

New approaches to secondary metabolite discovery from anaerobic gut microbes

Lazarina V. Butkovich¹ · Oliver B. Vining² · Michelle A. O'Malley^{1,3}

Received: 5 December 2024 / Revised: 19 December 2024 / Accepted: 23 December 2024
© The Author(s) 2025

Abstract

The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilize *in silico* tools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism.

Key points

- Gut microbial secondary metabolites have therapeutic and biotechnological potential
- Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery
- Anaerobic biofoundries enable high-throughput workflows for metabolite discovery

Keywords Gut microbiome · Secondary metabolite · Biofoundry · Genome mining · Anaerobic

Introduction

The animal gut microbiome is an evolutionary marvel, and its complexity and anaerobic nature pose a challenge to its understanding. The scale of bioinformatic wealth in gut microbiota is staggering: in an individual human for example, the gut microbiota consists of trillions of cells spanning over 500 species, harboring a gene pool that surpasses the human genome by over 100-fold (Sender et al. 2016; Gilbert et al. 2018). The vast majority of gut microbiota consist of viruses and bacteria, although lower abundance members such as fungi, archaea, and protozoa also play key roles. Over millions of years of co-evolution, host animals and gut microbiota have achieved symbiosis, with gut microbiota driving outcomes in host health, including protection from pathogens, immune system regulation, and digestion, with many of these roles mediated by a landscape of microbially produced secondary metabolites (Yang and Cong 2021; Cheng et al. 2024).

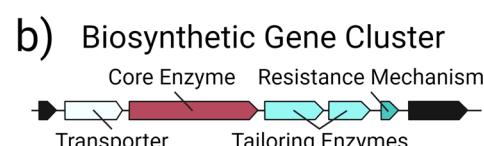
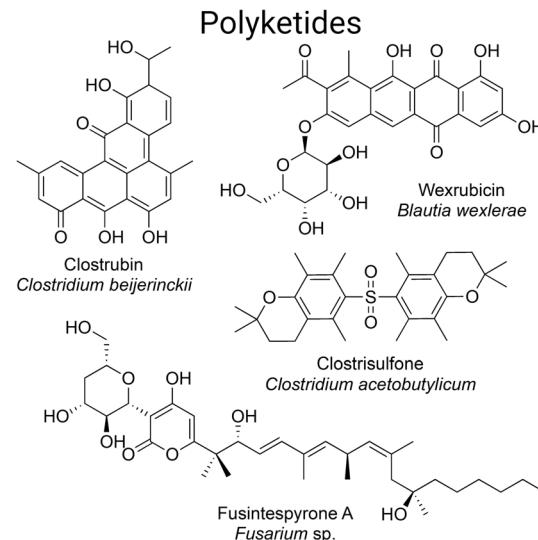
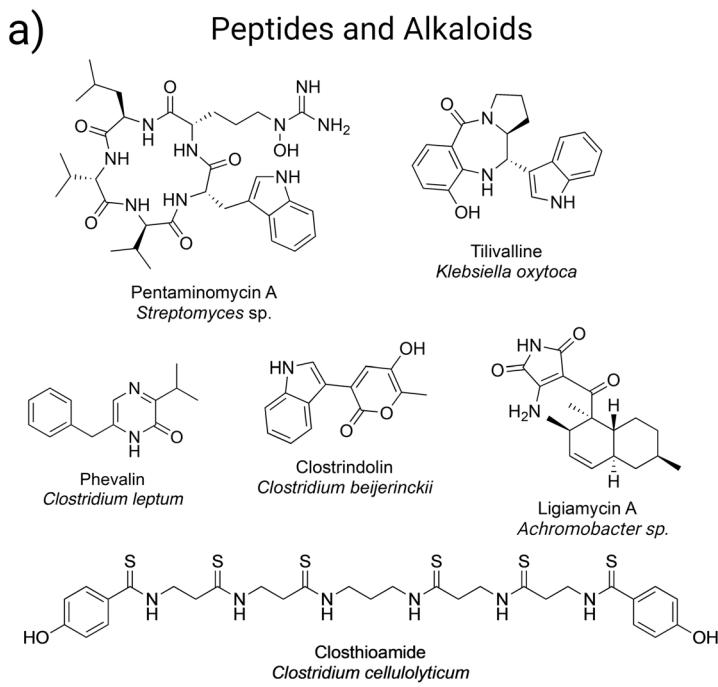
✉ Michelle A. O'Malley
momalley@ucsb.edu

