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Quasipositive links and Stein surfaces
KYLE HAYDEN

We study the generalization of quasipositive links from the 3-sphere to arbitrary
closed, orientable 3-manifolds. Our main result shows that the boundary of any
smooth, properly embedded complex curve in a Stein domain is a quasipositive
link. This generalizes a result due to Boileau and Orevkov, and it provides the
first half of a topological characterization of links in 3-manifolds which bound
complex curves in a Stein filling. Our arguments replace pseudoholomorphic curve
techniques with a study of characteristic and open book foliations on surfaces in
3- and 4-manifolds.

57R17; 57M25, 32Q28

1 Introduction

The tradition of studying complex varieties in Cn via their intersection with smooth
hypersurfaces has played a motivating role in knot theory almost since its inception.
For n = 2, the study of braids has been tied especially tightly to this line of inquiry. In
[30], Rudolph introduced the notion of quasipositive braids and links in S3 and showed
that each such link arises as the transverse intersection of the unit sphere S3 ⇢ C2 with
a smooth algebraic curve f�1(0) ⇢ C2 , where f is a non-constant polynomial. More
generally, Rudolph conjectured that any link in S3 arising as the transverse intersection
between a smooth complex curve and the unit sphere in C2 is quasipositive. This
was confirmed by Boileau and Orevkov in [7], whose proof uses Gromov’s celebrated
theory of pseudoholomorphic curves.

Many of these ingredients have natural analogs when C2 is replaced with an arbitrary
Stein surface, a complex surface X that admits a proper holomorphic embedding as a
closed subset in some Cn . In this setting, the role of the unit 3-sphere in C2 is played
by a hypersurface Y ⇢ X of constant radius in Cn . The region in X bounded by Y is
a Stein domain. Any such level set Y in X has a natural contact structure ⇠ given by
complex tangent lines, and we can define quasipositive braids and links with respect to
open book decompositions of Y compatible with ⇠ ; see Section 2. Our main theorem
says that the analog of Rudolph’s conjecture also holds in this setting.
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Theorem 1.1 The boundary of any smooth, properly embedded complex curve in a
Stein domain is a quasipositive link.

In particular, we show that any such link is transversely isotopic to the closure of a
quasipositive braid with respect to an open book whose monodromy is a product of
positive Dehn twists along homologically nontrivial simple closed curves; motivated
by analogous terminology for Lefschetz fibrations, we call this a positive allowable
open book. In contrast with [7], our argument entirely avoids Gromov’s theory of
pseudoholomorphic curves and any results about positivity of intersections between
such curves [26, 25]. Instead, we study complex curves in Stein surfaces via their
characteristic foliations (described precisely in Definition 4.9). We reduce this to
a study of (possibly singular) surfaces in 3-manifolds, where we prove new results
relating characteristic and open book foliations; see Theorems 1.3 and 1.4 below.

We also prove a partial converse to Theorem 1.1.

Theorem 1.2 If K ⇢ Y is the closure of a quasipositive braid with respect to a positive
allowable open book, then K bounds a properly embedded symplectic surface in a Stein
filling of Y .

This offers evidence for a stronger converse to Theorem 1.1: a symplectic surface can
always be made pseudoholomorphic by a deformation of the ambient almost-complex
structure compatible with the natural symplectic structure on X , though it is unclear
whether or not this can be accomplished through a deformation of the Stein structure
itself. In the case where @X admits a planar open book decomposition, Hedden has
shown in [20] that quasipositivity is also a sufficient condition for a braid to bound
a complex curve. In a different direction, we point out that the relative version of
the symplectic Thom conjecture implies that the surfaces constructed in the proof of
Theorem 1.2 are genus-minimizing in their relative homology classes; see [16].

A few words on our notions of quasipositivity are in order. By a classical theorem of
Alexander, every closed, orientable 3-manifold admits an open book decomposition.
Any link that is braided with respect to this open book can be represented in terms
of a pointed monodromy of a page of the open book decorated with marked points.
We define quasipositive braids for any open book in terms of certain generators of the
pointed mapping class group of the page. Moreover, given a closed, orientable contact
3-manifold (Y, ⇠), we say that a transverse (resp. smooth) link type K is quasipositive
if there is an open book decomposition of Y supporting ⇠ in which K is transversely
(resp. smoothly) isotopic to a quasipositive braid. As evidenced by Theorems 1.1 and
1.2, such links exhibit close connections to complex and symplectic structures.
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We also study the natural generalization of strongly quasipositive links, a special class
of nullhomologous quasipositive links. These links bound symplectic surfaces in a
compact piece of the symplectization of (Y, ⇠), and these surfaces are in fact isotopic
to Seifert surfaces in Y . When (Y, ⇠) is tight, these Seifert surfaces can be used to
show that the Eliashberg-Bennequin inequality is sharp for all strongly quasipositive
links. These same ideas can be used to generalize a result of Rudolph’s [32]: the only
strongly quasipositive knot in a symplectically fillable contact 3-manifold that bounds
a smooth, properly embedded “slice” disk in a symplectic filling is the unknot.

As mentioned above, a key step of our proof of Theorem 1.1 involves relating quasi-
positivity to properties of characteristic foliations on surfaces. These results are framed
in terms of Morse functions on surfaces. Following [8, §9.3], we say that a vector field
v on a surface S is weakly gradient-like for a function f : S ! R if the zeroes of v
coincide with the critical points of f and df (v) > 0 outside the zeroes of v. By exten-
sion, we say that a characteristic or open book foliation on S is weakly gradient-like
for f : S ! R if it is directed by a vector field that is weakly gradient-like for f .

Theorem 1.3 Let (Y, ⇠) be a contact 3-manifold containing transverse links K0 and
K1 that cobound an embedded surface S ⇢ Y , oriented so that @S = K1 [ �K0 . If K0
is transversely isotopic to a quasipositive braid with respect to a compatible open book
(B,⇡) and the characteristic foliation on S contains only positive singular points and is
weakly gradient-like for a Morse function on S , then K1 is also transversely isotopic
to a quasipositive braid with respect to the same open book.

To prove Theorem 1.3, we strengthen the known relationship between characteristic
foliations and open book foliations on surfaces in 3-manifolds. The result below can
be viewed as a partial converse to [23, Theorem 2.21].

Theorem 1.4 Let (Y, ⇠) be a contact 3-manifold with compatible open book (B,⇡),
and suppose that S ⇢ Y is an embedded surface whose characteristic foliation is weakly
gradient-like with respect to a Morse function f : S ! R. After an isotopy of (B,⇡)
through open books supporting ⇠ , the open book foliation on S may be assumed to be
weakly gradient-like with respect to f near all of its critical level sets.

Moreover, the isotopy of (B,⇡) is induced by an ambient isotopy that preserves ⇠
outside an arbitrarily small neighborhood of each singular point of the characteristic
foliation on S .

In fact, we show that Theorems 1.3 and 1.4 hold not only for embedded surfaces S ⇢ Y
but for certain well-behaved singular surfaces. This will play a key role in our study
of characteristic foliations on surfaces in 4-manifolds in Section 4.
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Remark 1.5 After completing an early draft of this work, the author learned ([21] and
[11]) that some of the above results have also been obtained in work-in-progress by a
collaboration between Inanc Baykur, John Etnyre, Matt Hedden, Keiko Kawamuro, and
Jeremy Van Horn-Morris. By different means, they prove Theorem 1.1 for subcritical
Stein fillings of #k(S1 ⇥ S2), viewed with a planar open book, as well as the same
general results concerning quasipositive representatives of strongly quasipositive links
in arbitrary open books and Theorem 1.2. See [24] for other recent work on strongly
quasipositive braids in arbitrary open books.

Organization We begin by defining quasipositive links in 3-manifolds in Section 2.
The precise definition appears in Section 2.3, preceded by an extensive discussion of
the framework of pointed open books we use to describe braids in arbitrary open books
in Sections 2.1-2.2. In Section 3, we discuss characteristic and open book foliations and
prove Theorems 1.3 and 1.4. Our study of Stein surfaces begins in Section 4, where
we obtain Theorem 1.1 as a consequence of stronger results for a class of surfaces
that generalize complex curves; see Theorems 4.2-4.4. We close with the proof of
Theorem 1.2 in Section 5.

Conventions All manifolds and maps between manifolds are assumed to be smooth
unless stated otherwise. Given an oriented manifold (or submanifold) with boundary,
all boundary components are oriented using the “outward normal first” convention
unless otherwise specified.

Acknowledgements I am deeply grateful to John Baldwin, Eli Grigsby, and Matt
Hedden for helpful discussions during the development of the ideas presented here. In
addition, I am grateful to John Etnyre, Keiko Kawamuro, and Sebastian Baader for
communications that improved this paper. Finally, I thank the anonymous referee for
their many helpful comments.

This work was partially supported by NSF grant DMS-1803584.

2 Quasipositive links in three-manifolds

In this section, we generalize the notion of quasipositivity to braids in arbitrary open
books; see [2, 24] for related definitions. Our definitions are framed in the language
of pointed open books introduced in [1]; we review and expand on this framework
in Section 2.2. Throughout this paper, we assume a familiarity with open book
decompositions and contact geometry at the level of [10]. For later reference, we
collect a few of these ideas in Section 2.1.
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2.1 Open book decompositions and contact structures

Recall that an open book decomposition of a 3-manifold Y is a pair (B,⇡), where B is
an oriented, fibered link in Y and ⇡ : Y \ B ! S1 is a fibration. Moreover, we require
that the closure F✓ of each fiber ⇡�1(✓) in Y is a Seifert surface for B. The link B is
called the binding of the open book, and the Seifert surfaces F✓ are the pages of the
open book.

We can also describe an open book decomposition abstractly using a pair (F,'), where
F is a compact surface homeomorphic to a page and ' is a diffeomorphism of F that
fixes its boundary and encodes the monodromy of the fibration. In particular, this
defines a closed 3-manifold Y(F,') = (F ⇥ I)/⇠' where the relation is defined by

(x, 1) ⇠' ('(x), 0), x 2 F(1)
(x, t) ⇠' (x, s), x 2 @F, t, s 2 I.(2)

We say that (F,') corresponds to an open book decomposition (B,⇡) of a 3-manifold
Y if there is a diffeomorphism Y(F,') ! Y that pulls ⇡ back to the natural fibration
from Y(F,') \ @F to S1 .

An open book decomposition of a contact 3-manifold (Y, ⇠) is said to be compatible
with the contact structure if ⇠ has a contact 1-form ↵ such that d↵ is an area form
on each page and ↵ is positive along the binding. This definition is motivated by
a construction of Thurston-Winkelnkemper [34] that associates a contact structure to
each open book decomposition of a 3-manifold. Celebrated work of Giroux [18]
extends this to a one-to-one correspondence between open books (up to positive Hopf
stabilization) and contact structures (up to isotopy) on a 3-manifold.

