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Bimetallic nanoparticles have attracted increasing scientific and technological interest as modules for creating nanoscale 

materials with unique magnetic, electronic, and chemical properties. The properties of bimetallic NPs are functions of 

composition, size, shape, stoichiometry, and possibly internal structure (alloy or core-shell-like). Bimetallic nanoparticles 

have superior properties for catalytic application. However, it is challenging to understand and control the size, shape, 

composition, and activity of these nanomaterials. The internal atomic structure of these materials needs to be precisely 

characterized to understand the structure-function relationship. X-ray absorption fine structure (XAFS) spectroscopy has 

been a premiere tool for analyzing the compositional and structural motifs in bimetallic nanoparticles for several decades. 

In this review, we discuss the limitations in the ability of XAFS to detect catalytically relevant surface species and focus on 

recent developments in machine learning-assisted XAFS analysis aimed at overcoming these limitations.

1. Introduction 

Bimetallic nanoparticles (BNPs) are composed of two distinct metals, 

offering enhanced properties compared to their monometallic 

counterparts, which has drawn significant attention from both 

technological and scientific communities. The properties of BNPs are 

influenced by the compositional motifs of the constituent metals and 

their nanoscale size, non-bulklike shape, and/or structure, which 

results in unique optical, electronic, magnetic, thermal, and catalytic 

effects that differ from pure elemental particles or bulk alloys.1-3 

They can be incorporated into nanocomposites by supporting them 

on organic or inorganic materials, further improving their 

properties.4-6 The reduced size and increased surface area of BNPs 

make them particularly effective as catalysts in various applications.7-

10 Extensive research has focused on engineering novel types of 

BNPs, with recent efforts aimed at selectively producing new types 

of alloys, core-shell structures, and contact aggregates.11, 12 

Fundamental studies of the synthesis, catalysis, and structure of 

bimetallic catalysts have been a fast-growing and exciting field for 

energy conversion and chemical transformations, such as for the 

oxygen reduction reaction (ORR), hydrogenation, dehydrogenation, 

CO methanation, formic acid oxidation, CO oxidation, water-gas shift 

reaction, etc.13-16 The catalytic performances, such as activity, 

selectivity, and stability can be tuned through flexible modification 

of electronic and/or structural factors by adding a second metal (the 

guest metal) to the first metal (the host metal).14 Thus, bimetallic 

catalysts have the capability of improving catalytic activity, 

enhancing catalytic selectivity, increasing catalytic stability, and 

lowering the cost of catalysts by tuning the compositions of 

constituent metals. A variety of compositional motifs in BNPs offers 

another knob for tuning their functionality. They can be divided into 

three main groups: an alloy, intermetallic, or nanocomposite 

structure (Fig. 1). Alloy catalysts have different forms, ranging from 

the bulk, surface, and near-surface alloys.11, 14 Nanocomposite 

structures include core-shell structured bimetallic nanoparticles, 

nano dendrites, and others. Due to the diversity of bimetallic 

catalysts, tuning catalytic performance of a host metal could be 

performed through (a) an ensemble or geometric effect in which the 

coordination of atoms of a guest metal to an atom of the host metal 

on the surface provides new geometries of active sites or (b) the 

electronic or ligand effect wherein the addition of a guest metal 

alters the electronic properties of the active sites of the host metal 

by changes in the electron density at the active site metal. It is 

important to notice that it is difficult to disentangle these effects 

because, in some cases, all effects occur simultaneously to affect the 

performance and stability of the BNPs.17 

In most cases, the difference in catalytic performance between 

bimetallic catalysts can be rationalized through the details of their 

size, structure, and compositional details. Those characteristics are 

prone to change due to the restructuring of the catalysts during the 

reaction.18 That, in turn, motivates the fundamental studies of 

bimetallic catalysts toward understanding them at the atomic level 

and in real-time during catalytic reactions in relevant conditions of 
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Fig. 1. Schematic of the three common groups of bimetallic structures: alloy (a), 

intermetallic (b), and two possible variations of nanocomposites (c). 
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temperature and pressure. Out of the limited number of methods 

applicable for this purpose, this review focuses on X-ray absorption 

fine structure (XAFS) spectroscopy, a powerful local structural probe 

that can interrogate not only the atomic-scale features of the BNPs 

in real reaction conditions but correlate them with the overall 

catalytic performance. 

