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Bimetallic nanoparticles have attracted increasing scientific and technological interest as modules for creating nanoscale
DOI: 10.1039/x0xx00000x materials with unique magnetic, electronic, and chemical properties. The properties of bimetallic NPs are functions of
composition, size, shape, stoichiometry, and possibly internal structure (alloy or core-shell-like). Bimetallic nanoparticles
have superior properties for catalytic application. However, it is challenging to understand and control the size, shape,
composition, and activity of these nanomaterials. The internal atomic structure of these materials needs to be precisely
characterized to understand the structure-function relationship. X-ray absorption fine structure (XAFS) spectroscopy has
been a premiere tool for analyzing the compositional and structural motifs in bimetallic nanoparticles for several decades.

In this review, we discuss the limitations in the ability of XAFS to detect catalytically relevant surface species and focus on

recent developments in machine learning-assisted XAFS analysis aimed at overcoming these limitations.

1. Introduction

Bimetallic nanoparticles (BNPs) are composed of two distinct metals,
offering enhanced properties compared to their monometallic
counterparts, which has drawn significant attention from both
technological and scientific communities. The properties of BNPs are
influenced by the compositional motifs of the constituent metals and
their nanoscale size, non-bulklike shape, and/or structure, which
results in unique optical, electronic, magnetic, thermal, and catalytic
effects that differ from pure elemental particles or bulk alloys.13
They can be incorporated into nanocomposites by supporting them
on organic or inorganic materials, further improving their
properties.*® The reduced size and increased surface area of BNPs
make them particularly effective as catalysts in various applications.”
10 Extensive research has focused on engineering novel types of
BNPs, with recent efforts aimed at selectively producing new types
of alloys, core-shell structures, and contact aggregates.11 12
Fundamental studies of the synthesis, catalysis, and structure of
bimetallic catalysts have been a fast-growing and exciting field for
energy conversion and chemical transformations, such as for the
oxygen reduction reaction (ORR), hydrogenation, dehydrogenation,
CO methanation, formic acid oxidation, CO oxidation, water-gas shift
reaction, etc.1316 The catalytic performances, such as activity,
selectivity, and stability can be tuned through flexible modification
of electronic and/or structural factors by adding a second metal (the
guest metal) to the first metal (the host metal).1* Thus, bimetallic
catalysts have the capability of improving catalytic activity,
enhancing catalytic selectivity, increasing catalytic stability, and
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lowering the cost of catalysts by tuning the compositions of
constituent metals. A variety of compositional motifs in BNPs offers
another knob for tuning their functionality. They can be divided into
three main groups: an alloy, intermetallic, or nanocomposite
structure (Fig. 1). Alloy catalysts have different forms, ranging from
the bulk, surface, and near-surface alloys.!> ¥ Nanocomposite
structures include core-shell structured bimetallic nanoparticles,
nano dendrites, and others. Due to the diversity of bimetallic
catalysts, tuning catalytic performance of a host metal could be
performed through (a) an ensemble or geometric effect in which the
coordination of atoms of a guest metal to an atom of the host metal
on the surface provides new geometries of active sites or (b) the
electronic or ligand effect wherein the addition of a guest metal
alters the electronic properties of the active sites of the host metal
by changes in the electron density at the active site metal. It is
important to notice that it is difficult to disentangle these effects
because, in some cases, all effects occur simultaneously to affect the
performance and stability of the BNPs.1”

In most cases, the difference in catalytic performance between
bimetallic catalysts can be rationalized through the details of their
size, structure, and compositional details. Those characteristics are
prone to change due to the restructuring of the catalysts during the
reaction.’® That, in turn, motivates the fundamental studies of
bimetallic catalysts toward understanding them at the atomic level
and in real-time during catalytic reactions in relevant conditions of

Fig. 1. Schematic of the three common groups of bimetallic structures: alloy (a),
intermetallic (b), and two possible variations of nanocomposites (c).
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temperature and pressure. Out of the limited number of methods
applicable for this purpose, this review focuses on X-ray absorption
fine structure (XAFS) spectroscopy, a powerful local structural probe
that can interrogate not only the atomic-scale features of the BNPs
in real reaction conditions but correlate them with the overall
catalytic performance.