2.2 Transverse links, braids, and pointed open books.

A link in a contact 3-manifold (Y, ⇠) is called transverse if it is everywhere transverse
to ⇠ and Legendrian if it is everywhere tangent to ⇠ . All contact structures in this paper
will be assumed to be co-oriented, and all oriented transverse links will be assumed to
intersect the contact planes positively unless otherwise specified.

Given an open book decomposition on Y , an oriented link is said to be braided if it
is positively transverse to the pages of the open book. In the case where the open
book decomposition is compatible with the contact structure, any braid is naturally
braid isotopic to a transverse link. The “transverse Alexander theorem” asserts the
converse. The general form of the theorem was proven by Pavelescu, generalizing an
earlier result due to Bennequin for links in the 3-sphere; see [29] and [3], respectively.
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Theorem 2.1 (Pavelescu) Given any compatible open book decomposition of a
contact 3-manifold (Y, ⇠), every transverse link is transversely isotopic to a braid.

Remark 2.2 As discussed in [29], Theorem 2.1 holds more generally for oriented arcs
` in Y that are positively transverse to ⇠ and positively braided near their endpoints.
Moreover, combining the proof of [29, Theorem 3.2] with the “Bennequin trick” as
articulated in [6, Lemmas 1-2], we see that any such arc ` within a transverse link K
may be braided via a contact isotopy that fixes K \ `.

The classical operations of Markov stabilization and destabilization have analogs for
braids in an arbitrary open book; these will be defined precisely below. The following
theorem generalizes work of Wrinkle [36] and Orevkov-Shevchishin [28].

Theorem 2.3 (Pavelescu) Given any compatible open book decomposition of a
contact 3-manifold (Y, ⇠), two transverse braids are transversely isotopic if and only if
they have a common positive stabilization.

Following [1], we can encode braids abstractly using pointed open book decomposi-
tions. In particular, let (F,') be an abstract open book corresponding to (B,⇡) and
let P = {p1, . . . , pn} be a set of distinct marked points in the interior of F . The
monodromy ' is isotopic to a diffeomorphism b' of F that fixes the marked points
setwise and @F pointwise, ie a diffeomorphism of the pair (F,P) fixing @F . The
link in Y(F,b') given by (P ⇥ I)/⇠b' corresponds to a link K in Y that is braided with
respect to (B,⇡). We say that K is encoded by the pointed open book decomposition
(F,P, b'), and we refer to b' as the pointed monodromy. Unless otherwise specified,
isotopy of the pointed monodromy will be through diffeomorphisms that fix both P
and @F pointwise. An extension of the argument from [17, §4.4.2] shows that any
braid K in (B,⇡) is encoded by an abstract open book.

The pointed mapping class group of F is generated by Dehn twists about simple closed
curves and half-twists along embedded arcs joining distinct marked points; see Figure 1
for local depictions of these twists. We will let D� denote a positive Dehn twist about
a curve � and H↵ denote a positive half-twist about an arc ↵ , respectively. For later
reference, we highlight the behavior of these twists under conjugation:

Lemma 2.4 (cf [13, Fact 3.7]) Let ' be any diffeomorphism of a surface F .

(a) For any simple closed curve � in F , we have ' � D� � '�1 = D'(�) .

(b) For any embedded arc ↵ in the interior of F , we have ' � H↵ � '�1 = H'(↵) .
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H↵D�
� ↵

Figure 1: A positive Dehn twist (left) and a positive half-twist (right).

We also reserve the notation P� for the “point-pushing” map along a simple closed
curve � through a marked point; as shown in Figure 2, P� can be expressed as a
product of oppositely-signed Dehn twists along curves parallel to � . The behavior
of point-pushing maps under conjugation is analogous to that of Dehn twists and
half-twists.

The next lemma characterizes braid isotopy in terms of abstract pointed open books.

Lemma 2.5 Suppose (F,P, b') and (F,P0, b'0) are two pointed open books encoding
a pair of braids K and K0 in the same open book (B,⇡), where P and P0 are sets of n
marked points. The braids K and K0 are braid isotopic if and only if b'0 is isotopic to
h� b'�h�1 for a diffeomorphism h of F that sends P to P0 and is the identity near @F .

Proof Recall from above that the pairs (Y,K) and (Y,K0) are obtained from the
mapping tori of b' 2 Diff(F,P) and b'0 2 Diff(F,P0) by the quotient defined in (2) —
that is, by filling in the binding. Moreover, each fiber in the mapping torus corresponds
to a page of the open book. Observe that a braid isotopy carrying K to K0 extends
to an ambient isotopy of Y that preserves each page of the open book and is the
identity on a tubular neighborhood of the binding B. If we remove the neighborhood
of B, this page-preserving isotopy induces a fiber-preserving diffeomorphism between
the mapping tori of b' 2 Diff(F,P) and b'0 2 Diff(F,P0). Any such map lifts to a
diffeomorphism f of F ⇥ [0, 1] of the form (x, t) 7! (ft(x), t) for a smooth family

P� D� � D�1
�0

�0
�

�

Figure 2: Expressing a point-pushing map as a product of Dehn twists.
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ft 2 Diff(F). Moreover, because the braids in the mapping tori induced by P and P0

(ie K and K0 ) are exchanged by the diffeomorphism, we have ft(P) = P0 for all t .

In order to descend to the mapping torus of b', f must satisfy f (x, 1) = f (b'(x), 0),
ie (f1(x), 1) = (f0(b'(x)), 0), for all x 2 F . Similarly, since (f1(x), 1) is identified with
(b'0(f1(x)), 0) in the mapping torus of b'0 , we must have b'0 � f1 = f0 � b', ie b'0 =
f0 � b' � f�1

1 . Now define b'0
t = b'0 � (f1 � f�1

1�t). Then b'0
t is an isotopy between b'0

0 = b'0

and b'0
1 = f0 � b' � f�1

0 . Moreover, since ft(P) = P0 for all t , we have b'0
t 2 Diff(F,P0)

for all t . This shows that b'0 is isotopic in Diff(F,P0) to a conjugate of b', where the
conjugating diffeomorphism carries P to P0 .

We can also describe braid (de)stabilization in terms of abstract pointed open books:
Let pn+1 be a point in a collar neighborhood of @F on which b' is the identity and
let ↵ be an arc joining pn+1 to pn (and meeting no other marked points). We say
that the pointed open book (F,P [ {pn+1},H↵ � b') is a positive Markov stabilization
of the original pointed open book. If K and K0 in Y are the corresponding braids
with respect to the open book (B,⇡), then K0 is obtained from K by positive braid
stabilization in the same sense defined by Pavelescu as referenced in Theorem 2.3.
Negative stabilizations and positive and negative destabilizations are defined similarly
and also agree with the corresponding notions defined by Pavelescu.

The next lemma relates stabilization and the addition of half-twists.

Lemma 2.6 Suppose the braid K1 is obtained from the braid K0 by adding a half-
twist. If K+

0 is a positive Markov stabilization of K0 , then K1 has a positive Markov
stabilization K+

1 that is obtained from K+
0 by adding a half-twist of the same sign.

Proof Without loss of generality, we assume the half-twist is positive. Write the
pointed monodromy for K0 as b'0 and the monodromy for K1 as b'1 = H↵ � b'0 , where
H↵ is the added half-twist. If K+

0 is obtained from K0 by braid isotopy and a single
positive stabilization, then it is encoded by a pointed open book (F,P+, b'+

0 ) with
b'+

0 = h � b'0 � h�1 � H� , where h is a diffeomorphism of F fixing a neighborhood of
the boundary, P+ is the union of h(P) and a new marked point p+n+1 near the boundary,
and � is an arc joining p+n = h(pn) to p+n+1 . Define a new braid K+

1 via the pointed
open book (F,P+, b'+

1 ) where

b'+
1 = h � H↵ � b'0 � h�1 � H� = Hh(↵) � h � b'0 � h�1 � H� = Hh(↵) � b'+

0 .

The first equality shows that K+
1 is obtained from K1 by braid isotopy and a single

positive stabilization, and the last equality shows that K+
1 is obtained from K+

0 by
adding a positive half-twist, as desired.

Geometry & Topology XX (20XX)



Quasipositive links and Stein surfaces 1009

In general, if K+
0 is obtained from K0 by applying a sequence of braid isotopies and

multiple Markov stabilizations, we may make an analogous argument by induction on
the number of Markov stabilizations in the sequence.

Finally, we consider the operation of Hopf stabilization on pointed open books. Suppose
the transverse link K in (Y, ⇠) is encoded by a pointed open book (F,P, b'). An abstract
positive Hopf stabilization of this pointed open book is a triple (F0,P, b' � D�), where
F0 is obtained from F by attaching an oriented 1-handle and D� is a positive Dehn
twist around a curve � ⇢ F0 passing through this 1-handle exactly once and avoiding
the marked points. This operation preserves the (transverse) link type:

Lemma 2.7 (cf [1, Corollary 2.5]) With notation as above, the pointed open books
(F,P, b') and (F0,P, b' � D�) represent transversely isotopic links in (Y, ⇠).

Proof Positive Hopf stabilization preserves the underlying contact 3-manifold and
simply changes the open book structure in a standard Darboux ball N with convex
boundary. In particular, N is a small neighborhood of an arc in Y that lies in a page F✓
of the original open book and is identified with the properly embedded arc �\F ; see [10,
§2] and [15]. (This can also be seen explicitly by viewing the original and stabilized
open books as two different ways of extending a partial open book decomposition for
(Y0 = Y \ N̊, ⇠|Y0 ) to an open book for (Y, ⇠); see [22] for background on partial
open book decompositions.) Moreover, since � avoids the set of marked points P,
the braids represented by (F,P, b') and (F0,P, b' � D�) lie outside N ; here the open
book structures coincide. It follows that these braids are naturally identified and, in
particular, represent the same transverse link in (Y, ⇠).

2.3 Quasipositive braids in an open book

In this section we consider open book decompositions of arbitrary closed, oriented
3-manifolds. We begin with the most basic notion of quasipositivity.

Definition 2.8 A braid in an open book is quasipositive if it can be encoded by an
abstract pointed open book whose pointed monodromy is isotopic to a product of
positive half-twists and arbitrary Dehn twists.

Remark 2.9 To supply more context for this definition, we adopt the perspective
of Etnyre-Van Horn-Morris in [12], which views classical quasipositive braids as the
monoid generated by positive half-twists in the pointed mapping class group of the disk.
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↵0

�0

↵

�

(a) (b)

Figure 3: Twists along ↵ and � are allowed in a strongly quasipositive pointed monodromy,
but twists along ↵0 and �0 are not.