XAFS is typically divided into two regimes: X-ray absorption near 

edge structure (XANES) and extended X-ray absorption fine structure 

(EXAFS). XANES can be used to extract information about the 

oxidation state, three-dimensional geometry, and coordination 

environment of elements under investigation. EXAFS is used to 

determine the distances, coordination number (CN), and neighbour 

species of the absorbing atom. From the time EXAFS was recognized 

as a new structural tool (at the beginning of the 1970s),19 its 

application to studies of BNPs was among the first of all materials 

characterization works using this technique.20, 21 The use of  EXAFS 

allowed researchers to obtain partial CNs, interatomic distances 

between different types of atoms and their structural and dynamic 

disorder factors, which can provide useful structural information for 

catalysis. For example, a strong correlation exists between the CN of 

atoms on the surface and the nanoparticle size and facet, which plays 

a critical role in heterogeneous catalysis.22 In recent work, the Pd-Pd 

bonds in monomers, dimers, or trimers (Pd1Au, Pd2Au, or Pd3Au) in 

dilute Pd-in-Au alloys was shown to directly affect their catalytic 

activity to hydrogen-deuterium exchange,23 CO oxidation24 and 

selective hydrogenation25, 26  reactions. 

While XAFS has been a workhorse technique for catalysis 

research, it was also recognized that it has several notable 

limitations. Chief among them are: 1) EXAFS oscillations can be 

difficult to detect with a good signal-to-noise ratio in the case of 

dilute concentrations of real catalysts, high temperatures, harsh 

reaction conditions, etc., and 2) EXAFS has limited sensitivity to the 

catalytic species at the nanoparticle surfaces as it is an ensemble-

averaging technique. An example of dilute bimetallic alloys 

mentioned above can be used to illustrate these challenges. While 

the distribution of metal ensembles on the nanoparticle surface is of 

key interest, XAFS spectra of the surface ensembles are dwarfed by 

the bulk spectra of the same absorbing element, where separating 

the surface contributions from the bulk becomes very challenging. In 

addition, EXAFS is limited in its ability to determine the coordination 

of bimetallic components if they contain elements that are 

neighbours in the periodic table.  

Recent applications of machine learning (ML) to the structural 

refinement of XAFS spectra have shown strong promise in addressing 

these challenges. ML techniques offer a powerful alternative to 

conventional tools for decoding the structural details “hidden” in the 

spectra. In this review, we focus on the overview of the progress 

made in the last decade toward the development of the ML-XANES 

and ML-EXAFS methods and their applications to solving these and 

other challenges for determining the structural and compositional 

motifs in BNPs. This review does not include such topics as enhancing 

XAFS analysis by combining it with other techniques, such as electron 

microscopy, X-ray photoelectron spectroscopy, infrared 

spectroscopy, and others,7, 25, 27-30 as well as sensitivity-enhancing 

methods such as modulation excitation spectroscopy which are 

extensively covered elsewhere.31-34 

Due to our larger focus on the functionality of the BNPs and the 

long-term goal of improving techniques for their rational design, we 

are adopting a “descriptor” approach to their characterization, 

searching for those attributes of structure and electronic properties 

that can be, on one hand, extracted from the experimental data, and, 

on the other hand, theoretically modelled. Therefore, we are focused 

on the “inverse” methods of structural analysis, where the starting 

point is the experimental data, and the endpoint is a list of 

generalized descriptors of the structure, dynamics, and electronic 

properties. Examples of such descriptors may include the 

coordination numbers of nearest neighbours, interatomic distances, 

surface strain, d-band center, and many others. The “forward” 

methods for the analysis of XANES spectra, including those assisted 

by ML (in this approach, the theoretical spectra are generated using 

different structural models and compared with the experiment), are 

the focus of intense research as well and are beyond the scope of this 

review. 

