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Abstract
Switchgrass (Panicum virgatum L.) is a prominent bioenergy crop with robust 
resilience to environmental stresses. However, our knowledge regarding how 
precipitation changes affect switchgrass photosynthesis and its responses to light 
and CO2 remains limited. To address this knowledge gap, we conducted a field 
precipitation experiment with five different treatments, including −50%, −33%, 
0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf 
photosynthesis to CO2 concentration and light, we measured leaf net photosynthesis 
of switchgrass under different CO2 concentrations and light levels in 2020 and 2021 
for each of the five precipitation treatments. We first evaluated four light and CO2 
response models (i.e., rectangular hyperbola model, nonrectangular hyperbola 
model, exponential model, and the modified rectangular hyperbola model) using 
the measurements in the ambient precipitation treatment. Based on the fitting 
criteria, we selected the nonrectangular hyperbola model as the optimal model 
and applied it to all precipitation treatments, and estimated model parameters. 
Overall, the model fit field measurements well for the light and CO2 response 
curves. Precipitation change did not influence the maximum net photosynthetic 
rate (Pmax) but influenced other model parameters including quantum yield (α), 
convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated 
light point (LSP). Specifically, the mean Pmax of five precipitation treatments was 
17.6 μmol CO2 m−2 s−1, and the ambient treatment tended to have a higher Pmax. 
The +33% treatment had the highest α, and the ambient treatment had lower 
θ and LCP, higher Rd, and relatively lower LSP. Furthermore, precipitation 
significantly influenced all model parameters of CO2 response. The ambient 
treatment had the highest Pmax, largest α, and lowest θ, Rd, and CO2 compensation 
point LCP. Overall, this study improved our understanding of how switchgrass 
leaf photosynthesis responds to diverse environmental factors, providing valuable 
insights for accurately modeling switchgrass ecophysiology and productivity.
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1   |   INTRODUCTION

Climate change is escalating due to continued greenhouse 
gas emissions. These emissions primarily result from 
human activities such as deforestation, burning of fossil 
fuels, and agricultural practices (Mann & Kump,  2015; 
Ritchie et al., 2020). The global average surface tempera-
ture has increased, with projections indicating an addi-
tional 0.5°C rise by 2050 (Fawzy et al., 2020; Stein, 2022). 
Consequently, the water cycle is expected to accelerate. 
Heightened atmospheric moisture from a warmer planet 
is anticipated to lead to more frequent and intense extreme 
precipitation events, such as severe drought and flooding 
(Douville et al., 2021; Pfahl et al., 2017; Pörtner et al., 2022; 
Trenberth, 2011; Vanaja et al., 2011). These altered precip-
itation patterns could significantly impact the structure 
and functioning of ecosystems (Hajek & Knapp,  2022). 
Despite this, the specific effects of climate change, in-
cluding changes in precipitation, on bioenergy crops like 
switchgrass (Panicum virgatum L.), remain insufficiently 
explored (Deng et al., 2017; O'Keefe et al., 2013; Parrish & 
Fike, 2005; Tulbure et al., 2012).

Switchgrass (Panicum virgatum L.) is a C4 perennial 
warm-season grass native to North America, originally 
spanning most of North America. Its habitat extends from 
southern Canada to Central Mexico (Lemus et al., 2008; 
Vogel et  al.,  2011). Remarkably productive, switchgrass 
thrives in a wide range of abiotic conditions and flourishes 
in soils with pH ranging from 3.9 to 7.6 (Rinehart, 2006). 
Notably, it possesses favorable attributes, including lower 
nutrient demands and high below-ground carbon se-
questration, making it a model bioenergy crop (Adler 
et al., 2006; Albaugh et al., 2014; Liu et al., 2022; Parrish & 
Fike, 2005; Ricketts et al., 2023; Rinehart, 2006). Extensive 
research has explored the effects of agricultural prac-
tices like nutrient applications, irrigation, and cutting 
systems, on switchgrass productivity (Hui et  al.,  2018; 
Keyser et al., 2022; Kieffer et al., 2023; Lemus et al., 2008; 
Miesel et  al.,  2017; Wullschleger et  al.,  2010). However, 
there have been limited studies focused on understand-
ing the impacts of climate change, such as changes in 
precipitation, on switchgrass, particularly in field condi-
tions (Deng et al., 2017; Hartman et al., 2012; Hartman & 
Nippert, 2013; O'Keefe et al., 2013).