Lazarina V. Butkovich
lbutkovich@ucsb.edu

Oliver B. Vining
olivervining@ucsb.edu

¹ Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA

² Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA




³ U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Secondary metabolites, also frequently referred to as natural products or specialized metabolites, are structurally diverse, organic small-molecules (<3000 Da) that can possess bioactivities, such as antibiotic, anti-cancer, immunosuppressant, and anti-viral activity (Craney et al. 2013). Secondary metabolites play a variety of native roles, including pigmentation (Narsing Rao et al. 2017), defense (Isah 2019), virulence factors (Vogt et al. 2015), quorum signaling (Rangel and Bolton 2022), and microbe-microbe and microbe-host interactions (Cruz et al. 2022). As a result of their unique chemistries, secondary metabolites have applications in pesticides, preservatives, biopolymers, drop-in biofuels, and pharmaceuticals, with over 60% of today's pharmaceuticals related to secondary metabolites (Keswani et al. 2020; Newman and Cragg 2020; Kim et al. 2021b; Mosquera et al. 2021; Keasling et al. 2021). Secondary metabolites are categorized into several classes, including polyketides, non-ribosomal peptides, ribosomally synthesized and post-translationally modified peptides (RiPPs), alkaloids, and terpenes, and the biosynthetic pathways to produce secondary metabolites are typically encoded by biosynthetic gene clusters (BGCs) (Fig. 1).

Secondary metabolites from gut microbiota likely drive important outcomes in host health and function, and they

further could be tapped for their biotech potential as anti-inflammatories, antimicrobials, and postbiotics, products from probiotic microbes. Additionally, microbiome complexity correlates with diversity and abundance of secondary metabolites, which reflect increased metabolic exchange and microbial interactions in processes like quorum sensing, symbiosis, and chemical warfare (Phelan et al. 2012). Understanding the complex gut secondary metabolome is relevant for human health, as secondary metabolites can strongly modulate microbial community membership (Hatziaianou et al. 2017; Chevrette et al. 2022; Duncan et al. 2023). Gut dysbiosis has been linked to a range of human diseases (Winter and Bäumler 2023): cardiovascular disease (Karlsson et al. 2012), diabetes (Wang et al. 2012; Ceccarani et al. 2020), colorectal cancer (Scott et al. 2019), and inflammatory bowel disease (Frank et al. 2007). In silico studies and experimental validations further support the understanding that the complex gut microbiome possesses untapped secondary metabolite potential (Wang et al. 2019; Garcia-Gutierrez et al. 2019).

Given the interest surrounding secondary metabolites from gut microbiota, recent advances offer promising directions for studying and scaling production of these metabolites. Lab automation is increasingly pursued to accelerate

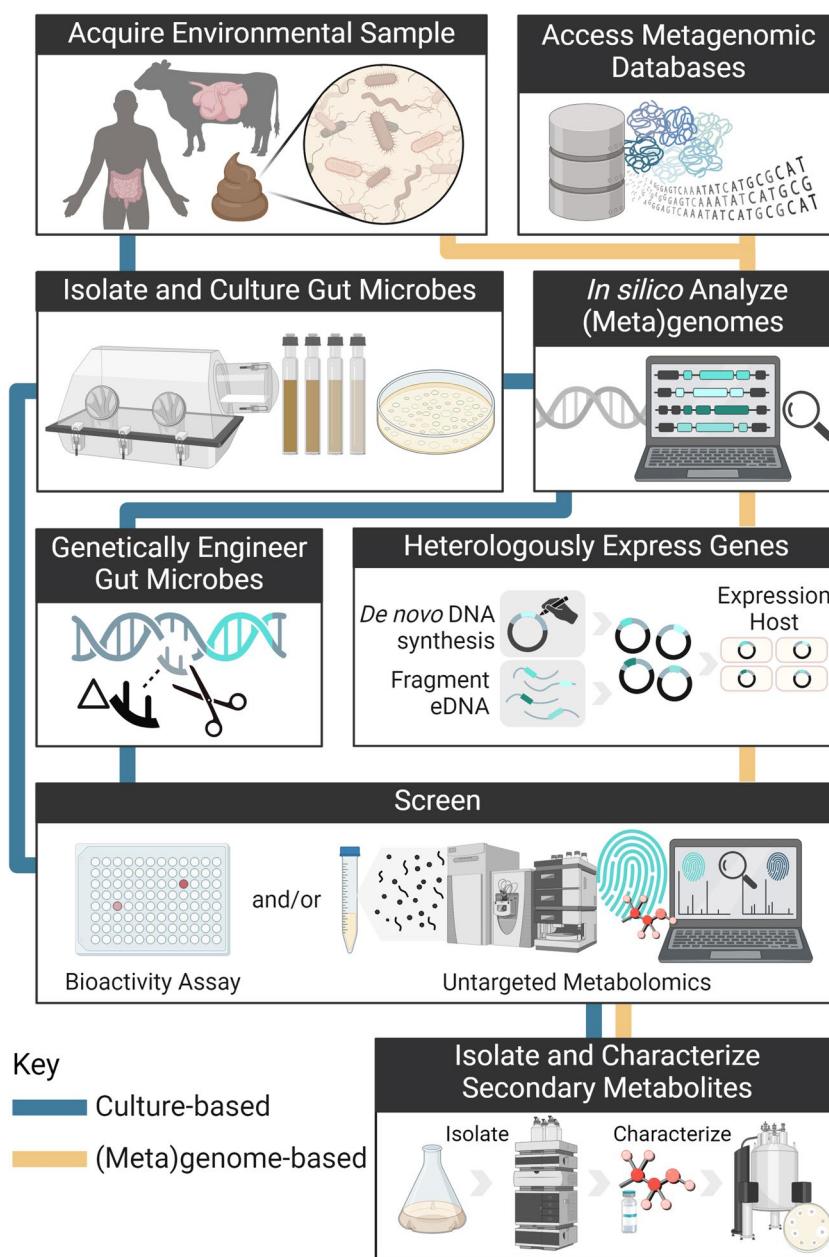
Fig. 1 Recent studies highlight anaerobic microbes as a source for novel secondary metabolites. **a** Pentaminomycin A, tilivalline, phevalin, ligiamycin, wexrubicin, and fusintespyrone A were characterized from gut microbes, and clostrindolin, closthioamide, clostrubin, and clostrisulfone were characterized from obligately anaerobic *Clostridium* from soil. **b** Biosynthetic Gene Cluster (BGCs) encode