2. Machine learning–assisted XAFS analysis on 
BNPs 

In this section, we will introduce the main idea behind spectral 

inversion using an artificial neural network and demonstrate its 

application to XANES and EXAFS spectra. The main idea behind the 

original application of supervised ML to the XANES spectra of 

monometallic nanoparticles was to extract key structural 

characteristics, the pair CNs. These data can be used as indices of the 

size, shape, and morphology of the nanoparticles, but are difficult to 

measure by EXAFS due to the limitations described above. For BNPs, 

partial CNs were used to extract the compositional information as 

summarized above. In both cases, an artificial neural network was 

trained on a theoretical data set comprising hundreds of thousands 

of spectra generated using FEFF35 and FDMNES36 theoretical 

spectroscopy codes. By using both codes for the neural network 

training, some systematic errors present in them are partially 

compensated.37  

 

2.1 Machine learning–assisted XANES analysis 

For monometallic NPs, the training set (the labels were the CNs of 

several nearest neighbouring shells) was constructed using a 

combinatorial approach, in which the theoretical spectrum 𝜇𝑖(𝐸) 

was averaged over a sequence i of n randomly chosen, site-specific 

XANES calculations, and could be labelled by well-defined, site-

average CNs:38 

                                  𝜇𝑖(𝐸) = ∑ 𝜇𝑗(𝐸)/𝑛𝑛
𝑗=1  , 

                                  𝐶1
𝑖 = ∑ 𝑐1𝑗/𝑛𝑛

𝑗=1 , 

                                  𝐶2
𝑖 = ∑ 𝑐2𝑗/𝑛𝑛

𝑗=1 , …                                            (1) 

Here, 𝑐1𝑗 , 𝑐2𝑗 , … are the CNs of the first, second, etc., neighboring 

shells for sites j within the sequence i. 

For bimetallic materials, the edge region of the XAS spectrum 

for each type of atomic species can be used to provide information 

on the first nearest neighbour pairs of four types: CAA, CAB, CBA, and 

CBB. Therefore, the method for obtaining the CNs from the XANES 

spectra relies on two independent, ‘‘absorber-specific’’, neural 
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networks, each with ‘‘pair-specific’’ outputs (i.e., CAA, CAB for 

absorber A, and CBA and CBB for absorber B - Fig. 2).39 The training of 

each neural network (NN) was performed using a diverse, labelled 

set constructed using linear combination of the site-specific, 

theoretical XANES spectra (i.e., similarly to the method in Eq. (1)): 

 A edge: 𝜇𝑖(𝐸) = ∑ 𝜇𝑗(𝐸)/𝑁𝐴
𝑛
𝑗=1 , 

 𝐶𝐴𝐴
𝑖 = ∑ 𝑐𝐴𝐴𝑗/𝑁𝐴

𝑛
𝑗=1 ,  

 𝐶𝐴𝐵
𝑖 = ∑ 𝑐𝐴𝐵𝑗/𝑁𝐴

𝑛
𝑗=1 ,                                                           (2) 

 

B edge: 𝜇𝑖(𝐸) = ∑ 𝜇𝑗(𝐸)/𝑁𝐵
𝑛
𝑗=1 ,  

                  𝐶𝐵𝐴
𝑖 = ∑ 𝑐𝐵𝐴𝑗/𝑁𝐵

𝑛
𝑗=1 ,   

                  𝐶𝐵𝐵
𝑖 = ∑ 𝑐𝐵𝐵𝑗/𝑁𝐵

𝑛
𝑗=1 .                                                          (3) 

 

