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Cross-sections of unknotted ribbon disks and
algebraic curves

Kyle Hayden

ABSTRACT

We resolve parts (A) and (B) of Problem 1.100 from Kirby’s list [Problems in
low-dimensional topology, in Geometric topology, AMS/IP Studies in Advanced
Mathematics, vol. 2 (American Mathematical Society, Providence, RI, 1997), 35-473]
by showing that many nontrivial links arise as cross-sections of unknotted holomorphic
disks in the four-ball. The techniques can be used to produce unknotted ribbon surfaces
with prescribed cross-sections, including unknotted Lagrangian disks with nontrivial
cross-sections.

1. Introduction

A properly embedded surface ¥ in B* is said to be ribbon if the restriction of the radial
distance function from B* to ¥ is a Morse function with no local maxima. As an important
class of examples, holomorphic curves in B* C C? are naturally ribbon. This Morse-theoretic
perspective has shed light on the topology of holomorphic curves ¥ C C? and the links that
arise as transverse intersections L, = ¥ N S2, where S? is a sphere of radius r > 0; see [Fie89,
BOO01, Bor12, Hay17]. Rudolph [Rud83b] and Boileau and Orevkov [BOO01] showed that the links
obtained as cross-sections of holomorphic curves are precisely the quasipositive links, a special
class of braid closures. To fully exploit this characterization, it is necessary to understand the
relationship between different cross-sections of the same holomorphic curve. This is the subject
of Problem 1.100 in Kirby’s list.

PROBLEM 1.100A/B [KIrR97]. Let ¥ C C2? be a smooth algebraic curve, with L, = ¥ N S3
defined as above, and let g denote the Seifert genus.

(A) Ifr <R, is g(Ly) < g(Lr)?
(B) If Lp is an unlink and r < R, is L, an unlink?

For comparison, by Kronheimer and Mrowka’s proof of the local Thom conjecture [KM94],
the slice genus g, is known to satisfy g.(L,) < g«(Lg) for » < R. In addition, since Seifert and
slice genera are equal for strongly quasipositive links by [Rud93], the answer to part (A) of
Problem 1.100 is ‘yes’ when L, is strongly quasipositive. Part (B) is a special case of part (A),
and Gordon’s work [Gor81] on ribbon concordance implies that the answer to (B) is ‘yes’ when
L, is a knot, i.e. connected. In spite of this, we show the answers to (A) and (B) are both ‘no’.

THEOREM 1. Every quasipositive slice knot arises as a link component in a cross-section of an
unknotted holomorphic disk in B* ¢ C2.
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FiGURE 1. Embedding one ribbon-immersed surface in another, simpler one.

The holomorphic disks constructed in the proof of Theorem 1 are compact pieces of algebraic
curves, hence provide the desired counterexamples to part (B) of Problem 1.100. The construction
is inspired by a version of the Whitney trick that admits an appealing statement in terms of
ribbon-immersed surfaces in S2, i.e. immersed surfaces with boundary whose singularities are of
the type depicted in Figure 1(a): Every ribbon-immersed surface F' C S® lies inside a larger one
F' that is isotopic (through immersions that are injective along the boundary) to an embedded
surface F". Moreover, the surface F/ may be taken to have the same topological type as F;
the construction is depicted in Figure 1. The corresponding four-dimensional construction can
be used to embed an arbitrary ribbon surface inside one that is unknotted, i.e. isotopic to an
embedded surface in 0B*.

Any counterexamples to part (A) of Problem 1.100 constructed using Theorem 1 will have
disconnected cross-sections L,. However, we can use an alternative construction to obtain a
sharper result.

THEOREM 2. For every integer n > 0, there is a smooth algebraic curve %, and a pair of positive
numbers r < R such that g(L,) = 2n+1 and g(Lg) = n+1, where L, = ¥,NS? and L = EnﬂS%
are knots.

For each X,,, the smaller cross-section L, is a prime quasipositive 4-braid slice knot and Lg
is strongly quasipositive.

We also apply these techniques to study Lagrangian cobordisms between Legendrian links,
as introduced in [Chal0]. A Lagrangian filling of a Legendrian link L in the standard contact 53
is a properly embedded Lagrangian surface ¥ in the standard symplectic B* whose boundary
is L. We further require the Lagrangian ¥ C B? to be orientable, exact, and collared; for the
significance of these latter two conditions, see [Chal2]. As discussed in [CNS16], it is currently
unknown if there are nontrivial knots that arise as collarable cross-sections of a Lagrangian filling
of the unknot. We show that the answer is ‘yes’ if the cross-section is allowed to be disconnected.

