%, 40-60%, and 60-80%
(smallest EE}:CM, peripheral collisions). The values of the
mean nuclear thickness function, (Ty4) [13], and their un-
certainties [42] are determined using the TGLAUBERMC v3.2
package [43]. The (Tx4) values and their uncertainties are
listed in Table I for each centrality interval considered in this
measurement.

The analysis uses three Monte Carlo (MC) samples to
evaluate the detector performance and correct for detector
effects. The pp MC sample includes 3.2 x 107 PYTHIA 8
[44] pp dijet events generated at center-of-mass energy /s =
5.02 TeV with the Al4 set of tuned parameters [45] and
the NNPDF23L0 parton distribution functions (PDFs) [46].
Pileup due to additional inelastic pp interactions is similarly
generated using PYTHIA 8 with the same PDFs and utilizing
the A3 set of tuned parameters [47], tuned for inclusive QCD
processes, matching the number of extra collisions in the pp
data. The MC sample for Pb+Pb collisions uses the 2018 de-
tector conditions and contains 3.2 x 107 pp PYTHIA 8 events
with the same tune and PDFs as used for the generation of
the pp MC samples. The underlying event (UE) contribution
to the detector signal is accounted for by overlaying the sim-
ulated pp events with dedicated minimum-bias Pb+Pb data
events. The minimum-bias data events from Pb+Pb collisions
are combined with the signal from the PYTHIA 8 simulation
of hard scattering events at the digitization stage, and then
reconstructed as a combined event. This procedure enables the
“data overlay” sample to accurately reproduce the effects of
the UE on the jet response. This sample is reweighted on an
event-by-event basis to ensure the same centrality distribution
as is measured in the triggered data samples. Finally, pp
HERWIG7T [48,49] events using the UEEES tune [50] and the
CTEQ6L1 PDFs [51] are used for flavor uncertainty studies

and comparisons with pp data. The detector response in all
three MC samples is simulated utilizing GEANT4 [52,53].

IV. JET RECONSTRUCTION AND PERFORMANCE

The jet reconstruction procedures follow those used by
ATLAS for previous jet measurements in Pb+Pb collisions
[14,24]. Jets are reconstructed using the anti-k; algorithm [32]
implemented in the FastJet software package [54]. In both the
pp and Pb+Pb collisions, jets with R = 0.2, 0.3, 0.4, 0.5, and
0.6 are formed by clustering calorimetric towers of spatial size
An x A¢ = 0.1 x 7 /32. In Pb+Pb collisions, a background
subtraction procedure is applied in each event to estimate
the UE average transverse energy density, p(n, ¢), where
the ¢ dependence is due to global azimuthal correlations in
the particle production from the hydrodynamic flow [55]. The
modulation accounts for the contribution to the UE of the
second-, third-, and fourth-order azimuthal anisotropy har-
monics characterized by values of flow coefficients vVE [55].
An iterative procedure is used to remove the impact of jets on
the estimated p and v\ F values. This background-subtraction
method removes the average UE while any UE fluctuations are
corrected for by the unfolding procedure described later. Jet
R-, n-, and pr-dependent correction factors derived in simula-
tions are applied to the measured jet energy to correct for the
calorimeter energy response [56,57]. An additional correction
based on in situ studies of jets recoiling against photons and
jets in other regions of the calorimeter is applied to account for
differences between the data and MC [58]. This calibration
is followed by a “cross-calibration” in which the jet energy
scale (JES) of jets reconstructed by the procedure outlined in
this section is related to the JES in 13 TeV pp collisions. The
cross-calibration allows for the use of uncertainties obtained
for the latter [57].

“Truth”-level jets are defined in the MC samples before
detector simulation by applying the anti-k, algorithm with
R=0.2, 03, 04, 0.5, and 0.6 to stable particles with a
proper lifetime greater than 30 ps, but excluding muons and
neutrinos, which do not leave significant energy deposits in
the calorimeter. After the detector simulation the truth jets
are matched to the nearest reconstructed jet in AR < 0.75R.
The performance of the jet reconstruction is characterized by
the JES and jet energy resolution (JER), which correspond to
the mean and variance, respectively, of the pir*°/ p‘T‘“‘h distribu-
tion, where p° is the reconstructed jet pr and pi"" is the pr
of the matched truth-level jet. The JES and JER as a function
of p™™ can be seen in Fig. 1 for R = 0.2 and R = 0.6 jets.
The broadening of the JER with centrality is due to the UE
fluctuations, which are larger in more central collisions and
cause the jet pr to smear. Additionally, a larger jet radius al-
lows for a larger contribution of the UE fluctuations in Pb+4-Pb
collisions, causing the larger R jets to have a larger JER. In pp
collisions, the JER is smaller for a larger jet radius because
there are less jet energy fluctuations in and out of the larger jet
cone. The deviation of the JES from unity for high-pr R = 0.2
jets is due to the different requirements used in the determi-
nation of the jet calibration compared with this analysis. JES
and JER effects are corrected for by the unfolding procedure
described below. The efficiency of reconstructing a jet with
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FIG. 1. The (a), (d) JES, (b), (e) JER, and (c), (f) jet reconstruction efficiency for (a)—(c) R = 0.2 and (d)—(f) R = 0.6 jets in pp collisions
and the centrality selections in Pb+Pb collisions used in this analysis.

pr > 20 GeV, as evaluated from the probability of a truth-jet
matching to a reconstructed jet, can also be seen as a function
of pfM in Fig. 1. The lower pr bounds in this figure are
based on the pr requirements used in the analysis, which are
different for the various jet radii in order to minimize the
effects from the UE.

