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Abstract 

RNA molecules adopt complex structures that perform essential biological functions across all 

forms of life, making them promising candidates for therapeutic applications. However, our 

ability to design new RNA structures remains limited by an incomplete understanding of their 

folding principles. While global metrics such as the minimum free energy are widely used, they 

are at odds with naturally occurring structures and incompatible with established design rules. 

Here, we introduce local stability compensation (LSC), a principle that RNA folding is governed 

by the local balance between destabilizing loops and their stabilizing adjacent stems, 

challenging the focus on global energetic optimization. Analysis of over 100,000 RNA structures 

revealed that LSC signatures are particularly pronounced in bulges and their adjacent stems, 

with distinct patterns across different RNA families that align with their biological functions. To 

validate LSC experimentally, we systematically analyzed thousands of RNA variants using DMS 

chemical mapping. Our results demonstrate that stem folding, as measured by reactivity, 

correlates with LSC (R² = 0.458 for hairpin loops) and that instabilities show no significant effect 

on folding for distal stems. These findings demonstrate that LSC can be a guiding principle for 

understanding RNA function and for the rational design of custom RNAs.  

 

 

 

 

 

 

 

2 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2025. ; https://doi.org/10.1101/2024.12.11.627843doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.11.627843
http://creativecommons.org/licenses/by/4.0/


Graphical Abstract 
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Introduction 

RNA molecules adopt complex structures that perform essential functions across biology, from 

regulating gene expression to modifying chromatin structure (1–3). This structural versatility has 

inspired bioengineers to harness RNA as a platform for creating synthetic molecular machines, 

including scaffolds that colocalize enzymes (4–6), custom-designed ribozymes (7–9), and 

aptamers with specific ligand-binding properties (10–12). The ability of RNA to perform these 

varied functions fundamentally depends on its ability to fold into three-dimensional (3D) 

structures. Therefore, advancing our understanding of RNA folding mechanisms is crucial for 

elucidating the behavior of biological RNAs and developing more effective RNA-based 

therapeutics and engineering applications. 

The field utilizes diverse experimental approaches to understand RNA folding, ranging from 

high-resolution techniques like X-ray crystallography (13–15) and cryo-electron microscopy 

(16–18) to lower-resolution methods like chemical mapping (19–21) and cross-linking (22–24). 

Yet fundamental challenges remain in the prediction of an RNA's base-pairing pattern 

(secondary structure) from sequence alone, which would reduce the need for time-consuming 

experimental characterization of each new RNA (25). Significant progress in computational 

prediction began with the development of the "Turner parameters," which formed the foundation 

for algorithms like Mfold (26), RNAStructure (27), RNAfold (28) that calculate the global 

minimum free energy (MFE) structure. The field continues to evolve rapidly, with linear-time 

structure prediction methods (29), machine learning (30), and deep learning approaches 

enhancing our ability to predict RNA secondary structures with increasing accuracy (31–33), but 

they often struggle when presented with novel RNAs (34) or RNAs from families that are 

different from what they were trained on. Therefore, the identification of new patterns that could 

improve RNA structure prediction remains highly valuable.  
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Structure prediction algorithms can also be leveraged to identify sequences that will fold into a 

desired secondary structure for engineered applications. This “inverse-folding” problem is 

computationally intensive due to the vast sequence space available for any base-pairing 

arrangement. Current approaches often focus on finding sequences that optimize the minimum 

free energy (MFE) (28, 35, 36). However, these strategies result in sequences with high GC 

content, which often misfold (37). The limitations of high-GC designs have been demonstrated 

empirically through the collective wisdom of Eterna participants, who found that excessive GC 

content diminishes the success of RNA design tasks across thousands of experiments (38). 

Notably, nature does not employ this strategy — ribosomal and transfer RNAs maintain 

consistent GC content despite variation in background GC content (39). This observation 

suggests that natural RNA sequences follow alternative optimization principles that could inform 

more effective approaches to designing synthetic RNA structures. 

The MFE approach considers the global sum of energy terms, and fails to account for the 

spatial distribution of stability within an RNA structure. For example, larger RNA loops have 

been hypothesized to require larger stabilizing helices to offset the entropic cost of loop 

formation (40). By simply minimizing free energy globally, this energetic requirement may be 

satisfied by helices located anywhere in the structure. Nature may allocate its limited free 

energy "budget" according to functional priorities and to specific locations in need of greater 

stabilization rather than global minimization. We propose that the local energetic balance 

between loops and their adjacent stems—a relationship we term local stability compensation 

(LSC)—may be a design rule that nature employs and could be leveraged in rational RNA 

design.  

We propose that larger and more destabilizing loops in structures exhibiting LSC must be paired 

with proportionally larger and more stabilizing stems to ensure consistent folding for functional 

RNAs that rely on robust structures. However, LSC may not be strictly necessary for RNAs that 

5 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2025. ; https://doi.org/10.1101/2024.12.11.627843doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?7SBZpK
https://www.zotero.org/google-docs/?xfrHDY
https://www.zotero.org/google-docs/?LAdin8
https://www.zotero.org/google-docs/?hlKAbT
https://www.zotero.org/google-docs/?4RuNaC
https://doi.org/10.1101/2024.12.11.627843
http://creativecommons.org/licenses/by/4.0/


lack evolutionary pressure for robust folding or for dynamic RNA substructures that adopt many 

conformations. Therefore, apart from such examples, we expect to observe a pattern where 

decreasing stem ΔG balances increasing loop ΔG to maintain a consistently negative net free 

energy (ΔG) (Supplementary Fig. 1A). Crucially, this compensation operates locally: each loop 

is primarily stabilized by its adjacent stems, with minimal influence on distant structural 

elements.  

In this study, we first analyzed LSC signatures in natural RNA structures, revealing distinctive 

patterns in stem and loop ΔG distribution across different loop types and RNA classes. We then 

experimentally tested the relationship between LSC and its impact on folding by performing 

DMS chemical mapping on a library of designed RNAs. Our results demonstrate that folding 

fidelity correlates with LSC and confirm that structural instabilities primarily affect local folding. 