Several methods were discussed in literature for minimizing the 
systematic errors of NN predictions due to the effects of 
experimental noise, differences between theoretical spectra and 
experimental data, overfitting, etc. One advantage of the NN-based 
approach to XANES analysis in dealing with systematic errors is the 
nonlinear nature of NN: during the training, NN assigns larger 
weights to those spectral features that are relatively more important 
for the determination of descriptors and hence can perform better 
than, e.g., linear methods in presence of systematic errors or 
experimental noise.37 Timoshenko, Frenkel et al., found that the 
systematic errors of NN predictions can be reduced significantly if the 
difference in absorption coefficient between the NP spectrum and 
corresponding bulk spectrum of the same element were used for 
prediction, not the NP spectrum itself.38 To estimate error bars, many 
groups study model performance after repeating training 5-10 times 
and applying the model to the same data and different values of 
hyperparameters and random seeds.38, 40 Standard deviations in the 
predicted values due to this variability are commonly reported as 
error bars. Recently, a neural network ensemble (NNE) method was 
applied for quantifying the uncertainties of predicting XAS spectra on 
out-of-sample data.41 Finally, transfer learning approaches have 
been used to improve the quality of the prediction based on 
theoretical training sets.42 

 

2.2 Examples of the use of ML-XANES approach for structural 

characterization of BNP catalysts 

Using the ML-XANES for BNPs opens an avenue for structural 

characterization and modelling of the materials based on their CNs, 

which was previously limited to EXAFS analysis only. In principle, the 

partial CNs (CAA, CAB, CBA, CBB) can be obtained in the entire range of 

compositions from ML-XANES analysis.39, 43-46 That is an invaluable 

advantage over EXAFS in the case of dilute metal loading, harsh 

reaction conditions, and/or high structural disorder in the BNPs, in 

which EXAFS data may be of either very poor quality or unavailable 

(as in the case of the size-selective bimetallic clusters on a flat 

support43). There, ML-XANES stands out as the only tool that can be 

used for quantifying the neighbouring pairs, as demonstrated for 

Cu3Pd and Cu4Pd bimetallic clusters containing either four or five 

atoms, respectively.43 

In the case when constituting elements are neighbours on the 

periodic table and thus have poor Z contrast, EXAFS modelling cannot 

be used to extract partial CNs from the data (although CNs 

corresponding to the A-M and B-M pairs, where M = A or B, can be 

still obtained in such cases47, 48). ML-XANES, on the other hand, has 

the sensitivity to these spectral features, and those are strongly 

affected by the CNs of different neighbouring types to the X-ray 

absorber due to the strong sensitivity to electronic charge transfer 

between the alloying atoms. In recent work, Frenkel, Knecht, and 

coworkers demonstrated the power of ML-XANES for analysing Pt-

Au BNPs and determining their CNs for structural modeling.44-46 

This approach combined ML-assisted refinement of XAFS was 

utilized for structural and compositional analyses.44 In this study, the 

NN was constructed to build a correlation between the XANES 

spectra and the CNs of the first nearest neighbouring pairs Au−Au, 

Au−Pt, Pt−Au, and Pt−Pt. The validation results of the NN in Fig. 3 

show that it can provide good predictions on the partial CNs from 

theoretical XANES spectra.44 

BNPs, in which one species is dilute, have attracted significant 

interest for catalytic applications in the last decade,7, 49-53 owning to 

their enhanced selectivity caused by the dilute species (such as Pt, 

Ag, Pd, and Rh) and synergistic effects with the host (Au and Ag, 

among others). In recent work, the effect of pretreatment on the 

catalytic activity of dilute (4 to 8 at.% Pd in Au) BNPs for the 

Fig. 2. A schematic that represents the application of NN-XANES to an AxB1−x bimetallic system. Partial first CNs are extracted from the XANES of A and B absorbing components. 