We can say something similar in the more general case. Given a set of marked points P
in F , the elements of the pointed mapping class group that can be expressed as products
of positive half-twists and arbitrary Dehn twists form a monoid. By Lemma 2.4, it is
easy to see that this monoid is preserved by conjugation. In particular, this shows that
Definition 2.8 is independent of the choice of the abstract pointed open book (F,P, b')
used to encode a braid K in (B,⇡). Indeed, if K is also encoded by (F,P0, b'0) and
(F,P, b') is quasipositive, then b'0 is isotopic to h � b' � h�1 for some diffeomorphism
h of F (as per the discussion in Section 2.2) and is therefore quasipositive.

We also generalize Rudolph’s notion of strongly quasipositive braids [31]:

Definition 2.10 A braid in an open book is strongly quasipositive if it can be encoded
by an abstract pointed open book (F,P, b') where the marked points P lie along the
interior edge of a collar neighborhood of @F and b' is a product of positive half-twists
and arbitrary Dehn twists along arcs and curves whose interiors do not meet the collar
neighborhood; see Figure 3.

Remark 2.11 Ito and Kawamuro present an equivalent definition in [24, Defini-
tion 4.3].

For yet another perspective, we may associate to any marked surface (F,P) a braid
group Bn(F,P), where n = |P|: the group Bn(F,P) is defined to be the kernel of the
forgetful map from the pointed mapping class group to the regular mapping class group
of the underlying surface. Using Lemma 2.4 and the discussion that follows it, we
see that the pointed monodromy of any pointed open book (F,P, b') can be separated
into the composition of an element of the braid group Bn(F,P) (expressed as a product
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of half-twists H✏1
↵1

� · · · � H✏`
↵`

with ✏i = ±1) and a diffeomorphism of F that fixes
P pointwise (expressed as a product of Dehn twists D�1

�1
� · · · � D�k

�k
with �i = ±1

along simple closed curves �i missing P). We say that the braid encoded by (F,P, b')
is the closure of H✏1

↵1
� · · · � H✏`

↵`
2 Bn(F,P) with respect to the abstract open book

(F,D�1
�1

� · · · � D�k
�k

). This gives a natural refinement of the notion of quasipositivity
with respect to a given factorization of the monodromy map for the underlying open
book:

Definition 2.12 An element of the braid group Bn(F,P) is quasipositive if it can be
represented as a product of positive half-twists. A braid is quasipositive with respect to
an (abstract) open book (F,') if it can be represented as the closure of a quasipositive
braid in Bn(F,P) with respect to (F,'), where ' fixes P ⇢ F pointwise.

As we will demonstrate in the proof of Theorem 1.1, the boundary of a complex curve
in a Stein domain is isotopic to the closure of a quasipositive braid with respect to a
positive allowable open book, ie one where the monodromy for the underlying open
book is a product of positive Dehn twists along homologically nontrivial curves.

Finally, as indicated in the introduction, we extend these definitions to transverse and
smooth link types: Given a closed, orientable contact 3-manifold (Y, ⇠), we say a
transverse or smooth link type K is (strongly) quasipositive if there is an open book
decomposition of Y compatible with ⇠ in which K is transversely or smoothly isotopic,
respectively, to a (strongly) quasipositive braid.

3 Characteristic and open book foliations

Contact structures and open books on a 3-manifold Y naturally induce singular foli-
ations on surfaces S ⇢ Y . For general background on characteristic and open book
foliations, we refer the reader to [17] and [23], respectively.

For a rigorous treatment of singular foliations, see [17] (especially Remark 2.5.21).
Formally, we define an oriented, singular foliation F on a surface S to be an equivalence
class of vector fields [v], where [v] = [v0] if there is a nowhere-zero function f on
S such that v0 = fv. However, we will often conflate a singular foliation with the
associated decomposition of S into integral curves of a representative vector field v
of F . Following [17] and [23], we will be concerned with singular foliations up to
topological conjugacy; two singular foliations F and F 0 on a surface S are said to be
topologically conjugate if there exists a homeomorphism of S carrying F to F 0 .
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Definition 3.1 Let Y be a 3-manifold containing a smooth, oriented surface S and let
⌦ be an area form on S . The characteristic foliation on S ⇢ Y induced by ⇠ = ker↵
is the singular foliation on S directed by a vector field v satisfying ◆v⌦ = ↵|S .

The existence of such a vector field v is guaranteed by the nondegeneracy of the 2-form
⌦. It is straightforward to show that the oriented singular foliation on S defined by v
depends only on ⇠ = ker↵ and the co-orientation induced by ↵ (cf [17, §2.5.4]).

An open book decomposition (B,⇡) of Y also defines a singular foliation on S ⇢ Y ;
see [3, 5, 23]. This singular foliation admits a description analogous to Definition 3.1.
To set this up, let d✓ denote the angular coordinate 1-form on S1 . Define a 1-form
� = f⇡⇤(d✓) on Y , where f is strictly positive on Y \ B and is locally given by
f (s, r,#) = r2 in some coordinates (s, r,#) 2 S1 ⇥ D2 near each component of B.
When restricted to Y \ B, ker� is a co-oriented, integrable plane field whose maximal
integral submanifolds are precisely the pages of the open book (B,⇡).

Definition 3.2 The open book foliation on S induced by (B,⇡) is the singular foliation
directed by a vector field v satisfying ◆v⌦ = �|S , with � as above.

It is straightforward to verify that Definition 3.2 coincides with the definition given
in [23]. In particular, note that the regular leaves of the open book foliation on S are
tangent to the pages of (B,⇡).

These definitions of characteristic and open book foliations naturally extend to oriented
surfaces S equipped only with a smooth map � : S ! Y , where the conditions
◆v⌦ = ↵|S and ◆v⌦ = �|S from Definitions 3.1 and 3.2 are replaced with the conditions
◆v⌦ = �⇤↵ and ◆v⌦ = �⇤�. We will be particularly interested in maps � : S ! Y that
are well-behaved with respect to a Morse function on S .

Definition 3.3 Given a map � : S ! Y and a function f : S ! R, we say that � is
nonsingular with respect to f if � restricts to an embedding on each level set of f and
on a neighborhood of each critical point of f .

This definition is motivated by the following source of examples.

Lemma 3.4 Given an embedded surface S ⇢ Y ⇥R, the map � : S ! Y (induced by
Y ⇥ R ! Y ) is nonsingular with respect to f : S ! R (induced by Y ⇥ R ! R).

Proof The projection Y⇥R ! Y restricts to a diffeomorphism between each level set
Yt = Y⇥{t} and Y . Thus � restricts to an embedding on each level set f�1(t) = S\Yt .
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Next, observe that the map d� is nondegenerate wherever S is not tangent to the fibers
{y} ⇥ R of the projection Y ⇥ R ! Y . At any critical point p of f , the surface S is
tangent to a level set Yt , hence is not tangent to the fibers {y}⇥ R. It follows that d�
is nondegenerate at p, so � is an immersion near p and thus restricts to an embedding
on a sufficiently small neighborhood of p 2 S .

3.1 Model subsurfaces

Recall the definition of weakly gradient-like vector fields and singular foliations from
Section 1. Observe that if the characteristic or open book foliation on S ⇢ Y is weakly
gradient-like for f : S ! R, then the regular level sets of f are transverse to the contact
planes or pages of the open book, respectively. (This is true, more generally, for the
characteristic or open book foliation defined using a smooth map � : S ! Y that is
nonsingular with respect to the function f .)

We will extract information from singular foliations on surfaces by decomposing them
into “model subsurfaces” that carry simple geometric and topological information.
Recall that if S is a disk or a pair of pants, then it admits an obvious Morse function
f with a single critical point of even or odd index, respectively. The singular foliation
on S induced by the gradient vector field of f is unique up to topological conjugacy
(and a choice of orientation). See Figure 4(a,b) for depictions of these models, which
we refer to as a disk with elliptic foliation and a pair of pants with hyperbolic foliation,
respectively.

We summarize the significance of these models in the context of open book foliations:

Lemma 3.5 Consider a 3-manifold with a fixed open book decomposition.

(a) The boundary of a disk with positive (resp. negative) elliptic open book foliation
is a positively (resp. negatively) braided unknot meeting each page in one point.

(b) If braids K and K0 cobound a pair of pants with hyperbolic open book foliation
(oriented so that its boundary is K0 [�K ), then K0 is obtained from K by braid
isotopy and the addition of a half-twist whose sign agrees with the sign of the
hyperbolic point.

Moreover, this holds for singular disks and pairs of pants, provided the maps are
nonsingular with respect to the standard Morse functions described above.
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+

(a) (b) (c)

Figure 4: A disk with elliptic foliation and a pair of pants with hyperbolic foliation are shown
in (a) and (b), respectively. In (c), the boundary components of the pair of pants are contracted
to cobound a band.

Proof The first claim follows immediately from the standard definition of the open
book foliation, as elliptic points correspond to intersections with the binding; see [23].
The second claim also follows quickly from definitions, following the method of proof
in [4, Lemma 1.6]. In particular, note that any isotopy of K and K0 through curves
transverse to the open book foliation on S is a braid isotopy. Thus we may contract K
and K0 towards one another along the leaves of the open book foliation on S until they
coincide outside a neighborhood of the hyperbolic point, as depicted in Figure 4(c).
The region they enclose is a twisted band, and a local depiction of its embedding is
given in Figure 5(c) (which may be compared to [4, Figures 1.12-1.13]). The claim
follows.

In the case of a singular disk that is nonsingular with respect to the standard Morse
function, part (a) is immediate because any sufficiently small neighborhood of the
elliptic point is embedded and has an elliptic open book foliation. For part (b), let
f : P ! R denote the standard Morse function on the pair of pants P with respect to
which the open book foliation is weakly gradient-like and with respect to which the
map P ! Y is nonsingular. We may again contract each of K and K0 along the leaves
of the open book foliation until they both coincide with the critical level set of f outside
a neighborhood of the hyperbolic point. In particular, we may define this isotopy so
that each intermediate link Kt and K0

t coincides with a level set of f outside a fixed,
embedded neighborhood of the hyperbolic point. This ensures that each intermediate
link is embedded and braided. As above we may then locate an embedded, twisted
band inside this neighborhood that these modified braids cobound.

3.2 Modifying open book foliations

We now prove Theorem 1.4, which allows us to modify an open book on (Y, ⇠) so that
the open book foliation on a surface S approximates its characteristic foliation.
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Remark 3.6 This theorem holds for a singular surface S that is nonsingular with
respect to the Morse function from the statement of the theorem, provided the collection
of critical level sets is embedded. The proof given below carries over verbatim.

We will need one preparatory lemma:

Lemma 3.7 If two smooth, codimension-one foliations F and F 0 on a 3-manifold Y
have a common transverse vector field v in a neighborhood U of p 2 Y , then we may
isotope F 0 inside U through foliations transverse to v so that it agrees with F inside
a smaller neighborhood of p.