These findings have significant implications for RNA design strategies, suggesting that meeting 

local stability requirements is crucial for successful substructure folding. Furthermore, 

understanding the stability requirements of individual substructures could enhance RNA design 

by facilitating their assembly into larger, more complex structures. 

 

Materials and Methods 

Analysis of net ΔG for local substructures with bpRNA-1m 

For our large scale analysis of RNA structures, we used the meta-database bpRNA-1m (41). A 

smaller subset without structures of 90% or greater sequence identity, called bpRNA-1m90 was 

also used to avoid over sampling particular RNAs. Importantly, structural data in the database 

are accessible as structure type (.st) files which contain a breakdown of the subcomponents of 

the RNA structure to facilitate our analysis. We calculated the free energies of the individual 

substructures using the Turner 2004 parameters for RNA folding (42). We define net ΔG as the 
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sum of the stabilizing stem free energy and the destabilizing adjacent loop free energy. In the 

case of hairpin loops, there is only one stem/helix immediately adjacent to the loop. For two-way 

junctions (i.e. bulges and internal loops), we average the free energies of both stems on each 

side of the junction. 

We developed a pipeline using Vienna RNA to refold structures from the RNA families database 

(RFAM) and the comparative RNA web (CRW) database using the consensus base pairs as 

hard constraints in order to correct for “under folded” structures which contain large stretches of 

unpaired nucleotides. The resulting dataset was used for the analysis of large-scale trends 

across many RNAs (Fig. 1), and for correcting unrealistic loops in particular RNAs of interest 

(Fig. 3B-D). The dataset was not used when the numbering scheme of conserved loops needed 

to be preserved. 

Data analysis and statistics 

All statistics were performed using python code (https://doi.org/10.5281/zenodo.14252189) with 

the SciPy and Scikit-learn modules. For assessing the significance of net ΔG distributions in 

hairpin loops, bulges, and internal loops in Supplementary Figure 1B, an in-structure rotation 

control was used: loop energies were summed with stem energies belonging to a distal 

substructure instead of loop-adjacent stem energies. This was only done for structures where 

more than three loops of a type existed to eliminate the possibility of a loop receiving one or 

more of its own stems. The difference over control in net free energy frequencies by bin was 

calculated along with an f test to reveal the significance of differences in variance.  

392 hairpin sequences were filtered out from the dimethyl sulfate (DMS) reactivity results 

because of C repeats greater than 4 residues which may result in unreliable DMS reactivities as 

seen in A repeats (43). DMS data for 875 hairpin loops, 1979 bulges, and 1987 internal loops 

was available for analysis.  
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For analysis of DMS reactivity data, we employed the area under the receiver-operator curve 

(AUROC) to quantify folding fidelity, that is, the agreement of reactivity values with the 

‘designed’ structure. This measure quantifies the overlap between the reactivity distributions of 

paired-by-design and unpaired-by-design nucleotides for a single RNA structure. In this 

framework, unpaired nucleotides are treated as the “positive predictions” and paired nucleotides 

are treated as the “negative predictions” for the AUROC calculation, while reactivity data 

provides the score to be compared. We calculated the AUROC using the Scikit-learn python 

package for the AUROC score across adenine/cytosine (A/C) nucleotides in global, local, and 

distal scopes (all residues, residues in the residues region, and residues not in the randomized 

region, respectively). In addition, we measured the average reactivity of stems and loops 

belonging to the randomized region and a region distal to the randomized region as a control. 

Only reactivities corresponding to A or C nucleotides were used for these calculations. The 

sample sizes depended on the size of the substructure and the abundance of A/C residues (see 

library design for more details). Lastly, a set of per-position averages were calculated with 95% 

confidence for various bins of net ΔG, which involved sample sizes no lower than 70 nucleotides 

for each bin. 

 

Substructure free energy calculation and designed RNA library generation 

We developed a python module to calculate the free energies of folding by components called 

bpRNAStructure. We used bpRNAStructure to extract tab-delimited files containing bpRNA-1m 

data organized by RNA ID number and the substructure identifier. These data were used in the 

aforementioned analyses and statistics regarding bpRNA-1m. We also used bpRNAStructure to 

add the free energy component-wise as an additional annotation of the structure type file from 

bpRNA-1m, hence calling it a “ste” file for “structure type energy”. These files were used to 

organize data for each sequence in the designed RNA libraries, which are introduced below. 
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We used a python script to randomly generate sequence libraries with an important set of 

constraints. Each sequence was based on a core template and required: a hamming distance of 

at least 20 compared to any other sequence, loops of A and C residues, and substructure 

lengths of 4-12, 3-11, 1-9, and 1-9 residues for stems, hairpin loops, bulges, and internal loops 

respectively. The template was a triply bulged hairpin structure, with variable and semi-constant 

regions depending on the loop type being studied (Fig. 4A). The variable regions consisted of 

loops varying by length and stems varying by length, GC content, and G:U pairs. ‘Constant’ 

energy stems were used for non-varying (distal) regions and were designed to minimize free 

energy variation while allowing for sequence variation. Constant energy stems used G:C or C:G 

closing base pairs, a fixed GC content, and 0 G:U pairs. Because sequences were required to 

be no shorter or longer than 20% of the mean sequence length, 21 and 13 sequences were 

filtered out of the internal loop and bulge libraries respectively. Oligonucleotide pools of each 

library were ordered from Agilent Technologies.  