the machinery to produce secondary metabolites. BGCs consist of co-localized genes that include (i) at least one core biosynthetic gene encoding a biosynthetic enzyme and (ii) accessory genes for gene regulation, tailoring enzymes, transporters, and self-resistance mechanisms. Figure was created with BioRender.com

scientific discoveries, and biofoundries—automated facilities focused on enabling synthetic biology—are a central example. Biofoundries are not typically designed for fully anaerobic workflows, but two recent facilities specialize in anaerobic studies: the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea and Bacteria (ExFAB) (exfab.org) and the LanzaTech biofoundry (lanzatech.com). Regarding current bioproduction, industrial-scale aerobic bioreactors fully or semi-synthesize important secondary metabolite-based therapeutics, including artemisinin (Ro et al. 2006; Paddon and Keasling 2014) and lovastatin (Bizu-kojc and Ledakowicz 2008; Mulder et al. 2015). Anaerobic bioreactors improve upon aerobic designs, due to significant reductions in energy requirements for mixing, aeration, and heat removal (Weusthuis et al. 2011; Cueto-Rojas et al. 2015; Humbird et al. 2017). Additionally, anaerobic, acetogenic bacteria such as *Clostridium* are promising industrial workhorses for sustainable secondary metabolite production, using CO and H₂/CO₂ gases as a carbon source (Zhang et al. 2024a). Overall, discovering biosynthetic machinery for valuable secondary metabolites from anaerobes has the potential to make industrial processes more sustainable.

In this mini-review, we provide an overview of current approaches for secondary metabolite mining from gut microbes, spotlighting obligate anaerobes, gut fungi, and opportunities to accelerate secondary metabolite characterization via anaerobic biofoundries. For a summary of secondary metabolites discovered from mammalian gut bacteria, we refer the reader to other comprehensive reviews (Donia and Fischbach 2015; Wang et al. 2019; Garcia-Gutierrez et al. 2019). In the following sections, we describe culture-based and (meta)genome-based workflows (Fig. 2) that leverage overlapping techniques to screen, isolate, and characterize secondary metabolites from gut microbes.

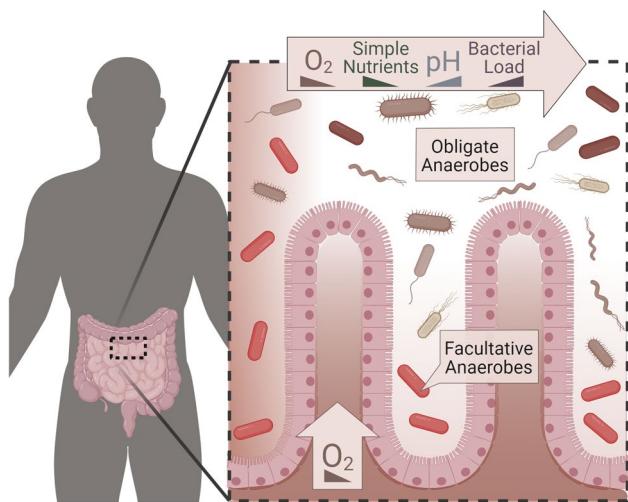
Culture-based workflows enable focused secondary metabolite discovery from isolated gut microbes


Successful isolation and cultivation of a microbe significantly expands the techniques available to characterize and enhance production of secondary metabolites from the microbe. Techniques for culture-based workflows (Fig. 2) have been well-described (Xu et al. 2024). Researchers typically isolate gut microbial strains from fresh feces, using serial culturing with (i) agar plate-based techniques (valid only for colony-forming species) or (ii) liquid dilution-based techniques utilizing microfluidics (Du et al. 2009; Overmann 2013; Watterson et al. 2020; Jian et al. 2023). To target specific microbe types, selection pressures can be applied. In rumen microbial enrichments for example, chloramphenicol selects for fungi, penicillin–streptomycin selects for fungi and methanogens, and the combined addition of hydrogen and lack of carbon source selects for prokaryotes (Gilmore

et al. 2019). After isolation, robust cryopreservation and cryo-revival methods are essential to maintaining strains for future studies.