In addition, there is an incomplete understanding of 
switchgrass leaf photosynthesis responses to variations in 
light and carbon dioxide (CO2) levels. Photosynthesis, a 

fundamental biological process, plays a pivotal role in plant 
growth, development, biomass productivity, and yield po-
tential (Ma et al., 2021; Song et al., 2021; Yang et al., 2010). 
Enhancements in plant productivity are often correlated 
with increased photosynthesis (Fischer et al., 1998; Song 
et al., 2021). Environmental factors such as cultivar, light, 
CO2, humidity, temperature, and nutrient availability, 
have the potential to significantly influence leaf photosyn-
thesis (Ma et al., 2021). For example, Barney et al. (2009) 
observed a variation in leaf photosynthesis ranging from 
16 to 22 μmol CO2 m−2 s−1 among six switchgrass culti-
vars. In a mesocosm study, Hui et  al.  (2018) found that 
increased precipitation enhanced leaf photosynthesis, 
while reduced precipitation did not induce changes in leaf 
photosynthesis. However, there is a limited understanding 
of how photosynthesis responds to different precipitation 
intensities. Few studies have examined how changes in 
precipitation alter the interplay of photosynthesis with 
light availability and CO2 concentration. The efficiency of 
light and CO2 use in photosynthesis is critical to switch-
grass biomass production and environmental adaptation 
(Hui et al., 2001; Song et al., 2021) and is key to parameter-
izing photosynthesis in plant growth and ecosystem-scale 
models (Baldocchi & Harley, 1995; Herrmann et al., 2020; 
Lobo et al., 2013; Yang et al., 2010).

Photosynthetic light response curves (Pn-I) and pho-
tosynthetic-CO2 response curves (Pn-CO2) are important 
for understanding how plants respond to climate change 
(Bukhov et  al.,  1995; Leverenz,  1988; Lobo et  al.,  2013; 
Ma et al., 2021; Xu et al., 2019). Pn-I response curves de-
pict the relationship between the net photosynthetic rate 
(Pn) of plants and the photon flux density (Irradiance, I), 
while Pn-CO2 response curves describe the relationship 
between Pn and CO2 concentration (Song et  al.,  2021). 
These response curves enable the description of essential 
physiological parameters in plants (Herrmann et al., 2020; 
Liu et  al.,  2022; Lobo et  al.,  2013; Ma et  al.,  2021; Song 
et al., 2021), including the maximum net photosynthetic 
rate (Pmax), apparent quantum yield (α), convexity (θ), 
dark respiration rate (Rd), light or CO2 compensation 
point (LCP), and light or CO2 saturation point (LSP) (Lang 
et  al.,  2013; Ma et  al.,  2021; Ye, 2007). The construction 
of Pn-I or Pn-CO2 response curves involves measuring 
leaf photosynthesis at varying light or CO2 levels, ranging 
from zero to saturating levels (1500 or 2000 μmol photon 
m−2 s−1 for light, 1200 ppm for CO2). Various mathemat-
ical models can be employed to derive parameters from 
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these response curves (Lang et al., 2013; Lobo et al., 2013; 
Song et  al.,  2021). Accurately estimating the parameters 
of Pn-I or Pn-CO2 response curve under diverse envi-
ronmental conditions is crucial for revealing the physio-
logical changes that occur under these conditions (Song 
et al., 2021).

In this study, we conducted a field precipitation ex-
periment in Nashville, TN, simulating a range of precip-
itation intensities spanning from −50% to +50% of the 
ambient precipitation levels. These treatments were cho-
sen based on the assessment of the region's interannual 
precipitation variability, encompassing 80% of the total 
observed variation in precipitation amount over the past 
50 years (Deng et  al.,  2017). Our aim was to investigate 
how switchgrass photosynthesis responds to varying lev-
els of light intensity and CO2 concentration under distinct 
precipitation scenarios. The main objectives of this study 
included: (1) Determining the most appropriate model for 
characterizing leaf photosynthetic responses of switch-
grass plants to variations in light and CO2 concentrations; 
(2) Quantifying the impact of precipitation intensity on 
leaf photosynthetic parameters under varying light and 
CO2 conditions. Our results will be instrumental in im-
proving model simulations that address the responses of 
switchgrass photosynthesis under different environmen-
tal conditions. Additionally, this research will enhance 
our understanding of the photo-physiological characteris-
tics of switchgrass in the context of future climate change 
conditions.