Proof We may fix local coordinates (x, y, z) centered at p in which v is parallel to
@z , F is given by the z-constant planes, and F 0 is given by the level sets of a function
f : R3 ! R satisfying @f/@z > 0. For convenience, we rescale f so that f (0, 0, 0) = 0.
We will define an isotopy  t of R3 from the identity  0 = id to a diffeomorphism  1
satisfying  1(x, y, z) = (x, y, f (x, y, z)) for all (x, y, z) in a neighborhood of (0, 0, 0).
Such an isotopy carries the f -constant level sets (ie the leaves of F 0 ) to the z-constant
planes (ie the leaves of F ) near (0, 0, 0), as desired. Moreover, the isotopy will
preserve the vertical lines (x, y) ⇥ R, hence the leaves of F 0 remain transverse to v
throughout the isotopy.

We begin by working on an infinite cylinder D2
� ⇥ R =

�
(x, y, z) : x2 + y2 < �2 

for some � > 0. In particular, given any ✏ > 0, there exists � < ✏ such that
|f (x, y, z)| < ✏/2 on the small cylinder D2

� ⇥ [��, �]. We may then find a function
g : D2

� ⇥ R ! R such that g(x, y, z) = f (x, y, z) on D2
� ⇥ [��, �], g(x, y, z) = z on

D2
� ⇥ (�1,�✏] and D2

� ⇥ [✏,1), and @g/@z > 0 at all points. Smoothly extend g in
any way to the rest of R3 .

Now choose a smooth function µ : R ! [0, 1] that is equal to 1 on [��/2, �/2] and
vanishes outside of (��, �). For t 2 [0, 1], define a map  t : R3 ! R3 by

 t(x, y, z) =
�
x, y, (1 � tµ(x2 + y2))z + tµ(x2 + y2)g(x, y, z)

�
.

Note that  t is the identity outside D2
� ⇥ [�✏, ✏]. To see that  t is a diffeomorphism

for all t , we first note that  t maps each vertical line (x, y)⇥R to itself; it then suffices
to show that  t restricts to a diffeomorphism on each such line. Observe that

d t(@z) =
�
0, 0, 1 + tµ(x2 + y2)(@g/@z � 1)

�
.

Since @g/@z > 0 and both t and µ(x2 + y2) lie in [0, 1], we see that the z-component
above is positive; that is, d t(@z) is a positive multiple of @z at all points. Thus  t is a
diffeomorphism for all t 2 [0, 1]. And at any point (x, y, z) 2 D2

�/2 ⇥ [��, �], we have
 1(x, y, z) = (x, y, g(x, y, z)) = (x, y, f (x, y, z)), as claimed.
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Proof of Theorem 1.4 We will prove something slightly stronger: Let � be any finite
collection of level sets of f : S ! R. We will produce an isotopy of any compatible
open book (B,⇡) through open books supporting ⇠ so that the open book foliation on
S is weakly gradient-like with respect to f on a neighborhood of �. For convenience,
we assume the critical points of f have distinct values; the general case follows with
minor modifications.

We begin with the case of a regular level set � ⇢ �. The level set � is transverse to
the characteristic foliation on S , so it is a transverse link in (Y, ⇠). By the transverse
Alexander theorem (Theorem 2.1 and Remark 2.2), we may braid � using an ambient
contact isotopy. Moreover, the isotopy may be taken to fix all other level sets in
�. Equivalently, we may isotope (B,⇡) by the inverse of this ambient isotopy while
leaving S fixed. After this isotopy of (B,⇡), � is braided, and the same is true of all
other level sets sufficiently close to � . It follows that the open book foliation is weakly
gradient-like with respect to f near � .

Next consider a critical level set in �, which we have assumed contains a unique critical
point. Near each regular component of the critical level set, we may apply the above
argument. It thus suffices to consider a critical level set with no regular components.

In the case of a minimum or maximum of f , ie a positive or negative elliptic point of
the characteristic foliation, the singular component of the level set is just the critical
point p 2 S itself. Without loss of generality, we assume p is a positive elliptic
point (ie local minimum) so that TpS = ⇠p with orientation. We can find (1) a path
in Y from p to the binding B that meets � only at p and (2) an ambient contact
isotopy that moves p to the binding and is the identity outside a small neighborhood
of the path [17, Corollary 2.6.3]. This preserves the characteristic foliation on S
but turns p into an elliptic point of the open book foliation (because TpS = ⇠p is
transverse to the binding B). Moreover, the open book foliation is transverse to all
regular level sets of f near p. Indeed, for some choice of local coordinates (x, y)
on S centered at p, the open book foliation is directed by the radial vector field
v = x@x + y@y . It is easy to verify that df (v) > 0 except at p = (0, 0), as desired, using
the fact that f has a local minimum at p. (For example, use these local coordinates
to write f (x, y) = fxx(0, 0)x2 + fxy(0, 0)xy + fyy(0, 0)y2 + g(x, y), where g is a smooth
function whose first and second derivatives all vanish at the origin. Then calculate the
determinant of the Hessian for df (v) using that of f .) As above, we may then pull
(B,⇡) back by the ambient contact isotopy to obtain the desired open book foliation on
S while leaving S itself fixed.

Next suppose that the critical point p is a saddle of f , which corresponds to a saddle
(ie hyperbolic) point of the characteristic foliation. Without loss of generality, we
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assume p is a positive hyperbolic point so that TpS = ⇠p with orientation. We will
define a 2-dimensional foliation F on a neighborhood of p in Y that locally induces
a singular foliation on S with a hyperbolic singularity; we will then perturb the open
book (B,⇡) so that its pages coincide with F . To arrange this, fix a neighborhood U
of p in S and a neighborhood U ⇥ (�✏, ✏) of p in Y in which ⇠ is vertically invariant;
see [17, Proposition 4.6.22]. By the Morse lemma, we may find coordinates (x, y) on
U in which f (x, y) = x2 � y2 . Letting z give the coordinate on (�✏, ✏), define a smooth
1-form by ⌘ = dz + y dx + x dy. Since d⌘ = 0, the plane field ker ⌘ is integrable
and thus defines a 2-dimensional foliation F on U ⇥ (�✏, ✏) by Frobenius’ theorem.
Observe that the singular foliation on S = U ⇥ {0} is directed by the vector field
v = x@x�y@y (seen by noting that v vanishes only at the origin and satisfies ⌘(v) = 0),
which is gradient-like for f near p = (0, 0, 0).

Let R↵ be any Reeb vector field for ⇠ that is positively transverse to the pages of (B,⇡).
We claim that R↵ is also positively transverse to F near p. In the local coordinates
above, ⇠ coincides with the plane ker dz at the point p = (0, 0, 0). Thus we have
dz(R↵) > 0 at p = (0, 0, 0). Since ⌘p = dzp , we have ⌘p(R↵) > 0 at p, hence
⌘(R↵) > 0 in a neighborhood of p.

To set up the perturbation of (B,⇡), let F0 denote the 2-dimensional foliation of the
neighborhood of p induced by the pages of (B,⇡). By restricting our neighborhood,
we may assume that R↵ is positively transverse to both F and F0 . By Lemma 3.7,
we can isotope F0 through a family of foliations Ft transverse to R↵ such that Ft

agrees with F0 outside some neighborhood of p for all t and F1 agrees with F inside
some smaller neighborhood of p. The pages remain positively transverse to R↵ , so this
deformation defines a family of open books (B,⇡t) that support ⇠ . By construction,
the open book (B,⇡1) induces an open book foliation on S with a hyperbolic point at
p. Moreover, since df (v) � 0 with equality only at p, we see that the new open book
foliation is weakly gradient-like with respect to f in the neighborhood.

We now extend this to the rest of the critical component � . This level set � is a wedge
of two circles; the subset � \{p} is a pair of (oriented) open arcs that are transverse to ⇠
and, near p, are braided with respect to (B,⇡1). Applying Theorem 2.1 and Remark 2.2
again, we may braid � \{p} with respect to (B,⇡1) via an ambient contact isotopy that
fixes a neighborhood of p and all other components of �. The open book foliation is
preserved near p, and the portion of � lying outside the neighborhood of p (as well as
all nearby level sets) is braided with respect to the open book. It follows that the open
book foliation is now gradient-like with respect to f near � . As above, we then pull
the open book back by the isotopy so that we achieve the desired open book foliation
on S while leaving S itself fixed.
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This argument can be applied to each level set in � ⇢ S without modifying the open
book foliation near the rest of �, so the claim follows by induction on the size of �.

3.3 Characteristic foliations and quasipositivity

We now prove Theorem 1.3.

Remark 3.8 As with Theorem 1.4 (per Remark 3.6), the proof of Theorem 1.3 given
below holds for well-behaved singular surfaces in Y . In particular, � : S ! Y must be
nonsingular with respect to a Morse function f : S ! R whose collection of critical
level sets is embedded in Y , and the characteristic foliation on S induced by � must
be weakly gradient-like for f and contain only positive singular points.

Proof of Theorem 1.3 We recall the key hypotheses: the braid K0 is transversely
isotopic to a braid K+

0 in an open book (B,⇡) encoded by a quasipositive pointed
open book; and the characteristic foliation on S is weakly gradient-like with respect
to a Morse function f : S ! R with distinct critical values. We may assume that K+

0
has been chosen to avoid a neighborhood of each critical point. (This can always be
achieved by an arbitrarily small transverse braid isotopy of K+

0 , and it is easy to see
that the hypotheses on the presentation of K+

0 as a quasipositive braid are not affected
by a small perturbation.) This simplifies a technical point: To apply Theorem 1.4, we
must modify (B,⇡) using an ambient isotopy that restricts to a contact isotopy outside
an arbitrarily small neighborhood of each index-one critical point of f : S ! R. Since
K+

0 can be chosen to avoid these regions, it is carried along by a transverse isotopy
to a braid in the modified open book (B0,⇡0). Furthermore, we may use the ambient
isotopy to carry forward the quasipositive pointed open book encoding K+

0 in (B,⇡)
to a quasipositive pointed open book encoding K+

0 in (B0,⇡0).

Applying Theorem 1.4, we may assume that the boundary @S = K1 [ �K0 is braided
with respect to (B0,⇡0) and the open book foliation on S is weakly gradient-like for f
near its critical level sets.

Divide S into subsurfaces by splitting it along small neighborhoods f�1([c� ✏, c+ ✏])
of its critical level sets f�1(c). For sufficiently small ✏ > 0, the open book foliation
on the surface f�1([c � ✏, c + ✏]) is weakly gradient-like for f . Note this implies that
each such subsurface has braided boundary. Treating each subsurface separately and
arguing inductively on the number of critical points, it suffices to consider these cases:

(i) S contains no critical points of f , or

Geometry & Topology XX (20XX)



Quasipositive links and Stein surfaces 1019

(ii) the open book foliation on S is weakly gradient-like for f and S has a unique
critical of (a) even index, or (b) odd index.