THEOREM 3. There are infinitely many nontrivial links that arise as collared cross-sections of
unknotted Lagrangian disks in the standard symplectic B*.

The remainder of the paper is organized as follows. In §2, we explain the topological
construction underlying our primary results. In § 3, we review the necessary background material
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FIGURE 2. Band surgeries on unlinks and the corresponding ribbon surfaces.

on quasipositive braids and then prove Theorems 1 and 2. We close by constructing the
Lagrangian disks needed to prove Theorem 3 in §4.

Remark. In a previous version of this work, it was claimed that Problem 1.100(B) has a positive
answer. The argument relied on a statement about unknotted ribbon disks that was shown to
be false by Jeffrey Meier and Alexander Zupan in a private correspondence (January 17, 2018).
Their illumination of the error in the original argument ultimately led to Theorem 1 above.
I wish to thank Meier and Zupan for their invaluable correspondence.

2. The topological construction

This brief section offers an informal account of the topological construction that inspires
Theorem 1. Given a link L C 83, a band b: I x I — S3 is an embedding of the unit square
such that L N b(I x I) = b(I x JI). A link L’ is obtained from L by band surgery along b if
L' = (L\b(I x 9I))Ub(dI x I). For example, Figure 2(a, b) presents the stevedore knot 6; as the
result of band surgery on an unlink. As illustrated in Figure 2(c), a description of a link L as a
result of band surgery on an unlink yields a natural ribbon-immersed spanning surface F' C S3
with OF = L: simply attach the bands to a collection of embedded disks bounded by the unlink.

In general, a ribbon-immersed surface F' C S will not be isotopic (through immersions that
are injective along the boundary) to an embedded surface. However, we can always find another
ribbon-immersed surface F' C S2 containing F such that F’ is isotopic to an embedded surface.
The construction is summarized in Figure 1. For an example, see Figure 2(f), where the ribbon
disk bounded by the stevedore knot from Figure 2(c) is embedded in a ribbon disk for the unknot
that is isotopic to a standard embedded disk.

Under the correspondence between ribbon-immersed surfaces F' C S3 and ribbon surfaces
¥ C B* (as in [Has83]), the preceding observation implies that every ribbon disk embeds as a
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FIGURE 3. Bennequin surfaces for the braids gy (left) and 5 (right).

connected component in a sublevel set of an unknotted ribbon disk. Restricting to the perspective
of cross-sections, we obtain a topological version of Theorem 1.

Observation 2.1. Every knot that bounds a ribbon disk in B* arises as a link component in a
cross-section of an unknotted ribbon disk in B?.

3. Quasipositive band surgeries and algebraic curves

3.1 Bands and Bennequin surfaces
In [BKL98], Birman, Ko, and Lee define an alternative presentation of the n-stranded braid
group B, using generators of the form

oij=(0i0j2)0j_1(0;---0j2)", 1<i<j<n

Such generators had been used earlier by Rudolph [Rud83a], who termed o;; a (positive)
embedded band. An expression of a braid in B,, as a word w in the generators o;; is called an
embedded bandword. Given an embedded bandword w for (3, there is a canonical Seifert surface
F, called the Bennequin surface, constructed from n parallel disks by attaching a positively
(respectively negatively) twisted embedded band between the ith and jth disks for each term
oi; (respectively o; 1) in w; see Example 3.1 below. Note that the Euler characteristic of the

irj
resulting surface is n — |w|, where |w| denotes the length of the embedded bandword.

Ezxample 3.1. The Bennequin surfaces in Figure 3 correspond to embedded bandwords By =
01,40201_’?1)02740173 and (7 = 01,4020101_501_102740101,301_1. These are minimal-genus Seifert
surfaces for 5y and (1. Indeed, we can confirm g(8y) = 1 and g(31) = 3 using their Alexander
polynomials (which have degree two and six, respectively) and the bound g(K) > deg(Ak)/2,
where K is any knot and deg(Ag) is defined as the breadth of Ag.

