

1
2
3
4
5 **In Situ Observations of Sea Ice**
6
7
8

9 Melinda A. Webster^{1*}, Ignatius Rigor¹
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34 ¹Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA,
35 USA

36
37

38 *Corresponding author: Melinda A. Webster (melindaw@uw.edu)

39

40 **Abstract**

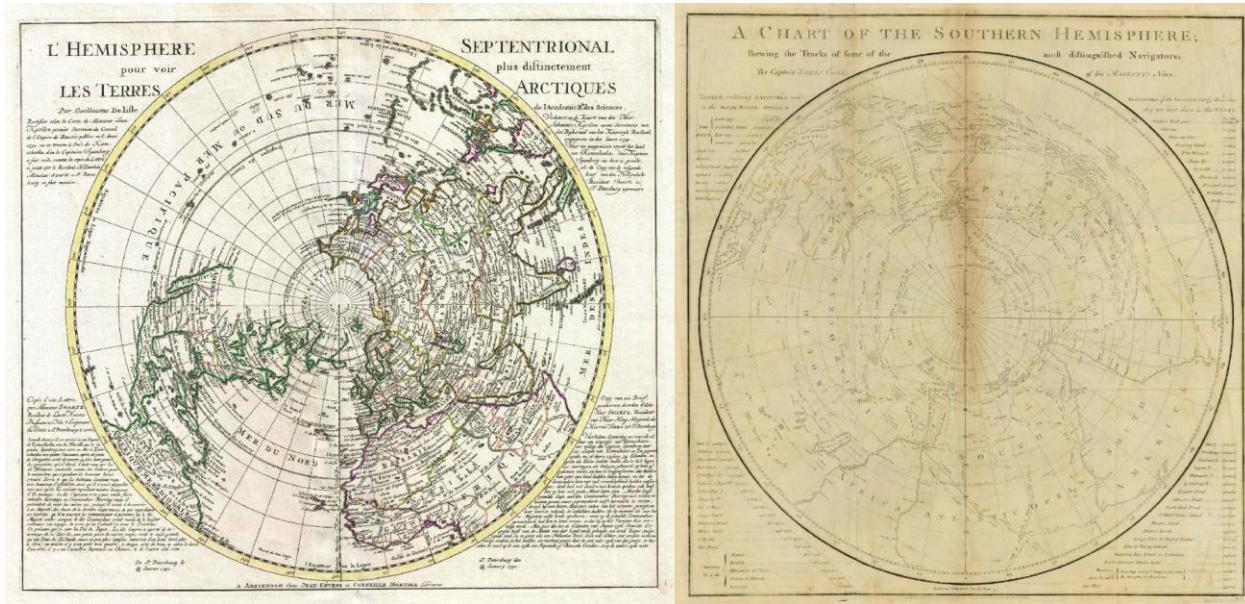
41 Our understanding of sea ice and its role within Earth's climate system is underpinned by
42 observation. Observations come in many forms, from qualitative records to quantitative data.
43 Observations have one thing in common: they are made *in situ*. Direct measurements comprise
44 most *in situ* observations; however, remote sensing technologies are also regularly used *in situ* to
45 measure sea ice physical properties. In this chapter, we provide an overview of *in situ*
46 observations (including remote sensing) of sea ice from expeditions, drifting ice stations,
47 autonomous platforms, and ongoing observation programs. We give a chronological account of
48 sea-ice observations, highlighting the technological breakthroughs in sea-ice measurement
49 techniques that have expanded observational capabilities. The chapter concludes with an outlook
50 of future sea ice observations and ways to bring observational and modeling efforts together to
51 accelerate knowledge of the polar regions and Earth's climate.

52

53

54 **1. The Earliest Sea Ice Observations**

55 **1.1 The Arctic**


56 The earliest form of sea-ice observations originated from Arctic Indigenous peoples
57 thousands of years ago. Sea ice served as a vital platform for subsistence hunting of marine
58 mammals and enabled easier travel between Indigenous communities. Over the generations, a
59 honed expertise of sea ice developed through the use of sea ice, especially in recognizing sea ice
60 features and phenomena indicating impending ice instability. Breakout events, a process in
61 which landfast ice breaks away from the coast, were particularly dangerous. To this day, sea ice
62 serves as a cultural livelihood for many Arctic communities where Indigenous Knowledge of sea
63 ice is actively practiced. In recent decades, collaborations have developed between Indigenous
64 Knowledge holders and citizen science to document local observations of sea-ice conditions,
65 wildlife, weather, and coastal waters across Alaska Arctic communities [e.g., the Alaska Arctic
66 Observatory and Knowledge Hub: <https://arctic-aok.org/>]. The sharing of sea ice observations by
67 Indigenous Knowledge holders has been particularly valuable for decision-making of on-ice
68 activities by locals and researchers alike.

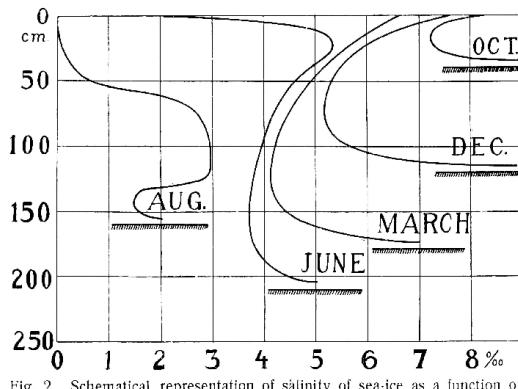
69 The first western perspective on sea ice may have occurred in 350 - 320 B.C. from
70 Pythias of Massilia, a Greek geographer [Weeks, 1998]. His account of sea ice is presented by
71 other writers (Strabo 63 B.C. – 25 A.D. and Pliny the Elder 23 - 79 A.D.), describing sea ice as a
72 *Mare Concretum*, or frozen sea [Weeks, 1998]. The records that followed used similar
73 terminology to describe sea ice. The *Mare Concretum* was observed by Irish monks on Icelandic
74 voyages in 795 A.D., while Olaus Magnus Gothus (1539 A.D.) and several other navigators
75 described a regular wintertime presence of *Mare Concretum* in the Baltic Sea [Weeks, 1998].
76 While many societies gained exposure to sea ice during the 7th to the 15th centuries, knowledge
77 of the true extent of the frozen seas remained largely unknown.

78 During the age of exploration (15th-16th centuries), broader understanding of the Arctic
79 and Antarctic sea ice materialized from voyages seeking shorter trade routes between Asia and
80 Europe. Navigators seeking the Northeast and Northwest passages were particularly effective in
81 mapping the peripheries of landmasses and sea ice in the Arctic (**Figure 1, left**). In the eastern
82 Arctic, Willem Barentsz made notable discoveries (e.g., Svalbard) during his search for the
83 Northeast Passage in 1594-1596. However, his three voyages were considered a mix of successes
84 and failures. Thick, consolidated ice forced him to turn back during the first two voyages and, on
85 the third voyage, his ship became trapped in the ice and was eventually abandoned. It was not
86 until 1733 that a successful mapping of the Northeast Passage was achieved during the Great
87 Northern Expedition. The expedition's leader, Vitus Bering, ultimately deemed the Northeast
88 Passage infeasible due to the year-round persistence of sea ice in its narrower sections.
89 Nevertheless, the Great Northern Expedition was considered successful as it mapped much of the
90 Siberian coast as well as parts of the North American coast.

91 In the western Arctic, the search for the Northwest Passage was equally fraught with ice
92 hazards. Numerous expeditions (i.e., led by William Scoresby, John Ross, and others) were
93 turned back by consolidated ice packs, or, worse, became damaged or trapped in the freezing ice

94 pack. Although these expeditions made notable geographic discoveries (Figure 1), the voyages
95 were largely considered unsuccessful at the time due to their failure to locate and safely navigate
96 the Northwest Passage. It was not until 1819 that substantial progress was made charting the
97 Northwest Passage by William Edward Parry and his crew. However, a portion in the western
98 Canadian Arctic Archipelago remained uncharted for decades. In 1845, the ill-fated expedition of
99 Sir John Franklin came to a disastrous end when the *HMS Terror* and *HMS Erebus* became
100 trapped by ice pressure and ultimately sank. When the Franklin party never returned, numerous
101 search expeditions came to the same area. This eventually led to the complete mapping of the
102 Northwest Passage in 1850-1854. More than 150 years later, in 2014 and 2016, the wreckages of
103 the *HMS Erebus* and *HMS Terror*, respectively, were discovered south of King William Island.
104

105 **Figure 1. Left:** A map of the Northern Hemisphere by Guillaume de L'Isle in 1714, updated by
106 Coven's and Mortier in 1741. **Right:** A map of the Southern Hemisphere by Captain James Cook
107 after his second voyage in 1772-1775.
108


110 In 1882, the first International Polar Year (IPY) was launched with the objective of
111 collecting geophysical observations of the polar regions year-round through coordinated,
112 multinational efforts [Barr and Lüdecke, 2010]. The first IPY and those that followed expedited
113 knowledge of the polar climate systems, resulting in considerable improvements to weather
114 forecasting and air and sea navigation capabilities. Numerous notable scientific accomplishments
115 made during IPY influence our understanding of polar climate to this day.

116 Perhaps the most unprecedented accomplishment of its time was the *Fram* expedition of
117 1893-1896. Nine years prior to the expedition, the wreckage from the naval exploration vessel
118 *USS Jeannette* was discovered off the southwest coast of Greenland three years after the ship
119 sank in the East Siberian Sea [De Long, 1884]. This discovery led Fridtjof Nansen to
120 hypothesize that there was an ocean current that carried the wreckage across the Arctic Ocean.

121 Today, this current is known as the Transpolar Drift Stream. To test his hypothesis, Nansen and
122 his team deliberately froze the *Fram* into the pack ice, letting it drift with the ice at the whim of
123 the winds and ocean currents. During the drift, Nansen and his team quantitatively measured
124 Arctic sea ice and oceanic properties in their pursuit of the North Pole [Nansen, 1902].

125 Inspired by the *Fram* expedition, the 1918-1925 *Maud* expedition sailed through the
126 Northeast passage with the intent of freezing into the pack ice to travel with the Transpolar Drift
127 Stream to the North Pole. The expedition had an extensive scientific program, including
128 measurements of ocean tides, vertical atmospheric profiles of temperature, and sea ice physical
129 properties [Sverdrup, 1926]. Finn Malmgren, a research assistant to Harald Ulrik Sverdrup on the
130 expedition, dedicated substantial time to carrying out multiple sea ice experiments. His findings
131 were published in his thesis: *On the properties of sea ice* [Malmgren, 1927]. The findings give
132 the first quantitative evidence of the saline nature of sea ice and its thermal effects on sea ice
133 temperatures [Sverdrup, 1926; Malmgren, 1927]. He found that newly formed sea ice, which is
134 quite saline, is composed of pure ice with pockets of brine. As temperatures neared the melting
135 point, he observed the brine pockets expand and become interconnected, leading to subsequent
136 brine percolation and the freshening of the upper ice surface (**Figure 2**) [Malmgren, 1927].
137 These studies have contributed greatly to the understanding of sea-ice salinity and its
138 representation in modern-day sea ice models [e.g., Hunke et al., 2011]

139

140
141 Fig. 2. Schematical representation of salinity of sea-ice as a function of
142 seasons.

143
144
145 **Figure 2.** Results from one of the first quantitative studies on sea ice, from Malmgren [1927]. The
146 schematic shows the evolution of sea-ice salinity with the seasons.

147

148

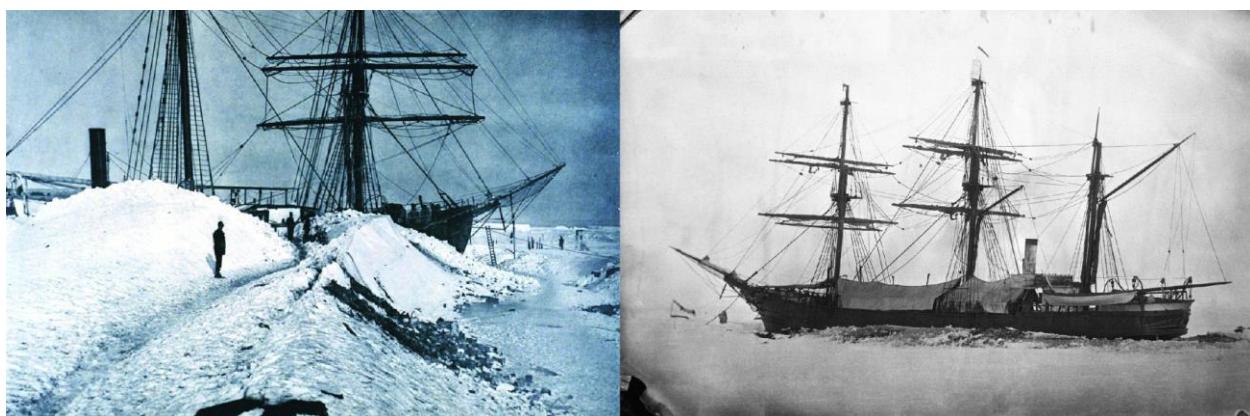
149

150

151

152

1.2 The Antarctic


146 Relative to the Arctic, the first encounter with sea ice in the Southern Ocean occurred
147 much later. According to Polynesian narratives [Wehi et al., 2021 and references therein], Hui Te
148 Rangiora (Ui Te Rangiora), an explorer from Rarotonga, was the first person to navigate to the
149 Southern Ocean in the early 7th century, where “rocks grow out of the sea...” and the “frozen sea
150 of pia... a foggy, misty, and dark place not seen by the sun” [Smith, 1899]. While his voyage is
151 not recorded in writing, it appears as stories in carvings and oral repositories [Hongi, 1925; Wehi
152 et al. 2021].

153 The first written account of the Antarctic sea ice cover originated from the second
154 scientific voyage of Captain James Cook in 1772-1775. Thereafter, several scientific expeditions
155 in search of the Antarctic continent traveled to the margins of the Antarctic sea ice cover, with
156 mixed success. For both the Arctic and Antarctic, the sealing and whaling era was particularly
157 valuable in the systematic mapping of the edge of the Arctic and Antarctic sea ice covers (**Figure**
158 **1**), providing the first semblance of seasonal extent, much to the whales' disadvantage.

159 Until the early 1800s, sea ice was largely considered a hazard (e.g., **Figure 3, left**) rather
160 than a topic of scientific study. The purposes of polar expeditions began to shift towards
161 advancing understanding of the geophysical environment of the polar regions. One notable
162 expedition was that led by James Clark Ross, who searched for the South Magnetic Pole in 1841.
163 The naturalist on board, James Hooker, made extensive notes on the Antarctic sea ice cover,
164 including the peculiar color of the ice itself. Upon closer inspection, Hooker discovered the
165 presence of diatoms, which helped establish the earliest records of sea ice biota in the polar
166 regions.

167 According to Weeks [1998], the first scientific paper on sea ice was published in 1874 by
168 John Buchanan. While aboard the *H.M.S. Challenger* in the Southern Ocean, Buchanan explored
169 the nature of freezing seawater, as well as the chemical and physical properties of sea ice. These
170 included observations of "air bells" and "mechanically enclosed brine" within the sea ice
171 structure, and Buchanan noted that sea ice "was very far from being a homogenous body"
172 [Buchanan, 1874]. The 1878-1880 *Vega* expedition was the first to navigate through the
173 Northeast Passage (**Figure 3, right**). On board, Otto Petterson conducted freezing point
174 experiments using seawater and other saline solutions to pinpoint the differences in the physical
175 nature of sea ice from freshwater ice [Petterson, 1883].

176

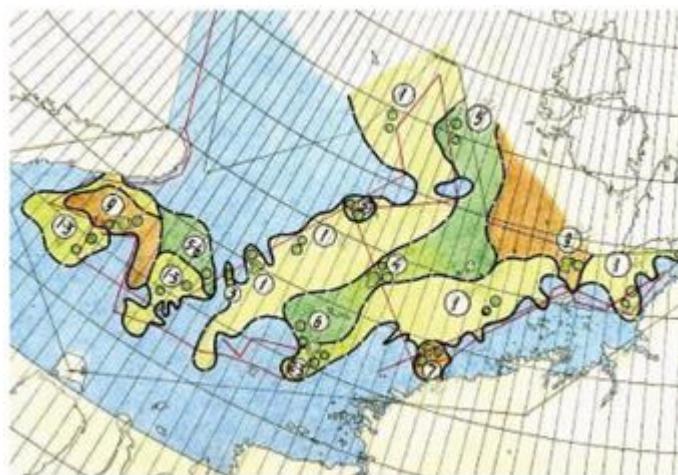
177 **Figure 3. Left:** The *Gauss* trapped in sea ice in the Southern Ocean in 1902. Despite the
178 unintended encampment, geophysicists studied the meteorological, oceanographic, and sea ice
179 conditions. Photo in: 'Deutsche Sudpolar-Expedition 1901-1903 Meteorologie I' by Erich von
180 Drygalski. Plate 6, page 337. Bd. 3, I Halfte 1, Teil 1. **Right:** The *SS Vega* frozen into the pack ice
181 near Siberia. Photo taken by Louise Palander during the 1878-1880 *Vega* expedition. Available at
182 the Nordiska Museet.
183

184

185

186

2. Drifting Ice Stations


187

2.1 Technological Precursors to Ice Stations

188 Routine Arctic observing programs, including drifting ice stations, began with advancing
 189 technology and increased activity by air and sea in the Arctic. The looming gap of observations
 190 in the central Arctic imposed a logistical challenge for marine and air activities. There was a
 191 critical need for charts of real-time meteorological and sea ice conditions to aid navigation and
 192 weather forecasts. This need, together with the geopolitical environment at the time, motivated
 193 the proliferation of scientific pursuits on, over, and under Arctic sea ice beginning in the early
 194 1900s.