XAFS is typically divided into two regimes: X-ray absorption near
edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS). XANES can be used to extract information about the
oxidation state, three-dimensional geometry, and coordination
environment of elements under investigation. EXAFS is used to
determine the distances, coordination number (CN), and neighbour
species of the absorbing atom. From the time EXAFS was recognized
as a new structural tool (at the beginning of the 1970s),1° its
application to studies of BNPs was among the first of all materials
characterization works using this technique.?% 2! The use of EXAFS
allowed researchers to obtain partial CNs, interatomic distances
between different types of atoms and their structural and dynamic
disorder factors, which can provide useful structural information for
catalysis. For example, a strong correlation exists between the CN of
atoms on the surface and the nanoparticle size and facet, which plays
a critical role in heterogeneous catalysis.?? In recent work, the Pd-Pd
bonds in monomers, dimers, or trimers (Pd;Au, Pd,Au, or PdsAu) in
dilute Pd-in-Au alloys was shown to directly affect their catalytic
activity to hydrogen-deuterium exchange,?2 CO oxidation?* and
selective hydrogenation2> 26 reactions.

While XAFS has been a workhorse technique for catalysis
research, it was also recognized that it has several notable
limitations. Chief among them are: 1) EXAFS oscillations can be
difficult to detect with a good signal-to-noise ratio in the case of
dilute concentrations of real catalysts, high temperatures, harsh
reaction conditions, etc., and 2) EXAFS has limited sensitivity to the
catalytic species at the nanoparticle surfaces as it is an ensemble-
averaging technique. An example of dilute bimetallic alloys
mentioned above can be used to illustrate these challenges. While
the distribution of metal ensembles on the nanoparticle surface is of
key interest, XAFS spectra of the surface ensembles are dwarfed by
the bulk spectra of the same absorbing element, where separating
the surface contributions from the bulk becomes very challenging. In
addition, EXAFS is limited in its ability to determine the coordination
of bimetallic components if they contain elements that are
neighbours in the periodic table.

Recent applications of machine learning (ML) to the structural
refinement of XAFS spectra have shown strong promise in addressing
these challenges. ML techniques offer a powerful alternative to
conventional tools for decoding the structural details “hidden” in the
spectra. In this review, we focus on the overview of the progress
made in the last decade toward the development of the ML-XANES
and ML-EXAFS methods and their applications to solving these and
other challenges for determining the structural and compositional
motifs in BNPs. This review does not include such topics as enhancing
XAFS analysis by combining it with other techniques, such as electron
microscopy, X-ray  photoelectron  spectroscopy, infrared
spectroscopy, and others,” 25 27-30 3s well as sensitivity-enhancing
methods such as modulation excitation spectroscopy which are
extensively covered elsewhere.31-34
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Due to our larger focus on the functionality of the BNPs and the
long-term goal of improving techniques for their rational design, we
are adopting a “descriptor” approach to their characterization,
searching for those attributes of structure and electronic properties
that can be, on one hand, extracted from the experimental data, and,
on the other hand, theoretically modelled. Therefore, we are focused
on the “inverse” methods of structural analysis, where the starting
point is the experimental data, and the endpoint is a list of
generalized descriptors of the structure, dynamics, and electronic
properties. Examples of such descriptors may include the
coordination numbers of nearest neighbours, interatomic distances,
surface strain, d-band center, and many others. The “forward”
methods for the analysis of XANES spectra, including those assisted
by ML (in this approach, the theoretical spectra are generated using
different structural models and compared with the experiment), are
the focus of intense research as well and are beyond the scope of this
review.

2. Machine learning—assisted XAFS analysis on
BNPs

In this section, we will introduce the main idea behind spectral
inversion using an artificial neural network and demonstrate its
application to XANES and EXAFS spectra. The main idea behind the
original application of supervised ML to the XANES spectra of
monometallic nanoparticles was to extract key structural
characteristics, the pair CNs. These data can be used as indices of the
size, shape, and morphology of the nanoparticles, but are difficult to
measure by EXAFS due to the limitations described above. For BNPs,
partial CNs were used to extract the compositional information as
summarized above. In both cases, an artificial neural network was
trained on a theoretical data set comprising hundreds of thousands
of spectra generated using FEFF3* and FDMNES3¢ theoretical
spectroscopy codes. By using both codes for the neural network
training, some systematic errors present in them are partially
compensated.3?