A braid is called strongly quasipositive if it is a product of positive embedded bands [Rud90],
cf. [Rud83a]. More generally, we define a braid to be quasipositive if it is a product of arbitrary
conjugates of the standard positive generators, i.e. a product of subwords wo;w™!, which we
simply call (positive) bands. An expression of a braid as a word in these bands is called a
bandword, and a construction analogous to the one described above associates a ribbon-immersed
spanning surface to each bandword.

3.2 Construction of algebraic curves

We now build the desired algebraic curves using a special type of quasipositive band surgery: that
is, the addition of a band wo;w ™! to a quasipositive braid. This relies on the following lemma,
due to Feller [Fell6, Lemma 6].
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F1GURE 5. Band surgery and isotopy of the braid closure.

REALIZATION LEMMA (Feller [Fell6], cf. Orevkov [Ore96], Rudolph [Rud83b]). Let 8 and 7 be
quasipositive n-braid words such that v can be obtained from (8 by applying a finite number of
braid group relations, conjugations, and additions of a conjugate of a positive generator anywhere
in the braid. Then there exists a polynomial of the form p(z,w) = w" +c,_1(2)w™ 1 +- - +co(2)
and constants 0 < r < R such that the intersections of ¥ = {p(z,w) = 0} with S? and S3, are
isotopic to B and -y, respectively.

To prove the main theorem, it suffices to adapt the topological construction from § 2 using
quasipositive braids and band surgeries.

Proof of Theorem 1. Let 8 € By, be a quasipositive braid expressed as a product of positive bands
wo;w L. Let m denote the number of singularities in the ribbon-immersed Bennequin surface F
for 8. We begin by constructing a quasipositive braid 8’ € B4, that contains 3 as a sublink.
Each ribbon singularity in F' corresponds to a region in the braid as depicted in Figure 4(a)
(or its rotation by 180°, with strand orientations reversed); here the dashed strands represent
the crossing strands in the positive band and may pass over or under the black strand in the
center of the region where the dashed strands are not drawn. After braid isotopy of the crossing
strands, we obtain the quasipositive braid in Figure 4(b). We then introduce an additional strand
as shown in Figure 4(c); the new strand passes under all others except at the two points shown
in the figure. After performing these modifications for each of the m original singularities, we
obtain a quasipositive braid ' € B, ., that contains 8 as a sublink. Up to smooth isotopy, 3’
is obtained from § by adding m unknots, linked with § as depicted in Figure 4(d).

Next, let v € Byt be the braid obtained from ' by adding a positive generator within each
of the m neighborhoods as shown in Figure 5(a). By the lemma, there exists an algebraic curve
¥ and constants 0 < r < R such that 8/ = SN IB;} and v = £ N IB}.

Next we show that « is an unknot. Through the smooth isotopy depicted in Figure 5(b,c),
we see that v € By, is isotopic to a quasipositive braid 4 € B, whose ribbon-immersed
Bennequin surface in fact contains no singularities and is therefore embedded. Observe that this
braid +' also has the same number of bands as (. Since the slice-Bennequin inequality is sharp
for quasipositive braids [Rud93, Hed10], the number of bands in 5 equals n+2g,(5) —1=n—1.
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It follows that the Bennequin surface for 4" has Euler characteristic —1, implying that +' (and
thus ) is an unknot.

Finally, we show that the compact piece of ¥ bounded by -y is a holomorphically unknotted
disk. For notational convenience, we rescale C? so that R = 1 and let ¥; denote the resulting
holomorphic curve in the unit four-ball. That ¥ is a disk follows from the fact that holomorphic
curves are genus-minimizing [KM94, Rud93]. To show that 37 is holomorphically unknotted, we
employ Eliashberg’s technique of filling by holomorphic disks (as in [BF98, Proposition 2]). The
braid  can be viewed as a transverse unknot (in the contact-geometric sense) with self-linking
number —1. It follows that it bounds an embedded disk D C S® whose characteristic foliation
(see [Etn03]) is radial with a single positive elliptic point p € D. There is a small interval [0, €)
and a family of disjoint holomorphic ‘Bishop disks’ A; C B* for t € [0,¢) emerging from p
such that A; is properly embedded in B* with boundary in D C S for ¢t > 0 (and Ag is a
degenerate disk identified with the given elliptic point). By [Eli95, Corollary 2.2B], the Bishop
family can be extended to a family of holomorphic disks foliating a three-ball bounded by the
piecewise-smooth two-sphere D U Yq. In particular, the extended family includes >, so 31 can
be unknotted through holomorphic disks. O