PCR amplification of DNA templates 

DNA templates for transcription were prepared by PCR amplification of the synthesized 

oligonucleotide pool. We first resuspended the oligo pool in 50 μL of IDTE buffer (1X, pH 8.0, 

IDT #11-05-01-13). PCR amplification was performed using custom primers obtained from IDT: 

a forward primer containing the T7 promoter sequence (TTCTAATACGACTCACTATAGG) and a 

reverse primer (GTTGTTGTTGTTGTTTCTTT). Each 50 μL PCR reaction mixture contained Q5 

High-Fidelity DNA Polymerase (25 μL, NEB #M0494S), oligo pool template (2 μL), forward and 

reverse primers (2.5 μL each at 10 μM, diluted from 100 μM stocks), and RNase-free UltraPure 

water (18 μL, ThermoFisher #10977015). The PCR thermal cycling conditions consisted of initial 

denaturation at 98°C for 30 seconds, followed by 20 cycles of: denaturation at 98°C for 10 

seconds, annealing at 62°C for 15 seconds, and extension at 72°C for 15 seconds. A final 

extension step was performed at 72°C for 5 minutes. The PCR products were resolved by 
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electrophoresis on a 2% agarose gel (150V for 1 hour) and extracted using the Zymoclean Gel 

DNA Recovery Kit (Genesee Scientific #11-301C). 

In vitro transcription of RNA libraries 

For in vitro transcription of the RNA libraries, we first prepared: 10x Transcription (Tx) Buffer 

containing 400 mM tris-base, 10 mM spermidine, and 0.1% Triton X; 25 mM NTPs, 50 mM DTT, 

and 250 mM MgCl2. The transcription reaction contained: 10 μL of 10x Tx Buffer, 5 μL of 50 mM 

DTT, 16 μL of 25 mM NTP solution, 8 μL of 250 mM MgCl2, 4 μL of T7 RNA polymerase (New 

England Biolabs #M0251S), and 33 μL RNase-Free water. Purified template DNA was 

quantified using a NanoDrop spectrophotometer, adjusted to 0.3 μM, and 24 μL was added to 

complete the reaction mixture. The complete reaction was incubated at 37°C for 6 hours. 

Following transcription, the template DNA was removed by DNase I digestion using the RNA 

Clean and Concentrator-5 with DNase I kit (Genesee Scientific #R1014). The RNA product was 

purified using the same kit according to the manufacturer's instructions. Prior to DMS MaPseq 

analysis, we performed quality control by measuring RNA concentration by NanoDrop 

spectrophotometer and confirming the RNA length by electrophoresis on a 4% denaturing 

agarose gel run at 150 volts for 1 hour. 

DMS probing of RNA libraries  

For each RNA library, we prepared a solution containing 10 pmol of RNA in 5 μL RNase-Free 

water. RNA samples were denatured by heating to 90°C for 4 minutes followed by rapid cooling 

to 4°C for 3 minutes in a thermocycler. The denatured RNA was then added to a folding buffer 

containing 16.5 μL 0.4 M sodium cacodylate buffer and 1 μL of 250 mM MgCl2, yielding final 

concentrations of 264 mM sodium cacodylate and 10 mM MgCl2 during the DMS reaction. The 

RNAs were folded at room temperature for 30 minutes. A fresh DMS solution was prepared by 
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combining 15 μL DMS (Sigma-Aldrich #D186309) with 85 μL 100% ethanol (Decon Labs cat. 

#2716). Immediately following the 30-minute folding period, 2.5 μL of the freshly prepared DMS 

solution was added to the RNA-buffer mixture to initiate modification. The reaction was allowed 

to proceed for 6 minutes before being quenched with 25 μL BME (ThermoFisher cat. 

#125470010). Modified RNA was purified using the RNA Clean & Concentrator-5 kit (Genesee 

Scientific #R1014) and eluted in 7 μL of RNase-Free water. Final RNA concentration was 

determined using the Qubit RNA BR Assay Kit (ThermoFisher #Q10211), using 1 μL of the 

purified RNA sample for measurement. 

To detect adenine and cytosine methylation sites, we employed Marathon reverse transcriptase 

(Kerafast #EYU007), which incorporates mutations during cDNA synthesis at methylated 

positions. Prior to reverse transcription, we prepared the following solutions: 5x Marathon buffer 

(250 mM Tris-HCl pH 8.3, 375 mM KCl, 15 mM MgCl2), 10 mM dNTPs, 100 mM DTT. The 

modified RNA sample was diluted to 0.25 μM, and the RT primer (Supplemental Document: 

Sequences.xlsx) was diluted to 0.285 μM. The reverse transcription reaction was assembled 

by combining 3 μL of 5x TGIRT buffer, 1.49 μL of 10 mM dNTPs, 0.74 μL of 100 mM DTT, 1.2 

μL of Marathon reverse transcriptase, 6.4 μL of diluted modified RNA, and 1 μL of diluted RTB 

primer. The reaction was thoroughly mixed and incubated at 42°C for 3 hours. Following 

incubation, we added 5 μL of 0.4 M NaOH to the reaction and subjected the mixture to a 

denaturation step (90°C for 4 minutes followed by cooling at 4°C for 3 minutes). The NaOH was 

then neutralized by adding 2.02 μL of Quench Acid (1.43 M NaCl, 0.57 M HCl, 1.29 M sodium 

acetate). To purify the cDNA product, we first added 27.5 μL of RNase-Free water to the 

neutralized reaction, then purified using the Oligo Clean and Concentrator Kit (Genesee 

Scientific #11-380B). The final cDNA product was eluted in 15 μL of RNase-free water. 