V. DATA ANALYSIS

The analysis and dijet selection used here closely fol-
low those in Ref. [28]. In each data event, the reconstructed
leading dijet is constructed from the two highest-pT° jets
in the event with reconstructed leading pT% > 79 GeV, and
reconstructed subleading pr% > 32 GeV for R =0.2, 0.3,
and 0.4 jets, pry > 41 GeV for R=0.5 jets, and pr% >
51 GeV for R = 0.6 jets. The minimum pr was based on
the minimum pr for which the trigger is fully efficient for
the various jet radii. The minimum pr?% was based on 0.32
of the minimum pr for which the rate of jets created by UE
fluctuations becomes negligible. For R = 0.2, 0.3, and 0.4
jets, the rate of jets created by UE fluctuations is negligi-
ble above approximately 100 GeV, so results are quoted for
leading jet pr; > 100 GeV. A minimum x; of 0.32 implies
pr“z" = 0.32pF?, giving a corresponding minimum sublead-
ing jet pT¢ > 32 GeV. The rate of jets created by the UE
fluctuations depends on the jet radius, so an analogous min-
imum prTecz" was selected for the R = 0.5 and 0.6 jets, and
the results are quoted for leading jet pr; > 158 GeV. The
lower pr,; bins, from 79 to 100 (158) GeV for R = 0.2, 0.3,
and 0.4 (R = 0.5 and 0.6) jets, serve as underflow bins in the

unfolding to account for the jet pr migration due to the JER.
Both jets are required to have [y™°°| < 2.1. These dijets are
required to be back-to-back with |¢; — ¢»| > 77 /8. Leading
dijets meeting these criteria represent approximately 62% of
inclusive R = 0.2 jets with 100 < pT < 562 GeV, and ap-
proximately 72% of inclusive R = 0.6 jets with 158 < pF®°® <
562 GeV. Events in which the leading dijets do not meet
these criteria are discarded. For dijets matching the selection
criteria, two-dimensional (pf7, pr5) distributions are con-
structed symmetrically across pT%’ = pT%. The distributions
are symmetrized to account for the possibility of swapping the
leading and subleading jet definition due to the finite JER.
The measured (pr7, prTecz") distributions are a combination
of the dijet signal and pairs of uncorrelated jets. Since the
UE subtraction accounts for azimuthal correlations in the
particle production due to hydrodynamic flow, the contribu-
tion from uncorrelated dijets is largely independent of the
|p1 — @2]| of the jets; therefore, a |¢; — ¢»| sideband method
is used to remove these pairs as a function of (pT, pr5).
The symmetrized two-dimensional (prTeCf, Pra) distribution
of background combinatoric dijets is determined using di-
jets with 1 < |¢; — ¢»| < 1.4 which, after normalizing to the
|¢1 — ¢»| window of the signal band, is subtracted from the
dijet yields. This effect is strongest for 0—10% centrality
Pb+Pb events at low pTe. In the most central collisions,
combinatoric dijets constitute 2% of the R = 0.2 dijets with
pry > 100 GeV and pr% > 32 GeV, and 1% of the R = 0.6
dljetS with pT¢ > 158 GeV and Pt > 51 GeV. The com-
binatoric dijet rate drops off rapidly with increasing pT7 and
more peripheral events. Because of how the leading dl]et is
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FIG. 2. Relative systematic uncertainties in the absolutely normalized x; distributions in (a), (c), (e), (g) 0-10% central Pb+Pb collisions
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FIG. 3. Relative systematic uncertainties in the Rf‘fr for (a), (c) leading and (b), (d) subleading (a), (b) R = 0.2 and (c), (d) R = 0.6 jets.

Jets are selected with |y| < 2.1 and |¢,
collisions and 8L,,/L,, = 1% in pp collisions.

defined, the presence of residual combinatoric dijets in the
sample results in an inefficiency for genuine jet pairs, where
one of the jets might be replaced by an uncorrelated third jet.
This effect is corrected for using the measured inclusive jet
spectrum from minimum-bias events, reweighted to match the
centrality distribution in the triggered data, to determine the
efficiency loss as a function of the measured jet pr, following
the method discussed in Ref. [27]. This efficiency correction
is the largest in the 0-10% centrality interval, being at most
3% for R = 0.2 jets and 7% for R = 0.6 jets.