In case (i), the surface is a collection of annuli. Since f has no critical points, the
characteristic foliation on each annulus is conjugate to a linear foliation. This implies
that K1 is transversely isotopic to K0 , which in turn is transversely isotopic to a
quasipositive braid with respect to (B0,⇡0).

In case (ii-a), the (unique) critical point of even index must correspond to a positive
singular point of the characteristic foliation. The surface then consists of a collection
of annuli with linear open book foliation and a disk with positive elliptic open book
foliation, as depicted in Figure 4. By Lemma 3.5, K1 is obtained from K0 by braid
isotopy and the addition of a disjoint braided unknot U that bounds a meridional disk
of the binding. Since K0 is transversely isotopic to a quasipositive braid with respect
to (B0,⇡0), so is K1 = K0 [ U .

In case (ii-b), the (unique) critical point of odd index must correspond to a positive
singular point of the characteristic foliation. The surface then consists of a collection
of annuli with linear open book foliation and a pair of pants with positive hyperbolic
open book foliation. In this case, K1 is obtained from K0 by braid isotopy and the
addition of a positive half-twist. Since K0 is transversely isotopic to a quasipositive
braid K+

0 with respect to (B0,⇡0), the transverse Markov theorem implies that K0 and
K+

0 have a common positive Markov stabilization. Any positive stabilization of a
quasipositive braid is quasipositive, so this implies that K0 can be positively stabilized
to a quasipositive braid that, for notational convenience, we will also denote by K+

0 .
By Lemma 2.6, we can find a positive stabilization K+

1 of K1 that can be obtained
from K+

0 by adding a positive half-twist. The addition of a positive half-twist preserves
quasipositivity, so K+

1 is also a quasipositive braid with respect to (B0,⇡0). We conclude
that K1 is transversely isotopic to a quasipositive braid.

In each case, it follows that K1 is transversely isotopic to a quasipositive braid K+
1 with

respect to the isotoped open book (B0,⇡0). As above, we may assume that K+
1 avoids

the neighborhoods of the critical points of f : S ! R where the ambient isotopy from
Theorem 1.4 failed to be a contact isotopy. We may then reverse the isotopy, carrying
(B0,⇡0) back to (B,⇡) and carrying K+

1 by a transverse isotopy to a quasipositive braid
with respect to the original open book (B,⇡).

Remark 3.9 We can sharpen the above result: If K0 is transversely isotopic to the
closure of a quasipositive braid with respect to an underlying abstract open book (F,')
with a given factorization of ' into Dehn twists, then K1 is also transversely isotopic
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to the closure of a quasipositive braid with respect to the same factorization of ' into
Dehn twists. (See Definition 2.12 and the discussion preceding it.) This is clear in
the case where the characteristic foliation contains no hyperbolic points, since K1 is
then obtained from K0 by isotopy and the addition of disjoint unknots meridional to
the binding.

Following the inductive argument above, it suffices to consider the case where S is a
pair of pants with hyperbolic open book foliation and @S = K1 [ �K0 . The proof
shows that there is some pointed open book (F,P, b') encoding K0 in (B0,⇡0) such
that b' is isotopic to ' and K1 is obtained by adding a positive half-twist H� to b'.
By hypothesis, the braid K0 is transversely isotopic to the closure of a quasipositive
braid with respect to the given factorization of ' into Dehn twists. As above, this
quasipositive braid and K0 have a common positive Markov stabilization, which we
can write as the closure of a quasipositive braid H↵1 � · · · � H↵` with respect to the
given factorization of ' into Dehn twists. Mirroring the argument from Lemma 2.6,
we carry the half-twist H� through the sequence of Markov stabilizations and isotopies
to a half-twist along a new arc �0 so that K1 is transversely isotopic to the closure of
the quasipositive braid H�0 � H↵1 � · · · � H↵` with respect to the given factorization of
' into Dehn twists.

4 Holomorphic curves in Stein surfaces

A complex manifold is Stein if it admits a proper holomorphic embedding as a closed
subset of some Cn , and a Stein surface X is a Stein manifold of complex dimension
two. We say that a (real) hypersurface Y ⇢ X is J -convex if the field of complex
tangent lines to Y ⇢ X forms a contact structure on Y ; here J denotes the almost-
complex structure on TX induced by the complex structure on X . Such hypersurfaces
naturally arise as regular level sets of J -convex functions on X ; see [8, §2.2] for a
precise definition. In particular, every Stein surface X admits an exhausting J -convex
Morse function ⇢ : X ! R whose level sets are J -convex at all regular points. In this
case, the contact structure can also be described as the kernel of the 1-form given by
restricting ⌘ = �dC⇢ to the level set, where dC = J⇤d . (This 1-form is a primitive
for a symplectic form ! = d⌘ on X .) For a thorough exposition of the theory of Stein
manifolds, we refer the reader to [8].

In our setting, the pair (J, ⇢) will often be replaced with a slightly coarser structure:
A Weinstein structure on a 4-manifold X is a triple (!, ⇢, v) where ! is a symplectic
form, ⇢ is an exhausting Morse function, and v is a complete vector field which is
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Liouville for ! (ie Lv! = ! ) and gradient-like for ⇢; see [8] for more detail. As
above, each regular level set ⇢�1(c) has a contact form given by the restriction of the
Liouville form ⌘ = ◆v! (which is a primitive for ! ). As a key example, any Stein
surface X with a J -convex Morse function ⇢ has a natural Weinstein structure with
! = d⌘ = �ddC⇢ as above and where v is the gradient vector field for ⇢ with respect
to the Riemannian metric g(·, ·) = !(·, J·).

Our proof of Theorem 1.1 is motivated by a simple observation (cf [7, 14]): Given a
smooth holomorphic curve ⌃ in a Stein surface X and a smooth J -convex hypersurface
Y ⇢ X , consider the intersection ⌃ \ Y . If this intersection is transverse, then ⌃ \ Y
forms a smooth link that is transverse to the natural contact structure ⇠ on Y . Indeed,
since T⌃ and ⇠ consist of complex lines in TX , their intersection at any point has
real dimension zero or two. It follows that ⌃ \ Y is transverse to the contact structure
except for those points p at which ⌃ is tangent to Y , where Tp⌃ = ⇠p ⇢ TpY .

This crude picture suggests a more flexible class of surfaces:

Definition 4.1 (cf [7]) A smoothly embedded, oriented surface ⌃ in a Weinstein 4-
manifold (X,!, ⇢, v) is ascending if ⌃ contains no critical points of ⇢|X , the restriction
⇢|⌃ is a Morse function, and, except at its critical points, each level set ⇢|�1

⌃ (c) is
positively transverse to the contact structure on ⇢|�1

X (c).

Equivalently, to better mirror the original definition from [7], one can replace the third
condition with the inequality (d⇢ ^ ⌘)|⌃ > 0 at regular points of ⇢|⌃ . (We say that a
2-form on the oriented surface ⌃ is positive if it is a positive multiple of an area form on
⌃.) In Section 4.1, we present a third characterization of ascending surfaces phrased
in terms of characteristic foliations on surfaces in Weinstein 4-manifolds, which we
define precisely in Definition 4.9. These three characterizations of ascending surfaces
are shown to be equivalent in Proposition 4.10.

We will show that critical points of ⇢|⌃ have a sign induced by the symplectic form on
X , and complex curves are examples of ascending surfaces whose critical points are
all positive (Proposition 4.12). Thus Theorem 1.1 follows from a more general result:

Theorem 4.2 If ⌃ is an ascending surface with positive critical points that is properly
embedded in a Weinstein domain X , then K = @⌃ is transversely isotopic to a
quasipositive braid with respect to a (positive allowable) open book for @X .

This holds more generally in Weinstein cobordisms between contact 3-manifolds:
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Theorem 4.3 Let ⌃ be an ascending surface with positive critical points in a Weinstein
cobordism X between (Y0, ⇠0) and (Y1, ⇠1). If K0 = ⌃ \ Y0 is transversely isotopic
to a quasipositive braid in a (positive allowable) open book compatible with ⇠0 , then
K1 = ⌃ \ Y1 is transversely isotopic to a quasipositive braid in a (positive allowable)
open book compatible with ⇠1 .

For ascending surfaces in the symplectization of a contact 3-manifold (Y, ⇠), we have
additional control over the choice of compatible open book:

Theorem 4.4 Let ⌃ be an ascending surface with positive critical points in a compact
piece Y ⇥ [0, 1] of the symplectization of (Y, ⇠). If K0 = ⌃ \ Y0 is transversely
isotopic to the closure of a quasipositive braid with respect to an open book for (Y, ⇠),
then K1 = ⌃ \ Y1 is transversely isotopic to the closure of a quasipositive braid with
respect to the same open book. In particular, if K0 is empty, then K1 is transversely
isotopic to a quasipositive braid with respect to any open book supporting (Y, ⇠).

Viewing complex curves in C2 as lying in the symplectization of (S3, ⇠st), this recovers
the theorem of Boileau and Orevkov:

Corollary 4.5 (Boileau-Orevkov) The boundary of any smooth, properly embedded
complex curve in B4 ⇢ C2 is quasipositive (with respect to the standard open book).

We lay the groundwork for these results with a general study of ascending surfaces in
Section 4.1. The main proofs are then given in Sections 4.2 and 4.3.

4.1 Ascending surfaces in Weinstein 4-manifolds

We now provide examples of ascending surfaces in §4.1.1 via two constructions that will
be essential to the proof of Theorem 1.2. Then, in §4.1.2, we establish the properties
of ascending surfaces that will be used to prove Theorems 4.2-4.4.

4.1.1 Examples of ascending surfaces

Recall that a contact 3-manifold (Y, ⇠) with ⇠ = ker↵ has a symplectization Symp(Y, ⇠),
defined to be Y ⇥R with the symplectic form ! = d(et↵). This symplectic 4-manifold
admits a Weinstein structure with Morse function ⇢(y, t) = t , Liouville field v = @t ,
and Liouville form ⌘ = et↵ .