2.1 Machine learning—assisted XANES analysis

For monometallic NPs, the training set (the labels were the CNs of
several nearest neighbouring shells) was constructed using a
combinatorial approach, in which the theoretical spectrum u‘(E)
was averaged over a sequence i of n randomly chosen, site-specific
XANES calculations, and could be labelled by well-defined, site-
average CNs:38

H(E) = X1 ui(E)/n,
C1i = 27:1 cij/n,
Gl =Y/, .. (1)

Here, ¢y}, ¢3j, ... are the CNs of the first, second, etc., neighboring
shells for sites j within the sequence i.

For bimetallic materials, the edge region of the XAS spectrum
for each type of atomic species can be used to provide information
on the first nearest neighbour pairs of four types: Caa, Cas, Csa, and
Cgs. Therefore, the method for obtaining the CNs from the XANES
spectra relies on two independent, ‘“‘absorber-specific’’, neural
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Fig. 2. A schematic that represents the application of NN-XANES to an A,B;_, bimetallic system. Partial first CNs are extracted from the XANES of A and B absorbing components.

The partial CNs (A-A, A-B, B-B, and B—A) are used to deduce the average nanoparticle structure. Reproduced with permission from Ref. 38.

networks, each with ‘“pair-specific’ outputs (i.e., Caa, Cas for
absorber A, and Cga and Cgg for absorber B - Fig. 2).3° The training of
each neural network (NN) was performed using a diverse, labelled
set constructed using linear combination of the site-specific,
theoretical XANES spectra (i.e., similarly to the method in Eq. (1)):

Aedge: u'(E) = X} 1j(E)/Ny,
CAAi = 27:1 CAAj/NA:

Ca' = X7=1 capj/Na,

B edge: u'(E) = X7 ;(E)/Np,
CBAi = Z;‘lzl CBA]'/NB'

CBBi = Z}lﬂ cppj/Np-

(3)

Several methods were discussed in literature for minimizing the
systematic errors of NN predictions due to the effects of
experimental noise, differences between theoretical spectra and
experimental data, overfitting, etc. One advantage of the NN-based
approach to XANES analysis in dealing with systematic errors is the
nonlinear nature of NN: during the training, NN assigns larger
weights to those spectral features that are relatively more important
for the determination of descriptors and hence can perform better
than, e.g., linear methods in presence of systematic errors or
experimental noise.3” Timoshenko, Frenkel et al., found that the
systematic errors of NN predictions can be reduced significantly if the
difference in absorption coefficient between the NP spectrum and
corresponding bulk spectrum of the same element were used for
prediction, not the NP spectrum itself.38 To estimate error bars, many
groups study model performance after repeating training 5-10 times
and applying the model to the same data and different values of
hyperparameters and random seeds.38 4% Standard deviations in the
predicted values due to this variability are commonly reported as
error bars. Recently, a neural network ensemble (NNE) method was
applied for quantifying the uncertainties of predicting XAS spectra on
out-of-sample data.*! Finally, transfer learning approaches have
been used to improve the quality of the prediction based on
theoretical training sets.*2

This journal is © The Royal Society of Chemistry 20xx

2.2 Examples of the use of ML-XANES approach for structural
characterization of BNP catalysts

Using the ML-XANES for BNPs opens an avenue for structural
characterization and modelling of the materials based on their CNs,
which was previously limited to EXAFS analysis only. In principle, the
partial CNs (Caa, Cag, Csa, Css) can be obtained in the entire range of
compositions from ML-XANES analysis.3% 43-46 That is an invaluable
advantage over EXAFS in the case of dilute metal loading, harsh
reaction conditions, and/or high structural disorder in the BNPs, in
which EXAFS data may be of either very poor quality or unavailable
(as in the case of the size-selective bimetallic clusters on a flat
support®3). There, ML-XANES stands out as the only tool that can be
used for quantifying the neighbouring pairs, as demonstrated for
CusPd and CusPd bimetallic clusters containing either four or five
atoms, respectively.*3