195 The former Soviet Union spearheaded sea-ice observational programs. In 1898, the first
 196 icebreaker, *Yermak*, was constructed by the Imperial Russian navy with the purpose of charting
 197 sea-ice conditions and furthering the development of ship designs for ice-covered waters
 198 [Weeks, 1998]. Through the establishment of the Arctic and Antarctic Research Institute (AARI)
 199 in 1920, regular airborne reconnaissance surveys were conducted along the Northern Sea Route.
 200 These surveys guided ships to easy passages through leads within the pack ice. The spatial
 201 expansion made possible by aircraft augmented production of ice charts, which detailed sea ice
 202 thickness, consolidation, age, and other physical properties. Much of the modern-day sea ice
 203 nomenclature and subsequent ice chart categories are based on those charts (**Figure 4**) [WMO
 204 1970].

205

206

207 **Figure 4.** An Arctic and Antarctic Research Institute (AARI) ice chart of the Kara Sea for August
 208 1933, courtesy of the National Snow and Ice Data Center and compiled by V. Smolyanitsky, V.
 209 Borodachev, A. Mahoney, F. Fetterer, and R. G. Barry. (2007) with dataset doi:
 210 10.7265/N5D21VHJ.

211

212 The Soviet Union carried out routine airborne surveys over Arctic sea ice during the 20th
 213 century. In the early 1900s, the first successful aircraft landing on Arctic sea ice was achieved.
 214 Aircraft were especially equipped with skis and parachutes, the latter of which reduced the

215 landing distance on sea ice. With these and other innovations, the Soviets expanded airborne
216 operations to include *in situ* measurements on the ice landing runways and the surrounding areas
217 up to the 1970s, albeit with periods of discontinuity, in the *Sever* program [Environmental
218 Working Group, 2000; Fetterer and Radionov, 2000]. In addition to meteorological conditions,
219 the measurement program included data collection of sea ice thickness, snow depth and density,
220 the dimensions and areal coverage of ridges, hummocks, and sastrugi, as well as ocean
221 temperature. The airborne operations typically occurred in spring prior to melt so that the frozen
222 snowscape remained suitable for aircraft landings.

223

224

225 **2.2 North Pole Station Program (1937, 1950, 1954-1991)**

226 Widespread airborne operations in the Arctic were a leap forward in filling the
227 observational gap of the Arctic Ocean. The Soviet Union's frequent ice landings provided
228 numerous snapshots of a given place at a given time, but most landings occurred in spring when
229 refrozen leads were sufficiently thick to support aircraft. Despite these valuable observations, the
230 climatological picture of the Arctic was incomplete; it remained unknown how meteorological,
231 oceanic, and sea-ice conditions evolved seasonally in the central Arctic. A time-series from a
232 location on drifting sea ice was needed. To remedy this, and, as a show of technological prowess,
233 the Soviet Union decidedly pushed the boundaries of polar observations. After many
234 reconnaissance flights and repeated successful ice landings, the Soviet Union established the first
235 drifting ice station at the North Pole in 1937 (**Figure 5**).
236

237

238 **Figure 5.** Mikhail Vodopyanov, the first pilot to successfully land at the North Pole to establish
239 the first North Pole Station in 1937.

240

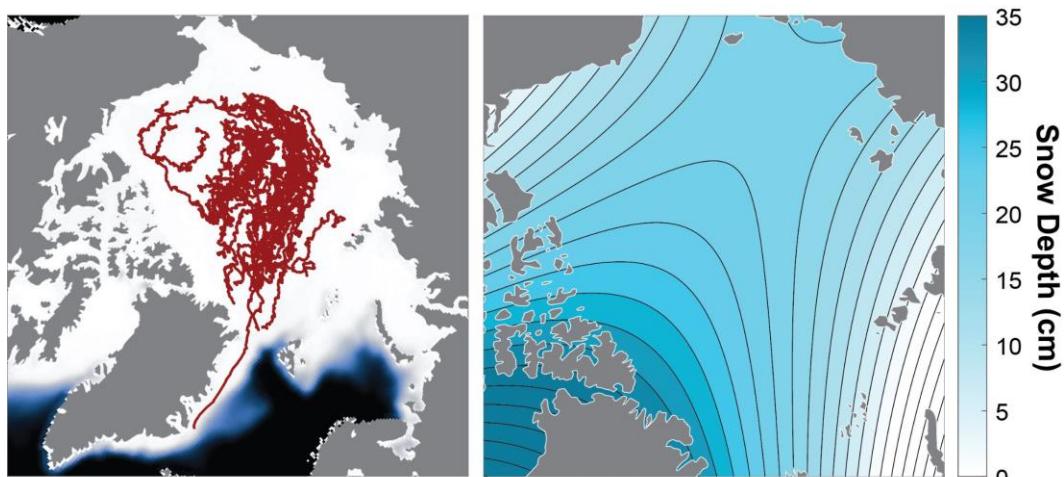
241 The camp, the first of many *Severny Polyus* or North Pole Stations (**Figure 6**), was set up
242 on a multiyear ice floe initially averaging three meters in thickness. It lasted from 21 May 1937
243 to 20 February 1938, during which time it drifted more than 2,400 kilometers. During those nine
244 months, four researchers carried out a relentless schedule of six-hourly meteorological
245 observations around the clock, transmitting weather reports via radio to the mainland [Papanin,
246 1939]. The weather observations revealed new linkages between synoptic events originating in
247 the northern Atlantic and those reaching the central Arctic. The researchers experienced

248 numerous “blizzards” which caused sufficiently deep snow drifts to warrant snow tunnels
249 between tents [Papanin, 1939].

250 In addition to meteorological data, the field measurements included a substantial
251 oceanographic program. A total of 38 oceanographic depth soundings were conducted, with
252 corresponding temperature, salinity, chemical, and biological measurements at depth [Papanin,
253 1939]. These measurements were the first indication of the Atlantic deep-water current in the
254 central Arctic [Althoff, 2007]. They also revealed the Arctic to be a biologically-rich
255 environment inhabited by phytoplankton and zooplankton [Papanin, 1939]. The measurement
256 program at North Pole Station 1 became the standard for future “systematic geophysical
257 studies... in the otherwise inaccessible northern polar region” [quote from Radionov in the
258 Arctic Climatology Project, 2000]. In early February of 1938, the floe on which the North Pole
259 Station was established began to fracture and crumble in the warm Atlantic waters in Fram
260 Strait; the floe was reduced to an area less than 30 m by 50 m [Papanin, 1939]. On February 20,
261 the Soviet *Taimyr* and *Murman* icebreakers evacuated the four-person team, which ended the
262 drift of North Pole Station 1.

263

264
265 **Figure 6. Historical photographs from the North Pole Drifting Ice Stations [Arctic**
266 **Climatology Project, 2000]. Left:** An overview of North Pole Station 6. Different tents were
267 used for communications, magnetic readings, cooking, and sleeping. **Middle:** The use of dogs
268 for travel and polar bear safety was common at the North Pole Stations. **Right:** Exploration of
269 ridges on the boundaries of the level sea ice “platform”.


270

271 During the same summer of North Pole Station 1, the *Georgy Sedov* and two other
272 icebreakers became trapped in sea ice near the East Siberian Sea. The *Yermak* icebreaker freed
273 two of the ice-bound ships, but the *Sedov* remained trapped in the ice. Rather than treating the
274 situation as a loss, the *Sedov* was converted to a drifting science platform much like North Pole
275 Station 1, albeit having the benefit of a ship as shelter. The *Sedov* drifted with the sea ice for two
276 years in a similar track to Nansen’s *Fram* drift expedition along the Transpolar Drift Stream. The
277 *Sedov*’s research program was similar to that at North Pole Station 1 and included
278 meteorological, magnetic, and oceanographic measurements. While never officially a part of the
279 North Pole Station program, the observations during the *Sedov* drift added to the growing
280 knowledge of the seasonal evolution of the Arctic weather and climate.

281 In the 1950s, the Soviet Union was at the forefront of sea ice studies. It reinitiated its
282 continuous drifting North Pole station (1954-1991), airborne *Sever* (mostly continuous during

1950s - 1970s), and Drifting Automatic Meteorological Station (DARMS, 1953-1972) programs. The foundation to Arctic sea ice science came from the continuous time-series from the North Pole drifting ice station program (**Figure 7, left**). These stations were established on thick multiyear ice or glacial ice islands, ideally with refrozen leads nearby to serve as aircraft runways. In addition to 3-hourly meteorological observations, these stations and the associated *Sever* surveys conducted measurement programs that expanded sea ice studies. These measurements included ridge size and distribution [Romanov, 1995], snow depth and density [Loshchilov, 1964; Radionov et al., 1997], melt pond coverage [Nazintsev, 1964], sea ice drift, and several other relevant variables. These data have formed the climatological baseline (e.g., **Figure 7, right**) from which long-term changes in Arctic environmental conditions have been gauged. They have been especially informative for understanding the seasonal evolution of the Arctic sea ice environment.

295

296

Figure 7. Left: Drift tracks of the former Soviet Union's North Pole ice stations from 1937, 1954-1991 in red with the mean sea ice concentration for March over 1979-1991. Station location data are available from the Arctic Climatology Project [2000] and the sea ice concentration from the NOAA/NSIDC Climate Data Record [Meier et al., 2021]. Station locations were determined by celestial fixes until 1980; thereafter satellite technology was used. **Right:** A zoomed-in subset of the 1954-1991 climatological snow depth distribution for March using a two-dimensional quadratic fit to station snow depth survey measurements following Warren et al. [1999]. Snow surveys were carried out every 10 days along 500-m to 1000-m transects [Radionov et al., 1997; Warren et al., 1999]. The climatology is actively used to this day to aid altimetry retrievals of sea ice thickness.

307

308 Despite experience and technology, the North Pole drifting ice stations were still
309 subjected to the inherent unpredictability of the Arctic environment. Fracturing of the ice on
310 which the stations were established was a common disruption. North Pole Station 8 in particular
311 experienced more than 22 sea ice dynamic events, with floe breakup forcing the relocation of the
312 camp and runway on numerous occasions [Althoff, 2007]. Even so, several North Pole stations

313 persisted for multiple years. North Pole Station 22 lasted nine years, owing to its location on a
314 glacial ice island.

315 Other logistical challenges were more predictable and expected. Every summer, melting
316 snow and expansive pools of meltwater made travel and measurements difficult. Small rubber
317 boats and canoes became the choice of transportation (**Figure 8**) [Arctic Climatology Project,
318 2000]. For context, on North Pole Station 1, the largest melt pond was 200 m x 400 m with a 2.4-
319 m depth [Zubov, 1945]. The pedestaling instrumentation and infrastructure became increasingly
320 precarious as surface melt thawed the sea ice underneath [Arctic Climatology Project, 2000]. In
321 some instances, tents and instruments had to be relocated to more stable surfaces. The
322 environmental challenges experienced by the North Pole Station scientists have plagued drifting
323 ice stations throughout history, including the more recent 2019-2020 Multidisciplinary drifting
324 Observatory for the Study of Arctic Climate (MOSAiC) expedition.

325

326
327 **Figure 8. Historical photographs from the North Pole Drifting Ice Stations [Arctic**
328 **Climatology Project, 2000]. Left:** Melt ponds posed a hazard for travel between tents and
329 research sites. **Middle:** Rubber boats and “canoes” made travel and measurements feasible during
330 the melt season when melt ponding became widespread. **Right:** Pedestaling of sea ice was a
331 common occurrence during summer. Large objects shielded the underlying sea ice from direct
332 solar radiation while the surrounding, exposed sea ice experienced greater ablation.

333

334 In 1957, the International Geophysical Year (IGY) injected momentous funds into Arctic
335 and Antarctic science. The IGY initiative coordinated multinational efforts to expand polar
336 observing programs. Leveraging IGY and technological advances, the Soviet Union devised a
337 new plan, Drifting Arctic Remote Meteorological Stations (DARMS), to collect continuous time-
338 series measurements without the need for staffed stations. Originally developed by Yu. K.
339 Alexeyev at AARI, the DARMS automatically transmitted wind speed and direction, air pressure
340 and temperature via radio. The data were transformed into radio signals using a code block and
341 transmitted by Morse code [Arctic Climatology Project, 2000]. The DARMS locations were
342 positioned by high-frequency radio-wave triangulation three times per month. An average of 11
343 stations per year were deployed throughout the marginal seas of modern-day Russia. During any
344 given year, the number of DARMS was highest after the spring deployments (15) and decreased
345 (9) in late winter. In addition to aiding weather forecasts, the widespread deployment of DARMS
346 enabled a more comprehensive view of large-scale sea ice motion in the Arctic.

347

348

349 **2.3 T-3 (1952-1974) and Ice Station Alpha (1957-1958)**

350 After a hiatus during World War II, the Cold War in the 1950s reinvigorated scientific
351 and geopolitical activities in the Arctic, much to the benefit of sea ice science. In 1952, the U.S.
352 established its first multiyear drifting ice station: T-3, or Fletcher's Ice Island, named after
353 Colonel Joseph O. Fletcher of the U.S. Air Force. As indicated by its name, the ice station was
354 established on a large ice island (iceberg), which likely originated from Ellesmere Island. The
355 project leaders posited that, by setting up on thick, glacial ice, one could avoid sea ice dynamics
356 and thereby reduce the risks to the integrity of the drifting station. The argument held and the
357 semi-permanent station was occupied off and on from 1952 to 1974.

358 Similar to other drifting ice station programs, meteorological observations were the
359 primary objective of the T-3 science program [Crary, 1956; Fletcher, 1965], as the need for
360 reliable forecasts were ever pressing with the increasing number of geopolitical activities in the
361 Arctic. Oceanographic properties, bathymetric soundings, and acoustic tests were logged (**Figure**
362 **9**) to better understand the oceanic conditions and improve capabilities for under-ice navigation.
363 Observations at T-3 advanced sea ice science by showing the relationship between surface
364 winds, ocean currents, and sea ice motion.

365

366

367 **Figure 9.** The intensive meteorological and oceanographic measurement program at T-3. **Left:**
368 Numerous images were collected of the sea floor, in addition to oceanic sampling and acoustic
369 testing. **Right:** The drifting ice station was re-supplied by aircraft drops. Photographs from D.
370 Scoboria/USGS.

371

372 The acoustic tests at T-3 were especially beneficial to the U.S. for sharpening under-ice
373 survey and submarine monitoring capabilities. The 1950s gave rise to the development of under-
374 ice sonar, which enabled submarine surveys in ice-covered waters. The first under-ice crossing
375 of the Arctic Ocean was accomplished by the *USS Nautilus*, a nuclear-powered submarine, in
376 1958. The sonar data provided a means for avoiding thick ice. The trans-Arctic crossing of the

377 *USS Nautilus* gathered a plethora of information for under-ice navigation. Particularly useful
378 were data to enhance under-ice sonars to detect sea ice, which later led to the capability of
379 deriving sea ice draft and thickness.

380 With the help from IGY in 1957, the initiative for two U.S. ice stations became a reality.
381 Ice Station Alpha was established on drifting pack ice, while Ice Station Bravo was established
382 on the T-3 ice island. Ice Station Alpha was the most extensive western program on sea ice until
383 the 1970s. It was also the first U.S. station on drifting pack ice. The sea ice measurement
384 program included ice physical properties, seismic tests for ice strength and underwater acoustics,
385 under-ice surveys of phytoplankton and zooplankton, and stake arrays to monitor the sea ice
386 mass balance evolution (**Figure 10**) [Untersteiner, 1961]. The observations collectively formed
387 the basis for the thermodynamic theory of sea ice in modern-day sea ice models [e.g., Maykut
388 and Untersteiner, 1971; Hunke et al., 2015].

389 Several more insights gained from the field experiment inspired later works. For
390 example, “firnification” of an ablating sea ice surface was observed [Untersteiner, 1961]; this
391 process is now referred to as the surface scattering layer and contributes to the high albedo of sea
392 ice [e.g., Light et al., 2008]. Other insights hinted at the influence of melt ponds in slowing sea
393 ice freeze-up due to their high heat capacity [Untersteiner, 1961], a topic revisited more recently
394 with MOSAiC observations in [Thielke et al., 2023]. Preliminary results also suggested that the
395 heterogeneity in snow depth distribution may contribute to various sea-ice growth rates during
396 freezing. Altogether, these findings inspired future generations of researchers to investigate the
397 complexities of the sea ice system.

398

399
400 **Figure 10.** **Left:** the hydrohut provided a shelter for conducting oceanographic sampling.
401 Photograph from April 1969. **Right:** the same view of the hydrohut in late June, with a field
402 scientist “boating” on a wooden crate. Photographs from D. Scoboria/USGS.

403

404

405 **2.4 Quiet Camps: ARLIS (1960-1971) and APLIS (1971-1993)**

406 As the Cold War continued, the U.S. vied to maintain an Arctic presence despite
407 dwindling funds to support such activities after IGY. The scientific priorities shifted to
408 underwater acoustics with the establishment of the Arctic Research Laboratory Ice Station

409 (ARLIS) program by the U.S. Navy. These low-cost “ice bivouacs” were set up on both
410 multiyear ice floes and ice islands in 1960-1971. Prefabricated hut materials, together with
411 smaller-scale camps, reduced the total cost to ~\$75,000 for ARLIS I [Althoff, 2007]. Early in the
412 program, ARLIS observations consisted of underwater acoustics, heat flow, marine biology,
413 physical oceanography, gravity and magnetics, sea ice strain, and meteorological measurements.
414 While most ARLIS stations lasted 2-7 months, ARLIS II survived three summer melt seasons
415 and included 14 scientific projects in total [Althoff, 2007].