To correct for the effects of the JES and JER, the measured

(P, Pry) distributions are unfolded using the iterative
Bayesian unfolding procedure [59] as implemented in the
RooUnfold [60] software package. A two-dimensional un-
folding is used to account for bin migration of both the leading
and the subleading jet pr and to account for possible swapping
of the leading and subleading jet. Separate response matrices
are generated for pp collisions and for each centrality selec-
tion in Pb+Pb collisions, for each R value used. The response
matrix used in the unfolding contains the relationship between
(PP, P5Y) and (P§S, pES). It is populated by identifying
the leading and subleading truth-level jets in the MC sample,
which are matched to the corresponding reconstructed jets
with AR < 0.75R. To account for migration from lower jet
pt<°, the response matrices are populated with truth-level
jets down to pf'f" of 20 GeV and p‘““h of 10 GeV. As

— ¢| > 7 /8. The normalization uncertainties (not shown) are §(T44)/(Txs) = 0.9% in 0—-10% Pb+Pb

with the reconstructed data, truth dijets are required to have
|piruth — piuth| > 77 /8, with each jet having [y™®] < 2.1.
The two selected reconstructed jets from the MC simulations
are required to meet the same selection criteria as applied to
dijets measured in data. Truth dijets that do not match to a re-
constructed dijet meeting the selection criteria are accounted
for by using an efficiency correction in the unfolding.
Similarly to the construction of the data distributions, the
response matrix is populated symmetrically in pr; and pr.
The symmetrization is done in order to regularize the response
matrix [27]. The unfolding requires an assumed initial distri-
bution, referred to here as the prior, which is similar to the
measured distributions. To generate the prior, the response
matrices are reweighted along the p{'{* and p" axes by the
ratio of the two-dimensional reconstructed ylelds in data to
those from simulation. The number of iterations used in the
unfolding is tuned separately for each centrality in Pb+Pb col-
lisions and for pp collisions, for each jet radius. The number
of iterations in each case is selected to optimize the balance
between the accuracy of the final unfolded yield, and the
increased statistical uncertainty that results from a larger num-
ber of iterations. In both Pb+Pb and pp collisions, the number
of iterations depends on the jet radius, being larger for larger
jet radii. In Pb+Pb collisions, the number of iterations also
depends on centrality, being larger for more central collisions.
Seven iterations were used for the R = 0.6 jets in 0-10%

054912-7



PHYSICAL REVIEW C 110, 054912 (2024)

G.AAD et al.

= 10°¢ T T IBRE]
> = 3
8 L ATLAS  anti-k, jets R=06 ]
s A +R=05
E 107 = . R=04 7
Z‘i 5 e +R=03 ]
5o F e “R=02
5107F T, 3
- E C - - 7
s = i
SRT= o
E Leading jet 7
[ 0-10% Pb+Pb 1.72nb” {5, =5.02 TeV ]

1079 e e e e e e b

100 150 200 250 300
@ P, [GeV]
— 107°¢ ——————— —3
> £ B
8 (e ATLAS  anti-k, jets R=06 7
o roeR +R=05
E 10°p °® . R=04 73
Al E =S *R=03 7
S |o r w “+R=02
o -7 - —
C L ]
[ B ]
10°%E e
[ Leading jet ]
[ pp 255pb™" Vs=5.02TeV ]

1079 L T - T P T -

100 150 200 250 300
P:, [GeV]

(©)

= 10°¢ T T BRE!
> E 3
& r ATLAS  anti-k, jets R=06 7
= 10°L +R=05
£ Fa R=04 7
5| e =R-03 1
o L 7| a =VU. |
-(Z; g 10 E = i «+R=02 7
< E a—_, 3
3 L . ¥ ]
z -8 ; : . v —
S: =
10 E Subleading jet E
F 0-10% Pb+Pb 1.72nb" |5, =5.02 TeV ]

10710 e e e e e b

100 150 200 250 300
p,,[GeV]

(b ’

— 10°e T T R R
> E E
8 r ATLAS  anti-k, jets R=06 ]
_g 10’6 ?' a -+ R=05 =
£ ot a R=04 ]
Bl S oL L =R=03 ]
Z|810°¢ e «R=02 3
a C [ ] |
-8 F = E
10 g — -
£ L
-9 |
10 E Subleading jet 3
F pp 255pb™ Vs=5.02 TeV ]

10710 L T - T P T -

100 150 200 250 300
p;,[GeV]

(d

FIG. 4. The (a), (c) leading and (b), (d) subleading dijet yields in (a), (b) 0-10% central Pb+Pb collisions and the dijet cross sections in
(c), (d) pp collisions as a function of pr for the various jet radii. Jets are selected with |y| < 2.1 and |¢; — ¢,| > 77 /8. The normalization
uncertainties (not shown) are §(T44)/(Taa) = 0.9% in 0-10% Pb~+Pb collisions and §L,,/L,, = 1% in pp collisions. The boxes correspond to

systematic uncertainties and the bars to statistical uncertainties.

central Pb+Pb collisions, while two iterations were used for
the R = 0.2 jets in 60-80% central Pb+-Pb collisions. In pp
collisions, seven iterations were used for the R = 0.6 jets and
three iterations were used for the R = 0.2 jets.

To evaluate the statistical uncertainties of the data and the
MC simulations, 100 bootstrap [61] variations following a
Poisson distribution were used. The nominal data was un-
folded with each of the response matrix variations to obtain
the statistical uncertainties of the MC sample. Similarly, each
variation of the data was unfolded with the nominal response
matrix to obtain the statistical uncertainties of the data. The
statistical uncertainties were obtained from the standard de-
viation of both the data and MC variations of the unfolded
distributions. The data and MC components were added in
quadrature to obtain the total statistical uncertainty.