The choice of aerobic or anaerobic culturing strongly affects what microbe types are selected during enrichment and ultimate isolations. The gut is mostly anoxic and hosts a range of obligate and facultative anaerobes and lowly abundant aerobes (Fig. 3). Unlike facultative anaerobes, which survive under ambient oxygen, obligate anaerobes—constituting the majority of human lumen microbiota (von Martels et al. 2017)—generally cannot survive prolonged oxygen exposure, though some can exploit low levels of oxygen (Lu and Imlay 2021). Since facultative anaerobes can survive aerobic culturing, they have been studied more extensively than obligate anaerobes. Anaerobic culturing is relatively more complicated than aerobic culturing, requiring specialized procedures and equipment, such as an anaerobic chamber (Wagner et al. 2019). Temporary, economical options for anaerobic culturing also exist, such as AnaeroPak (Delaney and Onderdonk 1997) and BBL GasPak (Collee et al. 1972), although the ability of these systems to maintain a fully anaerobic state is limited. As an added difficulty, most high-throughput screening methods do not translate well to anaerobes. Characterization by flow cytometry is not possible due to ambient oxygen in unmodified instrument setups (Thompson et al. 2015) and the tendency for anaerobes to form biofilms (Donelli et al. 2012). Additionally, characterization by MALDI-TOF is currently limited by the lack of reference spectra for gut anaerobes (Plomp et al. 2024). Historically, the additional effort, costs, and difficulties are barriers-to-entry for labs to study gut microbes anaerobically and specifically target obligate anaerobes.

Once gut microbes are isolated and cultured, their ability to produce secondary metabolites can be studied directly. Typically, biological assays are performed in parallel with LCMS or NMR-based untargeted/targeted metabolomics to characterize the chemistry and bioactivity of metabolites present in microbial cultures, often across isolate libraries as an initial screen to prioritize further interrogation of specific microbes or sources (Rinschen et al. 2019; Vitale et al. 2024). For example, screens have highlighted gut microbiota from animals in polluted environments as promising sources of novel antibiotics (Akbar et al. 2020; Siddiqui et al. 2023). Additionally, Adra et al. screened 37 termite gut-associated *Streptomyces* isolates for antifungal activity against the plant pathogen *Pyrrhoderma noxium*, and MS/MS-based networking yielded putative identification of some known polyketides and potential novel metabolites (Adra et al. 2023). A major challenge in culture-based workflows is that microbes often do not express BGCs under standard lab conditions, as secondary metabolites are energetically costly to biosynthesize and may require specific biotic or abiotic environmental cues (Covington et al. 2021). Certain methods have


Fig. 2 Culture-based and (meta)genome-based workflows drive exploration for novel secondary metabolites from nature. (i) The culture-based method screens successfully cultured gut microbes, with the option to genetically engineer them. (ii) The (meta)genome-based workflow mines gut microbial genomic sequences for predicted secondary metabolite BGCs, using sequences from environmental samples, cultured microbes, or public databases. Heterologous expression techniques enable the study of mined BGCs in well-studied expression hosts or cell-free systems. Figure was created with BioRender.com

proven useful in activating silent BGCs, including “One Strain Many Compounds” (OSMAC) techniques (Bode et al. 2002; Pan et al. 2019) and co-culturing (Selegato and Castro-Gamboa 2023). For example, after performing OSMAC on *Streptomyces* sp. GG23 from the guts of the mealworm beetle (*Tenebrio molitor*), Hwang et al. characterized pentatinomycins (Fig. 1), which possessed autophagy-inducing activity and in vitro activity against oxidative stress (Hwang et al. 2020). Additionally, Lim et al. co-cultivated bacterial strains *Streptomyces* sp. GET02.ST and *Achromobacter* sp. GET02.AC from the wharf roach gut (*Ligia exotica*), leading to the discovery of two novel GET02.ST secondary

metabolites: the antibacterial ligiamycin A and anticancer ligiamycin B (Fig. 1) (Lim et al. 2022).

Genomic sequencing of cultured gut microbes enables genome-based mining for secondary metabolites (see next section) and direct genetic engineering techniques to establish biosynthetic pathways, engineer promoters, improve access to precursor molecules, and manipulate BGCs (Alam et al. 2021). However, relative to aerobes, tools and techniques to genetically engineer anaerobes are lacking and pose a challenge to develop. Recent studies highlight their potential in secondary metabolite research, such as the use of Tn5 transposon-based mutagenesis by

Fig. 3 The animal gut possesses steep gradients of oxygen and hosts microbes with ranges of oxygen tolerance. Gut biogeography and oxygen variation have been well-described in animal guts (McCallum and Tropini 2024; Maritan et al. 2024). Oxygen enters the gut via the vasculature at the gut epithelium and via partially digested food contents from the stomach, and oxygen leaves via both facultative anaerobe respiration and host mechanisms, as evidenced by the anoxic guts of germ-free animals (Sonnenburg et al. 2005; Espy 2013; Friedman et al. 2018; Lu and Imlay 2021). Figure was created with BioRender.com