In the case when constituting elements are neighbours on the
periodic table and thus have poor Z contrast, EXAFS modelling cannot
be used to extract partial CNs from the data (although CNs
corresponding to the A-M and B-M pairs, where M = A or B, can be
still obtained in such cases?’- 48). ML-XANES, on the other hand, has
the sensitivity to these spectral features, and those are strongly
affected by the CNs of different neighbouring types to the X-ray
absorber due to the strong sensitivity to electronic charge transfer
between the alloying atoms. In recent work, Frenkel, Knecht, and
coworkers demonstrated the power of ML-XANES for analysing Pt-
Au BNPs and determining their CNs for structural modeling.44-46

This approach combined ML-assisted refinement of XAFS was
utilized for structural and compositional analyses.** In this study, the
NN was constructed to build a correlation between the XANES
spectra and the CNs of the first nearest neighbouring pairs Au-Au,
Au-Pt, Pt-Au, and Pt-Pt. The validation results of the NN in Fig. 3
show that it can provide good predictions on the partial CNs from
theoretical XANES spectra.**

BNPs, in which one species is dilute, have attracted significant
interest for catalytic applications in the last decade,” 4*-53 owning to
their enhanced selectivity caused by the dilute species (such as Pt,
Ag, Pd, and Rh) and synergistic effects with the host (Au and Ag,
among others). In recent work, the effect of pretreatment on the
catalytic activity of dilute (4 to 8 at.% Pd in Au) BNPs for the

J. Name., 2013, 00, 1-3 | 3
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Fig 3. Validation of the NN using the predicted (a) CNay-au, (b) CNay—pt, (€) CNpe-pu,
and (d) CNpp vs true values. Reproduced with permission from Ref. 40.

hydrogen-deuterium (HD) exchange reaction was investigated.>*
From a combination of catalytic activity measurements, ML-enabled
spectroscopic analysis, and first-principles-based kinetic modelling, it
was demonstrated that active species for HD exchange reaction are
surface Pd ensembles containing only a few (from 1 to 3) Pd atoms.23
The catalyst Pd K-edge absorption coefficient data in the XANES
region (Fig. 4a) show the shifts toward, or away from, the reference

Journal Name

Pd bulk spectrum of the data collected in the 8 at.% Pd-in-Au sample,
depending on the treatments (S0-S4, described in Fig. 4). For
example, after treatment of the initial sample with O, (SO to S1), the
center of mass of the absorption coefficient shifts to the positive
energy direction (i.e., toward the Pd reference), and, after treatment
with hydrogen (S1 to S2 to S3), to the lower energies (i.e., away from
the bulk Pd and past SO (Fig. 4a)). Those negative shifts are consistent
with the increase in the number of Pd-Au neighbours resulting from
Pd dissolution into the Au host, while the positive shift is associated
with the segregation of Pd and ensemble formation (PdnAu).

Partial CNs (Cpq_pq and Cpq_ay) Were obtained using the NN-
XANES method (Fig. 4b). The trends shown in Fig. 4b are consistent
with the qualitative observation (vide supra) made on the basis of
Fig. 4a. This end, the Pd-Pd CNs slightly increase, and the Pd-Au CNs
decrease after the initial treatment in O, (from SO to S1), followed by
the decrease of Pd-Pd CNs (and increase of Pd-Au) after subsequent
H, treatments (from S1 to S2 to S3). In that work, the comparison of
EXAFS analysis and NN-XANES analysis results was shown to favour
the latter due to the poor sensitivity of EXAFS to the nearest
neighbour CNs of the dilute element (e.g., Pd-Pd vis. Pd-Au). In
contrast, the NN-XANES method worked better because the neural
network has a “good eye” on various features required for the CN
prediction. This is an improvement compared to the standard, least
squares fitting method used in EXAFS data analysis that relies on a
sole criterion: minimization of the mean squared error.