416 In 1967, the ARLIS program transitioned to smaller camps with “quieter” activities to
417 maintain a low ambient noise environment for acoustics studies. Low-frequency research was
418 conducted for very long-range detection and tracking of submarines. In 1970, the ARLIS V,
419 ARLIS VI, and (reoccupied) T-3 ice stations were strategically positioned ~250 km apart to
420 carry out acoustic propagation tests using explosives [Althoff, 2007]. Building on the ARLIS
421 program, in the spring of 1978, the U.S. Navy started the Arctic Polar Laboratory Ice Station
422 (APLIS) program. The APLIS program’s overarching goal was to advance understanding of
423 high-frequency under-ice acoustics. The APLIS stations were typically deployed in spring and
424 evacuated in mid-summer to investigate the acoustic response of the sea ice as melt progressed
425 [Althoff, 2007]. A richer understanding of the acoustic signature of ice deformation and strain
426 was gained through the ARLIS and APLIS programs, which has been especially foundational to
427 sea ice seismic studies.

428
429

430 **2.5 Autonomous Platforms and AIDJEX (1975-1976)**

431 By the late-1960s, the advancements in satellite technology revealed unprecedented
432 views of the globe and polar regions. Passive microwave remote sensing was especially useful
433 for all-weather monitoring of the polar seas, elucidating the sea ice pack in both the Arctic and
434 Southern Oceans. In 1972, with the advances in satellite technology, the US National Academy
435 of Science recommended that a network of autonomous drifting buoys be deployed on the global
436 and polar oceans to collect data for operational weather prediction, and for meteorological and
437 oceanographic research [NRC, 1974]. The launch of the first Geostationary Operational
438 Environmental Satellite (GOES) in 1975, and the Polar-orbiting Operational Environmental
439 Satellite (POES) in 1978, by the United States National Oceanic and Atmospheric
440 Administration (NOAA) allowed for near real-time observations of weather by the satellites, and
441 the inclusion of Argos transceivers allowed remote autonomous drifting stations on the world’s
442 oceans to transmit weather data such as sea level pressure and temperature back to land, where
443 these observations were assimilated in numerical weather prediction models. This capability
444 allowed observations from remote *in situ* weather stations on the sea ice to transmit their data in
445 real-time so these data may be assimilated into operational numerical weather predictions models
446 and for research.

447 The Arctic Ice Dynamics Joint Experiment (AIDJEX) program in 1972 (pilot study) and
448 1975-1976 leveraged the combination of instrumented buoys, submarine surveys, ship surveys,

449 aircraft overflights, and drifting ice stations to measure the atmospheric and oceanic forcings
450 driving the motion and dynamics of the Arctic sea ice cover. This American-Canadian-Japanese
451 partnership endeavored to carry out a unique design relative to traditional drifting ice stations:
452 nested arrays of camps and buoys were strategically placed to collect coincident measurements
453 of atmosphere-ice interactions on the synoptic scale to better understand atmosphere-ice-ocean
454 momentum exchange. In total, there were 4 ice stations and 43 buoys deployed in the Beaufort
455 Sea. The measurement program also included detailed measurements of the under-ice
456 topography by diver and submarine, as well as microwave emission measurements for remote
457 sensing applications (**Figure 11**). The success of AIDJEX led to the establishment of the Polar
458 Science Center at the University of Washington, and provided the foundation for drifting buoy
459 programs and ice camps for decades to come.

460

461
462 **Figure 11.** Historical photos from the Arctic Dynamics Joint Experiment by Tom Marlar
463 [AIDJEX, 2023]. **Left:** Boundary-layer studies involved divers assembling current-meter masts
464 under the water and mapping the under-ice topography. **Right:** Microwave emissivity
465 measurements over different sea ice conditions were made to better understand the microwave
466 signature of sea ice.

467

468

469 **2.6 Arctic Ocean Buoy Program (1979)**

470 The US National Academy of Science recommended the development of the global
471 drifting buoy programs that exist today [NRC, 1974], motivating the establishment of Arctic
472 Ocean Buoy Program (AOBP) in 1979, the first incarnation of the IABP [Thorndike and Colony,
473 1980]. One of the primary objectives of the AOBP was to support the Global Weather
474 Experiment [Fleming, 1979]. In March 1979, a network of 15 Tyros Air Drop (TAD) buoys was
475 deployed, spread out across the Arctic Ocean, to record sea level pressure and temperature,
476 which were measured from inside the hull of the buoys. Heat from the electronics and insulation
477 introduced a warm bias in these first TAD buoys. Collaboration between Norbert Untersteiner,
478 Alan Thorndike and Roger Colony at the PSC/APL/UW with Torgny Vinje at the Norwegian

479 Polar Institute (NPI) led to the development of the ICEXAIR buoy in the early 1980s, which has
480 a ventilated thermistor located at the top the buoy, allowing for more accurate measurements of
481 temperature at about 1-m height. The ICEXAIR remains one of the primary buoys deployed by
482 the IABP today (**Figure 12**), and the collaboration between PSC, NPI and the Atmospheric
483 Environment Services of Canada (now known as Environment and Climate Change Canada) led
484 to the renaming of the AOBP to the Coordinated Arctic Ocean Buoy Programme (CABP) in
485 1986.

486 Through the 1980s, the CABP expanded to include many international collaborators
487 interested in polar operations and research, and in 1991 the IABP was formed as an Action
488 Group of the Data Buoy Cooperation Panel of the World Meteorological Center and
489 Intergovernmental Oceanographic Commission. The IABP's basic objective remains – to
490 maintain a network of drifting instrumented buoys on the Arctic Ocean to provide
491 meteorological and oceanographic data for real-time operational requirements and research
492 purposes, including support to the World Climate Research Programme, the World Weather
493 Watch Programme, and the Arctic Observing Network (AON).

494 The locations of these early remote drifting buoys were positioned by the Argos satellites
495 using the Doppler shift in their data transmissions, which were typically accurate to 300 m
496 [Thorndike and Colony, 1980]. Satellites also led to the Global Positioning System (GPS),
497 enabling far-reaching telecommunications, which further supported maritime and scientific
498 activities in the polar regions. In comparison to GPS, Lindsay and Stern [2003] estimated the
499 error for Argos positioning to be 158 m in the polar regions, almost half the estimate of
500 Thorndike and Colony [1980].

501 In time, the Iridium satellite constellation would surpass the Argos network for
502 transmission of remote weather and oceanographic observations given its denser coverage and
503 ability of one satellite to transmit data to other satellites in the network so that the data reaches
504 the terrestrial download stations in real-time so data can be transmitted more frequently and
505 efficiently. The capability of the Iridium network to locate the remote stations was less accurate
506 (usually tens of kilometers), which required remote drifting stations to include GPS in their suite
507 of sensors. This improved the location accuracy of remote polar stations to just a few meters,
508 which, in turn, allowed scientists to study higher temporal and smaller spatial scale processes,
509 such as inertial oscillations [Kwok et al., 2003]. The new Iridium-NEXT and Starlink satellite
510 constellations promise to be the next evolution for communications in the global observing
511 systems, with their ability to transmit orders of magnitude more data from remote stations back
512 to land.

513

514
515 **Figure 12.** ICEXAIR buoy deployed by the Alaska Air National Guard from a C-17. From left to
516 right, U.S. Air Force Senior Master Sgt. Brian Johnson, Tech. Sgt. Chris Eggleston and Senior
517 Master Sgt. Cecil Dickerson, loadmasters assigned to the 144th Airlift Squadron at Joint Base
518 Elmendorf-Richardson, deploy an ICEXAIR buoy during an airdrop mission over the Arctic
519 Ocean, July 12, 2023. The IABP and Office of Naval Research partnered with the 144th AS to
520 deploy five different types of data-gathering buoys across more than 1,800 kilometers of the Arctic
521 Ocean. U.S. Air Force photo by Airman 1st Class Shelimar Rivera Rosado.
522
523

524 **2.7 Ice Station Weddell (1992)**

525 After several successful research cruises to the Southern Ocean in the 1980s, an idea for a
526 drifting ice station was conceived in 1988 in a joint effort between the former Soviet Union and
527 U.S. [Gordon et al., 1993]. Ice Station Weddell became the first drifting ice station in the
528 Southern Ocean, and was strongly motivated by the largely unexplored region of the western
529 Weddell Sea. The ice station's objective was to study the atmosphere, sea ice, and ocean in the
530 Weddell Gyre, a significant feature influencing Earth's thermohaline circulation by way of deep-
531 water formation. Up to that point, the perennial presence of sea ice in the western Weddell sector
532 had prevented exploration.

533 In February 1992, Ice Station Weddell was established on a ~1.8-m thick floe in a
534 location not far from where Shackleton's *Endurance* became trapped in the ice in 1915 [Gordon
535 et al., 1993; Althoff, 2007]. The floe itself was a mixture of perennial and seasonal ice [Gordon
536 et al., 1993]. The ice station drifted over 700 kilometers to the north, in a similar drift track to
537 that of the *Endurance* [Althoff, 2007]. A total of 60 researchers rotated to the ice camp by
538 aircraft or ship. While an intensive measurement program was carried out at the station,
539 helicopters offered expanded coverage for measurements including the deployment of
540 instrumented buoys and geophysical measurements of the surface by airborne sensors [Dierking,
541 1995].

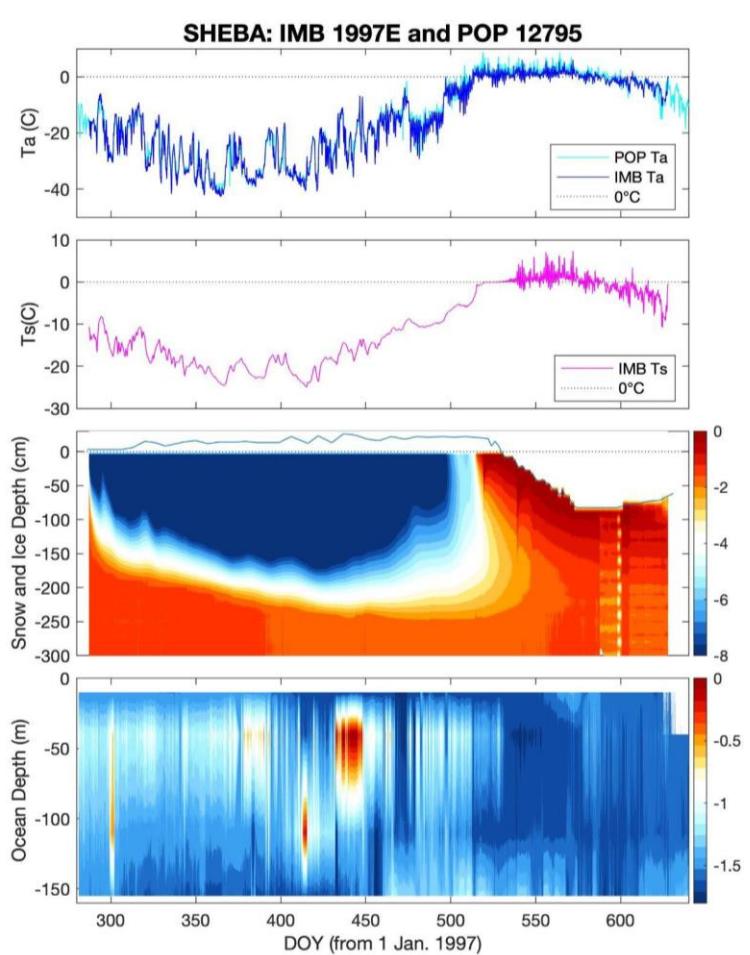
542 Ice Station Weddell drifted until June 1992, and was a highly successful campaign in
543 expanding knowledge of the coupled atmosphere-ice-ocean system in the Weddell Gyre region.
544 In particular, the suite of measurements made a strong contribution to understanding large-scale

545 ice motion and dynamics [Kottmeier et al., 1992; Geiger et al., 1998], thermodynamic processes
546 [Lytle et al., 1996], snow characterization [Massom et al., 1997], ice-ecosystem studies [Garrison
547 and Close, 1993], in addition to numerous atmospheric and oceanographic studies. The
548 expedition also made use of a wider range of remote sensing technology to study the
549 composition and large-scale motion of the Antarctic sea ice cover in the Weddell Sea.
550

551

552 **2.8 SHEBA (1997-1998)**

553 In October 1997, the *Des Groseilliers* icebreaker began its year-long drift in the Beaufort
554 Sea for the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. SHEBA had two
555 overarching goals: (1) to determine the atmosphere-ice-ocean processes that control the ice
556 albedo and cloud radiation feedbacks, and (2) to develop models that improve simulations of
557 Arctic climate [Uttal et al., 2001]. With a collective team of over 160 participants, the expedition
558 was the largest of its kind. The expedition was strongly motivated by the need for improved
559 realism of global climate models through the incorporation of process-oriented observations.
560 Accordingly, the observational program was designed to collect measurements that could be
561 used to develop parameterizations of physical processes and improve representation of physical
562 properties.


563 The SHEBA observational program was interdisciplinary in nature, and strategically
564 collected coincident measurements of atmospheric, sea ice, and oceanic properties (**Figure 13**).
565 The sea ice program made major advancements in the understanding of Arctic sea ice mass
566 balance (**Figure 14**) and the critical role surface albedo has in the summer evolution of the
567 surface energy budget [Perovich et al., 2002; 2003; Light et al., 2008]. Summer melt processes
568 were also investigated, revealing how complex networks of meltwater accumulation, percolation,
569 and drainage strongly influence the surface albedo evolution [Eicken et al., 2002; 2004]. New
570 understanding of the physical properties of snow and their insulating effects on sea-ice growth
571 rates was obtained [Sturm et al., 2002a; 2002b]. As with other drifting stations, SHEBA was no
572 exception to frequent dynamic events. The integrative deployment of buoy arrays and satellite
573 data greatly contributed to a stronger understanding of sea ice dynamics from local to aggregate
574 scales [Richter-Menge et al., 2002; Stern and Moritz, 2002],

575 SHEBA was highly successful in integrating the knowledge gained from observations
576 into climate model development. Specific to sea ice studies, major advancements were made to
577 model parameterizations of sea ice optical properties and processes [e.g., Holland et al., 2012],
578 snow processes on sea ice [Sturm et al., 2002b], melt pond evolution [e.g., Flocco et al., 2010],
579 and cloud radiative feedbacks [Intrieri et al., 2002]. The suite of SHEBA data sets continues to
580 make valuable contributions to this day: as a validation source for model development [e.g.,
581 Vancoppenolle et al., 2009] and as a comprehensive forcing data set for model experiments.
582 Collectively, the suite of observations from SHEBA have transformed our understanding of the
583 surface energy balance of the Arctic.

584

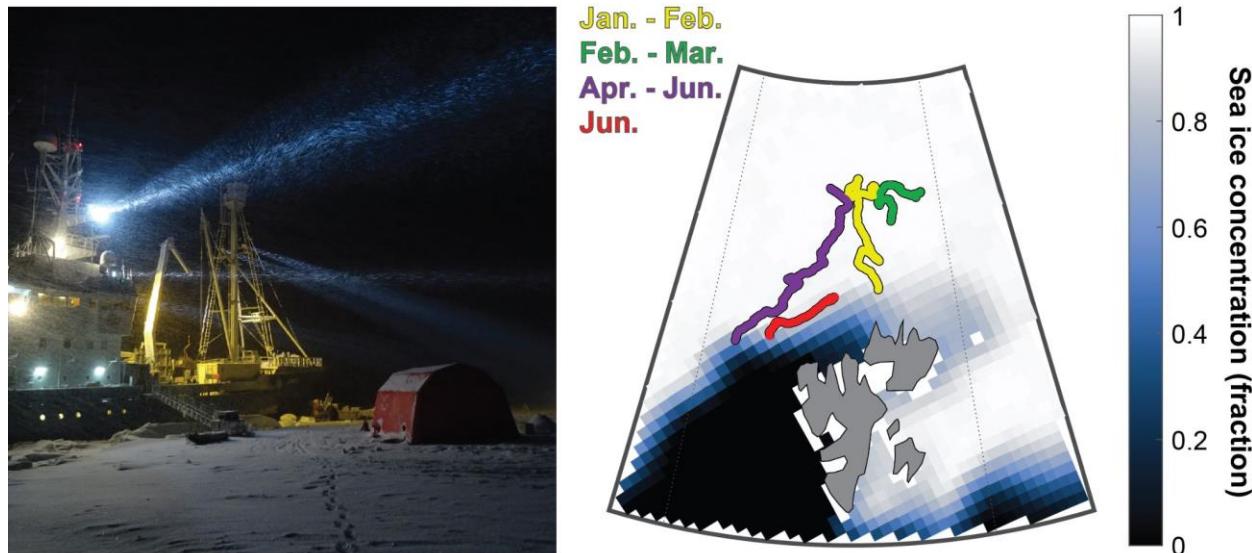
585
586 **Figure 13:** The SHEBA expedition had an extensive multidisciplinary and sea ice program. **Left:**
587 autonomous platforms were deployed to monitor the meteorological, sea ice, and oceanic
588 conditions. **Middle:** Routine measurements of lateral ice melt were conducted for investigations
589 of sea ice mass balance. **Right:** Networks of ice thickness gauges enabled continuous monitoring
590 of sea ice mass balance. Photographs courtesy of Don Perovich.
591

592
593 **Figure 14:** Measurements from Ice Mass Balance Buoy (IMB) 1997E and Polar Ocean Profiler
594 (POP) 12795 at SHEBA [Perovich et al., 2023]. The top panel shows surface temperatures from
595 the POP (cyan line) and IMB (blue line) buoys. The second panel shows surface temperature
596 measurements from the IMB. The third panel shows snow depth (black line) and temperature

597 measurements from the IMB string. The fourth panel shows ocean temperature measurements at
598 nominally 10-m, 40-m, 110-m, and 155-m depth from the POP buoy [Morison et al., 2007].
599
600

601 **2.9 ISPOL (2004-2005)**

602 In November 2004, a coordinated team from 11 nations set out to the Weddell Sea on the
603 Ice station POLarstern (ISPOL) drift experiment to investigate the coupled processes between
604 the atmosphere, sea ice, ocean, and ecosystem [Hellmer et al., 2008]. The experiment consisted
605 of 12 along-transit ice stations preceding and following a 36-day period of a Lagrangian drift to a
606 10-km-by-10-km ice floe. The main floe was 2-m thick second-year ice, with sections of
607 seasonal ice ranging 0.9-1.8 m in thickness [Haas et al., 2008]. The ice station drifted more than
608 ~290 km from November 2004 to January 2005 in a largely northerly direction with several
609 loops [Hellmer et al., 2008]. The suite of data filled the observational gap in Ice Station
610 Weddell's seasonal time-series by capturing the transition to summer melt. The data suite
611 provided new information on the spatial transition between the seasonal and perennial ice zones
612 with regard to sea ice physical properties and biological and biogeochemical characteristics. It
613 also revealed linkages between ice dynamics, ocean heat flux processes [e.g., McPhee, 2008],
614 and primary productivity.