2   |   MATERIALS AND METHODS

2.1  |  Experimental facility and design

In 2015, the Precipitation Experimental Facility was 
established on pre-existing field switchgrass stands at 
the Tennessee State University Agricultural Research 
and Education Center, Nashville, TN (latitude 36.12′ N, 
longitude 86.89′ W at an elevation of 127.6 m) (Deng 
et al., 2017). The seeds of Alamo switchgrass were initially 
planted in April 2012 in a no-tillage field, and switchgrass 
stands were already well-established by the time the 
precipitation facility was built. The area where the 
precipitation facility is located experiences a warm humid 
temperate climate, with mean annual precipitation of 
1200 mm and a mean annual temperature of 15.1°C. The 
soil, classified as Talbott silt clay loam, is slightly acidic.

The detailed experimental design and implementation 
were provided in Deng et  al.  (2017). In brief, the exper-
iment included five precipitation treatments: a 50% re-
duction in precipitation from ambient conditions (−50%), 
a 33% reduction (−33%), the ambient level (0%), a 33% 

increase (+33%), and a 50% increase from ambient con-
ditions (+50%). A total of 20 plots were constructed with 
four replicate plots for each treatment. Each plot mea-
sured 3 m × 2 m. Precipitation was manipulated using a 
combined modified rainfall-interception-redistribution 
(RIR) system (Deng et al., 2017) following the design of 
Yahdjian and Sala (2002). For drought treatments, precip-
itation was intercepted using transparent PVC half-tubes. 
The treatments were validated by collecting precipitation 
in the treatment plots. The rainwater collected from these 
PVC half-tubes in the drought plots was subsequently re-
distributed to the wet treatment plots (Deng et al., 2017).

2.2  |  Leaf gas exchange measurements

Leaf photosynthesis measurements were conducted 
during the peak growing seasons of 2020 and 2021. Field 
measurements were primarily taken in the morning on 
sunny days to ensure consistent environmental conditions. 
For each treatment, two to three healthy and young fully 
expanded switchgrass leaves were randomly selected and 
measured using a Li-Cor Portable Photosynthesis System 
(Li–6800, Li-Cor Inc., Lincoln, NE) connected with LED 
chamber. The measurements were conducted directly on 
leaves attached to the plants and completed in two days 
each time. The Pn-I and Pn-CO2 response curves were 
constructed using the preset programs in the LI-6800. For 
Pn-CO2 response curves, photosynthesis measurements 
were taken at CO2 concentrations descending from near 
ambient: 400, 300, 200,100, 50, and 0 ppm, then ascending 
to saturation: 400, 400, 600, 800, 1000, and 1200 ppm. The 
light level was set at 1500 μmol photon m−2 s−1 during 
CO2 response curve measurements. For Pn-I response 
curves, photosynthesis measurements were taken at 
descending light levels: 1500, 1200, 900, 600, 300, 150, 50, 
and 0 μmol photon m−2 s−1, while CO2 concentration was 
set at 400 ppm. Temperature was not controlled during 
the measurements. In total, 5–12 light response curves 
and 7–10 CO2 response curves were generated for each 
precipitation treatment over the two-year period. Totally, 
38 light response curves and 45 CO2 response curves were 
measured.

2.3  |  Data analysis

2.3.1  |  Light and CO2 response curves  
modeling

Four models have been commonly fitted to light- or CO2-
response curves: the rectangular hyperbola model, the 
nonrectangular hyperbola model, the exponential model 
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and the modified rectangular hyperbola model (Fang 
et al., 2015; Ma et al., 2021). We applied these four mod-
els to the ambient plot response curves measurements 
and used a model selection approach to identify the best-
fitting model. The selected model was then applied uni-
formly across all treatments to estimate the physiological 
parameters at each precipitation treatment. A concise 
description of each model tested is provided below (Fang 
et al., 2015; Lee et al., 2022; Liu et al., 2019).

Rectangular hyperbola model
The equation of the rectangular hyperbola model is shown 
below:

where Pn is the net photosynthetic rate (μmol CO2 m−2 s−1), 
α is the initial quantum efficiency at lower light or CO2 con-
dition, Pmax is the maximum net photosynthetic rate (μmol 
CO2 m−2 s−1), Rd is the dark respiration rate (μmol CO2 
m−2 s−1), and I is photosynthetic active radiation (μmol pho-
ton m−2 s−1) (Ma et al., 2021).