To extract the measurements of the dijet momentum bal-
ance observable, xj, the unfolded two-dimensional (pr,1, pr2)
distributions are first reflected about pr; = pr» to restore
the leading and subleading hierarchy. Then, following the
procedure discussed in Refs. [27,28,62], the two-dimensional
distributions are projected into bins of x; for different pr;
slices. After projecting the resulting distributions over selec-
tions of pr;, the absolutely normalized x; distributions are
extracted by normalizing the x; distributions either by the
integrated luminosity in pp collisions or the number of events

and the (Ty4) in Pb+Pb collisions, as described in Egs. (6)
and (7).

VI. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties for this measurement are at-
tributed to three categories of sources arising from: the
analysis and unfolding procedure, the uncertainties in the JES
and JER, and the global normalization. For each uncertainty
component in the first two categories, the entire analysis pro-
cedure is repeated accounting for the change in the analysis
procedure or the response matrix and the result is compared
with the nominal one. The third category applies only to
the absolutely normalized x; distributions, Jya distributions,
and R} (pr1) and RY) (pr>) distributions; it contains the
uncertainty in the determination of the mean nuclear thickness
function (T44), and the pp luminosity. The (744) uncertainties
are shown in Table I, while the relative luminosity uncertainty
in pp collisions is 8L,,/Lp, = 1% [33]. These uncertainties
are independent of the jet pt and are noted on the figures.

The systematic uncertainty in the JES has five parts. Four
parts are identical to those in Ref. [28], which correspond
to the in situ studies, the cross-calibration, the flavor un-
certainties, and the modification of parton showers due to
quenching. The modifications to the parton shower can impact
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the detector response to jets in Pb+Pb collisions resulting
in a small disagreement in the JES between data and simu-
lations. The extent of this disagreement, and corresponding
uncertainty contribution is evaluated by the method used in
Ref. [57] for 2015 and 2011 data, which compares the jet pr
measured in the calorimeter with the sum of the transverse
momenta of charged particles within the jet, in both the data
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and MC samples. This uncertainty is determined as a function
of the event centrality and is found to be independent of
the jet pr and 5. The selected charged-particle tracks have
pr > 4 GeV in order to exclude particles from the UE. The
sum of the charged-particle transverse momenta provides a
data-driven estimate of the centrality dependence of the JES
arising from the observed centrality-dependent modification
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FIG. 6. The leading and subleading jet Rﬁr distributions in dijets as a function of jet pr for (a) R = 0.2 and (b) R = 0.6 jets in 0-10%
Pb+Pb collisions. Jets are selected with |y| < 2.1 and |¢; — ¢,| > 77 /8. The normalization uncertainties (not shown) are 6 (Ty4)/{Taa) = 0.9%
in 0-10% Pb+Pb collisions and §L,,/L,, = 1% in pp collisions. The boxes correspond to systematic uncertainties and the bars to statistical

uncertainties.
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of the jet fragmentation due to jet quenching in Pb+Pb col-
lisions [63]. The size of this centrality-dependent uncertainty
in the JES reaches 1.2% in the most central collisions and its
value is applied independently of x;. The systematic uncer-
tainties from the JES discussed above are derived for R = 0.4
jets.

The fifth component accounts for the potential difference
in uncertainties between R = 0.4 and the other jet radii. It
does not depend on the collision centrality for R = 0.2 and
R = 0.3 jets, but contains a centrality dependent contribution
for R=0.5 and R = 0.6 jets to account for data and MC
differences of the jet response due to the larger area. The
centrality-independent component is assessed by comparing
the pr for matched R =0.2, R=0.3, R=0.5, and R = 0.6
jets with R = 0.4 jets measured in the data and the MC
samples. For each individual component, the JES in the MC
simulation is modified as a function of pr and 7 by one
standard deviation, and the response matrix is recomputed.

The uncertainty due to the JER is evaluated by repeating
the unfolding procedure with modified response matrices,
where an additional contribution is added to the resolution
of the reconstructed pr in the MC sample using a Gaussian
smearing procedure. The smearing factor is evaluated using
an in situ technique in 13 TeV pp data that involves studies of
dijet pr balance [64]. Furthermore, an uncertainty is included
to account for differences between the tower-based jet recon-
struction and the jet reconstruction used in analyses of 13 TeV

pp data, as well as differences in the calibration procedures.
Similarly to the JES, an additional uncertainty is assigned to
the JER to account for differences between the R = 0.4 jets
and the other jet radii. The changes in the response are prop-
agated through the unfolding and the resulting uncertainty is
symmetrized.

Two sources of systematic uncertainty are included to ac-
count for uncertainties in the removal of the combinatoric
background. The first contribution stems from the combina-
toric subtraction method, and is determined by extracting the
two-dimensional (pr, pr2) distribution of combinatoric jets
from an alternative sideband of 1.1 < |¢; — ¢2| < 1.5 as was
done in Refs. [27,28]. The second contribution stems from
the sensitivity of the analysis to the efficiency correction for
combinatoric jets, and is evaluated by repeating the analysis
without the inclusion of this efficiency correction. The devia-
tion from the nominal result is symmetrized and taken as the
uncertainty contribution. Both these contributions are found
to be negligible compared with the other sources of systematic
uncertainties.