The cDNA products were amplified by PCR using primers obtained from IDT (dissolved in IDTE 

pH 8 buffer at 100 μM). We used the forward primer 
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AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG and the 

reverse primer 

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

GGTACTATGTACCAAAG. Prior to PCR setup, primers were diluted 1:10 to 10 μM in 

RNase-free water.The PCR reaction contained 25 μL Q5 High-Fidelity DNA Polymerase (New 

England Biolabs #M0494S), 5 μL each of diluted forward and reverse primers, 6 μL purified 

cDNA, and 9 μL RNase-free water. Thermal cycling conditions consisted of an initial 

denaturation at 98°C for 30 seconds, followed by 16 cycles of: denaturation at 98°C for 10 

seconds, annealing at 62°C for 15 seconds, and extension at 72°C for 15 seconds. A final 

extension step was performed at 72°C for 5 minutes. For gel purification, we first prepared a 2% 

agarose gel by diluting 10x TBE Buffer (Bio-Rad #1610770) to 1x with RNase-free water, then 

dissolving 1.5g agarose (Apex #20-102) in 75 mL of 1x TBE buffer. The solution was heated in a 

microwave for 2 minutes, mixed thoroughly, and supplemented with 10 μL SYBR Safe DNA Gel 

Stain (ThermoFisher #S33102) before casting. The Fisherbrand Horizontal Electrophoresis 

System (Fisherbrand #FBSB710) was used for electrophoresis, with 1x TBE as a running buffer. 

PCR products were mixed with 10 μL TackIt Cyan/Yellow Loading Buffer (ThermoFisher 

#10482035) and separated on the gel at 150 volts for 60 minutes. After imaging, bands of the 

correct size were excised and purified using the Zymoclean Gel DNA Recovery Kit (Genesee 

Scientific #11-301C). Final DNA concentration was determined using the Qubit 1X dsDNA High 

Sensitivity Assay Kit (ThermoFisher #Q33230). 

DMS-MaPseq data analysis 

Sequencing was performed on a Novaseq 6000. Each sequencing run was first demultiplexed 

using the RTB barcodes added during the RT. Demultiplexing was performed using 

novobarcode 
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(https://www.novocraft.com/documentation/novobarcode/demultiplexing-barcodedindexed-reads

-with-novobarcode/). 

novobarcode -b rtb_barcodes.fa -f test_R1_001.fastq test_R2_001.fastq 

where rtb_barcodes.fa gives a list of sequencing barcodes, such as 

Distance   4 

Format ​ 5 

RTB021 ​ CCAATGGGTGTA 

RTB022 ​ AGCCAAAACTGG 

RTB023 ​ GTGTGTTTGCCC 

  

Where three barcodes are specified, distance is the distance in base pairs between a barcode 

and an allowable read. Format specifies that the barcode will be on the 5′ end of the read 1. 

Lastly, we used the RNA mutational profiling (RNA-MaP) tool to count mutations to determine 

the mutational fraction at each nucleotide position (https://github.com/YesselmanLab/rna_map). 

This is an open-source tool developed to simplify mutational profiling analysis. 

rna-map -fa test.fasta -fq1 test_mate1.fastq -fq2 test_mate2.fastq 

--dot-bracket test.csv --param-preset barcoded-libraries 

The rna-map command requires a FASTA-formatted file containing all DNA reference 

sequences and the paired sequencing reads generated from the previous step. We also 

supplied a CSV file containing the dot bracket structure for each RNA with the --dot-bracket flag 

and applied stricter constraints to how well each sequence needs to align to a read 

--param-preset barcoded-libraries. All the data are stored in JSON format in a pandas 

DataFrame. 
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Results 

Evidence for local stability compensation found in a structural 

meta-database 

LSC proposes that RNA folding stability requires larger, destabilizing loops to be paired with 

more stabilizing adjacent stems (Supplementary Fig. 1A). To test whether LSC is observed in 

biological RNAs, we analyzed the relationship between loop and stem free energies (ΔG) 

across 79,582 hairpins, 30,441 bulges, and 17,117 internal loops in the bpRNA-1m90 database. 

Importantly, RFAM structures can feature unrealistically large loops originating from nucleotide 

stretches that do not align with the consensus structure. We applied a pipeline (see methods) to 

refold these loops holding consensus base pairs fixed resulting in targeted corrections that 

introduced shifts in the bulk distributions, particularly a depletion of the highest net ΔG loops. 

(Supplementary Fig. 2). In the resulting data, hairpin loop, bulge, and internal loop ΔG bins of 

0.25 kcal/mol correlate negatively with the median stem ΔG (Fig. 1A-C), with bulges appearing 

to correlate more strongly (R2 = 0.647)(Supplementary table 1). In order to assess the upper 

limit of stem free energy for associated loops, we compared the 5% weakest stem ΔGs (Fig. 

1A-C). The 5% quantiles for bulges and internal loops correlate with a slope similar to the 

median, except for hairpins. Furthermore, bulge and internal loop free energy sum (net ΔG) 

distributions are enriched between -3 and -6 kcal/mol compared to a control in which stems are 

swapped with distal stems (see methods), which is not observed in hairpins (Supplementary 

Fig. 1B). These data suggest that LSC exists in bpRNA-1m90 structures, but is partially 

obscured in hairpins, likely by RNA family-specific factors which may contribute to the 

inconsistent compensation patterns. It is likely not all RNAs have strong structure requirements 

and we may see stronger effects examining only RNAs in a given family.  
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Figure 1. Local stability compensation in bpRNA-1m90. (A) Hairpin, (B) bulge, and (C) 
internal loop ΔGs from refolded bpRNA-1m90 structures are binned and the corresponding stem 
ΔGs are plotted as violins with linear regressions drawn for the median (blue) and 5% quantile 
(red). (D) bpRNA-1m90 net free energy kernel density estimates for hairpin loops and (E) bulges 
and (F) internal loops belonging to different RNA types. 

When grouped by their respective RNA family, net ΔG comparisons of hairpins (Fig. 1D), bulges 

(Fig. 1E), and internal loops (Fig. 1F) revealed distinct stability compensation patterns. Hairpin 

loops showed the highest variability, with a median net ΔG of -2.66 kcal/mol and a standard 

deviation of 1.74 kcal/mol, which is higher than that of internal loops (1.33 kcal/mol) and bulges 

(0.75 kcal/mol) (Supplemental table 2). A comparison by more specific RNA subclasses 

(Supplementary Fig. 3) corroborated this observation albeit with greater variation 

(Supplementary table 2). Because 1) the variance by RNA type accounts for some portion of 

the variance unexplained by the global correlation, and 2) the aforementioned variances by type 

are inversely proportional to the corresponding global correlations, RNA family-specific 

compensation patterns are in part responsible for deviations from LSC. 
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Local stability compensation varies by RNA type and is consistent with 

function. 