Nonrectangular hyperbola model
The equation of the nonrectangular hyperbola model is 
shown below:

where θ represents convexity (curvature or rate of bend-
ing) of the response curve, and Pn, α, Pmax, Rd and I have 
been defined above (Ma et al., 2021; Thornley, 1998). To 
calculated light- or CO2- LSP, we set Pn = 80% of Pmax 
and 90% of Pmax and calculated LSP (0.8) and LSP (0.9), 
respectively.

Exponential model
The equation of the exponential model is shown below:

where Pn, α, Pmax, Rd and I have already been defined 
above (Ma et al., 2021) and e represents the base of natural 
logarithm.

Modified rectangular hyperbola model
The equation of the modified rectangular hyperbola 
model is shown below:

where β is the photoinhibition and γ is light saturation and Pn, 
α, Rd and I have already been defined above (Ma et al., 2021).

2.3.2  |  Model fitting and validation

To determine the optimal model for switchgrass light 
and CO2 response curves, we calculated mean square 
errors (MSE), Akaike information criterion corrected 
(AICC), Bayesian information criterion (BIC), and the 
coefficient of determination (R2) (Brewer et  al.,  2016; 
Ma et al., 2021). The optimal fit of the model is deter-
mined through the minimization of MSE, AICc and 
BIC values, alongside the maximization of R2 (Brewer 
et al., 2016).

The data from the eight Pn-I response curves col-
lected in the ambient precipitation treatment were av-
eraged and used to fit the four models. The same was 
done for Pn-CO2. Following an evaluation of how well 
the models fitted to the light and CO2 response curves 
derived from ambient conditions, and taking into con-
sideration the biological significance of the model pa-
rameters, the nonrectangular hyperbola model was 
selected as the best performance model for both light 
response (Pn-I) and CO2 response (Pn-CO2) curves. 
Consequently, the nonrectangular hyperbola model was 
applied to the Pn-I and Pn-CO2 measurements across 
the rest of the precipitation treatments and estimate the 
photosynthetic physiological parameters. To assess the 
impact of varying precipitation on these parameters, 
an analysis of variance (ANOVA) with PROC GLM was 
conducted, accounting for the imbalance in the mea-
sured data. Multiple comparison was conducted using 
least significant difference (LSD) method when a signif-
icant effect was detected.

All statistical analyses were conducted using the SAS 
software (SAS 9.4, SAS Institute Inc., Cary, NC). Model fit-
ting and parameter estimations were conducted using the 
Proc NLIN. Curves and graphs were constructed using the 
graphical program GraphPad Prism (GraphPad Software, 
San Diego, CA USA).

3   |   RESULTS

3.1  |  Model comparison and selection

Four models were used to fit Pn with increasing light 
levels and increasing CO2 levels from the ambient/con-
trol plots. The modified rectangular hyperbola model 
demonstrated suboptimal fit for the Pn-I, contrasting 
with the superior performance of the nonrectangular 
hyperbolic model among the four models considered 

Pn =
�IPmax

�I + Pmax
− Rd,

Pn =
�I + Pmax −

√

(

�I+Pmax
)2

− 4��IPmax

2�
− Rd,

Pn = Pmax ×

(

1 − e
−�I

Pmax

)

− Rd,

Pn = � ×
1 − �I

1 + �I
I − Rd,
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(Figure  1; Table  1). The nonrectangular hyperbolic 
model had the lowest BIC and root MSE, highest R2, 
and intermediate AICc, establishing it as the best 
model for capturing the Pn-I response. In the case of 
Pn-CO2, both the rectangular hyperbolic and exponen-
tial models did not fit the data (Figure 2; Table 1). In 
contrast, both the modified rectangular hyperbolic and 

the nonrectangular hyperbolic models exhibited the 
best fit based on AICc, BIC, and R2 (Table 1). Given the 
more biologically meaningful values of certain param-
eters, such as Pmax and α, produced by the nonrectangu-
lar hyperbolic model, this model was chosen for fitting 
both Pn-I and Pn-CO2 responses across all precipitation 
treatments.

F I G U R E  1   Graphical representation 
of the model comparison for light 
irradiance. Data points with standard 
error bars are the mean values of 
measurements in the ambient treatment 
plots.

T A B L E  1   Comparison of modeling fitting of four commonly used photosynthesis-light (Pn-I) and photosynthesis-CO2 (Pn-CO2) models 
of the net photosynthesis with light in the ambient plots: rectangular hyperbolic model, nonrectangular hyperbola model, exponential 
model, and modified rectangular hyperbola model.