The partial CNs (A–A, A–B, B–B, and B–A) are used to deduce the average nanoparticle structure. Reproduced with permission from Ref. 38. 
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hydrogen-deuterium (HD) exchange reaction was investigated.54 

From a combination of catalytic activity measurements, ML-enabled 

spectroscopic analysis, and first-principles-based kinetic modelling, it 

was demonstrated that active species for HD exchange reaction are 

surface Pd ensembles containing only a few (from 1 to 3) Pd atoms.23 

The catalyst Pd K-edge absorption coefficient data in the XANES 

region (Fig. 4a) show the shifts toward, or away from, the reference 

Pd bulk spectrum of the data collected in the 8 at.% Pd-in-Au sample, 

depending on the treatments (S0-S4, described in Fig. 4). For 

example, after treatment of the initial sample with O2 (S0 to S1), the 

center of mass of the absorption coefficient shifts to the positive 

energy direction (i.e., toward the Pd reference), and, after treatment 

with hydrogen (S1 to S2 to S3), to the lower energies (i.e., away from 

the bulk Pd and past S0 (Fig. 4a)). Those negative shifts are consistent 

with the increase in the number of Pd-Au neighbours resulting from 

Pd dissolution into the Au host, while the positive shift is associated 

with the segregation of Pd and ensemble formation (PdnAu). 

Partial CNs (𝑪𝐏𝐝−𝐏𝐝 and 𝑪𝐏𝐝−𝐀𝐮) were obtained using the NN-

XANES method (Fig. 4b). The trends shown in Fig. 4b are consistent 

with the qualitative observation (vide supra) made on the basis of 

Fig. 4a. This end, the Pd-Pd CNs slightly increase, and the Pd-Au CNs 

decrease after the initial treatment in O2 (from S0 to S1), followed by 

the decrease of Pd-Pd CNs (and increase of Pd-Au) after subsequent 

H2 treatments (from S1 to S2 to S3). In that work, the comparison of 

EXAFS analysis and NN-XANES analysis results was shown to favour 

the latter due to the poor sensitivity of EXAFS to the nearest 

neighbour CNs of the dilute element (e.g., Pd-Pd vis. Pd-Au). In 

contrast, the NN-XANES method worked better because the neural 

network has a “good eye” on various features required for the CN 

prediction. This is an improvement compared to the standard, least 

squares fitting method used in EXAFS data analysis that relies on a 

sole criterion: minimization of the mean squared error. 

 
2.3 Machine learning-assisted EXAFS Analysis  

If the previous section made an impression on the reader that NN-

XANES is a universal panacea for all challenges in XAFS experiment 

and data analysis, this was not our intention. In cases when EXAFS 

data in BNPs is of good quality, they contain a treasure trove of 

information about the structure and dynamics of nearest 

neighbouring atoms with respect to the X-ray absorbing atoms, well 

Fig 3. Validation of the NN using the predicted (a) CNAu–Au, (b) CNAu–Pt, (c) CNPt–Au, 

and (d) CNPt–Pt vs true values. Reproduced with permission from Ref. 40. 

Fig. 4. Normalized XANES (a) collected for the different samples of dilute (8 at.% Pd in Au) BNPs after different pretreatments, shown as “O2 regime” and “H2 regime” in color bands 

(b). The inset of (a) shows a shift in the spectral center of mass “c”. CNs from NN-XANES are consistent with Pd atoms having more Pd neighbors after O2 treatment and less Pd 

neighbors after H2 treatment. Atomic Pd ensembles in (a) and (b) are depicted with bird’s-eye-view schematics (yellow = Au; green=Pd). Reproduced with permission from Ref. 23.  
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beyond a limited amount of information encoded in XANES. While 

the information content in XANES is a separate topic, and the ML 

methods that probe it by using the latent space dimension of the 

autoencoders have emerged only recently,55 the methods for 

establishing the information content in EXAFS, such as that relying on 

the Nyquist criterion, have been in use for half a century.56 For 

example, while NN-XANES can determine ca. four parameters from 

Pt L3-edge data in a nanoparticle (such as the first four CNs),38 EXAFS 

spectra (for the same type of nanoparticle sample) that has k-range 

from 2 to 20 Å-1 and the fitting range in r-space from 2 to 6.2 Å,57 has 

~ 2 ∙ 18 ∙ 5.2 𝜋⁄ ≈ 60 relevant independent data points. That means 

up to 59 fitting variables can, in principle, be used to fit these data 

and describe the local environment up to the fifth coordination shell 

(i.e., much more information than encoded in the XANES spectrum). 