Additional sources of systematic uncertainty that account
for the unfolding procedure are considered. The sensitivity
to the Bayesian prior is evaluated by modifying the weights
applied when producing the response matrix in a centrality-
dependent manner in order to enclose the data (prTeff’ , p’Tecz"
distributions between the corresponding MC distributions
based on the nominal and alternative priors. There is a
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sensitivity to the minimum pf' in the analysis at small x;
and small pt; due to the efficiency correction made as part
of the unfolding. The sensitivity of the result to this effect is
evaluated by varying the minimum reconstructed p', moti-
vated by the magnitude of the JER, from 32 to 39 GeV for
R =0.2, 0.3, and 0.4 jets, from 41 to 51 GeV for R = 0.5
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The systematic uncertainties in the absolutely normalized
xy distributions can be seen in Fig. 2, for 0-10% central
Pb+Pb and pp collisions, and for R = 0.2 and R = 0.6 jets. In
central Pb+Pb collisions for R = 0.2 jets, the total uncertain-
ties are driven by the JES and JER uncertainties; for R = 0.6
jets in these collisions, the total systematic uncertainties are
driven by the unfolding’s sensitivity to the choice of prior
and its closure. In pp collisions, the total uncertainties are
largely driven by the JES and JER uncertainties for both the
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these x; regions is small. Similar trends were obtained for
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jets, with similar values of the relative uncertainties.

The systematic uncertainty contributions are similarly
propagated to the calculation of R}, and J44. The centrality-
independent components of the JES and JER, and the
centrality-independent part of the jet radius dependent
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uncertainty are treated as correlated between Pb+Pb and pp
collisions. The rest of the contributions to the systematic
uncertainty are treated as uncorrelated between Pb+Pb and
pp. The resulting uncertainties in RY," (pr,1) and Ry, (pr2)
are shown for 0—10% central Pb+Pb collisions in Fig. 3 for
R = 0.2 and R = 0.6 jets; these uncertainties are dominated
by the JES and JER. Similar trends were obtained for the sys-
tematic uncertainties of R = 0.3, R = 0.4, and R = 0.5 jets,
with similar values of the relative uncertainties. In the ratio

R%"(pr2)/RY" (pr.1) each source of systematic uncertainty is

treated as fully correlated between Rﬂilr (pr2) and RY, A“ (p1.1),
including the global systematic uncertainties. The ratios allow
the cancellation of systematic uncertainties and improve the
precision of the measurements.

VII. RESULTS
A. R distributions
The leading and subleading dijet yields in 0—10% central
Pb+Pb collisions and the dijet cross sections in pp collisions
are shown in Fig. 4 for the various jet radii. These distri-
butions correspond to the numerators and denominators in

Egs. (4) and (5). Figure 5 shows the dijet cross-section ratios
of R =0.3, 0.4, 0.5, 0.6 jets with respect to R = 0.2 jets in

central Pb+Pb and pp collisions. The dijet yields increase
with increasing jet radius at a given jet p, for both the leading
and subleading jets in both collision systems. Additionally,
the dijet cross-section ratios in pp data, for R jets with respect
to R = 0.2 jets, are compared with PYTHIA 8§ and HERWIG7
simulations in Fig. 5. Generally the PYTHIA 8 results are closer
to the data than the HERWIG7 results. HERWIG7 consistently
underpredicts the cross-section ratios.

The RY," distributions are shown in Fig. 6 for R = 0.2 and
R = 0.6 jets. For both jet radii, the leading jet Ry, (pr) is

larger than the subleading jet RY4' (pry) for all pr consid-

ered here. It is also observed that RY (pr1) and RY, (pr2)
generally increase with increasing pr, except for the leading

lD‘“r(pTl) of the R = 0.6 jets, which is flatter as a function
of pr. This behavior had also been previously observed with
R = 0.4 jets in Ref. [28].

To understand the differences between the RY," of leading
and subleading jets, the Rgi\“(pm)/Rf‘ A'r(pTl) ratio is con-
sidered. Figure 7 shows Rpm(pT,z)/Rin(pT,l) as a function
of centrality, jet radius, and pr for jets with 158 < pr <
316 GeV. The overall trend as a function of centrality is as
expected; for all jet radii, the most central collisions show the
most suppression of the subleading jet relative to the leading
jet in the dijet, and the most peripheral collisions show the
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FIG. 13. The absolutely normalized x; distributions for (a), (b) R = 0.2 and (c), (d) R = 0.6 jets for three centrality selections in Pb+Pb
collisions and pp collisions. Leading jets with (a), (c) 158 < pr; < 178 GeV and (b), (d) 398 < p1; < 562 GeV are shown. Jets are selected
with |y| < 2.1 and |¢; — ¢»| > 77 /8. The normalization uncertainties (not shown) are §(7Tx4)/(Tsa) = 0.9%, 2%, and 5% in 0-10%, 20-40%,
and 40-60% Pb+-Pb collisions, respectively, and 6L,,/L,, = 1% in pp collisions. The boxes correspond to systematic uncertainties and the

bars to statistical uncertainties.

least. This can be explained in terms of a path length de-
pendent jet energy loss, which causes the subleading jets to
experience an additional amount of quenching by traversing
a longer distance within the QGP medium compared with
the leading jets. The R dependence of this ratio is shown
for both the most central and most peripheral Pb+Pb col-
lisions; no significant R dependence is observed for either.
For central Pb+Pb collisions the value of this ratio is ap-
proximately 0.7-0.8, whereas for peripheral collisions the
value is higher, it is approximately 0.9-1.1. Additionally, the
R (pr2)/RY, (pr1) ratio shows no significant dependence
on pr for smaller jet radii while for larger jet radii the ratio
slightly increases with increasing pry, for both central and
peripheral collisions.