Dornisch et al. to elucidate the biosynthetic pathway of tiliavalline (Fig. 1), a toxin from gut bacterium *Klebsiella oxytoca* implicated in human colitis (Dornisch et al. 2017). The creation of novel genetic engineering toolboxes for anaerobes is essential for accelerating the study of gut anaerobes. Ameruoso et al. established a novel approach combining CRISPR interference (CRISPRi) and activation (CRISPRa) to perturb the endogenous regulatory network of the aerobic soil bacterium *Streptomyces* and activate silent BGCs. This genetic engineering toolbox can also be utilized for *Streptomyces* strains present in the gut (Bolourian and Mojtabaei 2018; Ameruoso et al. 2022). In recent years, genetic and metabolic engineering tools in anaerobes have been utilized to improve production of valuable primary metabolites, such as butyrate in commensal gut bacteria (Gong et al. 2023) and hexanol and butanol from syngas (CO_2/H_2) in *Clostridium ljungdahlii* (Liew et al. 2016; Hoff et al. 2021; Lauer et al. 2022). Such genetic engineering tools and concepts can also be applied in anaerobes to further interrogate biosynthetic pathways and improve production of secondary metabolites.

(Meta)genome-based workflows enable secondary metabolite discovery in uncultured gut microbes

While there are clear benefits to working with cultured gut microbial isolates for secondary metabolite discovery, gut

microbes are challenging to isolate and culture, with ~70% of identified human gut bacteria not yet cultured (Almeida et al. 2021). Failure of gut microbes to grow under standard laboratory conditions is often attributed to a lack of specific factors (nutrients, signaling compounds, physical interactions, etc.), which may be produced by the animal host or native gut microbiome (Epstein 2013). To face this challenge, (meta)genome-based methods (Fig. 2) including *in silico* genome mining and heterologous expression have been essential in establishing our current understanding of gut microbial metabolism, phylogenies, and untapped secondary metabolite potential.

In silico genome mining tools predict secondary metabolite BGCs, aiding in prioritization of genomic targets for experimental study. Current tools for BGC prediction include antiSMASH 7.0 (Blin et al. 2023), PRISM 4 (Skinner et al. 2020), TaxiBGC (Gupta et al. 2022), RiPPMiner-Genome (Agrawal et al. 2021), NaPDoS (Klau et al. 2022), and ARTS 2.0 (Mungan et al. 2020). These and similar tools have been well-covered in recent reviews (Li 2023; Wang et al. 2024) and typically function by searching input genomes for conserved sequences of (i) core biosynthetic genes that encode core enzymes or (ii) self-resistance genes that detoxify the secondary metabolite for the producing organism. Sequence-based predictive tools may fail to detect BGCs with insufficient similarity to known sequences, an issue of particular relevance for anaerobes, since most studied BGCs are from aerobic organisms (Letzel et al. 2013, 2014). Alongside tools for secondary metabolite mining, the tool gutSMASH predicts specialized, primary metabolic gene clusters in gut microbial genomes, which can complement studies for secondary metabolite discovery (Pascal Andreu et al. 2023).

In silico genome mining tools can be applied to metagenome-assembled genomes, genomes from cultured microbes, and genomes from public repositories, where large amounts of curated data are now publicly available and pose an accessible resource to prioritize future discovery efforts. Such (meta)genomic repositories for gut microbes include the Human Microbiome Project (HMP) (Huttenhower et al. 2012; Methé et al. 2012) and its second phase, the Integrative Human Microbiome Project (HMP2) (Proctor et al. 2019); the Hungate1000 collection for rumen microbes (Seshadri et al. 2018); the Unified Human Gastrointestinal Genome (UHGG) Collection (Almeida et al. 2021) and its expanded catalog, the Human Reference Gut Microbiome (HRGM) (Kim et al. 2021a); the Animal Microbiome Database (AMDB) (Yang et al. 2022); Metagenomics of Human Intestinal Tract (MetaHIT) (Yang et al. 2022); and the Exposure-Explorer (Neveu et al. 2023). Recent studies report *in silico* analyses from these and other repositories. For example, Ma et al. recently implemented machine learning to mine antimicrobial peptides from 15 human gut microbiome

metagenomic cohorts, prioritizing antimicrobial peptides with low toxicity to human cells and effectiveness against both *Klebsiella pneumoniae* in a lung infection mouse model and multi-drug resistant, gram-negative bacteria (Ma et al. 2022). Similarly, the MetaBGC algorithm was developed by Sugimoto et al. to enable metagenome-based BGC mining. Application of MetaBGC analysis to metagenomes derived from the human gut microbiome resulted in identification of multiple novel secondary metabolites, including wexrubicin (Fig. 1), a novel anthracycline type II polyketide from a gut *Clostridia*, *Blautia wexlerae* DSM 19850 (Sugimoto et al. 2019). Broader efforts to mine genome repositories have yielded BGC databases, such as Minimum Information about a Biosynthetic Gene Cluster (MIBiG) (Terlouw et al. 2023), BiG-FAM (Kautsar et al. 2021), and sBGC-hm (Zou et al. 2023), which organize current information on BGCs.