Response
Fitting 
accuracy

Rectangular 
hyperbolic model

Nonrectangular 
hyperbolic model

Exponential 
model

Modified rectangular 
hyperbolic model

Light AICC 37.0 36.4 25.9 48.3

BIC 24.0 6.8 12.9 18.7

R2 0.99 1.00 0.99 0.82

Root MSE 0.98 0.38 0.66 1.87

CO2 AICC 53.2 43.8 47.2 39.6

BIC 46.4 30.3 40.4 26.1

R2 0.96 0.96 0.96 0.96

Root MSE 2.67 2.84 2.46 2.33

Note: AICc, BIC, R2 and Root MSE were used to determine the fitting accuracy for the response models.

F I G U R E  2   Graphical representation 
of the model comparison for CO2 
concentration. Data points with 
standard error bars are mean values of 
measurements in the ambient treatment 
plots.
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3.2  |  Impact of precipitation on 
model parameters

3.2.1  |  Light response

The observed Pn exhibited a typical response curve to 
light intensity. Initially negative at zero light intensity, Pn 
increased progressively, reaching saturation as light in-
tensity increased. The highest Pn values ranged from 15 to 
20 μmol CO2 m−2 s−1, depending on the specific precipita-
tion treatment (Figure 3).

The photosynthetic parameters, including Pmax, α, 
θ and Rd, estimated by the nonrectangular hyperbole 

model and the calculated LCP and LSP at 80% and 90% 
of Pmax were compared across precipitation treatments 
(Table  2). ANOVA found no significant differences 
among the precipitation treatments for Pmax (Table  2; 
Figures 3 and 4). The mean Pmax across all precipitation 
treatments was 21.97 ± 0.95 μmol CO2 m−2 s−1. There 
was a slight variation in θ among the five treatments, 
with the smallest observed in the ambient treatment 
and the largest in the −50% treatment. These varia-
tions were not statistically different from the other 
treatments. For the α values, the +50% treatment had 
the lowest (0.030 ± 0.02), while the +33% treatment had 
the highest (0.053 ± 0.003). No significant differences 

F I G U R E  3   Light response curve using the nonrectangular hyperbola model for each precipitation treatment. Points are observed values 
and the lines are the modeled curves.
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were found among the ambient, −33%, and −50% treat-
ments. Regarding Rd, the +50% treatment had the low-
est, and the ambient treatment had the highest, with no 
significant differences from other treatments. For the 
calculated parameters, the +33% treatment showed the 
lowest LCP. Light saturation point (LSP (0.9)) ranged 
from 895.2 ± 142.89 μmol photon m−2 s−1 in the −33% 
treatment to a maximum of 2243.2 ± 596.71 μmol pho-
ton m−2 s−1 in the +33% treatments.

3.2.2  |  CO2 response

The observed Pn also exhibited a typical response 
curve to CO2 concentration. Pn was negative when CO2 
concentration was very low and increased progressively. 
The highest Pn values ranged from 27 to 33 μmol CO2 
m−2 s−1, depending on the specific precipitation treatment 
(Figure 5).

Similarly, we employed the nonrectangular hyperbola 
model across the precipitation treatments to fit the CO2 
response curves. Then we compared the estimated and 
calculated photosynthetic parameters across treatments. 
Overall, all model parameters associated with CO2 re-
sponse curves exhibited statistical significance across 
the precipitation treatments (Table  3; Figures  5 and 6). 
The Pmax reached its peak in the ambient treatment at 
36.1 ± 2.75 μmol CO2 m−2 s−1, significantly higher than the 
rates estimated in the +50% and − 50% treatments and ex-
ciding those in the +33% and −33% treatments. Notably, 
the ambient treatment displayed the lowest θ among all 
treatments, while the −33% and +33% treatments exhib-
ited the largest θ. The largest α was observed in the am-
bient treatment, surpassing those in the +50% and −50% 
treatments, and exceeding the values in the +33% and 
−33% treatments. The ambient treatment had the low-
est Rd at 0.08 ± 0.04 μmol CO2 m−2 s−1, but no significant 
difference was observed when compared to the +50% 

and −50% treatments. The CO2 compensation point was 
highest in the −33% treatment (7.17 ± 3.49 ppm) and low-
est in the ambient treatment (0.63 ± 0.36 ppm). Slight but 
significant variations in LSP (0.9) were observed across 
ambient and +33 and −33. +50 and −50 treatments had 
no significant differences among treatments. Values rang-
ing from 618.5 ± 57.09 ppm in the −33% treatment to 
864.2 ± 138.0 ppm in the ambient treatment.