Discussion of the R%:" distributions

To evaluate the R dependence of the R‘Z;ir distributions, the
leading and subleading jet R4, along with the correspond-
ing Rﬂr(R)/Rfﬁr(Ol) ratios, are shown in Fig. 8 for the
various jet radii for the 0-10% centrality selection. Some R
dependence is observed for the leading jets, with RP4" (pr.;)
increasing with the jet radius. In the most central collisions at
a pr of approximately 200 GeV, the Rﬂr( pr1) of R = 0.2 jets

is approximately 0.55, whereas for R = 0.6 it is closer to 0.65.
This R dependence is consistent with larger R jets being less
suppressed than smaller R jets. A similar R dependence was
observed in Ref. [20]. An R dependence is also observed for
subleading jets, but the RY,"(pr2) values and the deviations
from unity in the R}, (R)/RY, (0.2) ratio is smaller than for
the leading jets. Since the RY," (p12)/RY, (pr1) ratio shows
no significant dependence on R or pr (as seen in Fig. 7), the
RY"(pr2) of subleading jets can be seen, approximately, as
a scaled down version of the RY" (pr,1) of leading jets, by a
factor only dependent on centrality.

Additionally, the RY" distribution as a function of the jet
radius is shown in Fig. 9 for two pr selections in 0-10%
central collisions, 158 < pr < 178 GeV and 282 < pr <
316 GeV. Some R dependence of RY}" is observed, with RY,"
increasing with the jet radius, a dependence that is stronger at
lower pr.

B. x; distributions

The absolutely normalized x; distributions in pp collisions,
as defined in Eq. (6), are shown in Fig. 10, for leading jets
with 158 < pr; < 178 GeV and 398 < pr; < 562 GeV for
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all jet radii considered here. The shapes of the distributions
are similar for the two pr; selections shown. In both cases, the
distributions are peaked toward balanced dijets as expected.
The distributions are more sharply peaked at xy & 1 for larger
radius jets. This is expected if the larger radius jets cluster
together radiation that could be reconstructed as separate jets
for the smaller radii. For higher pr,, the distributions for
the various jet radii are closer together than for lower pr |,
presumably because higher pr jets are more collimated.

A comparison of the pp data to PYTHIA 8 and HERWIG7
simulations is shown in Fig. 11. Here the dijet-yield-
normalized x; distributions are plotted for R =0.2 and
R = 0.6 jets with 158 < p1; < 178 GeV and 398 < pr; <
562 GeV. The dijet-yield-normalized x; distributions are
considered in order to take out any overall cross-section dif-
ference between the models and data. The pp data are well
described by the simulations for the various jet radii.

Discussion of the xj distributions

Figure 12 shows the R dependence of the absolutely nor-
malized x; distributions in Pb+Pb collisions, as defined in
Eq. (7), for the centrality selections 0—10% and 20-40%, and
the same pr; selections as shown for pp collisions. The x;
distributions in Pb+Pb collisions are broadened compared

with those in pp collisions in Fig. 10. The magnitude of
the modification is larger for lower pr; values and for more
central collisions. For the 158 < pr; < 178 GeV selection
in mid-central collisions, the peak at balanced dijets remains
compared with pp collisions, but becomes weaker as the jet
radius decreases. For this pr; selection in 0-10% central
collisions, the distributions are nearly flat for x; > 0.5. For
the 398 < pr; < 562 GeV selection, the xj distributions in
both central and mid-central Pb+-Pb collisions remain peaked
at x; ~ 1 for the jet radii considered here.

To look more closely at the centrality dependent modifi-
cation from the distributions in pp collisions, Fig. 13 shows
the overlaid x; distributions for 0-10%, 20-40%, and 40-60%
central Pb+Pb collisions. Two pt; selections, 158 < pr; <
178 GeV and 398 < pr; < 562 GeV, for R=0.2 and R =
0.6 jets are shown. As expected, xj distributions in the most
central Pb+Pb collisions are the most modified compared
with those in pp collisions, with the rate of balanced dijets
being strongly suppressed.