615 The studies involving ice thickness and floe size distributions were particularly
616 informative for understanding sea ice processes in the Weddell Sea. Similar to Ice Station
617 Weddell, an array of instrumented buoys was deployed to study the large-scale motion and
618 deformation of sea ice in the broader vicinity of the main floe [e.g., Heil et al., 2008]. Together
619 with airborne imagery, the evolution in floe size distribution was investigated; researchers
620 observed an increasing distribution in smaller floes and brash ice during the drift, which was
621 attributed to large-scale divergence of the pack ice and melt-induced weakening of ridges, which
622 reduced the integrity of floes [Steer et al., 2008]. These ice processes revealed important linkages
623 to factors governing the Antarctic melt processes, as well as environmental conditions that
624 contribute to the timing of phytoplankton blooms in the Weddell Sea.
625
626

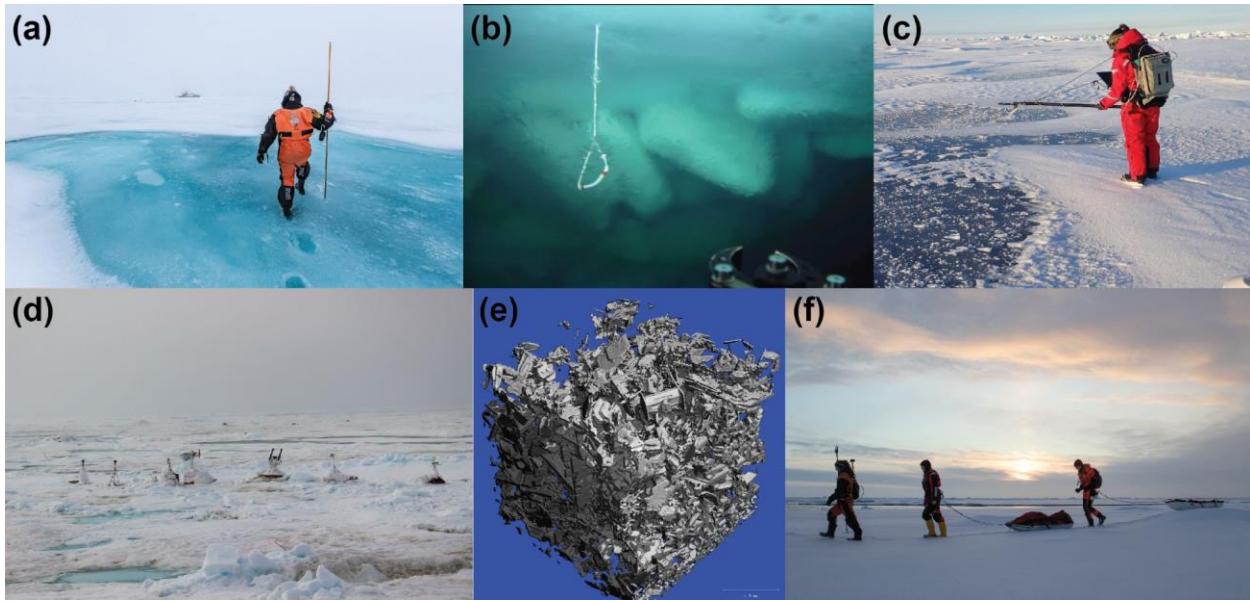
627 **2.10 N-ICE2015 (2015)**

628 The Norwegian Young Sea ICE (N-ICE2015) expedition was a drifting ice experiment
629 with the goal of investigating the energy fluxes of a younger, thinner sea ice regime in the
630 Atlantic sector of the Arctic [Granskog et al., 2018]. Given the decline in Arctic sea ice due to
631 anthropogenic warming [Meier et al., 2014], there was a critical need to better understand the
632 atmosphere-ice-ocean interactions when sea ice is young and thin. The interdisciplinary
633 expedition took place over five months, and was a series of four separate drifts in the Transpolar
634 Drift Stream north of Svalbard. The ship relocated to new, northerly floes after each site met its
635 demise at the ice edge.

636 The expedition captured the winter to spring transition (**Figure 15**), and experienced
637 frequent storms and rapid ice drift [Granskog et al., 2018]. While frequent storms were
638 logistically disruptive, they also proved to be scientific opportunities to better understand the
639 response of a thinner sea ice cover to synoptic events. The effects of storms on turbulent ocean
640 heat fluxes and the surface energy budget were investigated [Peterson et al., 2017; Walden et al.,
641 2017], revealing that the enhanced ocean heat flux was sufficiently strong to cause rapid basal
642 ice melt [Koenig et al., 2016; Provost et al., 2017]. The combination of enhanced basal melt and
643 heavy snowfall caused flooding and snow-ice formation to occur [Merkouriadi et al., 2017;
644 Provost et al., 2017], a phenomenon more commonly associated with Antarctic sea ice [Massom
645 et al., 2001]. The effects of large ocean swell and strong winds on sea ice were also investigated;
646 the resulting studies showed irrevocable weakening of the ice cover and greater free drift of the
647 ice floes due to the thin nature of the sea ice pack [Itkin et al., 2017].

648 The N-ICE2015 observation program also made strong contributions to the understanding
649 of ice–ecosystem processes. Studies found that, despite the sea ice cover having an optically
650 thick snow cover, the phytoplankton bloom occurred relatively early in spring; the early timing
651 was attributed to the open leads that had formed from ice dynamics [Assmy et al., 2017].
652 Investigations also revealed the importance of the bio-optical feedback between under-ice
653 phytoplankton blooms and solar heating [Taskjelle et al., 2017]. Although the drift experiment
654 had a shorter duration relative to historical drifting ice stations, the scientific output was
655 relatively high owing to the thoughtful coordination across disciplinary measurements.
656

657
658 **Figure 15. Left:** N-ICE2015 was unique in collecting coincident atmosphere-ice-ocean-ecosystem
659 observations during the late winter season, a period when interdisciplinary observations are limited
660 [Photo credit: Mats Granskog/ Norwegian Polar Institute]. **Right:** The approximate tracks of the
661 four drifts during the N-ICE2015 campaign overlaid onto sea ice concentration for March 2015.
662 The sea ice concentration from the NOAA/NSIDC Climate Data Record [Meier et al., 2021]
663

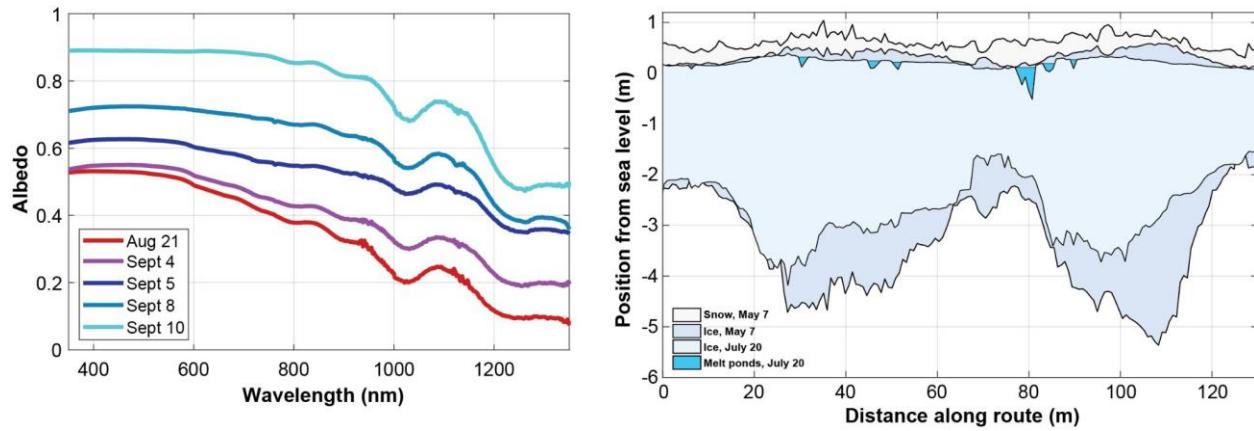

664

665 **2.11 MOSAiC (2019-2020)**

666 More than 125 years after the start of the *Fram* expedition, the largest drift experiment in
667 history was conducted on the *Polarstern* icebreaker in 2019-2020: the Multidisciplinary drifting
668 Observatory for the Study of Arctic Climate (MOSAiC). With over 300 participants from more
669 than 20 nations working together, the overarching goal was to investigate how the atmosphere,
670 sea ice, ocean, and ecosystem interact over the course of an entire year on a floe composed of
671 perennial and seasonal ice [Shupe et al., 2020]. The design of the study allowed for process-
672 oriented analyses of the evolution of atmosphere-ice-ocean-ecosystem interactions for second-
673 year and first-year sea ice (**Figure 16**). The tightly coordinated effort was especially successful
674 in linking disciplinary measurements and modeling efforts to conduct interdisciplinary studies of
675 the Arctic climate system. In fact, many of the *in situ* observations and sampling plans were
676 tailored towards developing and improving parameterizations in sea ice and fully coupled
677 climate models.

678 The sea ice observational program had a wide range in scope [Nicolaus et al., 2022]. It
679 included under-ice ROV surveys, ridge mass balance [Lange et al., 2023; Salganik et al., 2023],
680 drone surveys of surface conditions [Calmer et al., 2023], stress tests and ice mechanics, lidar-
681 based surface topography [Clemens-Sewall et al., 2022], microstructure [Macfarlane et al.,
682 2023], snow mass budget [Wagner et al., 2022], optical properties and albedo evolution (**Figure**
683 **16, c**) [Light et al., 2022], sea ice mass balance [[Raphael et al., in review](#)], snow and ice
684 thickness and pond depth surveys (**Figures 16, f and 17**) [Webster et al., 2022; Itkin et al.,
685 2023], as well as an array of airborne measurements [e.g., von Albedyll et al., 2022; Thielke et
686 al., 2023]. *In situ* measurements with remote sensing sensors were used to improve
687 understanding of spaceborne remote sensing of sea ice [Nicolaus et al., 2022]. These
688 measurements have been especially insightful for interpreting the electromagnetic signal from
689 sea ice when its surface undergoes rapid changes, such as with rain on snow [e.g., Stroeve et al.,
690 2022].

691


692
693 **Figure 16.** The MOSAiC sea ice measurement program was vast in scope. **(a):** Surveys of melt
694 ponds captured the progression of melt pond evolution (Photo credit: Lianna Nixon). **(b):**
695 Platelet ice crystals were observed using an ROV during winter on MOSAiC [Katlein et al., 2020;
696 doi:10.1594/PANGAEA.919398]. **(c):** Optical measurements were conducted on a frequent basis
697 to capture the seasonal evolution of surface albedo (Photo credit: Felix Linhardt). **(d):** The array
698 of remote sensing instruments measured the changes in the geophysical signals as the ice surface
699 seasonally evolved (Photo credit: Aikaterini Tavri). **(e):** Microtomography scans of the snow
700 surface enabled new understanding of processes driving snow grain evolution (Image credit:
701 Schneebeli/WSL). **(f):** Snow depth and ice thickness surveys were repeated in the same location
702 to monitor the seasonal evolution in the sea ice mass balance during the MOSAiC expedition
703 (Photo credit: Marcel Nicolaus).

704
705 In similar fashion to AIDJEX, buoy deployments were made over nested spatial scales to
706 study the multi-scale dynamics of the sea ice cover with the ever-changing winds and ocean
707 currents [Bliss et al., in review]. A wide range in buoy instrumentation allowed for autonomous
708 measurements of radiative fluxes, snow and ice thickness, and meteorological conditions at
709 strategic distances from the Central Observatory to enable synoptic and meso-scale studies of
710 atmosphere-ice-ocean interactions [Shupe et al., 2020]. Additionally, routine observations of
711 surrounding ice and weather conditions were logged during the MOSAiC drift as well as during
712 relocation transits, which further broadened the observational coverage of the MOSAiC program.

713 Several sea ice studies from MOSAiC build upon the classical understanding of sea ice
714 physics, with some results confirming long-standing hypotheses while others revealed new
715 insights. One unexpected result was the prevalence of platelet ice formation in winter [Katlein et
716 al., 2020], a phenomenon that occurs in supercooled conditions and is more commonly
717 associated with ice shelves (**Figure 16, b**). Other MOSAiC findings were both a surprise and a
718 confirmation of prior results, as was the case with albedo (**Figure 17**). The seasonal evolution of

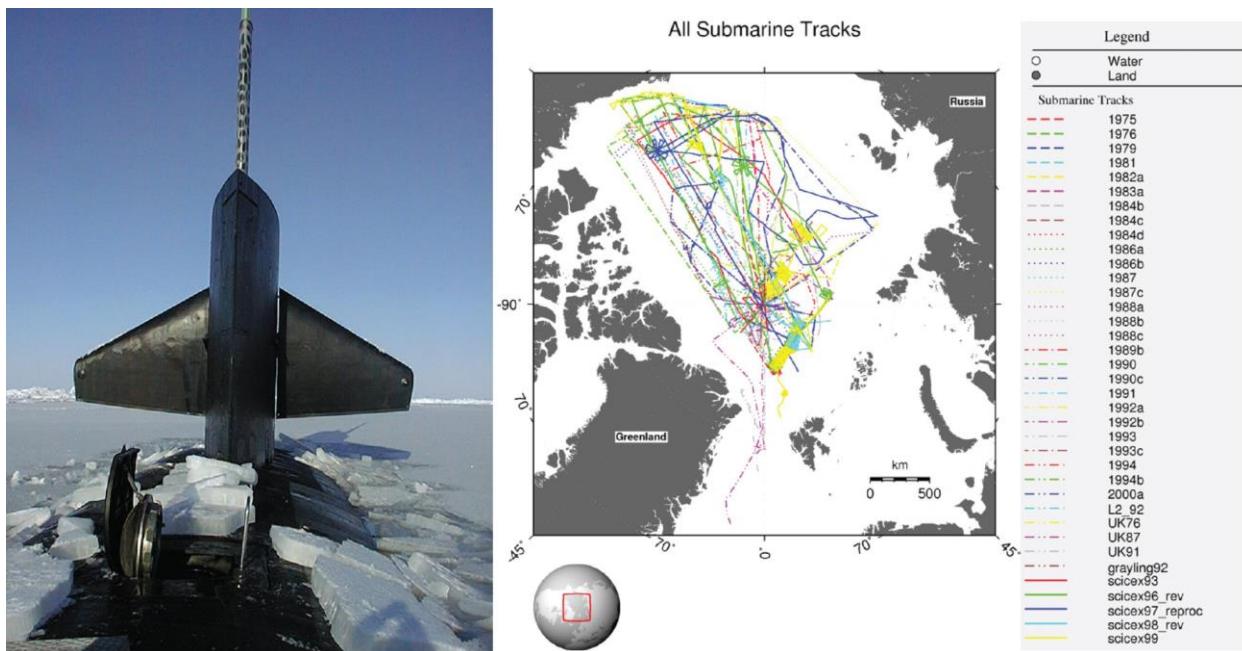
719 the surface albedo was similar to that of the SHEBA expedition (1997-1998), despite
 720 measurements taking place on seasonal ice at MOSAiC [Light et al., 2022]. The similarity may
 721 have implications for the variability in albedo across different sea ice types. Other MOSAiC
 722 studies made connections to science further back in history. At MOSAiC, the preceding
 723 summer's melt ponds were observed to have a measurable thermal effect on sea ice during the
 724 winter season [Thielke et al., 2023]. These results substantiate the speculations by Norbert
 725 Untersteiner on the thermal persistence of refreezing ponds during Ice Station Alpha (1957-
 726 1958). At the time of this writing, MOSAiC observations continue to be processed and analyzed,
 727 and the results published. A key component of the MOSAiC program is the incorporation of
 728 observational findings into climate model development, which is currently underway.

729

730
 731 **Figure 17. Left:** The MOSAiC expedition captured the seasonal evolution of surface albedo,
 732 including the transition into the freeze-up season as shown in this panel. Data available at:
 733 <https://doi.org/10.18739/A2FT8DK8Z>. **Right:** Sea ice mass balance was measured in a variety of
 734 ways on MOSAiC. Transect measurements of snow depth, sea ice thickness, and melt ponds along
 735 repeat surveys revealed the seasonal evolution. Here, two points in time illustrate the pre-melt
 736 season state (May 7) and the advanced melt season state (July 20). Figure adapted from [Webster
 737 et al., 2022].

738

739


740 **3. Legacies of Past Observational Programs**

741 ***3.1 SCICEX (1995-2020 with discontinuity)***

742 In the early 1990s, the military and scientific communities of the U.S. embarked on a
 743 joint program that provided unprecedented oceanographic and sea ice measurements. After a
 744 successful trial cruise with scientists aboard the *USS Pargo* in 1993, the SCience ICe EXercise
 745 (SCICEX) program was formally established in 1994 [SCICEX Science Advisory Committee,
 746 2010]. As motivation for this program, nuclear-powered submarines were recognized as a unique
 747 observational platform that could be leveraged for cross-Arctic surveys of ice draft, oceanic
 748 hydrographic and nutrient properties, and bathymetry. They could travel far distances in
 749 relatively short periods of time and were unimpeded by ice conditions, inclement weather, or

750 time of year. The submarines were specially equipped with conductivity and temperature
751 sensors, through-hull water samplers, and used existing sonar equipment for ice draft retrievals.
752 The SCICEX measurement program conducted annual surveys from 1995 to 1999, and
753 continued surveys off and on through the Science Accommodation Missions to 2020 (**Figure**
754 **18**).