Heterologous expression is a key technique to explore the *in silico*-predicted metabolic potential of an organism and involves expressing target genes in a well-characterized host. Target genes can originate from fragmented environmental DNA, cultured microbe genomic DNA, or *de novo* synthesized DNA. Although *de novo* DNA synthesis enables codon-optimization and access to virtually any sequenced gene for heterologous expression, this option is often cost-prohibitive due to the typical large sizes of BGCs. Traditional expression hosts, like *E. coli*, *Streptomyces*, and yeast, can struggle to express BGCs from anaerobes, likely due to differences in regulatory or biosynthetic elements between the source and host microbes (Galm and Shen 2006; Zhang et al. 2017). To address this issue, genetically tractable, anaerobic bacterial host systems have been developed. Hao et al. developed an expression system in the facultative anaerobe *Streptococcus mutans* and utilized the system to genome-mine 10,038 *Streptococcus* strains (Hao et al. 2019). Additionally, Sanford et al. used chassis-independent recombinase-assisted genome engineering (CRAGE) to develop an expression system in *Eubacterium limosum*, an acetogenic *Clostridia* and obligate anaerobe from the human gut. Sanford et al. heterologously expressed a non-ribosomal peptide BGC from the human gut bacteria *Clostridium leptum* to produce phevalin (Fig. 1) (Sanford et al. 2024). Cell-free expression systems are another option to explore *in silico*-predicted metabolic potential. In 2020, Krüger et al. developed the first cell-free expression system for an obligate anaerobe, *Clostridium autoethanogenum* (Krüger et al. 2020). Overall, these recent developments in anaerobic expression systems will facilitate further secondary metabolite discovery from gut anaerobes.

Both culture-based and (meta)genome-based workflows culminate in efforts to screen, isolate, and structurally elucidate secondary metabolites. For a thorough discussion of the latest techniques involved in these steps, we refer the reader to other resources. Generally, gut microbial and

heterologous expression cultures can be screened for secondary metabolites using traditional bioactivity assays (i.e., disc dilution or microdilution assays) and untargeted metabolomics (ie: LC-MS/MS) (Rinschen et al. 2019; Vitale et al. 2024). A major milestone in these discovery efforts is the isolation (i.e., bioactivity-guided fractionation with HPLC) and structural characterization (i.e., NMR, microED) of a novel secondary metabolite (Sarker et al. 2006; Zhao and Yue 2023; Gaudêncio et al. 2023).

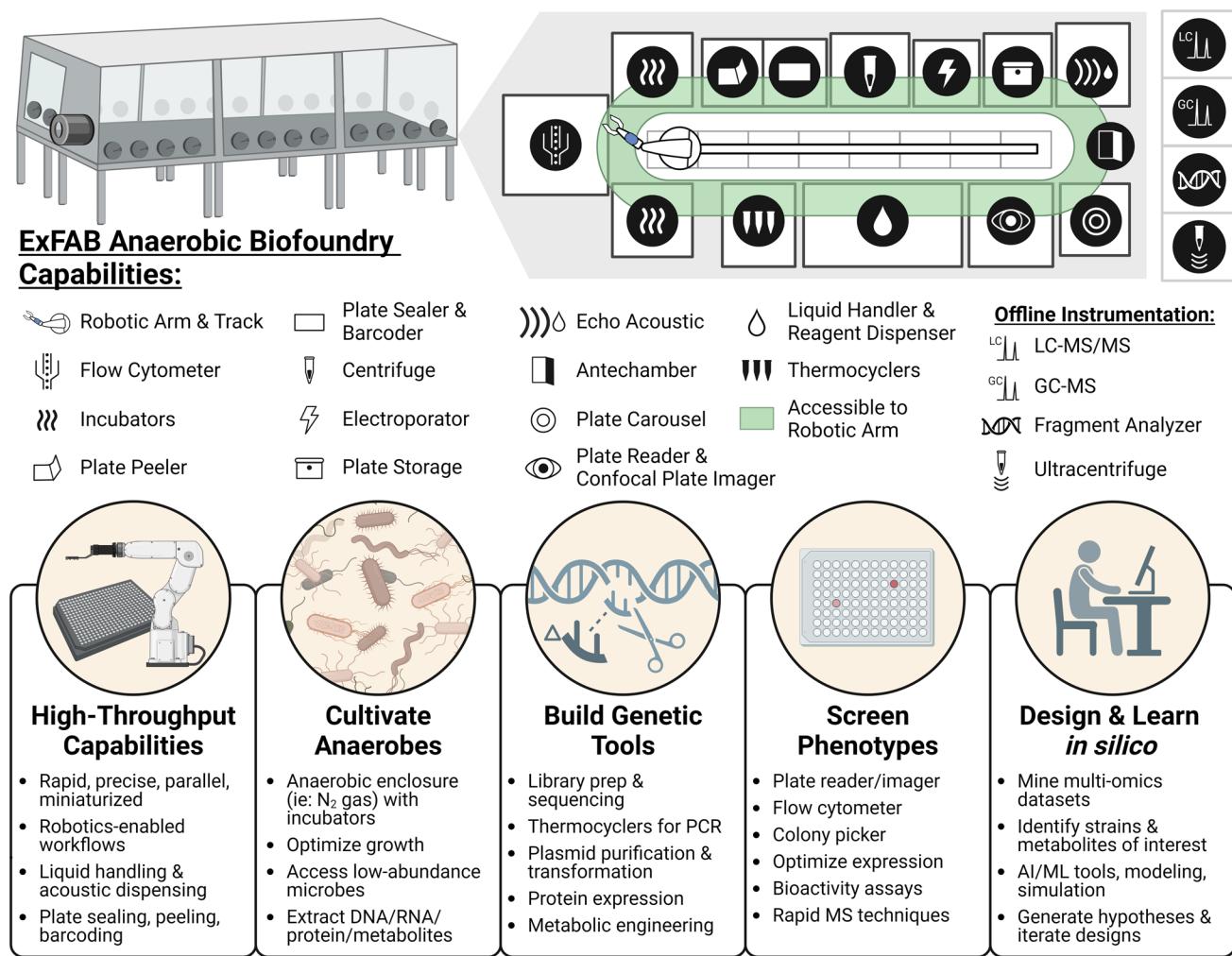
Obligate gut anaerobes and gut fungi are promising sources of secondary metabolites