Geometry & Topology XX (20XX)



Quasipositive links and Stein surfaces 1023

Example 4.6 Let S ⇢ (Y, ⇠) be a smoothly embedded surface whose boundary @S
is a positively transverse link and whose characteristic foliation is Morse-Smale and
contains no regular closed leaves. Choose a vector field u directing the characteristic
foliation. By Theorem B of [33], there is a Morse function f : S ! R such that df (u) >
0 at nonzero points of u and f (S) ⇢ (�1, 0] with f |@S ⌘ 0. Viewing Y ⇥ (�1, 0]
as part of the symplectization of (Y, ⇠), we can define a surface ⌃ ⇢ Y ⇥ (�1, 0] to
be the graph of f over S ⇢ Y , ie the image of the map S ! Y ⇥ (�1, 0] defined
by x 7! (x, f (x)). Letting ⇢ denote the projection Y ⇥ (�1, 0] ! (�1, 0], we see
that ⇢|⌃ pulls back to the function f on S . The requirement df (u) > 0 at regular
points implies that regular level sets of f are positively transverse links, so the same
is true of the regular level sets of ⇢|⌃ . It follows that ⌃ is an ascending surface in
Y ⇥ (�1, 0] ⇢ Symp(Y, ⇠). ⇧

Example 4.7 (Push-in of an immersed Bennequin surface) Suppose a transverse
braid K in (Y, ⇠) is encoded by a pointed open book (F,P, b') where the monodromy
can be factored in the form

b' = H✏1
↵1

� · · · � H✏`
↵`

� '

where ' fixes a collar neighborhood N of @F containing the marked points and
✏j = ±1. Fix a set of disjoint arcs in N joining the marked points to @F and let S0 ⇢ Y
be the disjoint union of disks swept out by this family of arcs; see Figure 5(b). Now
attach 1-handles hj to S0 as follows: The core of hj will be a copy of the arc ↵j lying
in the page F✓j for ✓j = 2⇡j/(`+ 1). We can extend this core to a once-twisted band
hj whose sign agrees with that of ✏j ; see Figure 5(c). In general, the twisted bands may
intersect the interiors of the disks S0 transversely along embedded “ribbon” arcs. Let
S denote the resulting immersed “Bennequin” surface for K .

The open book foliation on the immersed surface S is Morse-Smale and has positive
elliptic points along the binding and hyperbolic points along the twisted bands. Using
[23, Theorem 2.21], we can isotope ⇠ (away from @S) to another contact structure
⇠0 so that the characteristic foliation on S is conjugate to the open book foliation.
By Gray’s theorem, there is an induced isotopy of S rel boundary so that ⇠ itself
induces the desired characteristic foliation. Now let f : S ! R be a Morse function
that has a gradient-like vector field that directs the characteristic foliation. Since any
self-intersections of S occur between a disk in S0 ⇢ S and part of a twisted band lying
in S \ S0 , we can modify f on the disks (in particular, decrease its value) so that the
level sets of f are all embedded. As in Example 4.6, the graph of f is an embedded
ascending surface in Symp(Y, ⇠). ⇧
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↵j↵j

B
F✓jB

F✓j
F✓jB

↵j

(a) (b) (c)

Figure 5: Building a Bennequin surface.

We pause to highlight a corollary. By Example 4.7, every strongly quasipositive
transverse link K in (Y, ⇠) bounds a Seifert surface whose characteristic foliation is
Morse-Smale with positive singularities. By a signed count of elliptic and hyperbolic
points in the characteristic or open book foliations on any such surface, we obtain:

Corollary 4.8 The Eliashberg-Bennequin inequality is sharp for every strongly quasi-
positive link in a tight contact 3-manifold. ⇤

4.1.2 Properties of ascending surfaces

When a 4-manifold X is equipped with a Weinstein structure (!, ⇢, v), the Liouville
form ⌘ = ◆v! can be used to define a characteristic foliation on any surface in X :

Definition 4.9 Let ⌃ denote a smooth, oriented surface in X and let ⌦ be an area
form on ⌃. The characteristic foliation on ⌃ is the singular foliation directed by the
vector field u satisfying ◆u⌦ = ⌘|⌃ .

As with Definition 3.1, this characteristic foliation is independent of the area form ⌦
and depends on ⌘ only up to multiplication by a positive function. We use characteristic
foliations to provide a third characterization of ascending surfaces:

Proposition 4.10 (Characterization of ascending surfaces) Let ⌃ ⇢ X be a smooth,
oriented surface that avoids the critical points of ⇢ : X ! R, and suppose that ⇢|⌃ is a
Morse function. Then the following are all equivalent:
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(a) ⌃ is ascending;

(b) (d⇢ ^ ⌘)|⌃ > 0 at regular points of ⇢|⌃ ;

(c) the characteristic foliation on ⌃ is weakly gradient-like for ⇢|⌃ .

Proof We will prove (a) ) (b) ) (c) ) (a). Our argument leverages another
singular foliation on ⌃: the level sets of ⇢|⌃ . For a fixed positive area form ⌦ on ⌃,
this singular foliation is directed by the vector field w on ⌃ defined by the equation
◆w⌦ = �d⇢|⌃ . Note that w orients each level set ⇢|�1

⌃ (c) as the boundary of the
sublevel set ⇢|�1

⌃ (�1, c]. To see this, fix a weakly gradient-like vector field u0 for
⇢|⌃ (reserving u for a vector field directing the characteristic foliation on ⌃). Then
⌦(u0,w) = �⌦(w, u0) = d⇢|⌃(u0) > 0 at regular points of ⇢|⌃ , so w induces the proper
“outward normal first” orientation on the level sets of ⇢|⌃ .

(a) ) (b) : With w and u0 as above, we begin by observing the equation

(3) (d⇢ ^ ⌘)|⌃(u0,w) = d⇢(u0) ⌘(w) � 0 · ⌘(u0) = d⇢(u0) ⌘(w).

If ⌃ is ascending, then each level set ⇢|�1
⌃ (c) is positively transverse to ⇠ = ker(⌘|⇢�1(c))

at its regular points, ie ⌘(w) > 0 at every regular point of ⇢|⌃ . And since u0 is weakly
gradient-like for ⇢|⌃ , we have d⇢(u0) > 0 at every regular point of ⇢|⌃ . Therefore (3)
implies (d⇢ ^ ⌘)|⌃ > 0 at every regular point of ⇢|⌃ , as desired.

(b) ) (c) : If (d⇢ ^ ⌘)|⌃ > 0 at every regular point of ⇢|⌃ , then (3) implies
d⇢(u0) ⌘(w) > 0 at regular points of ⇢|⌃ . And since d⇢(u0) > 0 at regular points
of ⇢|⌃ , it follows that ⌘(w) > 0 at regular points of ⇢|⌃ . Now let u be the vector field
directing the characteristic foliation on ⌃, ie ◆u⌦ = ⌘|⌃ . This satisfies

d⇢|⌃(u) = �⌦(w, u) = ⌦(u,w) = ◆u⌦(w) = ⌘(w) > 0

at regular points of ⇢|⌃ . This also shows that the zeroes of u must be critical points of
⇢|⌃ , so it only remains to show that u vanishes at each critical point of ⇢|⌃ . We offer
two (related) explanations of this fact.

To set up the first argument, note that we can write (d⇢ ^ ⌘)|⌃ = g⌦ for some non-
negative function g on ⌃ that vanishes only at critical points of ⇢|⌃ . Since g is
non-negative, it vanishes to even order at critical points, hence the same is true for
the 2-form (d⇢ ^ ⌘)|⌃ . But since ⇢|⌃ is Morse, it vanishes precisely to second order
at its critical points. This implies that d⇢|⌃ vanishes precisely to first order. Since
(d⇢ ^ ⌘)|⌃ vanishes to at least second order, we conclude that ⌘|⌃ must also vanish
at critical points. Since ⌦ is nondegenerate, the vanishing of the 1-form ⌘|⌃ = ◆u⌦
implies that u vanishes at critical points of ⇢|⌃ as well.
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Alternatively, we may argue using local coordinates. For the sake of contradiction,
suppose that u is nonvanishing at a critical point p of ⇢|⌃ . Since ⇢|⌃ is a Morse
function, we may local fix coordinates (x, y) on ⌃ centered at p = (0, 0) such that
⇢|⌃(x, y) = ax2 + by2 for nonzero a, b 2 R. As noted above, if u is nonzero at p
then ⌘|⌃ is nonzero at p because ⌦ is nondegenerate and ⌘|⌃ = ◆u⌦. Therefore ⌘ is
nonzero on at least one of the vectors @x or @y at p = (0, 0). For simplicity, suppose
⌘(@x) > 0 at p; the other cases are similar. For small ✏ > 0, we have ⌘(@x) > 0 at the
regular points p± = (0,±✏) of ⇢|⌃ . Using the expression for ⇢|⌃ above, we calculate

(4) (d⇢ ^ ⌘)p�(@x, @y) = �(d⇢ ^ ⌘)p+(@x, @y).

But since p± is a regular point of ⇢|⌃ and (@x, @y) is a positive basis for Tp±⌃, we
must have (d⇢ ^ ⌘)(@x, @y) > 0 at both points p± , contradicting (4).

(c) ) (a) : Let u direct the characteristic foliation on ⌃, ie ◆u⌦ = ⌘|⌃ . If u is weakly
gradient-like for ⇢|⌃ , then we have d⇢|⌃(u) > 0 at each regular point of ⇢|⌃ , hence

⌘(w) = ◆u⌦(w) = ⌦(u,w) > 0

at regular points of ⇢|⌃ . Since w directs each regular level ⇢|�1
⌃ (c) and ⌘ defines the

contact form on each level set ⇢�1(c), we see that each regular level set ⇢|�1
⌃ (c) is a

(positively) transverse link in ⇢�1(c). Therefore ⌃ is ascending, as claimed.

This allows us to extend an observation from [7] regarding ascending surfaces in C2 .

Corollary 4.11 If an ascending surface ⌃ ⇢ X is tangent to the contact level set
Y = ⇢�1(c) at p 2 ⌃, then Tp⌃ coincides with the contact plane at TpY .

Proof Such tangencies are precisely the critical points of ⇢|⌃ . By Proposition 4.10,
each critical point of ⇢|⌃ is a singular point of the characteristic foliation defined by the
Liouville 1-form ⌘ on ⌃, so ⌘ vanishes on Tp⌃. Since Tp⌃ is a (real) 2-dimensional
plane in TpY on which ⌘ vanishes, we see that Tp⌃ coincides with the contact plane
⇠p ⇢ TpY defined by ker↵ for ↵ = ⌘|Y .

Since the exterior derivative d↵ of the contact form ↵ = ⌘|Y is nondegenerate on each
contact plane in ker↵ , Corollary 4.11 implies that the symplectic form ! = d⌘ is
nondegenerate on Tp⌃ at each critical point p of ⇢|⌃ . This allows us to associate a
sign to each critical point of ⇢|⌃ : We say that a critical point p of ⇢|⌃ is positive or
negative according to whether ! is positive or negative on the (oriented) plane Tp⌃.
Equivalently, a critical point p of ⇢|⌃ is positive or negative according to whether the
intrinsic orientation on Tp⌃ agrees or disagrees, respectively, with the orientation on
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the contact plane ⇠p = ker↵p . Thus the sign of the critical point p agrees with the sign
of the corresponding singular point in the characteristic foliation on ⌃.

The following proposition shows that Theorem 1.1 is a special case of Theorem 4.2.

Proposition 4.12 With respect to a generic J -convex Morse function, a smooth J -
holomorphic curve in a Stein domain (X, J) is ascending with positive critical points.