4   |   DISCUSSION

4.1  |  Model determination

We first evaluated four commonly used models for fit-
ting photosynthesis with light and CO2 response curves. 
The rectangular hyperbola model assumes a hyperbolic 
relationship between photosynthetic rate and either 
light intensity or CO2 concentration (Farquhar,  1989; 
Hui et al., 2001; Ma et al., 2021). Although this model 
is simple and widely used, its ability to accurately repre-
sent complex physiological responses might be limited 
(Ma et al., 2021). The nonrectangular hyperbola model 
is similar to the rectangular hyperbola model but pro-
vides a more flexible fit because it contains an addi-
tional parameter related to the curvature of the response 
curve (Ma et al., 2021; Thornley, 1998). The exponential 
model can effectively capture exponential growth or de-
cline in photosynthetic rate but may not fit well with 
more intricate patterns in the data (Chen et  al., 2011; 
Song et al., 2021). The modified rectangular hyperbola 
model is a variation of the rectangular hyperbola model 
with additional parameters to account for various fac-
tors influencing photosynthetic response. However, its 
application requires careful consideration of parameter 
interpretation and the potential for overfitting (Song 
et  al., 2021; Ye,  2007). In this study, all four models 
could fit the photosynthetic light and CO2 response 

T A B L E  2   The ANOVA results, with the significant levels, for the effects of precipitation treatment on light response curves using the 
nonrectangular hyperbola model.

Model parameter +50% +33% Ambient −33% −50%

θ 0.966 ± 0.02ab 0.955 ± 0.02ab 0.912 ± 0.02a 0.957 ± 0.01ab 0.969 ± 0.02b

α 0.030 ± 0.006c 0.053 ± 0.003b 0.049 ± 0.002ab 0.047 ± 0.003ab 0.040 ± 0.005 ac

Pmax 15.322 ± 2.09a 17.245 ± 1.09a 20.253 ± 2.33a 20.229 ± 2.34a 14.829 ± 2.22a

Rd 2.214 ± 0.42a 2.602 ± 0.20ab 3.144 ± 0.28b 2.872 ± 0.25ab 2.360 ± 0.24ab

LCP 65.631 ± 9.27a 53.761 ± 5.78c 65.062 ± 3.75a 61.667 ± 5.22ab 59.163 ± 6.81bc

LSP(0.9) 2237.52 ± 585.18a 2243.21 ± 596.71a 1330.35 ± 228.36b 895.16 ± 142.89c 1451.72 ± 406.41b

LSP(0.8) 1142.17 ± 230.70a 1082.47 ± 245.44a 741.10 ± 101.31b 557.76 ± 70.12c 770.60 ± 166.05b

n 5 5 8 12 8

Note: The model parameters include θ, α, Pmax, Rd, LCP, and LSP. N is the number of measurements.
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curves. However, based on Root MSE, R2, AICc, and 
BIC metrics and considering biological relevance, the 
nonrectangular hyperbola model was the best at char-
acterizing switchgrass photosynthesis. Similar results 
were reported in previous studies. For example, Song 
et al. (2021) compared six photosynthesis light response 

models for four different mulching treatments of spring 
wheat and found that the nonrectangular hyperbolic 
model provided better fit.

Ye (2007) and Ye and Yu (2008) proposed the modified 
rectangular hyperbola model could fit the light-response 
curves and main model parameters more accurately 

F I G U R E  4   The distribution of data is show for each of the model parameter values including the average, median, minimum value, 
maximum value, first quartile, and third quartile values. The data are from the nonrectangular hyperbola model for light response results.
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than other models (Lang et  al.,  2013; Ma et  al.,  2021). 
However, while in our study the modified rectangular 
hyperbola model was the best fitting model for the CO2 
response curve, it was the poorest model for the light 
response curve. Lobo et al. (2013) reported that the max-
imum photosynthetic rate and saturated light intensity 
produced by the modified rectangular hyperbola model 

can occasionally exceed expected physiological ranges. 
Our study corroborated these issues, suggesting that 
the modified rectangular hyperbole model cannot be 
applied to both Pn-I and Pn-CO2 curves under all situ-
ations (Lobo et al., 2013). So, like in Lobo et al.  (2013) 
the non-rectangular hyperbola model was the best fit-
ting model.

F I G U R E  5   Effects of precipitation treatment on the CO2 response curve using the nonrectangular hyperbola model. Points are observed 
values and the lines are the modeled curves.