Ezxample 3.2. The quasipositive slice knot given by the mirror of 859 can be represented by
the 3-braid 5 = 020%0201_202_10173, which embeds in the 5-braid ' = wagw*101,5, where w =
205 o5 ooy 2oy La1o. Following the above procedure, 3 arises as a cross-section of a

Loy 5, where w' is obtained

o5 ooy
holomorphic disk in the four-ball bounded by the unknot v = w’oow™
from w by the two replacements 032, — 030403 and 0’% — 010907.

Remark 3.3. The construction from the proof above generalizes to show that every quasipositive
knot K embeds as a link component in a cross-section of an algebraic curve in the four-ball
whose boundary is a strongly quasipositive knot with the same slice genus as K.

Next, we produce the algebraic curves needed for the refined solution to Problem 1.100(A).
By [HS00, Theorem 1.6] (see also [ST89]), band surgery decreases the Seifert genus of a knot if
and only if the knot has a minimal genus Seifert surface that contains the band. Therefore, to
violate the inequality from Problem 1.100(A), we seek pairs of quasipositive braids § and v such
that v is obtained from £ by band surgery along a band lying inside a minimal genus Seifert
surface for f.

Proof of Theorem 2. For each n > 0, define a pair of four-braids as follows:

B = o1,409(0T 07 307 o2 a(0T 01307 "),
T = 014020940701 305 1.
Observe that each 5, is quasipositive and each =, is strongly quasipositive. Bennequin surfaces
for By and By appear in Figure 3. We can obtain v, from 3, by adding 2n + 2 positive bands:
Adding 01,3 in the middle of the term (a?ai :%‘71_ ™) in B, eliminates that entire term, adding
o} to the end of B, eliminates the term o; ", and then o4+ is added to the end of the word.
(The final term is added to ensure that -, is a knot and to simplify the expression of its Seifert
genus.) By the lemma, there exists an algebraic curve ¥, and constants 0 < r < R such that
By =X, NOBL and 7, = X, N OB%.

It remains to calculate the Seifert genera of 3, and ~,. Since -, is strongly quasipositive, its
Bennequin surface realizes the Seifert genus of ~,; see [Rud93]. This surface is built from four
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F1GURE 6. Hopf plumbing across a band of like sign.

disks and 5 4 2n bands and has connected boundary, hence has genus n + 1. To compute the
Seifert genus of 5, we show that its Bennequin surface is also genus-minimizing. This surface
is built from four disks and 5 + 4n bands, hence has Euler characteristic y = —1 — 4n. Since its
boundary is a knot, the genus is (1 — x)/2 = 2n + 1. For n = 0 and n = 1, we confirmed that
these surfaces are genus-minimizing in Example 3.1. We proceed by induction. Let us assume
the Bennequin surface for 3,1 is minimal, where n > 2. The braid §,, can be viewed as being
obtained from f,,_1 by four replacements of the form olﬂ — alﬂ. As illustrated in Figure 6, the
replacement o1 — 0% can be viewed as the result of plumbing a positive Hopf band across the
oi-band. The replacement o b o 2 is analogous, realized by plumbing a negative Hopf band
across a oy L pand. It follows that the Bennequin surface for 3, is obtained from that of 8,_1 by
repeated Hopf plumbing. Since the Bennequin surface for 5,_1 is genus-minimizing, it follows
from [Gab83| that the Bennequin surface for 3, is genus-minimizing as well. O

4. Unknotted Lagrangian disks with nontrivial cross-sections

In this final section, we adapt the construction from §2 to the Lagrangian setting. We assume the
reader is familiar with the basics of Legendrian knot theory and front diagrams for Legendrian
links; see, for example, Etnyre’s survey [Etn05]. For background on Lagrangian fillings of
Legendrian links, see [Chal0].

We use the following theorem to construct the desired Lagrangian surfaces.

THEOREM 4.1 [BST15, Chal0, EHK16, Dim16]. If two Legendrian links L. in the standard
contact S3 are related by any of the following three moves, then there exists an exact, embedded,
orientable, and collared Lagrangian cobordism from L_ to L.