Obligate anaerobes were long believed to not produce secondary metabolites (Lincke et al. 2010). However, this understanding changed with the discovery of secondary metabolites from *Clostridium*, a bacterial genus found in the soil and gut and utilized in industrial solvent production. In 2010, Lincke et al. discovered closthoamide (Fig. 1), the first nonribosomal peptide discovered from an obligate anaerobe, the soil bacterium *Clostridium cellulolyticum* (Lincke et al. 2010). Shortly after, Pidot et al. discovered clostrubin (Fig. 1), the first polyketide reported from an obligate anaerobe (*Clostridium beijerinckii*), which features a benzo[a]tetraphene ring structure unprecedented in natural product chemistry and exhibited potent antibiotic activity against methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant enterococci (VRE), and mycobacteria (Pidot et al. 2014). More recently, the antimycobacterial alkaloid clostrindolin was also discovered from *C. beijerinckii* (Schieferdecker et al. 2019), and clostrisulfone, the first reported natural product with a diphenylsulfone scaffold, was discovered from *C. acetobutylicum* (Fig. 1) (Neuwirth et al. 2020).

While *Clostridium* has been the subject of increasing interest for secondary metabolite discovery, other obligate anaerobes remain largely unexplored. To broadly characterize secondary metabolite potential of obligate anaerobes, Letzel et al. *in silico* genome-mined 211 bacterial obligate anaerobes, of which 40% were from the *Firmicutes* phylum, which includes *Clostridium*. They found that BGC abundance for polyketides and non-ribosomal peptides was ~ 70% lower than for facultatively anaerobic or aerobic bacteria, suggesting a relatively lower secondary metabolite potential of obligate anaerobes. Nevertheless, 25% of obligate anaerobes were capable of synthesizing RiPPs, and 33% were capable of synthesizing polyketides and non-ribosomal peptides (Letzel et al. 2013, 2014). As previously noted, these *in silico* genome mining tools rely on sequence similarity to known BGCs, which largely originate from aerobes. Tentatively, *in silico* studies under-represent the actual secondary metabolite biosynthetic capability of obligate anaerobes. Overall, obligate anaerobes, including those from the gut,

remain a novel source for secondary metabolites, and there is more to discover about natural product chemistry from the anaerobic world.

Previous reviews on gut microbial secondary metabolites predominantly discuss gut bacteria. However, recent evidence suggests gut fungi also possess secondary metabolite potential. For example, *Basidiobolus* from amphibian guts, produces secondary metabolites likely acquired by horizontal gene transfer from bacteria (Tabima et al. 2020). Additionally, two novel, antifungal glycosides fusintespyrone A (Fig. 1) and cerevisterolside A were discovered from the human intestinal fungus *Fusarium* sp. (Zhang et al. 2024b). While *Basidiobolus* and *Fusarium* are facultative gut anaerobes, anaerobic gut fungi (phylum *Neocallimastigomycota*) are obligate anaerobes from the guts of some large herbivores, such as ruminants. Through in silico genome mining and multi-omics data analysis, Swift et al. showed that anaerobic gut fungi possess untapped secondary metabolite potential (Swift et al. 2021b). Additional co-cultivation studies of anaerobic gut fungi with rumen bacteria or methanogens showed differential regulation of predicted secondary metabolite genes, suggesting possible secondary metabolite roles in community membership (Swift et al. 2019, 2021a). Overall, these recent studies show an increasing awareness of gut fungi as a source of novel secondary metabolites.