C. Jy, distributions

The ratio of the dijet yields in Pb4-Pb collisions to pp
collisions, Ju4, is defined in Eq. (9). The J44 distributions
for 0-10%, 20-40%, and 40—-60%, are shown in Fig. 14 for
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FIG. 15. The (a), (c) Jaa distributions and its corresponding (b), (d) J4a(R)/J44(0.2) ratios in (a), (b) 0-10% and (c), (d) 20-40% central
Pb+Pb collisions, for 200 < pt; < 224 GeV. Jets are selected with |y| < 2.1 and |¢; — ¢»| > 77 /8. The normalization uncertainties in Ju4
(not shown) are 6(T44)/(Taa) = 0.9% and 2% in 0—10% and 20—40% Pb+Pb collisions, respectively, and §L,,/L,, = 1% in pp collisions. The
boxes correspond to systematic uncertainties and the bars to statistical uncertainties.

R =0.2,R=0.4,and R = 0.6 jets. The p selection of 200 <
pr.1 < 224 GeV was chosen because it is representative of the
overall trends in the results. For the various centralities, there
is a suppression in the number of balanced (high x;) dijets
and an enhancement in the number of imbalanced (low xy)
dijets, with the modifications being larger towards more cen-
tral collisions. While the enhancement at low xj can be large
in terms of Jyu, it is worth recalling that the corresponding
absolute dijet yields are small at low xj, especially for the
larger R jets, as was previously seen in Fig. 12. The larger
uncertainties in Ja4 for the R = 0.6 jets, especially in the most
central collisions, are driven by the sensitivity to the unfolding
prior weights as well as the JES and JER, which affect the bins
at low xy and low pr where the dijet yields are small.

Discussion of the J,, distributions

The Jaa distributions are overlaid for the various jet radii
in Fig. 15, along with their corresponding Ja4(R)/J44(0.2)
ratios. In the most central collisions, 0—10%, a larger Ja4 is
observed for larger jet radius, a trend more noticeable towards
lower xj. In 20-40% central collisions, the same quantitative
trend is observed but the magnitude of the deviation from
unity is smaller. Similarly, in terms of the Jas(R)/J44(0.2)
ratios, at low xj there is a spread of the central values of J44

for the various jet radii and the uncertainties are larger. The
large uncertainties in the J44 of the larger jets at low xj values
were previously noted in the discussion of Fig. 14 and affect
the J44(R)/Ja4(0.2) ratios as well. At high xj, the J44 values
show an R dependence of smaller magnitude.

To evaluate the R dependence of these distributions, the Js4
is plotted as a function of the jet radius in Fig. 16, for several
pra1 selections at xj values of 0.89 < x; < 1.0 and 0.50 <
xy < 0.56 in the most central collisions. The corresponding
Jaa(R)/J44(0.2) ratios are shown in Fig. 17. For nearly bal-
anced dijets (0.89 < x; < 1.0), a small R dependence to Jas
is observed [more noticeable in the Ja4(R)/Js4(0.2) ratios],
with Jy4 increasing with the jet radius, and dependent on pr,;.
As the dijets become more imbalanced (0.50 < x; < 0.56),
this R dependence becomes stronger. For both balanced and
imbalanced dijets, the R dependence is observed to be larger
for lower pr; values. This R-dependent behavior can be ex-
plained by considering that the subleading jets, which have
lost energy and thus caused the dijets to become imbalanced,
recover some of the lost energy as the jet radius increases. An-
other contribution comes from the medium response, which
can add energy to the jets.

To assess the pr dependence of the J4(R)/J44(0.2) ratios,
Fig. 18 shows the Js4(R)/J44(0.2) ratios as a function of
pr1, for R=0.4 and R = 0.6 jets, and two xj selections,
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FIG. 16. The J4 values as a function of R for jets with (a), (b) 158 < pr; < 178 GeV, (c), (d) 200 < pr; < 224 GeV, (e), (f) 251 < pr; <
282 GeV, and (g), (h) 316 < pr; < 398 GeV in 0-10% central Pb+Pb collisions, for (a), (c), (e), (g) 0.50 < x; < 0.56 and (b), (d), (f), (h)
0.89 < x5 < 1.0. Jets are selected with |y| < 2.1 and |¢; — ¢»| > 7m /8. The normalization uncertainties (not shown) are §(Ty4)/{Taa) = 0.9%
and 2% in 0-10% and 20-40% Pb+-Pb collisions, respectively, and 8L,,/L,, = 1% in pp collisions. The boxes correspond to systematic
uncertainties and the bars to statistical uncertainties.

0.50 < x; < 0.56 and 0.89 < x; < 1.0. The Jaa(R)/J44(0.2)
ratios come closer to unity with increasing pr,;, with the mod-
ification being larger for larger R jets. The deviations from
unity are much smaller for balanced dijets than for imbalanced

dijets.
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D. Comparison with theory

Results are compared with the linear Boltzmann transport
(LBT) [65] and JETSCAPE [66] models. Both of these mod-
els use PYTHIA 8 pp as the baseline for the hard processes,
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FIG. 17. The J44(R)/J44(0.2) ratios as a function of R for jets with (a), (b) 158 < pr; < 178 GeV, (¢), (d) 200 < pr; < 224 GeV, (e), (f)
251 < pr; < 282 GeV, (g), (h) 316 < pt; < 398 GeV in 0-10% central Pb+Pb collisions, for (a), (c), (e), (g) 0.50 < x; < 0.56 and (b), (d),
), (h) 0.89 < x; < 1.0. Jets are selected with |y| < 2.1 and |¢; — ¢»| > 77 /8. The boxes correspond to systematic uncertainties and the bars
to statistical uncertainties.

processes. The JETSCAPE model combines [67], in tune v3.5
AA22, the LBT model at low parton virtuality with a MAT-
TER [68] medium-modified parton shower at high parton
virtuality.

but with a different evolution of the parton showers. The
LBT model uses Boltzmann transport equations to describe
the propagation of jet and medium partons as they traverse
a QGP, including elastic and inelastic perturbative QCD
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the bars to statistical uncertainties.