We hypothesized that LSC may be more prominent in specific RNA families where high stability 

is needed. Conversely, we speculated that high net ΔG for some families may indicate functions 

where destabilization is necessary. To investigate in more detail, we highlight four classes with 

distinct LSC behaviors. The C4 antisense RNA is a noncoding RNA (ncRNA) contained in P1 

and P7 bacteriophages (44, 45) (Fig. 2A). Hairpin loops within the C4 antisense RNA were 

selected for further investigation because they have negative and highly conserved net ΔGs. 

The C4 antisense RNA contains two highly stabilized hairpins. H1 consists of a highly stable 

hairpin loop and stem while H2 consists of a large hairpin loop and stable GC-rich stem. Both 

stem-loops achieve highly similar net ΔGs despite the substantial differences in their 

subcomponents (Fig. 2B).  
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Figure 2. Net ΔG distributions are distinct for RNA types and particular RNA loops. (A) C4 
antisense RNA example secondary structure and (B) hairpin net ΔG distribution (H1 in blue, H2 
in red) and other hairpins in bpRNA-1m90 (grey). (C) TwoAYGGAY RNA example secondary 
structure and (D) net ΔG distribution (H1 in blue, H2 in red) and other hairpins in bpRNA-1m90 
(grey). (E) Example tRNA secondary structure (bpRNA_RFAM_1424) and (F) two dimensional 
box plots for the D-loop, T-loop, and anticodon loop in red, green, and blue respectively. (G) 
pre-miRNA example secondary structure and (H) net ΔG distribution (blue) and other hairpins in 
bpRNA-1m90 (grey).  
 

 

The TwoAYGGAY RNA motifs (Fig. 2C), characterized by two conserved AYGGAY terminal 

hairpin loops (45), provided an example of family-specific stability patterns. In a departure from 

the expectations of LSC and the observations in C4 antisense RNAs, the TwoAYGGAY RNAs 

showed a bimodal net ΔG distribution, with peaks at -16 and -3 kcal/mol (Fig. 2D, 

Supplementary Fig. 3A), revealing that identical hairpin loop sequences can maintain different 

stabilities. This conserved differential stabilization within the same RNA structure suggests a 

17 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2025. ; https://doi.org/10.1101/2024.12.11.627843doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?X7g7aJ
https://doi.org/10.1101/2024.12.11.627843
http://creativecommons.org/licenses/by/4.0/


potential functional significance for this relatively unexplored motif. This RNA class 

demonstrates that LSC patterns may be of interest in RNAs of unknown function.  

Transfer RNAs (tRNAs) are a well-studied class of noncoding RNAs that are involved in 

translation with a cloverleaf secondary structure containing three hairpins (Fig. 2E). We 

investigated both the stem and loop free energies in tRNAs for energy relationships specific to 

different hairpins. tRNA hairpins group into three distinct regions of stem and hairpin loop ΔG, 

shown with box and whisker plots (Fig. 2F). While the D-loop and anticodon loop have similar 

variability, the anticodon loop is larger and higher energy and is also associated with a more 

stabilized stem. The observation of more destabilizing loops being coupled with more stabilizing 

stems is consistent with the LSC hypothesis. 

MicroRNA (miRNA) precursors (pre-miRNAs) have well-defined structures (Fig. 2G) that are 

conserved for the biogenesis of small RNAs and share a similar function despite substantial 

sequence and structure variation (46, 47). Indeed, pre-miRNA hairpins in bpRNA-1m90 show a 

wider net ΔG distribution than all other types (Fig. 2H), which may be consistent with the target 

sequence diversity of miRNAs (47) and the loop positioning important for Dicer function (48). 

These structures frequently contained poorly stabilized hairpin loops with net ΔGs reaching 5 

kcal/mol, far higher than the hairpins typical of other substructures (Fig. 2H). This high instability 

of the stem closing the hairpin loop is notable due to its proximity to the cleavage site. Because 

of phylogenetic differences in miRNA maturation, we continue this analysis of pre-miRNAs from 

a phylogenetic perspective. 
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Local stability compensation is distinguished by phylogeny 

Owing to species-related differences in form and function of miRNAs, and to the thermodynamic 

nature of LSC, we investigated how LSC correlates with phylogeny. We compared plant and 

metazoan pre-miRNAs, as well as several RNA types belonging to thermophiles and 

non-thermophiles. Plant pre-miRNA hairpins were enriched relative to metazoan pre-miRNAs at 

5.0 kcal/mol and above (Fig. 3A, Supplementary table 2), but these structures included many 

hairpin loops of unrealistic sizes. To account for this, we employed the results of structure 

prediction with constraints (See methods). In the constrained folding data, plant pre-miRNA 

hairpins loops are significantly more stabilized than metazoans (Fig. 3B, Supplementary table 

2), suggesting a distinguishing role of apical hairpin loop stability in metazoan miRNAs. While 

bulges are not significantly distinguished (p= 0.03), plant pre-miRNA internal loops are less 

stabilized than those of metazoa (Fig. 3C-D, Supplementary table 2). These observations are 

consistent with the role of loop-distal regions (49) and duplex stability (50) in modulating plant 

pre-miRNA processing. 
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Figure 3. Differences in net ΔG by phylogeny for select RNA types. (A) plant pre-miRNA 
hairpin net ΔGs (green) and metazoan (grey) net ΔGs before folding with constraints and (B) 
after folding with constraints. (C) plant pre-miRNA bulge ΔGs (green) and metazoan (grey) net 
ΔGs after folding with constraints. (D) plant pre-miRNA internal loop ΔGs (green) and metazoan 
(grey) net ΔGs after folding with constraints. (E) Thermophilic (orange) hairpin net ΔGs and 
non-thermophilic net ΔGs (blue). (F) Thermophilic (orange) bulge net ΔGs and non-thermophilic 
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net ΔGs (blue). (G) Thermophilic (orange) internal loop net ΔGs and non-thermophilic net ΔGs 
(blue). 
 