755 The scientific findings from the SCICEX surveys were compelling. Rothrock et al.
756 [1999] combined the SCICEX ice draft data set with those from surveys in prior decades to
757 reveal, for the first time, that the Arctic sea ice cover had undergone widespread thinning. Sea
758 ice thickness in the central Arctic had decreased from 3.1 m to 1.8 m between the 1958-1976 and
759 1993-1997 periods [Rothrock et al., 1999]. Further discoveries helped pinpoint the areas where
760 water mass exchange takes place between the continental shelves and deep ocean basins
761 [Morison et al., 2000 and references therein]. Both the sea ice thickness time-series and
762 oceanographic data continue to be of value to this day for model development and evaluation, as
763 well as for the validation of sea ice retrievals from satellite data [e.g., Kwok and Rothrock, 2009]
764 and studies of Arctic sea ice change [e.g., Kwok, 2018].
765

766
767 **Figure 18. Left:** The *USS Hawkbill* surfacing at the North Pole during SCICEX 1999 (Photo
768 credit: Arctic Submarine Laboratory/NSIDC). **Right:** Submarine tracks from the SCICEX and
769 SAM programs (Map credit: NSIDC G01360 user guide; SCICEX Science Advisory Committee,
770 2014, <https://doi.org/10.7265/N5930R3Z>).

771
772
773 **3.2 North Pole Environmental Observatory (2000-2015)**
774 Climate change in the Arctic was becoming an emerging scientific topic in the early
775 2000s, as records were showing a thinning ice cover [Rothrock et al., 1999] and warming ocean

776 temperatures [Morison et al., 2000]. It was argued that to better understand these changes in the
777 context of global climate change, an observational program of atmospheric, sea ice, and ocean
778 conditions in the central Arctic was needed. With the cessation of the North Pole Drifting Ice
779 Stations in 1991, coincident measurements of atmospheric, sea ice, and oceanic conditions were
780 lacking. Thus, the North Pole Environmental Observatory (NPEO) program was created in 2000,
781 with the objective of providing long-term multidisciplinary research stations equipped with
782 autonomous instruments [Morison et al., 2000].

783 From 2000 to 2015, annual expeditions to the North Pole were conducted each April to
784 deploy instrumentation for recording measurements throughout the remainder of the year. The
785 NPEO stations typically had a deep-sea mooring, automated weather instruments, and
786 instrumented buoy clusters fixed to the drifting ice; the station was further complemented by
787 airborne hydrographic surveys. The instrumented buoys recorded images (**Figure 19**),
788 meteorological conditions, snow depth and ice thickness [Perovich et al., 2014], as well as
789 vertical profiles of sea ice and ocean temperatures. The resulting data provided a rich time-series
790 to investigate ocean heat flux processes [McPhee et al., 2003], sea ice mass balance evolution
791 [Perovich et al., 2014], and long-term trends in Arctic temperatures and warming events
792 [Overland et al., 2008; Moore, 2016].

794
795 **Figure 19.** Webcam imagery from the North Pole Environmental Observatory from (**Left**) July 25
796 and (**Right**) July 28 showing the effects of melt pond drainage. Image Credit: North Pole
797 Environmental Observatory, National Science Foundation.

798
799
800 **3.3 2007-2008 IPY**
801 In 2007, 125 years after the IPY in 1882, the fourth IPY was launched. The 2007-2008
802 IPY was the most ambitious to date, with ~50,000 researchers, local observers, educators,
803 students, and support personnel from more than 60 countries involved [International Science
804 Council, 2011 report]. There were an estimated 228 international IPY projects in total
805 [International Science Council, 2011 report]. At the core of the fourth IPY objectives was to
806 advance scientific knowledge and understanding of the polar regions through international
807 collaboration and coordination [NRC, 2012]. Relative to earlier IPYs, the fourth IPY was unique
808 in successfully incorporating stakeholders in IPY activities, engaging with policymakers,

809 creating programs to facilitate early career development and mentorship (**Figure 20**), including
810 Indigenous organizations in polar science at all levels, and founding several integrative
811 observing programs.

812

813
814 **Figure 20.** One of the outcomes of the 2007-2008 IPY was the engagement of early career
815 researchers in polar science. As a case example, the 2009 Interdisciplinary IPY Field School taught
816 undergraduate and graduate students about the disciplinary components (e.g., terrestrial ecology,
817 oceanography, sea ice, and more) of the polar climate system. Photographs courtesy of Graham
818 Simpkins.

819

820 The 2007-2008 IPY spearheaded the establishment of several observational initiatives.
821 The Sea Ice Mass Balance in the Arctic (SIMBA) initiative was one of the major international
822 observing systems resulting from the IPY Antarctic sea ice program in 2007-2008. The objective
823 of SIMBA was to investigate the atmosphere-ice-ocean mechanisms governing the mass balance
824 of sea ice in the Bellingshausen and Amundsen seas in spring-summer. The *Nathaniel B. Palmer*
825 drifted with an ice floe approximately 2.3 m in thickness from October to December in 2007,
826 veering close to the drift track of the *Belgica* expedition, which had been trapped in the ice in
827 1898-1899 [Lewis et al., 2011; Ackley et al., 2016]. The SIMBA sea ice program included ice
828 core analysis of temperature, salinity, brine volume, and oxygen isotopes, gauges for recording
829 sea ice thickness changes, snow property characterization, ice mass balance buoys, and surveys
830 of snow surface elevation, snow depth, and sea ice thickness. The SIMBA observations revealed
831 new insights on the response of sea ice to storm-driven temperature cycling [Lewis et al., 2011],
832 as well as improved understanding of wind-driven snow redistribution and snow loss into leads
833 [Leonard and Maksym, 2017]. Building on SIMBA activities, the planning for the Southern
834 Ocean Observing System (SOOS) was initiated during IPY [<https://www.soos.aq/>]. The SOOS is
835 a multidisciplinary, international observing program to monitor essential climate variables in the
836 Southern Ocean. Ongoing SOOS activities continue to expand the suite of observations and
837 enable better understanding of the state of the Southern Ocean.

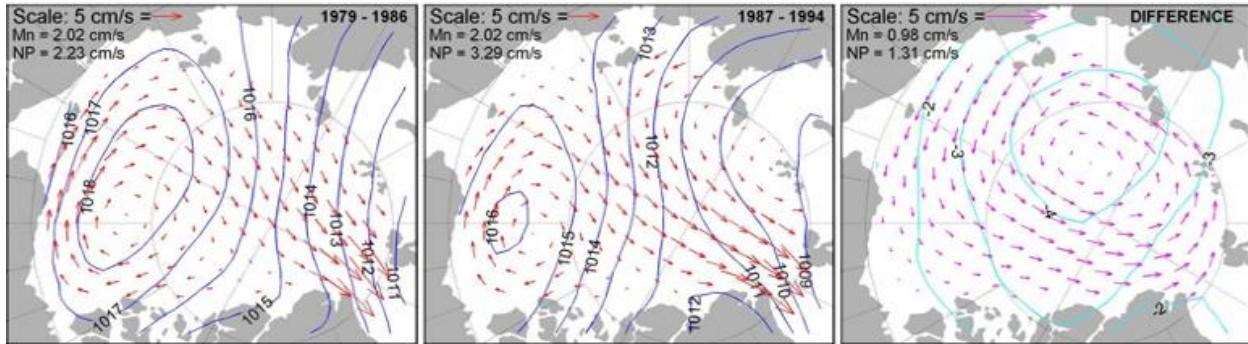
838 In the Arctic, the Sustaining Arctic Observing Networks (SAON) was formed through
839 IPY to pool together smaller observational networks into a broader, international coalition [NRC,
840 2012]. The overarching objectives of SAON are to facilitate collaboration and coordination
841 across international observing communities, and to archive high-quality observations of the
842 atmosphere, ocean, sea ice, land, and ecosystem across the Arctic. SAON has been particularly
843 impactful in the collection of a wide range of observations essential for monitoring the changes
844 in the Arctic atmosphere-ice-ocean system and identifying specific environmental drivers of
845 ecosystem change [NRC, 2012].

846 Sea ice science greatly benefited from the proliferation of research cruises, airborne
847 surveys, station upgrades, and instrument deployments in the Arctic and Southern Oceans.
848 Combining these observations with earlier data, one of the major outcomes from the fourth IPY
849 was an updated, comprehensive assessment of the polar regions at a time of rapid change. New
850 insights were gained on the rate of Arctic sea-ice loss. Rothrock and Kwok [2009] combined
851 SCICEX ice draft data with spaceborne ice thickness retrievals to show a thinning of ~ 1.0 m in
852 Arctic sea ice. During the IPY, the September minimum sea ice extent set a new all-time low
853 record in the 1979-2007 satellite record (and remains the second lowest extent on record as of
854 2023) [Meier et al., 2014]. The decreasing coverage in Arctic sea ice was observed to increase
855 the amount of solar absorption and heating of the Arctic Ocean due to the ice albedo feedback
856 [Perovich et al., 2007]. Additionally, the GPS tracks of drifting buoys combined with passive
857 microwave data revealed the shift from a multiyear to a seasonal ice regime [Rigor and Wallace,
858 2004; Maslanik et al., 2007].

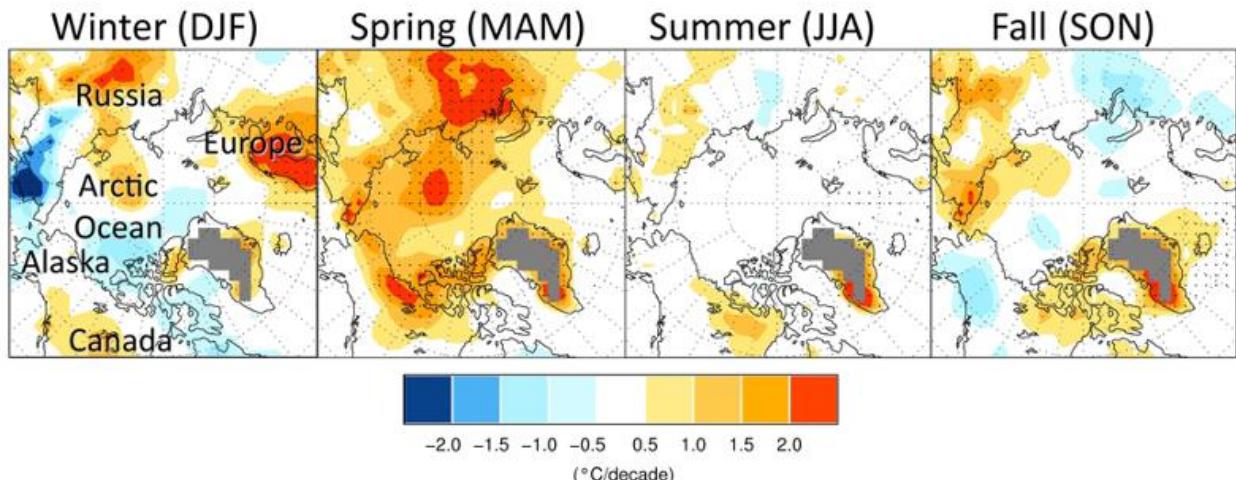
859 In the Southern Ocean, the scientific findings on sea ice during IPY were confounding.
860 Sea ice loss in the Amundsen and Bellingshausen Seas occurred in tandem with the increasing
861 trend in air temperatures in the Antarctic Peninsula; however, sea ice coverage in the West
862 Antarctic was increasing [Cavalieri and Parkinson, 2008; Stammerjohn et al., 2008], and the
863 factors contributing to this increase were not well understood. Altogether, the Arctic and
864 Antarctic studies resulting from the IPY were compiled into peer-reviewed reports to promote
865 community understanding of the changing polar regions and to help inform policy decisions.
866 These reports, including the Antarctic Climate Change and the Environment (ACCE), the
867 Climate Change and the Cryosphere and the Snow, Water, Ice and Permafrost in the Arctic
868 (SWIPA) are available to the public.

869 The involvement of Indigenous groups in observing programs was a major outcome of
870 the 2007-2008 IPY. One such success was the development of the Sea Ice for Walrus Outlook
871 (SIWO) product [<https://www.arcus.org/siwo>; Eicken et al., 2011], which provides weekly
872 forecasts of the spring sea ice breakup and walrus migration each spring. Sea ice scientists in
873 partnership with the Eskimo Walrus Commission and several local village monitors brought
874 together a diverse group of sea-ice experts to discuss sea ice conditions and exchange knowledge
875 of sea ice predictions to promote the enhancement of forecasting capabilities [Eicken et al.,
876 2011]. The forecasts were shared with Alaska native subsistence hunters in communities along
877 the coasts of the Beaufort, Chukchi, and Bering seas in a format that is helpful to local users.

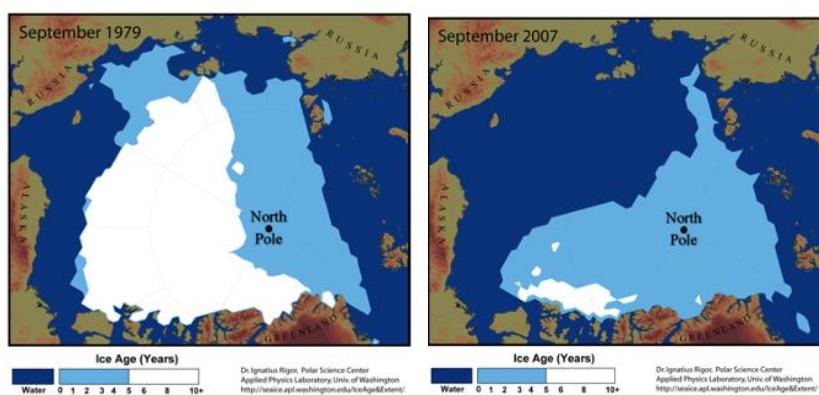
878 Observations of the weather and sea ice conditions encountered during subsistence hunting were
879 then shared with model forecasting groups to contribute to the improvements in the 10-day
880 weather forecasts.


881 Model-observation synthesis was another key priority of IPY 2007-2008 [NRC, 2012],
882 which is showcased by the creation of the Sea Ice Outlook (SIO) [<https://www.arcus.org/sipn>].
883 The SIO is an international initiative to provide and discuss annual sea ice forecasts to facilitate
884 improvements in sea ice predictability, integrate observations with modeling, and provide
885 predictions across spatial and temporal scales. The SIO remains an active community to this day
886 and has extended its prediction efforts to both hemispheres, providing annual forecasts of Arctic
887 and Antarctic sea ice coverage.

888 Through the support from the International Arctic Science Committee (IASC) and
889 Scientific Committee on Antarctic Research (SCAR), the next IPY is planned for 2032-2033.
890


891 **4. Ongoing Observing Programs**

892 **4.1 IABP/IPAB (1979 - present)**


893 Observations from the IABP and its predecessors have proven to be invaluable for
894 research, as many of the changes in Arctic and global climate were first observed and studied
895 using IABP data. For example, Walsh et al. [1996] showed that sea level pressure (SLP) over the
896 Arctic Ocean had dropped by over 4 hPa when comparing 1979-1986 and 1987-1994 IABP SLP
897 fields (**Figure 21**). Walsh et al. [1996] may be the first paper published on Arctic climate
898 change. We know now that this change in SLP is related to the Arctic Oscillation (AO)
899 [Thompson and Wallace, 1997], which is highly correlated to the North Atlantic Oscillation
900 (NAO) [Hurrell, 1996]. The changes in wind related to the decrease in SLP were found to drive a
901 corresponding weakening of the clockwise circulation of sea ice in the Beaufort Gyre (**Figure**
902 **21**) [Rigor et al. 2002]. Proshutinsky and Johnson [1997] and Steele and Boyd [1998] showed
903 that these anomalies have propagated down into the ocean where the circulation has become
904 more cyclonic (anti-clockwise). The changes in SLP and wind also modify the advection of heat
905 into the Arctic by the atmosphere. Using IABP data, Rigor et al. [2000] showed the warming
906 observed over land and lower latitudes [e.g., Jones et al., 1999] extended out onto the Arctic
907 Ocean (**Figure 22**). The integrated effect of all these changes were studied by Rigor and Wallace
908 [2004] who showed that the average age (thickness) of sea ice has decreased dramatically
909 (**Figure 23**), which explains the recurring records of melt and low summer sea ice extent despite
910 colder years. All of these results relied heavily on IABP data.
911

912
913 **Figure 21.** Using IABP data, Walsh et al. [1996] showed that sea level pressure (SLP) over the
914 Arctic Ocean decreased by over 4 hPa (right), when he took the difference between SLP from 1979
915 – 1986 (left), and 1987 – 1994 (middle). These changes in SLP (winds) drive a cyclonic anomaly
916 in ice motion (vectors), e.g., Rigor et al. [2002].
917

918
919 **Figure 22.** Surface air temperature trends for 1979 – 1998. This figure shows that the warming
920 trends found over land extend over the Arctic Ocean and are strongest during spring. Black dots
921 show areas where the trends are significant at the 95% confidence limit. From Rigor et al. [2000].
922

923
924 **Figure 23.** These maps compare the age (thickness) of sea ice between September 1979 (left) and
925 September 2007 (right) estimated from buoy data as presented by Secretary Kempthorne during

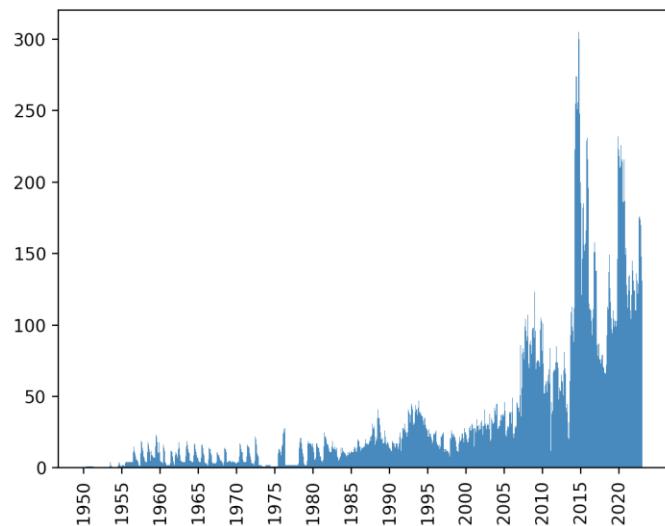
926 his press announcement to list polar bears as a threatened species. The decrease in the area of older,
927 thicker sea ice (white areas on left compared to right) suggests a decrease in the area and amount
928 of thicker, ridged ice, which polar bears prefer for habitat. These maps helped justify this decision,
929 were adapted from Rigor and Wallace [2004] by David Douglas (USGS) and used data from the
930 IABP.