 Just as it was shown for the monometallic particles, the correct 

interpretation of EXAFS data in BNPs relies strongly on the validity of 

the key assumption. This assumption is that a (unknown) radial 

distribution function (RDF) of neighbours around the X-ray absorbing 

atoms is quasi-Gaussian; that is, a small number of terms in the 

cumulant expansion suffices to reproduce experimental EXAFS 

theoretically.58 When the disorder is strongly asymmetric (as is the 

case in ultrasmall NPs with strong surface-, ligand-, and/or substrate- 

induced asymmetry59-62), the standard approach breaks down due to 

the inability of the fitting method to extract a large number of 

cumulant terms, whereas an alternative approach, based on the use 

of supervised ML, can be efficiently used instead. In that method, 

initially demonstrated for resolving the RDF in disordered, 

intermediate structures formed during the phase transition of Fe 

from bcc to fcc phases,63 the theoretical EXAFS equation is expressed 

in terms of the unknown, 𝑔(𝑟) = 𝑑𝑁 𝑑𝑟⁄ , defined as the number of 

neighbors, 𝑑𝑁 , in the thin shell (with thickness 𝑑𝑟 ) at distance 𝑟 

around the absorber. For bimetallic alloys (AxBy), the equation 

expresses EXAFS of the A-B single scattering path as follows:64 

           𝜒𝐴𝐵(𝑘) = 𝑆0,𝐴
2 ∫ 𝐹𝐴𝐵(𝑘, 𝑅)𝑔𝐴𝐵(𝑅)

+∞

0
sin(2𝑘𝑅 + 𝜙𝐴𝐵(𝑘, 𝑅))

𝑑𝑅

𝑘𝑅2
.        (4) 

Here, 𝐹𝐴𝐵(𝑘, 𝑅) and 𝜙𝐴𝐵(𝑘, 𝑅) are scattering amplitude and phase 

functions that can be calculated theoretically, and 𝑆0,𝐴
2  is the 

amplitude reduction factor. Therefore, by using a theoretical training 

set constructed using Eq. (4), the unknown distributions 

( 𝑔𝐴𝐵(𝑅), 𝑔𝐴𝐴(𝑅), 𝑔𝐵𝐵(𝑅), 𝑔𝐵𝐴(𝑅) ) can be predicted on the 

experimental EXAFS data directly, without a priori assumption about 

their functional form. After that, the CNs and interatomic distances 

for different types of neighbouring pairs (e.g., A-B) can be calculated 

by integrating the corresponding RDF over the range of the 

corresponding coordination shell (i.e., between the (𝑖 − 1)-th and 𝑖-

th minima of the 𝑔𝐴𝐵(𝑅)): 

                       𝐶𝑖,𝐴𝐵 = ∫ 𝑔𝐴𝐵(𝑅)
𝑅𝑖,𝐴𝐵

𝑅𝑖−1,𝐴𝐵
𝑑𝑅,       

                     〈𝑅〉𝑖,𝐴𝐵 =
1

𝐶𝑖,𝐴𝐵
∫ 𝑔𝐴𝐵(𝑅)𝑅

𝑅𝑖,𝐴𝐵

𝑅𝑖−1,𝐴𝐵
𝑑𝑅.                                 (5) 

Because inversion of Eq. (4) is an ill-posed problem, it is important to 

validate the resultant distributions using the “ground truth”, such as 

comparing them with distributions generated using molecular 

dynamics simulations. More discussion about the benefits of 

“objective” neural network training for RDF determination is given in 

the end of this Section. 