Thermophilic species exhibit greater hairpin, bulge, and internal loop stability in ncRNAs relative 

to their mesophilic counterparts, in alignment with previous research showing increased GC 

content in tRNAs and rRNAs (39) (Fig. 3E-G). There are exceptions for which differences in 

local stability are either minute or absent, including regulatory elements such as the YkoK 

leader, ydaO, and the cobalamin riboswitch. The functional roles of participating substructures 

may explain the similarity in net ΔG for these structures. Interestingly, the S-adenosylmethionine 

riboswitch (SAM-I), shows strong agreement between thermophilic and non-thermophilic 

species for hairpins and internal loops (Fig. 3E, 3G) yet a lower net ΔG exists for thermophilic 

SAM-I bulges (Fig. 3F). The only SAM-I bulge known to vary across phylogeny is a bulge 

adjacent to the SAM binding pocket, which is suggested to indirectly stabilize the pocket and 

promote the adoption of the binding-competent conformation (51). Deletion of this bulge is 

highly deleterious in B. subtilis, but not in T. tengcongensis, a thermophilic species, which may 

stabilize the binding pocket by other means such as a base triple (51). Thus, in an otherwise 

highly conserved riboswitch, a substructure has a lower net ΔG in thermophiles than it does in 

mesophiles. In light of these observations and in order to bypass confounding biological context, 

we devised an experiment to test LSC in rationally designed constructs. 

 

DMS reactivity of three sequence libraries demonstrates local stability 

compensation  

To directly test LSC, we designed three RNA libraries that systematically varied local stabilities 

for assessment with dimethyl sulfate (DMS) chemical mapping. Each library used a template 

structure containing three bulges and one stem-loop, with randomized sequences in specific 

regions to generate variants with different local stabilities (Fig. 4A). This design allowed us to 
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measure how stability changes affect both local and distal regions. To isolate the effects of local 

stability changes, we engineered constant-energy stems outside the variable regions as internal 

controls for our reactivity measurements. 

Each library showed acceptable coverage of the distribution of net ΔGs in bpRNA-1m90 

(Supplementary Fig. 4A, 4C, 4E). It is noted that the highest net ΔG bulges are 

underrepresented in the library when compared to their natural frequency in bpRNA-1m90. We 

used RNAfold (28) to predict each structure in the libraries and used the structure alignment 

approach bpRNA-align (52) to calculate a structural similarity score between each designed 

structure and its corresponding predicted structure, revealing that RNAfold correctness for the 

designed structures is unimpacted by loop ΔG (Supplementary Fig. 4B, 4D, 4F). The designed 

RNA structures were synthesized and DMS reactivity values were collected with a 

high-throughput sequencing approach (see methods). 
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Figure 4. Library design and local structure AUROC heatmaps. (A) Designed structure 

examples for hairpins, bulges, internal loops, (top, middle, bottom respectively), dashed lines 

indicate the variable region. Average AUROC and structure count heatmaps for cells of (B) 

hairpin, (C) bulge, and (D) internal loop ΔG by adjacent stem ΔG, yellow cells show low AUROC 

or poor agreement of DMS data with the designed structure, while dark blue cells show high 

AUROC with strong agreement, and black cells contain no data. Count heatmaps show the 

number of RNAs contributing to each cell with darker red coloring indicating a higher number of 

RNAs. 

 

To evaluate design success with a single metric, we used an established method to quantify the 

consistency between a given designed structure and the corresponding reactivity data (53). This 

was achieved by calculating the area under receiver operator curve (AUROC) of the DMS 

reactivity data against the designed target structure for each library (see methods). The values 

were binned by stem and loop free energy and are displayed in heatmaps (Fig. 4B-D). The 

heatmaps show lower average AUROC values for structures of higher loop ΔG and lower stem 

ΔG across each structure component type. In each heatmap, a roughly linear boundary exists 

past which local folding fidelity rapidly decreases, indicating that stem and loop energies both 

contribute to local folding fidelity. Furthermore, AUROC correlations are strongest with net ΔG, 

although stem ΔG correlates more than loop ΔG (Supplementary Table 4A). It is noted that a 

number of low stem energy, low loop energy bulges and internal loops have poor AUROC 

values. As a control for the non-local structure, the AUROC scores for the remaining region are 

unaffected by the net ΔG of the local, variable region (Supplementary Fig. 5). 

 

Loop stabilization primarily impacts adjacent stem reactivities. 

We investigated which components of the structures in the library were changing in low AUROC 

structures (Fig. 5). For both local and distal helices, we calculated the average stem reactivity, 
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which is a more direct readout of helix formation than local AUROC. Locally, average stem 

reactivity correlates well with stem-loop net ΔG and shows a strong positive trend. Correlation 

R-squared values were 0.458, 0.259, 0.318 for hairpin loops, bulges and internal loops 

respectively (Fig. 5B, 5F, 5J). These correlations are stronger than loop or stem ΔGs alone 

(Supplementary Table 4B). This indicates that stems closing less stabilized loops either adopt 

partially folded states or completely unfold. Distal stem reactivity shows no correlation with net 