931

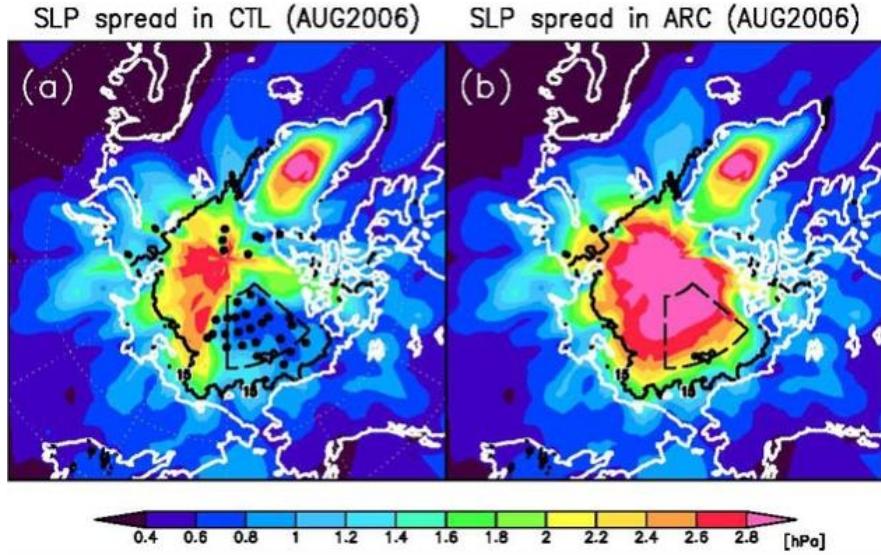
932 The retreat of Arctic sea ice during the last couple of decades has forced the IABP to
933 continually evaluate the types of instruments deployed by the program. During the 1980s, a buoy
934 could be deployed on a thick multi-year ice floe, which provided a robust platform for the
935 weather station and would report for many years. With the loss of multi-year sea ice and the
936 increasing area of open water during summer, the IABP began deploying Surface Velocity
937 Program (SVP) buoys in the polar regions in 2006. SVP buoys evolved from the World Ocean
938 Circulation Experiment [Niiler, 2001], and have long been used to measure ocean circulation, sea
939 surface temperature and air pressure in all the world's wet oceans. The IABP found that the
940 ocean drogue on the SVP buoys tended to pull the buoy under the sea ice, especially during the
941 fall freeze up, which led the IABP to deploy more "Ice Balls", i.e., SVP buoys without the
942 drogue, and develop the Air-Deployable Seasonal Ice Buoy (AXIB) (**Figure 24**). Similarly, the
943 IMB buoys have been redesigned to operate in the seasonal ice zone [Planck et al., 2019], and
944 buoys to observe increasing areas of fetch (open water) and waves are being deployed in the
945 Arctic [Thomson, 2021].

946

947


948 **Figure 24.** Lt. Cmdr. John Woods, Office of Naval Research (ONR) reserve component, and
949 Ignatius Rigor, University of Washington, prepare an Air-Deployable Seasonal Ice Buoy (AXIB)
950 for deployment in the high Arctic near the North Pole from a Royal Danish Air Force C-130
951 aircraft operating out of Thule Air Force Base in Greenland, as part of the International Arctic
952 Buoy Program (IABP). (U.S. Navy photo by John F. Williams/Released)

953


954 The IABP observations from 1979–present (**Figure 25**) provide the longest continuous
955 record of *in situ* observations over the Arctic Ocean and its peripheral seas, and recent papers
956 continue to show the importance of these *in situ* observations. The data are assimilated into many
957 long-term atmospheric reanalyses such as the NCEP/NCAR Reanalysis [Kalnay et al., 1996],

958 Modern-Era Retrospective Analysis for Research and Applications [MERRA, Rienecker et al.,
959 2011] and in climate data records such as the Ice Motion and Ice Age analyses by Tschudi et al.
960 [2020]. The observations from drifting buoys were found to provide the largest benefit in
961 improving weather forecasts in the Arctic [Gelaro et al., 2017]; Inoue et al. [2009] showed that
962 the standard deviation in gridded SLP reanalysis fields over the Arctic Ocean was over 2.6 hPa
963 in areas where there were no buoy observations to constrain the reanalyses (**Figure 26**). Inoue et
964 al. [2009] also showed that the uncertainty in the SLP fields spreads to cover the entire Arctic
965 when the observations from buoys are removed from the reanalyses.

966 Given the critical role the IABP has played in documenting the changes in Arctic climate,
967 the IABP has been identified as a fundamental component of the Sustained Arctic Observing
968 Network [National Research Council, 2006].
969

970
971 **Figure 25.** Histogram of observing stations reporting during any given month from the 1950s to
972 the present. During the 1950-1970s, the number of stations deployed by the Russian North Pole
973 Stations, DARMS and other programs ranged from a couple at the end of winter to as many as 15
974 after the spring and summer deployments. The deployments during AIDJEX can be seen in the
975 late 1970s, and the establishment of the AOBP in 1979 was the beginning of continuous, year-
976 round observations of the Arctic environment. Other notable increases in deployments include the
977 2007-2008 IPY, 2014 and 2015 Office of Naval Research (ONR) Marginal Ice Zone (MIZ)
978 experiment, and the 2019-2020 MOSAiC expedition.
979

980
981 **Figure 26.** Standard deviation (SD) of sea level pressure measurements from various atmospheric
982 reanalyses. The SD is low in areas where there are buoy observations (**left**). The spread increases
983 to cover the whole Arctic when the observations from the buoys are removed from the reanalyses
984 (**right**).
985
986

987 **4.2 ASPeCt (1996 - present)**

988 In 1996, the Scientific Committee on Antarctic Research established a multidisciplinary
989 expert group called the Antarctic Sea-ice Processes and Climate (ASPeCt) to promote
990 understanding of the Antarctic sea ice system. The key objective of ASPeCt, which is still active
991 to this day, is to better understand and model Antarctic sea ice in the atmosphere-ice-ocean
992 system. Accordingly, ASPeCt helps coordinate targeted field programs to complement and
993 contribute to other international science programs, advance remote sensing capabilities, and
994 enhance numerical modeling of the coupled Antarctic climate system. Given the dearth of
995 routine observations in the Antarctic, one of the primary activities of ASPeCt has been to
996 establish observed distributions of sea ice physical properties, such as snow depth, ice thickness,
997 floe size, leads, and other variables relevant to atmosphere-ice-ocean processes in climate
998 models. These observations have proven valuable for assessing climate model output and
999 advancing model parameterizations, and are the beginning to create a spatial climatology of the
1000 Antarctic sea ice environment.

1001 There have been notable successes through ASPeCt activities, including the
1002 standardization of shipborne observations of sea ice and meteorological conditions through open-
1003 source software [available at <https://aspect.antarctica.gov.au>], data rescue projects for securing
1004 historical observations [e.g., Ackley et al., 2003], as well as integrated autonomous platforms for
1005 seeding an observational network across the Southern Ocean. ASPeCt activities have also led to
1006 greater understanding of the Antarctic ecosystem, including disruptions associated with recent
1007 Antarctic sea ice loss.

1008
1009
1010 **4.3 Contemporary North Pole Stations (2003 - present, with discontinuity)**

1011 In 2003, Russia re-initiated its drifting ice station program beginning with North Pole
1012 Station 32, which lasted for nearly one year. From 2003 to 2013, a total of nine drifting ice
1013 stations were established to continue the routine meteorological, oceanographic, and sea ice
1014 geophysical studies from the 1937, 1954-1991 program. The new research program was
1015 expanded to include biological observations and pollution sampling.

1016 By the early 2000s, however, the Arctic sea ice cover had thinned substantially due to
1017 anthropogenic climate change [Meier et al., 2014]. Thicker, older sea ice, which is optimal to
1018 support an ice camp, was in record decline and being replaced by thinner, seasonal ice. As was
1019 the case in 2012, the search was extensive and prolonged for a suitable ice floe to build an ice
1020 station due to the absence of older, thicker, more resilient sea ice. Arctic sea ice coverage in 2012
1021 was exceptional in that it had the lowest areal extent throughout the 1979-2023 passive
1022 microwave satellite record [Meier et al., 2014]. Because of Arctic sea-ice loss, the more recent
1023 drifting ice stations were established on thinner, weaker sea ice that fractured prematurely. This
1024 led to early, and costly, evacuations of the drifting ice stations. Similarly, North Pole 2015,
1025 Camp Barneo in 2018, and the 2019 Transarktika expedition were subjected to early ice breakup
1026 and necessary evacuation.

1027 Given the state change of Arctic sea ice cover, stations on drifting ice floes are becoming
1028 increasingly risky and costly. To counter these issues, ship-based platforms are becoming
1029 attractive alternatives. As a case example, the *Severny Polyus* icebreaker was specially designed
1030 to serve as a drifting station, outfitted with 15 laboratories and enough supplies to drift for two
1031 years. The *Severny Polyus* (North Pole Station 41) began its first test drift in October 2022 north
1032 of the New Siberian Islands. As of this writing (November 2023), its field tests and scientific
1033 experiments are ongoing and may possibly continue into 2024.

1034
1035 **5. Future Directions and Conclusion**

1036 Over the decades, *in situ* observations of sea ice have transformed with emerging
1037 technologies, model-observation synthesis, cross-disciplinary linkages, and an ever-growing
1038 array of stakeholder needs. Surface-based measurements have been key to unlocking knowledge
1039 of the thermodynamics and dynamics of sea ice. This knowledge has led to a more holistic view
1040 of the role of sea ice in Earth's climate system, which can help society prepare for the
1041 consequences of anthropogenic climate change. However, there are still numerous knowledge
1042 gaps that remain in sea ice science and, in particular, about the role of sea ice in a warming
1043 climate.

1044 Earth system models project sea-ice loss to continue in the Arctic and Antarctic [Notz
1045 and SIMIP Community, 2020]. The projected rates of sea-ice loss across Earth system models
1046 have a wide spread, which suggests imperfect model representations of atmosphere-ice-ocean
1047 interactions and sea ice physical processes. Accordingly, it is crucial to leverage surface-based

1048 measurements of the sea ice environment to improve process-oriented understanding of the
1049 interactions between the atmosphere, sea ice cover, ocean, and ecosystem. Model sensitivity
1050 experiments and coupled model simulations can help guide the experimental design of field
1051 programs to prioritize sampling of specific environmental properties and processes. Furthermore,
1052 observations can aid the assessments of model physics and advance model development by
1053 compiling forcing and diagnostics packages of coincident atmospheric, oceanic, ecological, and
1054 sea ice observations.

1055 Continued monitoring of Arctic and Antarctic sea ice is critical for accelerating
1056 improvements to Earth system and weather forecast models, but reseeding observational
1057 networks (e.g., IABP) and filling observational gaps (e.g., SOOS) is becoming increasingly
1058 challenging with sea-ice loss. Sea ice measurement programs face obstacles including more
1059 frequent instrument loss, the environmental impact of instrument loss, and the logistical cost of
1060 deployments in a remote location. Despite these challenges, there are opportunities to enhance
1061 observational assets in the near future:

1. Environmental impact studies can elucidate the true consequences of instrument loss,
1062 which can help prioritize resources
2. Harmonization of instrument sensors can enable interdisciplinary investigations to further
1063 understanding of the coupled atmosphere-ice-ocean-biological system
3. Development of low-cost instruments can be achieved through the revamping of
1064 instrument design (i.e., seasonal IMBs) and employing alternative deployment methods
4. Scalable instrument deployments can be accomplished through coordination across
1065 international communities and collaboration across stakeholder groups with sea ice
1066 interests
5. Coordination and collaboration across modeling, remote sensing, and observational
1067 communities can pinpoint physical processes that warrant further investigation.

1071

1072

1073 **Acknowledgements**

1074 We thank Stephen Warren for his assistance in providing historical photographs of the North
1075 Pole drifting ice stations. We are grateful for editorial assistance from Brian Rasmussen.

1076

1077

1078

1079 **Funding**

1080 M.A.W. conducted this work under the National Science Foundation (grant 2325430) and
1081 National Aeronautics and Space Administration (grant 80NSSC21K0264). I.R. was funded by
1082 contributors to the U.S. Interagency Arctic Buoy Program including the Office of Naval
1083 Research (grant N00014-23-1-2568, N00014-20-1-2207), National Science Foundation (grant
1084 1951762), National Oceanographic and Atmospheric Administration Arctic Research Program
1085 and National Weather Service (grant NA20OAR4320271), National Aeronautics and Space
1086

1087 Administration (grant 80NSSC21K1148), Alaska Air National Guard, Coast Guard, North Slope
1088 Borough Search and Rescue, and Department of Energy.

1089

1090 **References**

1091 Ackley, S. F., P. Wadhams, J. C. Comiso and A. P. Worby (2003), Decadal decrease of Antarctic
1092 sea ice extent inferred from whaling records revisited on the basis of historical and modern sea
1093 ice records, *Polar Research*, 22(1), 19-25.

1094 Ackley, S. F., B. Delille, J. L. Tison, G. Carnat, B. Weissling, M. J. Lewis, C. H. Fritsen, and S.
1095 Stammerjohn. 2016. Sea Ice Mass Balance in the Antarctic (SIMBA), Version 1. Boulder,
1096 Colorado USA. NSIDC: National Snow and Ice Data Center. <https://doi.org/10.7265/N53F4MJ7>.

1097 Arctic Ice Dynamics Joint Experiment. (2023). Arctic Ice Dynamics Joint Experiment (AIDJEX)
1098 Second Pilot Study, March - May 1972: Still Images, Version 1 [Data Set]. Boulder, Colorado
1099 USA. National Snow and Ice Data Center. <https://doi.org/10.7265/g2m7-7014>. Date Accessed
1100 11-10-2023.

1101 Althoff, W.F. (2007). Drift Station. Arctic Outposts of Superpower Science. Washington, D.C.:
1102 Potomac Books.

1103 Arctic and Antarctic Research Institute. Compiled by V. Smolyanitsky, V. Borodachev, A.
1104 Mahoney, F. Fetterer, and R. G. Barry. (2007). Sea Ice Charts of the Russian Arctic in Gridded
1105 Format, 1933-2006, Version 1 [Data Set]. Boulder, Colorado USA. National Snow and Ice Data
1106 Center. <https://doi.org/10.7265/N5D21VHJ>. Date Accessed 10-24-2023.

1107 Arctic Climatology Project. 2000. Environmental Working Group Arctic Meteorology and
1108 Climate Atlas. Edited by F. Fetterer and V. Radionov. Boulder, CO: National Snow and Ice Data
1109 Center. CD-ROM.

1110 Assmy, P., Fernandez-Mendez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., et al.
1111 (2017). Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice.
1112 *Scientific Reports*, 7, 40850. <https://doi.org/10.1038/srep40850>

1113 Calmer, R., de Boer, G., Hamilton, J., Lawrence, D., Webster, M. A., Wright, N., Shupe, M. D.,
1114 Cox, C. J., Cassano, J. J. (2023): Relationships between summertime surface albedo and melt
1115 pond fraction in the central Arctic Ocean: The aggregate scale of albedo obtained on the
1116 MOSAiC floe. *Elementa: Science of the Anthropocene* (2023) 11 (1): 00001, doi:
1117 10.1525/elementa.2023.00001.

1118 Cavalieri DJ and Parkinson CL (2008) Antarctic sea ice variability and trends, 1979–2006. *J.
1119 Geophys. Res.*, 113(C7), C07004 doi:10.1029/2007JC004564

1120 Clemens-Sewall, D., Parno, M., Perovich, D., Polashenski, C., and Raphael I. A. (2022):
1121 FlakeOut: A geometric approach to remove wind-blown snow from terrestrial laser scans. *Cold*
1122 *Regions Science and Technology* 201 (2022) 103611, doi: 10.1016/j.coldregions.2022.103611.

1123 Colony, R., V. Radionov, and F. J. Tanis, 1998: Measurements of precipitation and snow pack at
1124 Russian North Pole drifting stations. *Polar Rec.*, 34, 3–14.

1125 Crary, A. P., 1956: Arctic ice island research. *Advances in Geophysics*, Vol. 3, Academic Press,
1126 1–41.

1127 De Long, E., ed. (1884). *The Voyage of the Jeannette*. Boston: Houghton Mifflin. ISBN
1128 9780665141454. OCLC 906090766.

1129 Dierking, W. (1995), Laser profiling of the ice surface topography during the Winter Weddell
1130 Gyre Study 1992, *J. Geophys. Res.*, 100(C3), 4807–4820.

1131 Eicken, H., H. R. Krouse, D. Kadko, and D. K. Perovich (2002), Tracer studies of pathways and
1132 rates of meltwater transport through Arctic summer sea ice, *J. Geophys. Res.*, 107(C10), 8046,
1133 doi:10.1029/2000JC000583.

1134 Eicken, H., T. C. Grenfell, D. K. Perovich, J. A. Richter-Menge, and K. Frey (2004), Hydraulic
1135 controls of summer Arctic pack ice albedo, *J. Geophys. Res.*, 109, C08007,
1136 doi:10.1029/2003JC001989.