2.3 Machine learning-assisted EXAFS Analysis

If the previous section made an impression on the reader that NN-
XANES is a universal panacea for all challenges in XAFS experiment
and data analysis, this was not our intention. In cases when EXAFS
data in BNPs is of good quality, they contain a treasure trove of
information about the structure and dynamics of nearest
neighbouring atoms with respect to the X-ray absorbing atoms, well
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(b). The inset of (a) shows a shift in the spectral center of mass “c”. CNs from NN-XANES are consistent with Pd atoms having more Pd neighbors after O, treatment and less Pd

neighbors after H, treatment. Atomic Pd ensembles in (a) and (b) are depicted with bird’s-eye-view schematics (yellow = Au; green=Pd). Reproduced with permission from Ref. 23.
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beyond a limited amount of information encoded in XANES. While
the information content in XANES is a separate topic, and the ML
methods that probe it by using the latent space dimension of the
autoencoders have emerged only recently,> the methods for
establishing the information content in EXAFS, such as that relying on
the Nyquist criterion, have been in use for half a century.>® For
example, while NN-XANES can determine ca. four parameters from
Pt Ls-edge data in a nanoparticle (such as the first four CNs),38 EXAFS
spectra (for the same type of nanoparticle sample) that has k-range
from 2 to 20 A1 and the fitting range in r-space from 2 to 6.2 A,57 has
~2-18:5.2/m ~ 60 relevant independent data points. That means
up to 59 fitting variables can, in principle, be used to fit these data
and describe the local environment up to the fifth coordination shell
(i.e., much more information than encoded in the XANES spectrum).
Just as it was shown for the monometallic particles, the correct
interpretation of EXAFS data in BNPs relies strongly on the validity of
the key assumption. This assumption is that a (unknown) radial
distribution function (RDF) of neighbours around the X-ray absorbing
atoms is quasi-Gaussian; that is, a small number of terms in the
cumulant expansion suffices to reproduce experimental EXAFS
theoretically.>8 When the disorder is strongly asymmetric (as is the
case in ultrasmall NPs with strong surface-, ligand-, and/or substrate-
induced asymmetry>%-62), the standard approach breaks down due to
the inability of the fitting method to extract a large number of
cumulant terms, whereas an alternative approach, based on the use
of supervised ML, can be efficiently used instead. In that method,
initially demonstrated for resolving the RDF in disordered,
intermediate structures formed during the phase transition of Fe
from bcc to fcc phases, 3 the theoretical EXAFS equation is expressed
in terms of the unknown, g(r) = dN/dr, defined as the number of
neighbors, dN, in the thin shell (with thickness dr) at distance r
around the absorber. For bimetallic alloys (AB,), the equation
expresses EXAFS of the A-B single scattering path as follows:54

Xas(K) = S3a [ FagUe, R)gag (R) Sin(2kR + pap(k, R)) = (4)

kR?

Here, Fyp(k,R) and ¢45(k, R) are scattering amplitude and phase
functions that can be calculated theoretically, and SS_A is the
amplitude reduction factor. Therefore, by using a theoretical training
set constructed using Eq. (4), the unknown distributions
( gas(R), gaa(R), gps(R), gga(R) ) can be predicted on the
experimental EXAFS data directly, without a priori assumption about
their functional form. After that, the CNs and interatomic distances
for different types of neighbouring pairs (e.g., A-B) can be calculated
by integrating the corresponding RDF over the range of the
corresponding coordination shell (i.e., between the (i — 1)-th and i-
th minima of the g,5(R)):

Ri,
Ciap = fR _jiB 9ap(R) dR,

i

1 j‘Ri,AB
Ri—1,4B

(R)iap = gap(R)R dR. (5)

Ci,aB

Because inversion of Eq. (4) is an ill-posed problem, it is important to
validate the resultant distributions using the “ground truth”, such as
comparing them with distributions generated using molecular
dynamics simulations. More discussion about the benefits of

This journal is © The Royal Society of Chemistry 20xx

“objective” neural network training for RDF determination is given in
the end of this Section.