ΔG (Fig. 5C, 5K), except for a weaker but slightly positive trend in bulges (Fig. 5G). These data 

show that RNA stem loop instabilities have predominantly local effects. 
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Figure 5. Local vs distal stem reactivity correlations. (A) Example structure from the hairpin 
library with adjacent and distal stems to the hairpin loop labeled and local stem base pair 
indices labeled. (B) Linear regression between hairpin net ΔG and log average local stem 
reactivity, compared to average distal (C) stem reactivity. (D) Average net ΔG bin reactivity per 
position away from the hairpin loop. (E) Example structure from the bulge library with adjacent 
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and distal stems to the bulge labeled and local stem base pair indices labeled. (F) Linear 
regression between bulge net ΔG and log average local stem reactivity, compared to average 
distal (G) stem reactivity. (H) Average net ΔG bin reactivity per position away from the bulge, 
where an index is present on both stems, the average is used. (I) Example structure from the 
internal loop library with adjacent and distal stems to the internal loop labeled and local stem 
base pair indices labeled. (J) Linear regression between internal loop net ΔG and log average 
local stem reactivity, compared to average distal (K) stem reactivity. (L) Average net ΔG bin 
reactivity per position away from the internal loop, where an index is present on both stems, the 
average is used. 

 

We next sought to investigate how insufficiently compensated stems were impacted at the 

residue level. We calculated the average DMS reactivity of each base pair succeeding the loop 

for stems belonging to five different net ΔG bins. Hairpins, bulges, and internal loop averages 

and 95% confidence intervals are plotted (Fig. 5D, 5H, 5L) up to position 6, after which too few 

data points exist for the higher energy bins. For bulges and internal loops, values for positions 

present on both stems were averaged. In agreement with average stem reactivity results, 

hairpin loop, bulge, and internal loop per-nucleotide reactivity distributions increase 

monotonically with each ΔG bin. Stem reactivity increases more for the closing base pair 

(position 1) than for the subsequent pairs. Stems closing hairpin loops show this behavior more 

strongly and for lower free energy bins than those closing bulges and internal loops, possibly 

due to strain involved in loop closure for hairpins. Bins of higher net ΔG experience dramatic 

shifts in reactivity for the middle of the stem (positions 2-5), and for all loop types, the highest 

energy bin (ΔG > 0 kcal/mol) shows reactivity consistent with unpaired nucleotides for the entire 

stem. Importantly, the net ΔG range between -5 kcal/mol and 0 kcal/mol shows reactivity values 

that are intermediate between paired reactivities and unpaired reactivities. This intermediate 

category is the most represented in bpRNA-1m90 histograms, while fewer substructures in the 

database belong to the high energy bin (0 kcal/mol to 10 kcal/mol), and still fewer belong to the 

lowest energy bin (-20 kcal/mol to -15 kcal/mol) (Supplementary Fig. 4A, 4C, 4E).  
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To investigate other reactivity changes possibly responsible for the observed AUROC values, 

average loop reactivities were evaluated across stem-loop net ΔGs (Supplementary Fig. 

6A-C), revealing weak trends towards lower reactivity with respect to stem-loop net ΔG. These 

trends are similar in strength and magnitude across loop types, and the trends for local loop 

reactivity are marginally stronger than those of the distal loop. It is expected that loop reactivities 

can significantly decrease when a bulge or internal loop shifts (Supplementary Fig. 7B). While 

these weak negative trends in loop reactivity do not compare to the correlations found between 

substructure net ΔG and stem reactivity, they partially contribute to local AUROC values. Thus, 

loop residues are not primarily responsible for changes in AUROC with increasing net ΔG, 

rather, it is the degree to which stems compensate for loop closure that produces the observed 

changes in local AUROC. 

 

Local substructure net free energies are correlated to local folding fidelity 

and fit the Hill equation 

We next sought to define a relationship between LSC and local folding fidelity by comparing net 

ΔGs with the AUROC values for each structure type such that a given net ΔG estimates the 

resulting folding behavior. Highlighted in the hairpin loop scatterplot (Fig. 6A) are three 

examples showing high, medium and low agreement with the designed structure (Fig. 6B). 

Structures with low AUROC (i.e. 0.25) contain many bases that were designed to be paired yet 

have higher reactivity than those of the adjacent loop. 

In order to reduce noise associated with the DMS reactivity data and the AUROC calculation, 

AUROC data was averaged across bins of 0.2 kcal/mol net ΔG. The observed local AUROC 

asymptotically approaches 1.0 for decreasing net ΔG, suggesting a two-state model that 

includes a state that folds according to the design and a divergent folding state at low AUROC 
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values. This observation of a two-state model with saturation led us to fit the averages to the Hill 

equation (Fig. 6C-E). Hairpin, bulge, and internal loop AUROC data cross an AUROC of 0.9, 

which represents minor DMS data disagreement, at -4, -9, and -6 kcal/mol, respectively (Fig. 

6C-E). These thresholds show the least stability needed to fold with reasonable consistency. 

Hairpin AUROC data show a steeper curve (larger Hill coefficient) (Supplementary Table 5) 

and a clearer fit line, indicating that hairpin loops are less tolerant of reductions in stability, 

compared to bulges and internal loops. Relative to hairpins and internal loops, bulges require a 

greater degree of stabilization, as indicated by the more negatively shifted curve. The 

consistency of the fit to the Hill equation suggests that net ΔG is, on average, an effective 

predictor of local folding fidelity. 
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Figure 6. Local structure fidelity curve fitting. (A) Hairpin net ΔG vs average local AUROC, 
points indicated by black, magenta, and cyan are shown in (B), raw reactivity values 
color-coded by nucleotide for three example designed hairpins, the boxed region is involved in 
AUROC calculation. (C,D,E) Hill equation curves fit to net ΔG bins (0.2 kcal/mol) versus the 
mean AUROC for each bin. 

Discussion 

Here we demonstrate that local stability compensation, wherein loops are stabilized by their 

adjacent helices, can be observed within an RNA meta-database and in DMS reactivity data 

collected for three structure libraries. The inherent diversity of structures and functions 

throughout RNA families leads to varying levels of LSC, and the clearest trends are observed 

for bulges and internal loops, while a wider range of net energies exists for hairpins. By studying 

three libraries of template-based RNA designs, we show a degree of independence of local 

stability on the remainder of the structure, and reveal how the net free energy of substructures 

influence the folding of the involved stem. 