1137 Environmental Working Group. Edited by F. Tanis and V. Smolyanitsky. 2000. Environmental
1138 Working Group Joint U.S.-Russian Arctic Sea Ice Atlas, Version 1. Boulder, Colorado USA.
1139 NSIDC: National Snow and Ice Data Center. <https://doi.org/10.7265/N5C82766>. [Accessed 18
1140 October 2023].

1141 Fetterer, F., and V. Radionov (2000), Arctic Climatology Project. Environmental Working
1142 Group Arctic Meteorology and Climate Atlas [CD-ROM], Natl. Snow and Ice Data Cent.,
1143 Boulder, Colo., doi:10.7265/N5MS3QNJ.

1144 Fetterer, F., and N. Untersteiner (1998), Observations of melt ponds on Arctic sea ice, *J.*
1145 *Geophys. Res.*, 103(C11), 24,821–24,835.

1146 Fleming, R. J., Kaneshige, T. M., and McGovern, W. E. 1979 'The global weather experiment 1.
1147 The observational phase through the first special observing period', *Bull. Amer. Meteor. Soc.*,
1148 60, 649.

1149 Fletcher, J. O., 1965: The heat budget of the Arctic Basin and its relation to climate. *Rand Rep.*
1150 R-444-PR, The Rand Corporation, Santa Monica, CA, 179 pp. [Available from Rand
1151 Corporation, 1700 Main St., Santa Monica, CA 90406.]

1152 Flocco, D., D. L. Feltham, and A. K. Turner (2010), Incorporation of a physically based melt
1153 pond scheme into the sea ice component of a climate model, *J. Geophys. Res.*, 115, C08012,
1154 doi:10.1029/2009JC005568.

1155 Fox-Kemper, B., H.T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S.S. Drijfhout, T.L. Edwards, N.R.
1156 Golledge, M. Hemer, R.E. Kopp, G. Krinner, and others. 2021. Ocean, cryosphere and sea level
1157 change. Chapter 9 in *Climate Change 2021: The Physical Science Basis. Contribution of*
1158 *Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate*
1159 *Change.* V. Hanson, A. M., 1965: Studies of the mass budget of arctic pack-ice floes. *J. Glaciol.*,
1160 5, 701–709.

1161 Garrison DL, Close AR (1993) Winter ecology of the sea ice biota in Weddell Sea pack ice. *Mar*
1162 *Ecol Prog Ser* 96: 17–31.

1163 Geiger, C. A., Hibler, W. D., and Ackley, S. F. (1998), Large-scale sea ice drift and deformation:
1164 Comparison between models and observations in the western Weddell Sea during 1992, *J.*
1165 *Geophys. Res.*, 103(C10), 21893–21913, doi:10.1029/98JC01258.

1166 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A.,
1167 Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C.,
1168 Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R.,
1169 Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S.,
1170 D., Sienkiewicz, M., & Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research
1171 and Applications, Version 2 (MERRA-2). *Journal of Climate*, 30(14), 5419–5454.
1172 <https://doi.org/10.1175/JCLI-D-16-0758.1>

1173 Gordon, A. L., & Ice Station Weddell Group of Principal Investigators and Chief Scientists.
1174 (1993). Ice station Weddell 1 explores the western edge of the Weddell Sea. *Eos, Transactions*
1175 *American Geophysical Union*, 74(121), 124–126. <https://doi.org/10.1029/93eo00260>

1176 Granskog, M. A., Fer, I., Rinke, A., & Steen, H. (2018). Atmosphere-ice-ocean-ecosystem
1177 processes in a thinner Arctic sea ice regime: The Norwegian young sea iCE (N-ICE2015)
1178 expedition. *Journal of Geophysical Research: Oceans*, 123, 1586–1594.
1179 <https://doi.org/10.1002/2017JC013328>.

1180 Haas, C., Nicolaus, M., Willmes, S., Worby, A., & Flinspach, D. (2008). Sea ice and snow
1181 thickness and physical properties of an ice floe in the western Weddell Sea and their changes
1182 during spring warming. *Deep-Sea Research Part II: Topical Studies in Oceanography*, 55(8-9),
1183 963–974. <https://doi.org/10.1016/j.dsr2.2007.12.020>

1184 Hanson, A. M., 1980: The snow cover of sea ice during the Arctic Ice Dynamics Joint
1185 Experiment, 1975 to 1976. *Arct. Alp. Res.*, 12, 215–226.

1186 Heil, P., Hutchings, J. K., Worby, A. P., Johansson, M., Launiainen, J., Haas, C., & Hibler, W.
1187 D. (2008). Tidal forcing on sea-ice drift and deformation in the western Weddell Sea in early
1188 austral summer, 2004. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(8-9),
1189 943–962. <https://doi.org/10.1016/j.dsr2.2007.12.026>

1190 Hellmer, H. H., Schröder, M., Haas, C., Dieckmann, G. S., & Spindler, M. (2008). The ISPOL
1191 drift experiment. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(8-9), 913–
1192 917. <https://doi.org/10.1016/j.dsr2.2008.01.001>

1193 Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. and E. Hunke. Improved sea ice
1194 shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on arctic sea ice.
1195 J. Clim., 25:14131430, 2012.

1196 Hongi H. 1925 Jun 18. Voyage of adventure, ancient Maori discovery of the south pole.
1197 Christchurch: The Weekly Press. (front page).

1198 Hunke, E. C., Notz, D., Turner, A. K., & Vancoppenolle, M. (2011). The multiphase physics of
1199 sea ice: A review for model developers. The Cryosphere, 5(4), 989–1009.
1200 <https://doi.org/10.5194/tc-5-989-2011>.

1201 Hunke, EC, Lipscomb, WH, Turner, AK, Jeery, N, Elliot, S. 2015. CICE: The Los Alamos Sea
1202 ice model documentation and software user's manual version 5.1. Los Alamos National
1203 Laboratory. Tech. Rep. No. LACC-06-012.

1204 Hurrell, J. W., Influence of variations in extratropical wintertime teleconnections on Northern
1205 Hemisphere temperature, Geophys. Res. Lett., 23, 665–668, 1996

1206 International Science Council report (2011): *Understanding Earth's Polar Challenges:*
1207 *International Polar Year 2007-2008*. Available on the International Science Council website:
1208 [https://council.science/publications/understanding-earths-polar-challenges-international-polar-](https://council.science/publications/understanding-earths-polar-challenges-international-polar-year-2007-2008/)
1209 [year-2007-2008/](https://council.science/publications/understanding-earths-polar-challenges-international-polar-year-2007-2008/)

1210 Intrieri, J. M., C. W. Fairall, M. D. Shupe, P. O. G. Persson, E. L. Andreas, P. S. Guest, and R. E.
1211 Moritz, An annual cycle of Arctic surface cloud forcing at SHEBA, J. Geophys. Res., 107(C10),
1212 8039, doi:10.1029/2000JC000439, 2002.

1213 Itkin, P., Spreen, G., Cheng, B., Doble, M., Girard-Ardhuin, F., Haapala, J., et al. (2017). Thin
1214 ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. Journal of
1215 Geophysical Research: Oceans, 122, 4661–4674. <https://doi.org/10.1002/2016JC012403>.

1216 Itkin, P., Hendricks, S., Webster, M., von Albedyll, L., Arndt, S., Divine, D., Jaggi, M., Oggier,
1217 M., Raphael, I., Ricker, R., Rohde, J., Schneebeli, M., and Liston, G. E. (2023): Sea ice and

1218 snow characteristics from year-long transects at the MOSAiC Central Observatory. *Elementa:*
1219 *Science of the Anthropocene* 5 January 2023; 11 (1): 00048., doi: 10.1525/elementa.2022.00048.

1220 Jones, P.D., M. New, D.E. Parker, S. Martin, and I.G. Rigor, Surface air temperature and its
1221 changes over the past 150 years, *Rev. Geophys.* Vol. 37 , No. 2 , p. 173 - 200, 1999.

1222 Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha,
1223 S.; White, G.; Woollen, J.; Zhu, Y.; Leetmaa, A.; Reynolds, B.; Chelliah, M.; Ebisuzaki, W.;
1224 Higgins, W.; Janowiak, J.; Mo, K. C.; Ropelewski, C.; Wang, J.; Jenne, Roy; Joseph, Dennis,
1225 The NCEP/NCAR Reanalysis Project. *Bull. Amer. Meteor. Soc.*, 77, 437–471, 1996.

1226 Itkin, P., Spreen, G., Cheng, B., Doble, M., Girard-Ardhuin, F., Haapala, J., et al. (2017). Thin
1227 ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. *Journal of*
1228 *Geophysical Research: Oceans*, 122, 4661–4674. <https://doi.org/10.1002/2016JC01240>

1229 Katlein, C., Krampe, D., and M. Nicolaus (2020): Extracted frames from main ROV camera
1230 videos during MOSAiC Leg 2. PANGAEA, <https://doi.org/10.1594/PANGAEA.919398>

1231 Katlein, C., Mohrholz, V., Sheikin, I., Itkin, P., Divine, D. V., Stroeve, J., et al. (2020). Platelet
1232 ice under Arctic pack ice in winter. *Geophysical Research Letters*, 47, e2020GL088898.
1233 <https://doi.org/10.1029/2020GL088898>

1234 Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennechael, N., & Meyer, A. (2016). Winter
1235 ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty
1236 surface mixed layer and active basal melt. *Journal of Geophysical Research: Oceans*, 121, 7898–
1237 7916. <https://doi.org/10.1002/2016JC01219>.

1238 Kottmeier, C., Olf, J., Frieden, W., & Roth, R. (1992). Wind forcing and ice motion in the
1239 Weddell Sea region. *Journal of Geophysical Research*, 97(D18), 20,373–20,383.
1240 <https://doi.org/10.1029/92JD02171>.

1241 Kwok, R. Recent changes in the Arctic Ocean sea ice motion associated with the North Atlantic
1242 Oscillation, *Geophys. Res. Letters*, 27 (6), 775-778, 2000.

1243 Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled
1244 variability (1958–2018). *Environ. Res. Lett.* 13, 105005 (2018).

1245 Kwok, R., Cunningham, G. F., and Hibler, W. D. (2003), Sub-daily sea ice motion and
1246 deformation from RADARSAT observations, *Geophys. Res. Lett.*, 30, 2218,
1247 doi:10.1029/2003GL018723, 23.

1248 Kwok, R., and D. A. Rothrock (2009), Decline in Arctic sea ice thickness from submarine and
1249 ICESat records: 1958–2008, *Geophys. Res. Lett.*, 36, L15501, doi:10.1029/2009GL039035.

1250 Lange, B. A., Salganik, E., Macfarlane, A., Schneebeli, M., Høyland, K., Gardner, J., Müller, O.,
1251 Divine, D. V., Kohlbach, D., Katlein, C., and Granskog, M. A. (2023): Snowmelt contribution to
1252 Arctic first-year ice ridge mass balance and rapid consolidation during summer melt. *Elementa:*
1253 *Science of the Anthropocene* (2023) 11 (1): 00037, doi: 10.1525/elementa.2022.00037.

1254 Leonard, K., & Maksym, T. (2011). The importance of wind-blown snow redistribution to snow
1255 accumulation on Bellingshausen Sea ice. *Annals of Glaciology*, 52(57), 271-278.
1256 doi:10.3189/172756411795931651.

1257 Lewis, M. J., J. L. Tison, B. Weissling, B. Delille, S. F. Ackley, F. Brabant, and H. Xie (2011),
1258 Sea ice and snow cover characteristics during the winter-spring transition in the Bellingshausen
1259 Sea: An overview of SIMBA 2007, *Deep Sea Res., Part II*, 58(9), 1019–1038,
1260 doi:10.1016/j.dsr2.2010.10.027

1261 Light, B., T. C. Grenfell, and D. K. Perovich (2008), Transmission and absorption of solar
1262 radiation by Arctic sea ice during the melt season, *J. Geophys. Res.*, 113, C03023,
1263 doi:10.1029/2006JC003977.

1264 Light, B., Smith, M. M., Perovich, D. K., Webster, M. A., Holland, M. M., Linhardt, F., Raphael,
1265 I. A., Clemens-Sewall, D., Macfarlane, A. R., Anhaus, P., and Bailey D. A. (2022): Arctic sea
1266 ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during
1267 the MOSAiC drift. *Elementa: Science of the Anthropocene* (2022) 10 (1): 000103., doi:
1268 10.1525/elementa.2021.000103.

1269 Lindsay, R. W., and H. L. Stern, 2003: The RADARSAT Geophysical Processor System:
1270 Quality of Sea Ice Trajectory and Deformation Estimates. *J. Atmos. Oceanic Technol.*, 20, 1333–
1271 1347, [https://doi.org/10.1175/1520-0426\(2003\)020<1333:TRGPSQ>2.0.CO;2](https://doi.org/10.1175/1520-0426(2003)020<1333:TRGPSQ>2.0.CO;2).

1272 Loshchilov, V. S., 1964: Snow cover on the ice of the central Arctic (in Russian). *Probl. Arct.*
1273 *Antarct.*, 17, 36–45.

1274 Lytle, V. I., and Ackley, S. F. (1996), Heat flux through sea ice in the western Weddell Sea:
1275 Convective and conductive transfer processes, *J. Geophys. Res.*, 101(C4), 8853–8868,
1276 doi:10.1029/95JC03675.

1277 Macfarlane, A. R., Dadic, R., Smith, M. M., Light, B., Nicolaus, M., Henna-Reetta, H., Webster,
1278 M., Linhardt, F., Hämmерле, S., and Schneebeli, M. (2023): Evolution of the microstructure and
1279 reflectance of the surface scattering layer on melting, level Arctic sea ice. *Elementa: Science of*
1280 *the Anthropocene* (2023) 11 (1): 00103., doi: 10.1525/elementa.2022.00103.

1281 Malmgren, F. 1927. On the properties of sea ice. In Norwegian North Polar Expedition with the
1282 Maud, 1918-1925, *Sci. Results. Vol. 1, No. 5.*

1283 Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally HJ, Yi D, Emery WJ (2007) A younger,
1284 thinner ice cover: increased potential for rapid, extensive ice loss. *Geophys. Res. Lett.*
1285 34:L24501. doi:10.1029/2007GL032043

1286 Massom, R. A., M. R. Drinkwater, and C. Haas, Winter snow cover on sea ice in the Weddell
1287 Sea, *J. Geophys. Res.*, 102 (C1), 1101-1117, 1997.

1288 Massom, R. A., Eicken, H., Hass, C., Jeffries, M. O., Drinkwater, M. R., Sturm, M., et al. (2001).
1289 Snow on Antarctic sea ice. *Reviews of Geophysics*, 39(3), 413–445.
1290 <https://doi.org/10.1029/2000RG000085>

1291 Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L.
1292 Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T.
1293 Waterfield, O. Yelekçi, R. Yu, and B. Zhou, eds, Cambridge University Press.

1294 Maykut, G. and N. Untersteiner, 1971: Some results from a time-dependent thermodynamic
1295 model of sea ice. *J. Geophys. Res.*, 76, 1550–1575.

1296 McPhee MG. 2008 Physics of early summer ice/ocean exchanges in the western weddell sea
1297 during ispol. *Deep Sea Res. II Top. Stud. Oceanogr.* 55, 1075–1097.
1298 doi:10.1016/j.dsr2.2007.12.022

1299 McPhee, M. G., T. Kikuchi, J. H. Morison, and T. P. Stanton, Ocean-to-ice heat flux at the North
1300 Pole environmental observatory, *Geophys. Res. Lett.*, 30(24), 2274,
1301 doi:10.1029/2003GL018580, 2003.

1302 Meier, W. N., F. Fetterer, A. K. Windnagel, and J. S. Stewart. (2021). NOAA/NSIDC Climate
1303 Data Record of Passive Microwave Sea Ice Concentration, Version 4 [Data Set]. Boulder,
1304 Colorado USA. National Snow and Ice Data Center. <https://doi.org/10.7265/efmz-2t65>. Date
1305 Accessed 10-24-2023.

1306 Merkouriadi, I., Gallet, J.-C., Graham, R. M., Liston, G. E., Polashenski, C., Rosel, A., et al.
1307 (2017). Winter snow conditions on Arctic sea ice north of Svalbard during the Norwegian young
1308 sea ICE (N-ICE2015) expedition. *Journal of Geophysical Research: Atmospheres*, 122, 10837–
1309 10854. <https://doi.org/10.1002/2017JD026753>.

1310 Moore, G. W. K. (2016), The December 2015 North Pole warming event and the increasing
1311 occurrence of such events, *Sci. Rep.*, 6, 39084, doi:10.1038/srep39084.

1312 Morison, J., K. Aagaard, and M. Steele. 2000. Recent environmental changes in the Arctic: a
1313 review. *Arctic* 53: 359–371.

1314 Morison, J.H., K. Aagaard, K.K. Falkner, K. Hatakeyama, R. Mortiz, J.E. Overland, D. Perovich,
1315 K. Shimada, M. Steele, T. Takizawa, and R. Woodgate. 2002. North Pole Environmental
1316 Observatory delivers early results. *Eos, Transactions, American Geophysical Union* 83:357–361,
1317 <http://dx.doi.org/10.1029/2002EO000259>.

1318 Morison, J., Pacific Marine Environmental Laboratory (PMEL), NOAA. 2007. Buoy, ARGOS
1319 Data. Version 1.0. UCAR/NCAR - Earth Observing Laboratory.
1320 <https://doi.org/10.5065/D6542M02>. Accessed 11 Nov 2023.

1321 National Research Council. 2006. Toward an Integrated Arctic Observing Network. Washington,
1322 DC: The National Academies Press. <https://doi.org/10.17226/11607>.

1323 National Research Council. 1974. Directions for Data Buoy Technology, 1978-1983.
1324 Washington, DC: The National Academies Press. <https://doi.org/10.17226/20103>.

1325 National Research Council. 2012. Lessons and Legacies of International Polar Year 2007-2008.
1326 Washington, DC: The National Academies Press. <https://doi.org/10.17226/13321>.