2.4 Examples of the use of ML-EXAFS approach for structural
characterization of BNP catalysts

The first work showing the application of the NN-EXAFS method to
the analysis of BNPs was applied to Pd-Au particles.®* The resultant
CNs and interatomic distances are shown in Figs. 5A-D and E-F,
respectively. As shown in Fig. 5F, the concentration dependencies for
the Pd-Pd and Au-Au distances are almost the same for the 2nd
coordination shell, but the Pd-Au pairs have unexpectedly short
lengths, hinting at the segregation of Pd to the BNP surface at low Pd
concentration. This conclusion would have been impossible to obtain
by conventional EXAFS analysis. 64
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Fig. 5. Concentration dependencies of the normalized CNs €1, €2, €3, and C4 for the first
four coordination shells (A-D) and average interatomic distances R for the first two
coordination shells (E, F) obtained by integration of PRDFs, extracted by NN from

experimental EXAFS data. Reproduced with permission from Ref. 56.

Another example of the use of the NN-EXAFS method is the
study of Cu-Zn nano-catalysts, utilized for electrochemical reduction
of CO,. As discussed above, it is challenging to understand the
reaction conditions,
especially with low Z-contrast, which is the case for Cu and Zn. The
NN-EXAFS approach was applied in this work for Zn and Cu K-edge
EXAFS. It was generalized to account for the oxidized and partially
oxidized Cu-Zn catalysts for CO; reduction reaction (CO2RR).5 Partial
Cu-0 and Cu—M (M = Cu, Zn) RDFs were extracted from Cu K-edge
EXAFS data for as-prepared samples and samples in their final state
under CO,RR conditions, as shown in Fig. 6 (a, b).%5 The position of
the maximum of the 3¢ Cu—M RDF peak (located at ca. 4.5 A) for
Cui00, Cuz0Zn3g, CuseZnsg, and CuszeZnye NP samples corresponds to
the interatomic distance in the 3" coordination shell in the metallic
phase. Partial Zn—0 and Zn—M (M = Zn, Cu) RDFs were extracted from

evolution of bimetallic structures under

J. Name., 2013, 00, 1-3 | 5



— Cu100
— Cu0Zn3g
— CuggZnsg
— CuzpZnyg

RDF g(R) (A"

1

— Cuz0Zn3o

— Cu ZN
l10 — ZN100

CI]J(OIJ%) ‘

L " LA B A —

; — .
~~ —Cu

E< (b) CO;RR, M-M — CusgZn
- CuZn foil — CuspZns
= ; uZn foil — CuszpZnyg
x Cufal Zn foil

> (Zn K-edge)

L

Q| Jwo

o

(d) _ Cu;0Znsg
— CuspZn

CO,RR, Zn-M

Fig. 6. Cu—0O and Cu-M (M = Cu or Zn) RDFs extracted by NN from experimental Cu K-edge EXAFS for Cusqo, Cu70Zn3q, CusoZnso, and CuspZnso BNPs in their as-prepared state (a) as

well as in their final state after 1-7 hr under CO,RR conditions (b). Zn—0 and Zn—M RDFs extracted by NN from experimental Zn K-edge EXAFS data for Cu;0Zn3o, CusoZnso, CusopZnyg,

and Znygo BNPs in their as-prepared state (c) as well as in their final state after 1-7 h under CO,RR conditions (d). Data extracted from Cu K-edge EXAFS for reference compounds

(Cu foil, Cuzn brass foil, CuO, and Cu(OH),), as well as Zn—Zn RDF, extracted from Zn K-edge EXAFS for a Zn foil are also shown for comparison in (a) and (b). Zn—0 and Zn—-Zn RDFs

extracted by the NN from experimental Zn K-edge EXAFS for reference compounds (Zn foil, CuZn brass foil, and ZnO) are shown in (c) and (d). RDFs are shifted vertically for

clarity. Reproduced with permission from Ref. 57.