Differences in local substructure stability exist between RNAs of different form and function. 

Bulges, which showed the strongest correlation between stem and loop-free energy, had the 

least variance in net free energy by RNA type, while the opposite was observed for hairpins. 

The structural and functional contexts of different RNA types also play a role in stability variation 

as the Turner parameters do not capture the free energy contributions of ligand binding, non 

Watson-Crick-Franklin base pairs, and tertiary interactions—an important limitation of our study. 

Additionally, we averaged the free energies of flanking stems of bulges and internal loops, which 

is an efficient way to define a “local” substructure; however, this approach overlooks stem 

symmetry and obfuscates isolating one substructure from another. A more refined model for 

determining locality should be pursued to address this limitation. 

Many RNA families show patterns that are consistent with LSC. The tRNA T, D, and anticodon 

loops were clustered into distinct stem and loop free energy regions (Fig. 2F). While the 
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anticodon loop is typically larger, possibly to accommodate other interactions such as with the 

codon, it also shows a more stable associated stem, consistent with the LSC hypothesis. C4 

antisense RNAs are characterized by two hairpin loops consistent with LSC: H2 is larger, and 

has an adjacent stem with high GC content, while H1 is a highly stable tetraloop and is closed 

by a stem with low GC content (Fig. 2B). Lastly, this observation may be applied to unknown 

structures. For example, the TwoAYGGAY motif has two identical hairpin loops which show 

distinct patterns of net free energy (Fig. 2D), suggesting different structural contexts which may 

be of interest for future research. 

Such functionally relevant LSC patterns include taxonomy-specific distinctions. For example, 

metazoan microRNA hairpin loops exhibited an enrichment of the highest net ΔGs, which may 

be consistent with functions of the apical loop. DGCR8 (54) and hemin (55) interact at the UGU 

motif in the apical loop, as well as a peptide (56) designed to prevent miRNA maturation. 

Additionally, the instability of the stem adjacent to the hairpin loop may facilitate the adoption of 

the local helical distortion favorable for interactions with the dsRBD of DICER (57). In contrast, 

plant pre-miRNAs, which do not involve the hairpin loop for maturation, do not exhibit high 

energy hairpin loops, but instead show an enrichment of high energy internal loops. Taken 

together, these observations suggest that substructure net free energy is linked to biological 

context. Furthermore, patterns in net free energy may provide clues to uncover functions and 

highlight biological differences that could drive future investigations. 

The designed structure libraries revealed contributions of stem and loop free energy to folding 

fidelity, which solidifies net ΔG as an appropriate metric for LSC. The primary factor underlying a 

substructure’s folding fidelity was the reactivity of the involved stem or stems. Comparing these 

reactivities against those of distant stems revealed that LSC impacts the local stem much more 

than distal stem, suggesting that local substructures maintain a degree of independence or 

modularity on the thermodynamic level. Notably, the distal reactivities for bulges showed a 
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detectable trend unlike the distal reactivities for hairpins and internal loops, which could be 

related to the underrepresentation of high energy bulges (Supplementary Fig. 4). Loops were 

found to decrease in reactivity with respect to net ΔG, possibly due to the influence of 

non-canonical interactions or artifacts of successive reactive nucleotides (43). 

The relationship between net ΔG and folding fidelity is half sigmoidal, with substructure free 

energies around -20 to -10 kcal/mol plateauing at an AUROC of 1.0 (Fig. 6C,D,E). Such 

over-stabilized structures are very rare in naturally occurring structures, consistent with the idea 

of an “energy budget”, wherein G-C base pairs have a tendency to not be overused because of 

the diminishing returns as indicated by the plateauing trend. In contrast, intermediate net ΔG 

values (-10 to 0 kcal/mol) are abundant in naturally occurring structures. The reactivity data 

(Fig. 5D,H,L) shows intermediate reactivity across these substructures and may be explained 

by partial folding, transient folding, or likely an ensemble of folding states (58–60), which are 

implicated in RNA function. Under-stabilized structures with a net ΔG greater than 0 kcal/mol 

are infrequent, and could possibly represent substructures that require instability or are 

stabilized by external interactions (e.g. microRNA hairpin loops interacting with hemin and 

DGCR8) or tertiary interactions. Tertiary motifs involve non-local interactions and were not 

included in the study, however, it is likely that the local stability of participating substructures 

may influence tertiary motifs or their formation. Investigating the relationship between local 

stability compensation and tertiary contact formation would be a logical next step for future 

research. 

In MFE RNA structure prediction, randomized sequences can fold with a similar MFE compared 

to the original sequence (61), and MFE is not distinguished between known structured RNA and 

random sequences (62). Additionally, since the number of possible helices increases 

exponentially with length (61), it is clear that additional constraints are needed to improve 

thermodynamic structure prediction. Our results suggest that local free energy balance in 
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addition to global minimum free energy will improve thermodynamic approaches for structure 

prediction as well as the inverse folding of RNA. 

Here, we describe a thermodynamic locality that occurs fundamentally in RNA structure and has 

widespread implications for the rational design of RNA, where both sequence and structure are 

engineered to achieve a desired outcome. According to the presented relationships between 

LSC and local folding behavior, an RNA engineered from well-folding substructures may also be 

expected to fold well, and an otherwise stable RNA may include intermediate to under-stabilized 

substructures, since the effects of this instability on the remainder of the structure are mostly 

insignificant (Fig. 5, Supplementary Fig. 5). Further work with RNA libraries and 

high-throughput chemical mapping could reveal similar relationships in multiloops and other 

RNA motifs, as well as uncover the role of LSC in small binding sites. With further 

characterization, LSC could serve as a guide for the design of future biotechnology including 

molecular machines composed of structured RNAs. 
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