1327 Nazintsev, Y. L. (1964), *Teplovoi balans poverkhnosit mnogoletnego lediandogo pokrova v*
1328 *tsentral'noi Arktike, Akrt. Antarkt. Nauchno-Issled. Inst. Tr.*, 267, 110–126.

1329 Nicolaus, M., Perovich, D.K., Spreen, G., Granskog, M.A., Albedyll, L.V., Angelopoulos, M.,
1330 Anhaus, P., Arndt, S., Belter, H.J., Bessonov, V., Birnbaum, G., Brauchle, J., Calmer, R.,
1331 Cardellach, E., Cheng, B., Clemens-Sewall, D., Dadic, R., Damm, E., de Boer, G., Demir, O.,
1332 Dethloff, K., Divine, D.V., Fong, A.A., Fons, S., Frey, M.M., Fuchs, N., Gabarro, C., Gerland,
1333 S., Goessling, H.F., Gradinger, R., Haapala, J., Haas, C., Hamilton, J., Hannula, H.-R.,
1334 Hendricks, S., Herber, A., Heuzé, C., Hoppmann, M., Hyland, K.V., Huntemann, M., Hutchings,
1335 J.K., Hwang, B., Itkin, P., Jacobi, H.-W., Jaggi, M., Jutila, A., Kaleschke, L., Katlein, C.,
1336 Kolabutin, N., Krampe, D., Kristensen, S.S., Krumpen, T., Kurtz, N., Lampert, A., Lange, B.A.,
1337 Lei, R., Light, B., Linhardt, F., Liston, G.E., Loose, B., Macfarlane, A.R., Mahmud, M., Matero,
1338 I.O., Maus, S., Morgenstern, A., Naderpour, R., Nandan, V., Niubom, A., Oggier, M., Oppelt, N.,
1339 Patzold, F., Perron, C., Petrovsky, T., Pirazzini, R., Polashenski, C., Rabe, B., Raphael, I.A.,
1340 Regnery, J., Rex, M., Ricker, R., Riemann-Campe, K., Rinke, A., Rohde, J., Salganik, E.,
1341 Scharien, R.K., Schiller, M., Schneebeli, M., Semmling, M., Shimanchuk, E., Shupe, M.D.,
1342 Smith, M.M., Smolyanitsky, V., Sokolov, V., Stanton, T., Stroeve, J., Thielke, L., Timofeeva, A.,
1343 Tonboe, R.T., Tavri, A., Tsamados, M., Wagner, D.N., Watkins, D., Webster, M., Wendisch, M.
1344 (2022): Overview of the MOSAiC expedition: Snow and sea ice. *Elementa: Science of the*
1345 *Anthropocene* 10(1), doi: 10.1525/elementa.2021.000046.

1346 Niiler, P. P., 2001: The world ocean surface circulation. In *Ocean Circulation and Climate*, G.
1347 Siedler, J. Church and J. Gould, eds., Academic Press, Volume 77 of *International Geophysics*
1348 Series, 193-204.

1349 Notz, D., and SIMIP Community. 2020. Arctic sea ice in CMIP6. *Geophysical Research Letters*
1350 47:e2019GL086749, <https://doi.org/10.1029/2019GL086749>.

1351 Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. *Tellus* 60A:589–597

1352 Papanin, I. D. (1939), Life on an ice floe, *Diary of Ivan Papanin*. Translated from the Russian by
1353 Julian Messner, Inc., Montauk Bookbinding Corp., New York.

1354 Perovich, D., C. Grenfell, B. Light, and V. Hobbs, Seasonal evolution of the albedo of multiyear
1355 Arctic sea ice, *J. Geophys. Res.*, 107, 10.1029/2000JC000438, 2002.

1356 Perovich, D. K., T. C. Grenfell, J. A. Richter-Menge, B. Light, W. B. Tucker III, and H. Eicken
1357 (2003), Thin and thinner: Sea ice mass balance measurements during SHEBA, *J. Geophys. Res.*,
1358 108 (C3), 8050, doi:10.1029/2001JC001079.

1359 Perovich DK, Light B, Eicken H, Jones KF, Runciman K, Nghiem SV (2007) Increasing solar
1360 heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo
1361 feedback. *Geophys Res Lett* 34:L19505. doi:10.1029/2007GL031480

1362 Perovich, D., J. Richter-Menge, and C. Polashenski, Observing and understanding climate
1363 change: Monitoring the mass balance, motion, and thickness of Arctic sea ice, <http://imb-crrel-dartmouth.org>, 2023.

1365 Perovich, D., J. Richter-Menge, C. Polashenski, B. Elder, T. Arbetter, and O. Brennick (2014),
1366 Sea ice mass balance observations from the North Pole Environmental Observatory, *Geophys.*
1367 *Res. Lett.*, 41, 2019–2025, doi:10.1002/2014GL059356.

1368 Peterson, A. K., Fer, I., McPhee, M. G., & Randelhoff, A. (2017). Turbulent heat and momentum
1369 fluxes in the upper ocean under Arctic sea ice. *Journal of Geophysical Research: Oceans*, 122,
1370 1439–1456. <https://doi.org/10.1002/2016JC012283>

1371 Planck, C.J., J. Whitlock, C. Polashenski, D. Perovich (2019), The evolution of the seasonal ice
1372 mass balance buoy, *Cold Regions Science and Technology*, Volume 165, 102792, ISSN 0165-
1373 232X, <https://doi.org/10.1016/j.coldregions.2019.102792>.

1374 Proshutinsky, AY; Johnson, MA, Two circulation regimes of the wind-driven Arctic Ocean
1375 *Journal of Geophysical Research*, Washington, DC. Vol. 102, no. C6, pp. 12493-12514. 1997.

1376 Provost, C., Sennecchia, N., Miguët, J., Itkin, P., Røosel, A., Koenig, Z., et al. (2017).
1377 Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-
1378 ICE2015 campaign: Influence of basal ice melt and storms. *Journal of Geophysical*
1379 *Research:Oceans*, 122, 7115–7134. <https://doi.org/10.1002/2016JC01201>

1380 Radionov, V. F., N. N. Bryazgin, and E. I. Alexandrov (1997), The Snow cover of the Arctic
1381 Basin, Tech. Rep. APL-UW-TR 9701, 95 pp., Appl. Phys. Lab., Univ. of Wash., Seattle, Wash.

1382 Richter-Menge, J. A., S. L. McNutt, J. E. Overland, and R. Kwok, Relating arctic pack ice stress
1383 and deformation under winter conditions, *J. Geophys. Res.*, 107(C10), 8040,
1384 doi:10.1029/2000JC000477, 2002.

1385 Riener, M.M., M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich,
1386 S.D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, et
1387 al. (2011), MERRA: NASA's Modern-Era Retrospective Analysis for Research and
1388 Applications. *J. Climate*, 24, 3624-3648, doi:10.1175/JCLI-D-11-00015.1

1389 Rigor, I. G., R. Colony, and S. Martin, Variations in Surface Air Temperature in the Arctic from
1390 1979 - 1997, *J. Climate*, v. 13, no. 5, pp. 896-914, 2000.

1391 Rigor, I.G. and J.M. Wallace, Variations in the Age of Sea Ice and Summer Sea Ice Extent,
1392 *Geophys. Res. Lett.*, v. 31, doi:10.1029/2004GL019492, 2004.

1393 Romanov, I. P., 1996: *Atlas of Ice and Snow of the Arctic Basin and Siberian Shelf Seas*.
1394 Backbone Publishing, 211 pp. and 250 charts.

1395 Rothrock, D. A., Y. Yu, and G. A. Maykut (1999), Thinning of the Arctic sea-ice cover,
1396 *Geophys. Res. Lett.*, 26(23), 3469–3472, doi:10.1029/1999GL010863.

1397 Salganik, E., Lange, B. A. , Itkin, P., Divine, D., Katlein, C., Nicolaus, M., Hoppmann, M.,
1398 Neckel, N., Ricker, R., Høyland, K. V., and Granskog, M. A. (2023): Different mechanisms of
1399 Arctic first-year sea-ice ridge consolidation observed during the MOSAiC expedition. *Elementa: Science of the Anthropocene* (2023) 11 (1): 00008, doi: 10.1525/elementa.2023.00008.

1401 SCICEX Science Advisory Committee. 2009, updated 2014. SCICEX: Science Ice Exercise Data
1402 Collection. Boulder, Colorado USA: National Snow and Ice Data Center.
1403 <https://doi.org/10.7265/N5930R3Z>.

1404 SCICEX Science Advisory Committee. 2010. SCICEX Phase II Science Plan: Part 1: Technical
1405 Guidance for Planning Science Accommodation Missions. U.S. Arctic Research Commission,
1406 Arlington, VA, 76 pp.

1407 Shupe, M, Rex, M, Dethloff, K, Damm, E, Fong, AA, Gradinger, R, Heuze, C, Loose, B,
1408 Makarov, A, Maslowski, W, Nicolaus, M, Perovich, D, Rabe, B, Rinke, A, Sokolov, V,
1409 Sommerfeld, A. 2020. The MOSAiC expedition: A year drifting with the Arctic sea ice. *Arctic*
1410 Report Card. DOI: <http://dx.doi.org/10.25923/9g3v-xh92>.

1411 Smith SP. 1899. Hawaiki: the whence of the maori: being an introduction to Rarotonga history.
1412 Part III. Journal of the Polynesian Society. 8:1–48.

1413 Stammerjohn, S. E., D. G. Martinson, R. C. Smith, and R. A. Iannuzzi. 2008a. Sea ice in the
1414 western Antarctic Peninsula region: spatio-temporal variability from ecological and climate
1415 change perspectives. Deep Sea Research II 55:2041–2058.

1416 Steele, M. and T. Boyd, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res.,
1417 103 (C5), 10,419-10,435, 1998.

1418 Steer A, Worby A, Heil P. 2008 Observed changes in sea-ice floe size distribution during early
1419 summer in the western Weddell sea. Deep Sea Res. Part II 55, 933–942.
1420 doi:10.1016/j.dsr2.2007.12.016

1421 Stern H. L. and R. E. Moritz, Sea ice kinematics and surface properties from RADARSAT
1422 synthetic aperture radar during the SHEBA drift, J. Geophys. Res., 107(C10), 8028,
1423 doi:10.1029/2000JC000472, 2002.

1424 Sturm, M., J. Holmgren, and D. K. Perovich (2002a), Winter snow cover on the sea ice of the
1425 Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and
1426 spatial variability, J. Geophys. Res., 107(C10), 8047, doi:10.1029/2000JC000400.

1427 Sturm, M., Perovich, D. K. & Holmgren, J. Thermal conductivity and heat transfer through the
1428 snow on the ice of the Beaufort Sea. J. Geophys. Res. 107(C21), 8043 (2002b).

1429 Sverdrup, H. U., (1926), Scientific work of the Maud Expedition, 1922-1925, Sci. Mon., 22 (5),
1430 400–410.

1431 Taskjelle, T., Granskog, M. A., Pavlov, A. K., Hudson, S. R., & Hamre, B. (2017). Effects of an
1432 Arctic under-ice bloom on solar radiant heating of the water column. Journal of Geophysical
1433 Research Oceans, 122, 126–138. <https://doi.org/10.1002/2016JC012187>

1434 Thielke, L., Fuchs, N., Spreen, G., Tremblay, B., Birnbaum, G., Huntemann, M., Hutter, N.,
1435 Itkin, P., Jutila, A., and Webster, M. A. (2023): Preconditioning of Summer Melt Ponds From
1436 Winter Sea Ice Surface Temperature. Geophysical Research Letters, 50, e2022GL101493, doi:
1437 10.1029/2022GL101493.

1438 Thomson, J., Ho sekova', L., Meylan, M. H., Kohout, A. L., & Kumar, N. (2021). Spurious
1439 Rollover of Wave Attenuation Rates in Sea Ice Caused by Noise in Field Measurements. Journal
1440 of Geophysical Research: Oceans, 126(3), e2020JC016606. Retrieved from
1441 <https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JC016606> doi: 10.1029/2020JC016606

1442 Thorndike, A. S., D. A. Rothrock, G. A. Maykut, and R. Colony (1975), The thickness
1443 distribution of sea ice, *J. Geophys. Res.*, 80(33), 4501–4513.

1444 Thorndike, A. S., and Colony R. , 1980: Arctic Ocean Buoy Program Data Report, 19 January
1445 1979–31 December 1979. Applied Physics Laboratory, University of Washington, 131 pp.

1446 Tschudi, M. A., Meier, W. N., and Stewart, J. S. (2020): An enhancement to sea ice motion and
1447 age products at the National Snow and Ice Data Center (NSIDC), *The Cryosphere*, 14, 1519–
1448 1536, <https://doi.org/10.5194/tc-14-1519-2020>.

1449 Untersteiner, N., On the mass and heat budget of Arctic sea ice, *Arch. Meteorol. Geophys.*
1450 *Bioklimatol.*, Ser. A, 12, 151-182, 1961.

1451 Untersteiner, N. (1986), *The Geophysics of Sea Ice*, Plenum, N. Y.

1452 Uttal, T., Curry, J. A., McPhee, M. G., Perovich, D. K., Moritz, R. E., Maslanik, J. A., Guest, P.
1453 S., Stern, H. L., Moore, J. A., Turenne, R., Heiberg, A., Serreze, M. C., Wylie, D. P., Persson, O.
1454 G., Paulson, C. A., Halle, C., Morison, J. H., Wheeler, P. A., Makshtas, A., Welch, H., Shupe,
1455 M. D., Intrieri, J. M., Stamnes, K., Lindsey, R. W., Pinkel, R., Pegau, W. S., Stanton, T. P., and
1456 Grenfeld, T. C.: Surface Heat Budget of the Arctic Ocean, *B. Am. Meteorol. Soc.*, 83, 255–275,
1457 [https://doi.org/10.1175/1520-0477\(2002\)083<0255:SHBOTA>2.3.CO;2](https://doi.org/10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2), 2002.

1458 Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Maqueda, M. A. M.
1459 (2009). Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model
1460 description and validation. *Ocean Model*, 27(1-2), 33–53.
1461 <https://doi.org/10.1016/J.OCEMOD.2008.10.005>

1462 von Albedyll, L., Hendricks, S., Grodofzig, R., Krumpen, T., Arndt, S., Belter, H. J., Birnbaum,
1463 G., Cheng, B., Hoppmann, M., Hutchings, J., Itkin, P., Lei, R., Nicolaus, M., Ricker, R., Rohde,
1464 J., Suhrhoff, M., Timofeeva, A., Watkins, D., Webster, M., and Haas, C. (2022):
1465 Thermodynamic and dynamic contributions to seasonal Arctic sea ice thickness distributions
1466 from airborne observations. *Elementa: Science of the Anthropocene* (2022) 10 (1), doi:
1467 10.1525/elementa.2021.00074.

1468 Wagner, D. N., Shupe, M. D., Cox, C., Persson, O. G., Uttal, T., Frey, M. M., Kirchgaessner, A.,
1469 Schneebeli, M., Jaggi, M., Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe, D.,
1470 Nicolaus, M., Ricker, R., Regnery, J., Kolabutin, N., Shimanshuck, E., Oggier, M., Raphael, I.,
1471 Stroeve, J. and Lehning, M. (2022): Snowfall and snow accumulation during the MOSAiC
1472 winter and spring seasons. *The Cryosphere*, 16, 2373–2402, 2022, doi: 10.5194/tc-16-2373-
1473 2022.

1474 Walden, V. P., Hudson, S. R., Cohen, L., Murphy, S. Y., & Granskog, M. A. (2017).
1475 Atmospheric components of the surface energy budget over young sea ice: Results from the N-

1476 ICE2015 campaign. *Journal of Geophysical Research: Atmospheres*, 122, 8427–8446.
1477 <https://doi.org/10.1002/2016JD026091>

1478 Walsh, John E., William L. Chapman, Timothy L. Shy, 1996: Recent Decrease of Sea Level
1479 Pressure in the Central Arctic. *J. Climate*, 9, 480–486.

1480 Warren, S., I. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R.
1481 Colony (1999), Snow depth on Arctic sea ice, *J. Clim.*, 12, 1814–1829.

1482 Webster, M. A., Holland, M., Wright, N. C., Hendricks, S., Hutter, N., Itkin, P., Light, B.,
1483 Linhardt, F., Perovich, D. K., Raphael, I. A., Smith, M. M., von Albedyll, L., Zhang, J. (2022):
1484 Spatiotemporal evolution of melt ponds on Arctic sea ice: MOSAiC observations and model
1485 results. *Elementa: Science of the Anthropocene* (2022) 10 (1): 000072., doi:
1486 10.1525/elementa.2021.000072.

1487 Webster, M. A., I. G. Rigor, S. V. Nghiem, N. T. Kurtz, S. L. Farrell, D. K. Perovich, and M.
1488 Sturm (2014), Interdecadal changes in snow depth on Arctic sea ice, *J. Geophys. Res. Oceans*,
1489 119, 5395–5406, doi:10.1002/2014JC009985.

1490 Weeks, W.F. (1998) On the history of research on sea ice. In: *Physics of Ice-Covered Seas*, Vol.
1491 I (Ed. M. Leppäranta), pp. 1-24, University of Helsinki Press, Helsinki, Finland.

1492 Wehi PM, Scott NJ, Beckwith J, Rodgers RP, Gillies T, van Uitregt V, Watene K. 2021a. A
1493 short scan of Māori journey to Antarctica. *Journal of the Royal Society of New Zealand*.
1494 doi:10.1080/03036758.2021.1917633.

1495 World Meteorological Organization (WMO) (1970), WMO Sea-Ice Nomenclature, Terminology,
1496 Codes, and Illustrated Glossary, WMO/OMM/BMO, 259, TP 145, Secr. World Meteorol. Org.,
1497 Geneva, Switzerland.

1498

1499 Zubov, N. N. 1945. Arctic ice [English transl.]. U.S. Navy Electron. Lab.
1500