Zn K-edge EXAFS data for the BNP samples in their as-prepared state
as well as in their final state under CO,RR conditions, as shown in Fig.
6 (c, d).%> Time-dependent EXAFS data from both Cu and Zn K-edge
were analysed by NN-EXAFS to monitor the structural transformation
of CuZn nanoparticles in real time under CO,RR conditions. NN-
EXAFS analysis revealed a gradual Cu-Zn alloying process and a
transition from a close-packed to a more disordered structure.®>

In summary of this section, we mention that in the original NN-
EXAFS method, the neural network training was performed using
molecular dynamics simulations. MD-EXAFS was used to account for
the dynamic, temperature-dependent disorder, contributing to the
RDF and, therefore, to EXAFS spectra.t® 64 Recently, an “objective”
method for NN training (dubbed “ONNE”), that does not rely on
molecular dynamics simulations, was proposed and used for training
the NN and “inverting” EXAFS spectra in transition metal and actinide
complexes in molten salts.t% 67

3. Outlook

If the development of advanced ML methods for analysing XAFS data
in BNPs continues to progress, we anticipate the emergence of new
and enhanced capabilities. Among them, there is a long-standing
problem of heterogeneous distribution of metal species that absorb
X-rays, ranging from the coexistence of different oxidation states to
broad distributions of nanoparticle sizes and shapes and their
compositional motifs. Several articles reported analyses of such
distributions and their artifacts on EXAFS spectra in BNPs,*8 68 69 gand
developed strategies to account for the details of the distribution,

6 | J. Name., 2012, 00, 1-3

either using a combination of EXAFS and electron microscopy, as one
example,?-46. 70 or methods adopted in chemometrics, such as
principal component analysis (PCA) and multivariate curve resolution
- alternating least squares (MCR-ALS) for XANES studies, as
another.*3 Due to their unique spectral signatures, XANES regions of
the X-ray absorbing elements coexisting in the sample containing a
broad distribution of BNPs can be, in principle, also deconvoluted
and separated using PCA and MCR-ALS, similar to what was done for
Pd K-edge in Pd-Cu size selective clusters.** A network classifier
would take the deconvoluted spectra and attribute them to a specific
class, specific to, for example, the oxidation state of the same
element, followed by separate structural refinement of each
deconvoluted spectra using either conventional EXAFS fitting or NN-
XANES/NN-EXAFS methods.

Other opportunities are foreseeable for
proposed for stable and selective catalysts based on high entropy
alloys (HEA) and oxides.” Due to the similarity of constituting
elements in the HEAs, their conventional EXAFS analysis is severely
limited by the poor spectral content of different atomic species.”?
This is quite similar to what was, for a long time, a limitation on EXAFS
analysis of bimetallic alloys containing neighbouring elements.*” The
chief challenge is to discriminate between the contributions to XAFS
of A-A, A-B (A-C, A-D, etc.) in the alloy where A, B, C, D, etc. are the
elements with poor Z contrast. With the aid of NN-XANES, such a task
can be solved (in principle) because of the excellent sensitivity of the
neural network to the spectral features due to the bonding of atoms
of different types, as demonstrated recently.4446 For L absorption
edges, these features were shown to be associated with the white
line intensities that redistribute between different alloying elements
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compared to their pure metal edge intensities due to the electron
charge transfer between different atomic species.” The capability of
NN-XANES for spectral recognition will be further elevated when the
data with high energy resolution fluorescence detection (HERFD) are
used, whereas the features in the main peak region of the absorption
coefficient in BNPs are enhanced’#8! due to lower spectral
broadening. There are also exciting opportunities to increase the
spatial resolution of local structural probes by relying on the small (a
few nm) spot size in scanning transmission electron microscopy —
electron energy loss spectroscopy (STEM-EELS) applications. Electron
energy loss — near edge structure (ELNES) has similar information to
XANES and can be, in principle, mapped on the structural and
electronic descriptors® to the local environment of the resonant
atom, albeit with 1000 times better spatial resolution than the most
currently used X-ray probes.

As the complexity of nanoparticles increases to include five or
more different elemental components, self-segregation of different
atoms within the particles, changes to the particle size and shape,
etc., more advanced spectroscopic characterization methods are
required. Atomically-resolved understanding of this structure is of
the utmost priority to understand the function of the material,
especially for catalysis that requires precise atomic arrangements at
the nanoparticle surface. Advances in ML and NN-XANES open the
door to identifying these key structural factors that have remained
challenging to impossible to achieve with conventional
characterization methods.
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