Isotopy: L_ and L. are Legendrian isotopic.

0-Handle: The front of Ly is the same as that of L_ except for the addition of a disjoint
Legendrian unknot as in the left side of Figure 7.

1-Handle: The fronts of Ly are related as in the right side of Figure 7.
Remark 4.2. A cross-section ¥ N S3 of a Lagrangian surface ¥ C B* is said to be collarable if
there exists e > 0 and a family of isotopic Lagrangian surfaces ¥; with ¥y = ¥ such that: (i) for

all t € [0, 1], ¢ is transverse to S> and coincides with ¥ outside B\ int(B._,); (ii) the vector
field 8/0r is tangent to X1 near the cross-section S2 N ¥j.

o m < > Nl e T

Ficure 7. Diagram moves corresponding to attaching a 0-handle and an oriented 1-handle.
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FIGURE 8. A pair of Lagrangian disks.

Example 4.3. Consider the sequences of front diagrams in Figure 8. The implied first step in
each sequence is the attachment of some number of 0-handles. Applying Theorem 4.1, part (a)
corresponds to a Lagrangian filling of the mirror of the knot 946, which is seen to be a disk because
it consists of two O-handles joined by a single 1-handle. (This sequence is adapted from [HS15,
Example 4.1].) Part (b) corresponds to a Lagrangian disk bounded by a Legendrian unknot.
Observe that the penultimate front in this sequence depicts a two-component link formed from
the knot 11n739 and an unknot.

To prove Theorem 3, we generalize the construction from part (b) of Figure 8.

Proof of Theorem 3. Let K be a Legendrian knot that bounds a ribbon-immersed disk in S3
whose n ribbon singularities all have the special form depicted on the left side of Figure 9.
Moreover, let us assume that the link L obtained by resolving each such singularity as in Figure 9

420

https://doi.org/10.1112/50010437X19007012 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007012

UNKNOTTED RIBBON DISKS AND ALGEBRAIC CURVES

\((
<
<

FiGUrE 9. Resolving a ribbon singularity.

4 0-handle .. 1l-handle 4 1-handle ‘ isotopy

&

.,

.
*
4 K

Y Mg SV

FiGURE 10. Constructing an unknotted Lagrangian disk with a nontrivial cross-section.

)

&

is an (n+1)-component unlink, each of whose components bounds a Lagrangian disk constructed
as in Theorem 4.1. Working in reverse, we can attach 1-handles to this collection of disks to obtain
a single Lagrangian disk > bounded by K. As discussed in Remark 4.4 below, one can readily
produce infinitely many knots that fit into this construction.

We claim that ¥ embeds into an unknotted Lagrangian disk Y'. To see this, consider the
(2n + 1)-component unlink L’ obtained from L by introducing unknotted components near each
ribbon singularity as in the first step of Figure 10. This unlink bounds a collection of (2n + 1)
Lagrangian disks. By attaching n 1-handles as in the second step of Figure 10, we obtain a
collection of (n+1) Lagrangian disks; this collection consists of 3 linked with n unknotted disks.
Finally, we attach n more 1-handles as shown in the third step of Figure 10, producing a single
Lagrangian disk ¥'. All ribbon singularities of the corresponding ribbon-immersed surface in S3
can be eliminated using the isotopy in the final step of Figure 10, so the boundary of ¥’ is an
unknot. By construction, ¥’ contains K as a link component in a collared cross-section.

To see that these Lagrangian fillings of the unknot are unknotted as embedded disks in B*,
we appeal to work of Eliashberg and Polterovich [EP96] which implies that any two properly
embedded Lagrangian disks in B* with collared, unknotted boundary are in fact isotopic through
such Lagrangian disks. Therefore, the fillings of the unknot constructed above are isotopic to the
standard unknotted filling of the unknot. O

Remark 4.4. To produce examples of Legendrian knots fitting into the above construction, it can
be convenient to start with a Legendrian knot K’ that can be transformed into a Lagrangian-
fillable unlink by applying resolutions of the form depicted in Figure 11. By modifying each of
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FiGURE 11. Producing knots that fit into the construction from the proof of Theorem 3.

these regions as shown, we obtain a Legendrian knot K which also bounds a Lagrangian disk
and fits into the construction from the proof of Theorem 3.
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