We require a lemma concerning C1(X,R), the space of smooth functions on X .

Lemma 4.13 Any smooth function g : X ! R on a compact 4-manifold X can be
approximated (in the Ck -topology, for any prescribed degree k) by a Morse function
h : X ! R. If ⌃ is a smooth, properly embedded surface in X , then h may be chosen
so that h|⌃ is Morse and so that ⌃ avoids the critical points of h|X .

Proof The first claim follows from [27, Corollary 4.8]. Moreover, inspecting the
proof given in [27], we see that h may be chosen so that h|⌃ is also Morse. Now let  t

be the flow of a vector field on X that is normal to ⌃ near any critical points of h lying
on ⌃. Since the critical points of h are isolated,  t(⌃) is disjoint from these critical
points for small t > 0. Equivalently, ⌃ avoids the critical points of  ⇤

t h : X ! R for
small t > 0, and we may replace h with one of these pullbacks; the Morse condition is
open, so h|X and h|⌃ remain Morse. It is clear that these perturbations can be chosen
so that the resulting function h approximates g arbitrarily well.

Proof of Proposition 4.12 Given a smooth J -holomorphic curve ⌃ ⇢ X and a J -
convex Morse function ⇢ : X ! R, we may use Lemma 4.13 to perturb ⇢ so that
⇢|⌃ is Morse and ⌃ avoids the critical points of ⇢|X . Recalling that the subspace
of J -convex functions in C1(X,R) is open [8, Lemma 3.7] (with respect to the C2 -
topology), we may assume that ⇢ remains J -convex.

As discussed before Definition 4.1, all regular level sets of ⇢|⌃ are transverse links
in ⇢�1(c). And at any critical point p of ⇢|⌃ , Tp⌃ coincides with the contact plane
⇠p ⇢ TpY , where Y is the level set of ⇢ containing p. Both Tp⌃ and ⇠p are oriented
as J -complex tangent lines, so the critical point p of ⇢|⌃ is positive, as claimed.

4.2 Special case: the symplectization

Let ⌃ be a smooth, oriented surface in Symp(Y, ⇠), where ⇠ = ker↵ . The Liouville
form ⌘ = et↵ is obtained by pulling back the contact form ↵ via the projection
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Symp(Y, ⇠) ! Y and multiplying it by a positive function. Therefore the characteristic
foliation on ⌃ induced by ⌘ agrees with the characteristic foliation on ⌃ induced by
the composition ⌃ ,! Symp(Y, ⇠) ! Y as discussed before Definition 3.3.

Proof of Theorem 4.4 Let ⌃ be an ascending surface with positive critical points in
a compact piece Y ⇥ [0, 1] of the symplectization of (Y, ⇠) with the natural Morse
function ⇢ given by the second-coordinate projection. Suppose that K0 = ⌃ \ Y0 is
transversely isotopic to a quasipositive braid in a given open book (B,⇡) for (Y, ⇠).
We wish to show that K1 = ⌃\Y1 is also transversely isotopic to a quasipositive braid
in (B,⇡). We will reduce to the 3-dimensional setting and apply Theorem 1.3.

We may view K0 and K1 as transverse links in (Y, ⇠) via the projection Symp(Y, ⇠) !
Y . By a slight perturbation of ⌃ (through ascending surfaces), we may assume that
K0 and K1 project disjointly to (Y, ⇠). These transverse links cobound the singular
surface �(⌃) ⇢ Y obtained via the composition � : ⌃ ,! Y ⇥ [0, 1] ! Y . For
technical reasons (see Remark 3.8), we perturb ⌃ so that the critical level sets of ⇢|⌃
have disjoint images under �: For each critical level set ⇢|�1

⌃ (t), we may perform a
small contact isotopy of Yt that ensures the image of ⇢|�1

⌃ (t) under � is disjoint from
the image of each of the other critical level sets of ⇢|⌃ . This naturally extends to an
isotopy of Y ⇥ [0, 1] supported near Yt that restricts to a contact isotopy on each level
hypersurface (and thus preserves the fact that ⌃ is ascending). Repeating this near
every critical level set of ⇢|⌃ induces the desired isotopy of ⌃. After this perturbation,
the critical level sets of ⇢|⌃ are mapped disjointly by � into Y .

By Lemma 3.4, the map � is nonsingular with respect to ⇢|⌃ : ⌃ ! R. By Propo-
sition 4.10 and the ensuing discussion of signs of critical points, the characteristic
foliation on ⌃ is weakly gradient-like with respect to ⇢|⌃ and contains only positive
singular points. Applying Theorem 1.3 (via Remark 3.8), we conclude that K1 is
transversely isotopic to a quasipositive braid with respect to the chosen open book
(B,⇡).

As a corollary, we recover the theorem of Boileau and Orevkov:

Proof of Corollary 4.5 Let ⌃ ⇢ C2 be a smooth complex curve meeting the unit
sphere S3

1 ⇢ C2 transversely in a link K . After a small translation, we may assume
that ⌃ lies in C2 \ {0} ⇡ Symp(S3, ⇠st) and that the radial distance function restricts
to a Morse function on ⌃. (Note that any sufficiently small translation of ⌃ induces a
transverse isotopy of the link K = ⌃ \ S3

1 .) By Proposition 4.12, ⌃ is an ascending
surface with positive critical points in Symp(S3, ⇠st). Applying Theorem 4.4, we see
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that ⌃\S3
1 is quasipositive with respect to any open book supporting (S3, ⇠st), including

the standard open book (D2, id).

4.3 The general case

We now consider ascending surfaces in a general Weinstein cobordism (X,!, ⇢, v).
By definition, an ascending surface ⌃ in X is sensitive only to the function ⇢ and the
contact structure on level sets of ⇢ induced by the Liouville 1-form ⌘ = ◆v! . Through
this lens, any noncritical region of a Weinstein cobordism looks like the symplectization
of a regular level set.

Lemma 4.14 Suppose (X,!, ⇢, v) is a Weinstein cobordism with no critical points
and let (Y, ⇠) be a regular contact hypersurface ⇢�1(c). Then there is a diffeomorphism

 : Y ⇥ [a, b] ⇢ Symp(Y, ⇠) ! X

such that  ⇤⇢ is the second-coordinate projection and  restricts to a contactomorphism
between the level sets of ⇢ and  ⇤⇢.

Proof For notational convenience, we assume c = 0. As a first step, we construct a
diffeomorphism Y ⇥ [a, b] ! X that pulls ⇢ back to the second-coordinate projection.
Let v be the gradient of ⇢ defined above. Since ⇢ has no critical points and X is
compact, the function f = 1/d⇢(v) is bounded. By the completeness of v and the
boundedness of f , the multiple v0 = fv is also complete. This vector field satisfies
d⇢(v0) ⌘ 1 and is complete, so the flow of v0 defines a diffeomorphism from Y ⇥ [a, b]
to X that pulls ⇢ back to the second-coordinate projection.

Now let ⇣0 be the vertically invariant plane field on Y ⇥ [a, b] defined by ⇠ on each
level set, and let ⇣1 be the plane field obtained by pulling back the natural contact
structure on each level set of ⇢ in X under the diffeomorphism constructed above. We
will produce an isotopy of Y ⇥ [a, b] preserving level sets that carries ⇣0 to ⇣1 . Choose
1-forms ↵0 and ↵1 such that ⇣i = ker(dt ^ ↵i). Now define a family of maps ⇡s from
Y ⇥ [a, b] to itself by ⇡s(y, t) = (y, st). The map ⇡s restricts to a diffeomorphism from
Y ⇥ {t} to Y ⇥ {st} for all s 2 [0, 1] and t 2 [a, b]. The induced family of 1-forms
↵s = ⇡⇤s↵1 on Y ⇥ [a, b] interpolates between ↵0 and ↵1 as defined above because ⇡s

is the projection Y ⇥ [a, b] ! Y ⇥ {0} for s = 0 and is the identity for s = 1. It is
also easy to see that ↵s restricts to a contact form on each Y ⇥ {t}.

From here, the standard Moser’s trick argument produces a vector field Vs such that
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(i) Vs is tangent to the level sets Y ⇥ {t},

(ii) Vs lies in ker↵s , and

(iii) the flow  s of Vs satisfies  ⇤
s↵s = �s↵0 for some family of smooth positive

functions �s on Y ⇥ [a, b].

The diffeomorphism  1 of Y ⇥ [a, b] preserves level sets and is seen to carry ⇣0 to ⇣1 :

( 1)⇤⇣0 = ( 1)⇤ ker(dt ^ ↵0) = ( 1)⇤ ker(dt ^ �1↵0) = ker(dt ^ ↵1) = ⇣1.

It follows that the composition of  1 with the original map Y ⇥ [a, b] ! X provides
the desired diffeomorphism.

To understand ascending surfaces in the presence of critical points of ⇢ : X ! R, we
use the natural handle decomposition of X defined by ⇢. Results of Eliashberg [9]
and Weinstein [35] describe such handle decompositions and the effect of each handle
attachment on the contact level sets of ⇢. For additional background material, we point
the reader to [19], as well as [8, Lemma 11.13] and [10, §5].

Proof of Theorem 4.3 Let (B0,⇡0) be a compatible open book for (Y0, ⇠0) with re-
spect to which K0 is quasipositive. We will show that K1 is quasipositive with respect
to a compatible open book (B1,⇡1) for (Y1, ⇠1) obtained from (B0,⇡0) by positive Hopf
stabilization and the addition of positive Dehn twists (along homologically nontrivial
curves) into the monodromy. By subdividing X , it suffices to consider the case where
X contains at most one critical point. Note that, by the C2 -openness of J -convex
functions, we may choose ⇢ so that the critical values of ⇢|X and ⇢|⌃ are all distinct.

If X contains no critical points of ⇢, then for any value c there’s a diffeomorphism
from a compact piece of Symp(⇢�1(c)) to X of the form described in Lemma 4.14.
By that lemma and the definition of an ascending surface, it is easy to see that ⌃ ⇢ X
pulls back to an ascending surface with positive critical points in Symp(⇢�1(c)). The
claim then follows from Theorem 4.4.