2.4 Examples of the use of ML-EXAFS approach for structural 

characterization of BNP catalysts 

The first work showing the application of the NN-EXAFS method to 

the analysis of BNPs was applied to Pd-Au particles.64 The resultant 

CNs and interatomic distances are shown in Figs. 5A-D and E-F, 

respectively. As shown in Fig. 5F, the concentration dependencies for 

the Pd-Pd and Au-Au distances are almost the same for the 2nd 

coordination shell, but the Pd-Au pairs have unexpectedly short 

lengths, hinting at the segregation of Pd to the BNP surface at low Pd 

concentration. This conclusion would have been impossible to obtain 

by conventional EXAFS analysis. 64 

Another example of the use of the NN-EXAFS method is the 

study of Cu-Zn nano-catalysts, utilized for electrochemical reduction 

of CO2. As discussed above, it is challenging to understand the 

evolution of bimetallic structures under reaction conditions, 

especially with low Z-contrast, which is the case for Cu and Zn. The 

NN-EXAFS approach was applied in this work for Zn and Cu K-edge 

EXAFS. It was generalized to account for the oxidized and partially 

oxidized Cu-Zn catalysts for CO2 reduction reaction (CO2RR).65 Partial 

Cu–O and Cu–M (M = Cu, Zn) RDFs were extracted from Cu K-edge 

EXAFS data for as-prepared samples and samples in their final state 

under CO2RR conditions, as shown in Fig. 6 (a, b).65 The position of 

the maximum of the 3rd Cu–M RDF peak (located at ca. 4.5 Å) for 

Cu100, Cu70Zn30, Cu50Zn50, and Cu30Zn70 NP samples corresponds to 

the interatomic distance in the 3rd coordination shell in the metallic 

phase. Partial Zn–O and Zn–M (M = Zn, Cu) RDFs were extracted from 

Fig. 5. Concentration dependencies of the normalized CNs C̃1, C̃2, C̃3, and C̃4 for the first 

four coordination shells (A–D) and average interatomic distances R for the first two 

coordination shells (E, F) obtained by integration of PRDFs, extracted by NN from 

experimental EXAFS data. Reproduced with permission from Ref. 56. 
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Zn K-edge EXAFS data for the BNP samples in their as-prepared state 

as well as in their final state under CO2RR conditions, as shown in Fig. 

6 (c, d).65 Time-dependent EXAFS data from both Cu and Zn K-edge 

were analysed by NN-EXAFS to monitor the structural transformation 

of CuZn nanoparticles in real time under CO₂RR conditions. NN-

EXAFS analysis revealed a gradual Cu-Zn alloying process and a 

transition from a close-packed to a more disordered structure.65 

In summary of this section, we mention that in the original NN-

EXAFS method, the neural network training was performed using 

molecular dynamics simulations. MD-EXAFS was used to account for 

the dynamic, temperature-dependent disorder, contributing to the 

RDF and, therefore, to EXAFS spectra.63, 64 Recently, an “objective” 

method for NN training (dubbed “ONNE”), that does not rely on 

molecular dynamics simulations, was proposed and used for training 

the NN and “inverting” EXAFS spectra in transition metal and actinide 

complexes in molten salts.66, 67 

3. Outlook 

If the development of advanced ML methods for analysing XAFS data 

in BNPs continues to progress, we anticipate the emergence of new 

and enhanced capabilities. Among them, there is a long-standing 

problem of heterogeneous distribution of metal species that absorb 

X-rays, ranging from the coexistence of different oxidation states to 

broad distributions of nanoparticle sizes and shapes and their 

compositional motifs. Several articles reported analyses of such 

distributions and their artifacts on EXAFS spectra in BNPs,48, 68, 69 and 

developed strategies to account for the details of the distribution, 

either using a combination of EXAFS and electron microscopy, as one 

example,44-46, 70 or methods adopted in chemometrics, such as 

principal component analysis (PCA) and multivariate curve resolution 

- alternating least squares (MCR-ALS) for XANES studies, as 

another.43 Due to their unique spectral signatures, XANES regions of 

the X-ray absorbing elements coexisting in the sample containing a 

broad distribution of BNPs can be, in principle, also deconvoluted 

and separated using PCA and MCR-ALS, similar to what was done for 

Pd K-edge in Pd-Cu size selective clusters.43 A network classifier 

would take the deconvoluted spectra and attribute them to a specific 

class, specific to, for example, the oxidation state of the same 

element, followed by separate structural refinement of each 

deconvoluted spectra using either conventional EXAFS fitting or NN-

XANES/NN-EXAFS methods. 