 17571707, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcbb.13138 by Tennessee State U

niversity, W
iley O

nline Library on [28/05/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



KIEFFER et al.10 of 15  |    

4.2  |  Impact of precipitation 
intensity on leaf photosynthesis and 
physiological parameters

The response patterns of leaf photosynthesis to light and 
CO2 were similar to the reported patterns in previous 
studies (Barney et  al.,  2009; Dohleman et  al.,  2009; Gao 
et al., 2017; Hartman et al., 2012). Leaf net photosynthesis 
was negative when light intensity and CO2 concentration 
was set at 0 or very low levels and increased with increase 
of light and CO2 concentration. It leveled off at high light 
intensity or CO2 concentration. Only a few measurements 
during the late growing seasons showed a decline in leaf 
photosynthesis when light and CO2 concentration were 
high, perhaps due to the potential damage to the leaf at 
the late stages of the measurements.

Our results showed significant differences in the ma-
jority of model parameters for both light and CO2 re-
sponse curves across the various precipitation treatments. 
Precipitation changes significantly influenced all model 
parameters except for Pmax in light response curves. Only a 
few studies have investigated the photosynthetic response 
to light in switchgrass. Our results were comparable to 
these previous studies. For example, Albaugh et al. (2014) 
estimated Pn-I model parameters for switchgrass observ-
ing Pmax at 28.7 μmol CO2 m−2 s−1, α at 0.059, θ at 0.74, 
and Rd at 3.4 μmol CO2 m−2 s−1. In addition, they found 
that different cropping systems or measurement dates did 
not influence parameter estimates. Similarly, Gao et  al. 
(2015) estimated switchgrass photosynthesis responses to 
spacing over 3 years and found that α remains stable over 
time, ranging between 0.0328 and 0.0424. Neither spac-
ing nor time influenced LCP, ranging from 36 to 51, and 
LSP, ranging from 1399 to 1442. Their findings reported 
a substantially higher LSP than observed in our study. It 
is worth noting that LSP estimated in our study showed 
large variations within and among precipitation treat-
ments (Figure 4). Overall, LSP decreased from the +50% 
to −50% precipitation treatments. The main reason could 

be that in the drought treatments, plants may experience 
water stress, affecting their ability to photosynthesize effi-
ciently. Their mean maximum photosynthesis was about 
18.4 μmol CO2 m−2 s−1. Mulching treatments in Song et al. 
(2021) impacted maximum net photosynthetic rates. Our 
results fell within the range of these studies reported 
values. Regarding photosynthesis and CO2 response in 
switchgrass, Albaugh et  al.  (2014) estimated the maxi-
mum photosynthetic rate at 27.6 μmol CO2 m−2 s−1, with 
no other study, to our knowledge, reporting the response 
of switchgrass photosynthesis to CO2.

Despite the significant influence of precipitation on 
model parameters such as Pmax and α, variations were lim-
ited to narrow ranges. Switchgrass exhibited a remarkable 
tolerance to changes in precipitation, and performed well 
under the various precipitation conditions in Nashville, 
TN. This adaptability may be attributed to inherent adap-
tive mechanisms within switchgrass, enabling it to thrive 
across a wide range of environmental conditions in its ex-
tensive native range.

While switchgrass has been the subject of relatively 
few studies, numerous prior studies have investigated the 
responses of photosynthesis to light and CO2 for various 
species (Miner & Bauerle, 2019; Muraoka et al., 2010; Zhao 
et al., 2021). These studies confirmed that model parame-
ter often differ among different studies (Zhao et al., 2021). 
For example, Lobo et al. (2013) reported a Pmax range of 
42–59 μmol CO2 m−2 s−1 for C3 species and 57–75 μmol 
CO2 m−2 s−1 for C4 species, significantly exceeding the es-
timated switchgrass Pmax in this study and other previous 
studies (Barney et  al.,  2009; Gao et  al., 2017). The mea-
sured maximum photosynthetic rate of switchgrass leaves 
typically falls between 14 and 30 μmol CO2 m−2 s−1 (Gao 
et al., 2015; Hartman et al., 2012; Hui et al., 2018; Wagle & 
Kakani, 2014). In contrast, Lobo et al. (2013) reported Pmax 
for Vochysia divergens ranging from 14.4 to 15.7 μmol CO2 
m−2 s−1, depending on different models, while Ma 
et al. (2021) found a Pmax of around 8 μmol CO2 m−2 s−1 for 
larch (Larix principis-rupprechtii Mayr (Larch)).