Now suppose that ⇢|X has a single critical point, the value of which we will denote by
c. For any ✏ > 0, we can further subdivide X into three pieces: two exterior pieces
where |⇢�c| > ✏ and an interior piece where |⇢�c|  ✏. It suffices to prove the claim
for the interior piece. First consider the case where the critical point of ⇢|X has Morse
index zero. This is equivalent to considering ascending surfaces in the unit ball in
(R4,!st) that miss the origin, so the ascending surface can be viewed in Symp(S3, ⇠st),
where the desired claim again follows from Theorem 4.4.
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Next consider the case where the critical point of ⇢|X has Morse index one. By
choosing ✏ sufficiently small, we can assume that ⇢|⌃ has no critical points in X .
Furthermore, for small enough ✏, we may assume ⌃ is disjoint from a neighborhood
of the stable and unstable manifolds of the unique critical point of ⇢|X . The level
set Y1 = ⇢�1(c + ✏) is obtained from Y0 = ⇢�1(c � ✏) by removing a pair of small
Darboux balls and attaching a copy of S2 ⇥ I with the appropriate contact structure.
After positive Hopf stabilization, we can assume that Y0 is equipped with an open book
(B0,⇡0) such that (1) the attaching region A for the 1-handle lies along the binding
B0 and (2) the transverse link K0 = ⌃ \ Y0 is transversely isotopic to a quasipositive
braid K+

0 with respect to (B0,⇡0). (Note that positive Hopf stabilization of a pointed
open book preserves quasipositivity.) Moreover, since the attaching region A is a pair
of small Darboux balls, we may assume that the transverse isotopy between K0 and
K+

0 is performed in the complement of A. Now we construct a natural open book on
Y1 that extends the open book on Y0 : By an argument similar to the one used in the
proof of Lemma 4.14, there is an embedding

 : (Y0 \ A) ⇥ [c � ✏, c + ✏] ,! X

pulling ⇢ back to the second-coordinate projection and restricting to a contact embed-
ding on each level set. Since ⌃ avoids the critical point of ⇢|X (and also avoids its
stable and unstable manifolds), we can also assume that ⌃ lies in the image of this
embedding. Define an embedding  : Y0\A ,! Y1 by sending y 2 Y0\A to  (y, c+✏)
in Y1 . The restriction of the open book (B0,⇡0) to Y0 \ A can then be pushed forward
to  (Y0 \ A) ⇢ Y1 and then extended in the natural way over the 1-handle in Y1 to
define a compatible open book (B1,⇡1) on Y1 . Abstractly, this can be described as
follows: if (B0,⇡0) is encoded by (F0,'0), then (B1,⇡1) is encoded by (F1,'1) where
F1 is the union of F0 and an oriented 1-handle and '1 is the extension of '0 to F1 via
the identity on the 1-handle.

Now the quasipositive braid K+
0 with respect to (B0,⇡0) in Y0\A induces a quasipositive

braid K+
1 =  (K+

0 ) with respect to (B1,⇡1) in  (Y0 \ A) ⇢ Y1 . Since the transverse
isotopy between K0 and K+

0 lies in the domain of  , the transverse link  (K0) in Y1
is transversely isotopic to K+

1 in Y1 . And since ⌃ lies in the image of  and we have
assumed ⇢|⌃ has no critical points in X , we can use  and ⌃ to realize a transverse
isotopy between  (K0) and K1 in Y1 . It follows that K1 is transversely isotopic to the
quasipositive braid K+

1 with respect to (B1,⇡1).

Finally, we must consider the case where the critical point of ⇢|X has Morse index
two. In this case, the argument is nearly identical to the preceding case. The primary
difference is that the attaching region A of the Weinstein 2-handle is a neighborhood of
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a Legendrian knot ⇤ in (Y0, ⇠0); see the references [8, 9, 19, 35] given above, especially
[8, Lemma 11.13]. Moreover, the contact 3-manifold (Y1, ⇠1) is obtained from (Y0, ⇠0)
by Legendrian surgery along ⇤. Any open book compatible with ⇠0 has a positive
Hopf stabilization containing the Legendrian knot ⇤ in a page; see [10, Corollary
4.23]. As above, we can construct a family of contact embeddings Y0 \ A ,! ⇢�1(t)
for t near c and produce the desired open book (B1,⇡1) from (B0,⇡0). Abstractly,
this corresponds to inserting a positive Dehn twist along the representative of ⇤ in the
page of the open book; see [10, Theorem 5.7]. Note that, since any contact form ↵ for
⇠0 induces an area form d↵ on each page of (B0,⇡0), the Legendrian curve ⇤ must be
homologically nontrivial by Stokes’ theorem.

It remains to show that K1 is transversely isotopic to a quasipositive braid with respect
to (B1,⇡1). The family of contact embeddings Y0\A ,! ⇢�1(t) also lets us pull ⌃ back
to an ascending surface in Symp(Y0 \ A, ⇠0) with no critical points. By the transverse
Alexander and Markov theorems, we can find braid representatives of K0 and K1
encoded by pointed open books that are related by positive Markov stabilization and
destabilization and the addition of a positive Dehn twist. By an argument analogous to
the proof of Lemma 2.6, it is easy to show that these operations preserve the property
of being transversely isotopic to a quasipositive braid.

In the case where K0 = ⌃\Y0 is transversely isotopic to the closure of a quasipositive
braid with respect to a positive allowable open book, it is clear that the same is true
of K1 because we have modified the original underlying open book only by adding
1-handles, inserting positive Dehn twists along homologically nontrivial curves in the
page, and performing positive Hopf stabilizations (which also introduce Dehn twists
along homologically nontrivial curves). See also Remark 3.9.

Observe that Theorem 4.2 follows by taking K0 to be empty and viewing a Weinstein
domain X as a cobordism from the empty set to @X . Theorem 1.1 follows in turn from
Theorem 4.2 and Proposition 4.12.

5 Constructions of symplectic surfaces

In this final section, we prove that every quasipositive braid in a positive allowable
open book bounds a symplectic surface in some Stein filling of the associated contact
3-manifold. Our strategy will be to construct ascending surfaces with positive critical
points and then perform an isotopy to make the surfaces symplectic. This requires a
lemma adapted from [7].
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Lemma 5.1 Let ⌃ be an ascending cobordism with positive critical points in Symp(Y, ⇠)
between transverse links K0 and K1 in (Y, ⇠). Then ⌃ can be made symplectic through
a compactly supported isotopy of ascending surfaces.

Proof For any constant a � 1, define a diffeomorphism  a of Y ⇥ R by  a(y, t) =
(y, at). Assume that ⌃ is cylindrical outside of [T�, T+] and let ⌃0 = ⌃ \ [T�, T+].
We will first show that for a � 1, we have !| a(⌃0) > 0, ie  ⇤

a (!)|⌃0 > 0. An
elementary calculation gives

 ⇤
a (!) = aeatdt ^ ↵+ eatd↵ = e(a�1)t �(a � 1)et dt ^ ↵+ !

�
.

Recall that (dt^↵)|⌃ � 0, with equality if and only if the point in ⌃ is a singular point
of ⇢|⌃ . In terms of an area form ⌦ for ⌃, this means we can write et(dt^↵)|⌃ as f ·⌦
with f � 0. Similarly, we can write ! = g ·⌦. Note that g > 0 on a neighborhood of
each critical point of ⇢|⌃ because ⌃ is ascending with positive critical points. Using
the compactness of ⌃0 , it follows that  ⇤

a (!)|⌃0 > 0 for a � 1 and thus  a(⌃0) is
symplectic. Outside of  a(⌃0), the surface  a(⌃) is cylindrical over transverse links.
It follows that  a(⌃) is a symplectic cobordism between K0 and K1 . Moreover, it is
easy to check that  a(⌃) remains ascending with positive critical points.

Remark 5.2 If (Y, ⇠) is symplectically fillable and K0 = ;, the relative symplectic
Thom conjecture implies that the surfaces constructed are genus-minimizing.

The desired surfaces can now be constructed using Example 4.7 and Lemma 5.1.

Proof of Theorem 1.2 Let (Y, ⇠) denote the contact 3-manifold in question. By
hypothesis, we have a transverse braid K in Y encoded by a pointed open book
(F,P, b � ') where b is a product of positive half-twists and ' = D�1 � · · · � D�m is
a product of positive Dehn twists along homologically nontrivial simple closed curves
�j in F . The modified pointed open book (F,P, b � id) is a quasipositive braid K0 in
Y0 = #k(S1 ⇥ S2) for k = 2g(F)+ |@F|� 1. The associated contact structure ⇠0 is the
unique Stein-fillable contact structure obtained from viewing Y0 as the boundary of the
subcritical Stein domain X0 = \k(S1⇥B3). As constructed in Example 4.7, we can find
an ascending surface ⌃ with positive critical points in a compact piece Y0 ⇥ (�✏, 0] of
the symplectization Symp(Y0, ⇠0). By applying Lemma 5.1 and allowing ✏ to increase,
we can isotope this surface to be symplectic. After stretching a collar neighborhood of
@X0 , the surface ⌃ in Y0 ⇥ (�✏, 0] embeds properly and symplectically into X0 . By
construction, the boundary of ⌃ is the transverse link K0 encoded by (F,P, b � id).

Geometry & Topology XX (20XX)



1034 Kyle Hayden

Using the Legendrian Realization Principle (see [37] for this special case), we can
realize the homologically nontrivial curves �j as Legendrian knots ⇤j lying on distinct
pages F✓j in (Y0, ⇠0) for increasing ✓j 2 (⇡, 2⇡); here we scale ✓ so that all nontrivial
braiding occurs while ✓ lies in (0,⇡). Performing surgery along each ⇤j with framing
�1 (relative to the page framing) corresponds to modifying the pointed open book
by introducing a positive Dehn twist along each �j in order of increasing ✓j . The
result reproduces the original pointed open book (F,P, b �'). These surgeries can be
realized by attaching Stein 2-handles along the Legendrian knots ⇤j to produce a Stein
filling X of (Y, ⇠). Moreover, since the handles are attached away from the boundary
of ⌃, the symplectic structure near ⌃ is unchanged. It follows that ⌃ is a symplectic
surface in X whose boundary is the original link K .

Combining this construction with Theorem 4.2 yields the following characterization:

Corollary 5.3 A transverse link in (Y, ⇠) is quasipositive with respect to a positive
allowable open book if and only if it bounds an ascending surface with positive critical
points in some Stein filling of (Y, ⇠). ⇤

We end this section with an example that demonstrates the failure of Theorem 1.2 for
links in the boundary of a Stein domain that are quasipositive braids with respect to a
compatible open book whose monodromy is not positive allowable.

Example 5.4 Consider an annulus A with a single marked point p as depicted in
Figure 2. Letting P� denote the push map about the core circle through p, we note that
the pointed open book (A, {p},P�) encodes a braid K in S1⇥S2 with respect to its trivial
planar open book. This braid K represents a nontrivial element in H1(S1 ⇥ S2). Since
any Stein filling of S1⇥S2 is diffeomorphic to S1⇥B3 and H2(S1⇥B3, @(S1⇥B3)) = 0,
we see that K cannot bound a surface in any Stein filling. However, as depicted on the
right side of Figure 2, K can also be represented by a pointed monodromy consisting
of a pair of (oppositely-signed) Dehn twists. This braid is quasipositive with respect to
an open book monodromy that is not positive allowable, though the underlying open
book supports the Stein-fillable contact structure on S1 ⇥ S2 . ⇧
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