Other opportunities are foreseeable for new materials 

proposed for stable and selective catalysts based on high entropy 

alloys (HEA) and oxides.71 Due to the similarity of constituting 

elements in the HEAs, their conventional EXAFS analysis is severely 

limited by the poor spectral content of different atomic species.72 

This is quite similar to what was, for a long time, a limitation on EXAFS 

analysis of bimetallic alloys containing neighbouring elements.47 The 

chief challenge is to discriminate between the contributions to XAFS 

of A-A, A-B (A-C, A-D, etc.) in the alloy where A, B, C, D, etc. are the 

elements with poor Z contrast. With the aid of NN-XANES, such a task 

can be solved (in principle) because of the excellent sensitivity of the 

neural network to the spectral features due to the bonding of atoms 

of different types, as demonstrated recently.44-46 For L absorption 

edges, these features were shown to be associated with the white 

line intensities that redistribute between different alloying elements 

Fig. 6. Cu–O and Cu–M (M = Cu or Zn) RDFs extracted by NN from experimental Cu K-edge EXAFS for Cu100, Cu70Zn30, Cu50Zn50, and Cu30Zn70 BNPs in their as-prepared state (a) as 

well as in their final state after 1–7 hr under CO2RR conditions (b). Zn–O and Zn–M RDFs extracted by NN from experimental Zn K-edge EXAFS data for Cu70Zn30, Cu50Zn50, Cu30Zn70, 

and Zn100 BNPs in their as-prepared state (c) as well as in their final state after 1–7 h under CO2RR conditions (d). Data extracted from Cu K-edge EXAFS for reference compounds 

(Cu foil, CuZn brass foil, CuO, and Cu(OH)2), as well as Zn–Zn RDF, extracted from Zn K-edge EXAFS for a Zn foil are also shown for comparison in (a) and (b). Zn–O and Zn–Zn RDFs 

extracted by the NN from experimental Zn K-edge EXAFS for reference compounds (Zn foil, CuZn brass foil, and ZnO) are shown in (c) and (d). RDFs are shifted vertically for 

clarity. Reproduced with permission from Ref. 57. 
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compared to their pure metal edge intensities due to the electron 

charge transfer between different atomic species.73 The capability of 

NN-XANES for spectral recognition will be further elevated when the 

data with high energy resolution fluorescence detection (HERFD) are 

used, whereas the features in the main peak region of the absorption 

coefficient in BNPs are enhanced74-81 due to lower spectral 

broadening. There are also exciting opportunities to increase the 

spatial resolution of local structural probes by relying on the small (a 

few nm) spot size in scanning transmission electron microscopy – 

electron energy loss spectroscopy (STEM-EELS) applications. Electron 

energy loss – near edge structure (ELNES) has similar information to 

XANES and can be, in principle, mapped on the structural and 

electronic descriptors82 to the local environment of the resonant 

atom, albeit with  1000 times better spatial resolution than the most 

currently used X-ray probes. 

As the complexity of nanoparticles increases to include five or 

more different elemental components, self-segregation of different 

atoms within the particles, changes to the particle size and shape, 

etc., more advanced spectroscopic characterization methods are 

required. Atomically-resolved understanding of this structure is of 

the utmost priority to understand the function of the material, 

especially for catalysis that requires precise atomic arrangements at 

the nanoparticle surface. Advances in ML and NN-XANES open the 

door to identifying these key structural factors that have remained 

challenging to impossible to achieve with conventional 

characterization methods.  
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