T A B L E  3   ANOVA results for the effects of precipitation treatment on CO2 response curves using the nonrectangular hyperbola model.

Model parameter +50% +33% Ambient −33% −50%

θ 0.93 ± 0.04ab 0.99 ± 0.007a 0.89 ± 0.06b 1.00 ± 0.004a 0.95 ± 0.02ab

α 0.06 ± 0.006ab 0.046 ± 0.003b 0.073 ± 0.01a 0.04 ± 0.006b 0.05 ± 0.007b

Pmax 32.40 ± 1.16ab 28.94 ± 1.45b 36.08 ± 2.75a 28.32 ± 2.97b 30.92 ± 1.98ab

Rd 0.16 ± 0.06b 0.47 ± 0.12a 0.08 ± 0.04b 0.47 ± 0.21a 0.10 ± 0.05b

LCP 1.23 ± 0.45bc 5.31 ± 1.47ab 0.63 ± 0.36c 7.17 ± 3.49a 1.10 ± 0.47bc

LSP(0.9) 824.55 ± 116.39ab 639.74 ± 41.96b 864.25 ± 138.00a 618.54 ± 57.09b 785.69 ± 126.16ab

LSP(0.8) 597.39 ± 40.66a 539.01 ± 3145a 579.37 ± 46.36a 543.81 ± 50.25a 586.21 ± 56.38a

n 10 11 8 7 8

Note: Significant levels are indicated.
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Quantum yield, as reported by Lobo et  al.  (2013), 
ranges from 0.0266 to 0.0800 μmol−1μmol photon−1, a 
range within which our estimates also fall. In our study, 
the parameter θ, representing the ratio of physical to total 
resistances of CO2 diffusion and signifying the sharpness 

of the transition from light limitation to light saturation 
(Lobo et al.,  2013) varied from 0.912 to 0.969 under dif-
ferent precipitation treatments. This range aligns with the 
observed norm of 0.70 to 0.99 (Lobo et al., 2013; Ogren, 
1993). In our study LCP, ranging from 49.69 to 71.12 μmol 

F I G U R E  6   The distribution of data is show for each of the model parameter values including the average, median, minimum value, 
maximum value, first quartile, and third quartile values. The data are from the nonrectangular hyperbola model for CO2 response results.
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photon m−2 s−1, was higher than that of Vochysia diver-
gens (20.2–23.4 μmol photon m−2 s−1). In addition, Ma 
et al. (2021) demonstrated substantial variations in model 
parameters estimated by different models. For example, 
quantum yield may vary from 0.55 to 0.95 and LSP can 
fluctuate from 300 to 1000 μmol photon m−2 s−1. Because 
of these variations, it is evident that more studies on 
switchgrass ecophysiology responses to environmental 
changes are needed, encompassing different cultivars and 
at diverse geographical locations.

5   |   CONCLUSIONS

In this study, we evaluated the response models used for 
characterizing photosynthesis in relation to light and 
CO2 and estimated the model parameters for switchgrass 
across five different precipitation treatments, employing 
the optimal model we selected. Among the four models 
tested (i.e., rectangular hyperbola model, nonrectangular 
hyperbola model, exponential model, and the modified 
rectangular hyperbola model), we found they all fitted the 
measurements obtained from the ambient precipitation 
treatment. However, the nonrectangular hyperbola model 
emerged as the optimal choice based on both fitting 
criteria and the biological significance of its parameters.

This optimal model was then applied across all precip-
itation treatments, revealing that alterations in precipita-
tion did not exert influence on Pmax, but influenced other 
model parameters, including α, θ, and Rd. In addition, pre-
cipitation significantly influenced all model parameters of 
CO2 response. While the ambient treatment had the high-
est Pmax in the Pn-CO2 response, it also had greater α and 
Rd. Interestingly, the fluctuations in model parameters for 
α, θ, and Pmax were relatively small.

Overall, this study improved our understanding of 
how switchgrass leaf photosynthesis responds to vary-
ing precipitation conditions, providing valuable insights 
for the accurately modeling of switchgrass ecophysiol-
ogy and productivity. Switchgrass demonstrates extensive 
tolerance to precipitation variations, thriving under the 
diverse precipitation conditions in Nashville, TN. This 
adaptability likely stems from inherent adaptive mecha-
nism, allowing switchgrass to excel amidst the consider-
able environmental variations within its vast native range. 
However, improved parameter estimations could enhance 
our understanding and predictive accuracy regarding 
switchgrass ecophysiology and biomass productivity in fu-
ture climate conditions.
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