Figure 19 shows the RY," distributions of the leading
and subleading jets in dijets compared with the LBT and
JETSCAPE models, for R = 0.2 and R = 0.6 jets in 0-10%
central collisions. For both the large and small-R jets, the
models predict that the subleading jets are more suppressed
than the leading jets in dijets in terms of the RY,". How-
ever, they have varying degrees of success in describing the
measured RY," values. For R = 0.2 jets, the LBT model under-
estimates the data for both the leading and subleading jets; the
JETSCAPE model describes the leading jet RY," distribution
well, but overestimates the subleading jet distribution. For
R = 0.6 jets, the LBT model fully describes the leading jet
RY" distribution, but overestimates the subleading jet distri-
bution; the JETSCAPE model describes the subleading jet
RY," distribution, but underestimates the leading jet distribu-
tion.

The RY," (R = 0.6)/RY}" (R = 0.2) ratio is shown in Fig. 20
for both the leading and subleading jets in 0-10% central
collisions. For both the leading and subleading jet R%,', the
data lies between the models for the full pr range, with
the LBT model above the data and the JETSCAPE model

-
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below the data. Additionally, the data show larger values of
the R, (R = 0.6)/RY}" (R = 0.2) ratio for the leading jets
than for the subleading jets. The JETSCAPE model pre-
dicts this order while the LBT model predicts the opposite
order.

Figure 21 shows the absolutely normalized xjy distributions
in data compared with the JETSCAPE model for the various
jet radii in pp and 0-10% central Pb+Pb collisions. At high
xy values (xy > 0.65), the model describes the pp data well,
while at lower x; values it overestimates the data. In the case
of the Pb+Pb data, the model describes the data at high x;
values. For 0.45 < x5 < 0.65, the model underestimates the
Pb+Pb data. For lower xj values, the model overestimates the
Pb+-Pb data.

VIII. CONCLUSION

This paper presents a measurement of the dependence of
the dijet momentum balance on the jet radius, in Pb+-Pb and
pp collisions at /s = 5.02 TeV. Dijets were studied for
jet radii R =0.2, 0.3, 0.4, 0.5, and 0.6 by measuring the
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FIG. 19. The leading and subleading jet Rﬂi‘ir distributions in dijets in data, compared with the LBT and JETSCAPE (LBT + MATTER)
models. (a) R = 0.2 and (b) R = 0.6 jets are shown for 0—-10% central collisions. Jets are selected with |y| < 2.1 and |¢; — ¢»| > 7 /8. The
normalization uncertainties in the data (not shown) are 8(Ty4)/(Txa) = 0.9% in 0—10% Pb+Pb collisions and §L,,/L,, = 1% in pp collisions.
The boxes correspond to systematic uncertainties and the bars to statistical uncertainties.
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FIG. 20. The leading and subleading jet RY,(R=

0.6)/R%"(R = 0.2) in dijets in data compared with the LBT
and JETSCAPE (LBT + MATTER) models for 0-10% central
collisions. Jets are selected with |y| < 2.1 and |¢; — ¢,| > Tm/8.
The boxes correspond to systematic uncertainties and the bars to
statistical uncertainties.

absolutely normalized xj, Jaa, and RY," distributions. The
measurement covers a broad transverse momentum range,
with leading jet pr; ranging from 100 to 562 GeV for R =
0.2, 0.3, and 0.4 jets and from 158 to 562 GeV for R = 0.5
and 0.6 jets.

The RY," results show that subleading jets in dijets are
more suppressed than leading jets, for the various jet radii

considered. Significant jet radius dependence of the Rﬁjr is

observed, with jet suppression decreasing (R},  increasing)
with increasing jet radius. This jet radius dependence is ob-
served in both the leading jet RY, (pr1) and subleading jet
R (pr2), although not in the RY) (pr2)/RYy (pr1) ratio,
which is dependent on centrality only.

The results show that larger jet radii give xy distributions
peaked at higher x; values, whereas smaller jet radii give
flatter distributions. This is true in both the Pb+Pb and pp
collisions, but the Pb+Pb collisions lead to broader and more
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modified distributions compared with pp, with the modifica-
tions being larger for more central collisions.

The J44 results for more imbalanced dijets, primarily at low
leading jet transverse momentum, show that jet suppression
decreases (J44 increases) with increasing jet radius. For more
balanced dijets, the suppression is also present and dependent
on the jet radius, but smaller in magnitude than for imbalanced
dijets.

These results present a comprehensive look at the modi-
fication of dijet rates in Pb+Pb collisions compared with pp
collisions. These results are complementary to existing mea-
surements of the jet radius dependence of jet suppression, and
will provide important new constraints to theoretical models
of jet energy loss.
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