Anaerobic biofoundries enable high-throughput methods for studying secondary metabolites from anaerobic gut microbes

Laboratory automation is well-established for accelerating synthetic biology research. Laboratory automation focuses on linking multiple automated unit operations into complete experimental workflows, with the goal of fully autonomous operation (Gurdo et al. 2023). A key example of laboratory automation is the biofoundry—an automated facility focused on enabling synthetic biology (Fig. 4) (Hillson et al. 2019). Approximately 40 publicly-accessible biofoundries are in operation globally, many of which participate in the Global Biofoundry Alliance to promote interlaboratory collaboration (Hillson et al. 2019). However, the majority of these facilities have limited capability for anaerobic experimentation. Two recent biofoundries in the United States are specifically designed to support complete workflows under anaerobic conditions: the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria (ExFAB) and LanzaTech (exfab.org, lanzatech.com). Successfully automated or semi-automated systems require minimal human input, allowing for their continuous operation in sealed enclosures with controlled atmospheric compositions, ideal for anaerobic studies.

Anaerobic biofoundries offer clear advantages for both culture-dependent and (meta)genome-dependent workflows

for secondary metabolite discovery from gut anaerobes (Fig. 2). For culture-dependent workflows, automated sampling and liquid handling enable high-throughput testing to optimize microbial cultivation and secondary metabolite production, while reducing consumable costs by miniaturizing experiments to 96-, 384-, and 1536-well plate formats (Singleton et al. 2019; Otero-Muras and Carbonell 2021; Huang et al. 2023). Automation also enhances OSMAC and other elicitor-based strategies to induce silent BGCs, by allowing rapid testing of more challenge compounds (Xu et al. 2019). Subsequently, high-throughput metabolomic and bioactivity screens identify secondary metabolites of interest and guide downstream optimization efforts (Zoffmann et al. 2019; Kontou et al. 2023; Liu et al. 2024). Historically slow and labor-intensive, comprehensive chemical analysis of cell culture material is now expedited by rapid mass spectrometry (MS) techniques, including acoustic ejection MS (Zhang et al. 2021) and desorption MS technologies (Blincoe et al. 2020; Morato et al. 2021; Dueñas et al. 2023), with cycle times on the order of seconds. These techniques require minimal sample preparation and are readily integrated into biofoundry workflows with automated liquid handling. For (meta)genome-based workflows, biofoundries streamline molecular cloning protocols for rapid generation of DNA constructs (Rosch et al. 2024), enabling efficient capture of target BGCs from (meta)genome databases. Large construct libraries with novel BGCs can be inserted into panels of candidate host strains via automated transformation techniques, such as microwell plate electroporation (Rosch et al. 2024) and precise CRISPR/Cas-based genome editing (Tong et al. 2021), enabling efficient expression of oxygen-sensitive biosynthetic machinery in anaerobic heterologous systems.

Anaerobic biofoundries are a recent development that hold promise in targeting the untapped potential of gut anaerobes. However, designing and operating an anaerobic biofoundry presents several challenges. Biofoundries require significant upfront cost and effort to build, train personnel, and develop workflows (Holowko et al. 2021). Environmental chambers to house automated instrumentation are often custom-designed, larger, and more complex than widely available chambers, making initial implementation and long-term maintenance costly. Instrumentation is not routinely tested for compatibility with an anaerobic atmosphere (low humidity, high N₂, etc.) and may suffer from inconsistent function or reduced lifetime under these unique conditions. Of particular concern is the potential for hydrogen sulfide production by sulfate-reducing microbial strains, which can accumulate in a closed chamber and quickly degrade sensitive electronic components if active gas purification is not employed (Jung et al. 2022). Maintaining system sterility presents an additional challenge, especially when spore-forming bacterial or fungal strains are introduced, as

Fig. 4 Biofoundries like ExFAB follow the Design-Build-Test-Learn paradigm to rapidly engineer, evaluate, and optimize biological systems through continuous, data-driven refinement. These facilities often include robotic sample management, liquid handlers, analytical

instrumentation, and software systems to orchestrate complex workflows involving multiple devices operating in unison. Biofoundries are ideal for clearly defined, repetitive tasks, rather than exploratory work that requires flexibility. Figure was created with BioRender.com

access for manual disinfection is often limited. Rigorous procedures involving multiple disinfection methods (surface disinfection, UV irradiation, hydrogen peroxide or ozone gas exposure, etc.) are often required to minimize microbial contamination (Epelle et al. 2023). Despite these challenges, successful implementation of anaerobic biofoundry workflows promises to revolutionize studies on gut microbiomes and their metabolism.

Conclusion

Gut microbes are a largely untapped source of secondary metabolites that impact host health and present therapeutic and biotechnological applications. Among these

microbes, gut fungi and obligate anaerobes are particularly under-explored yet promising for novel metabolites. Recent advances in anaerobic biofoundries offer opportunities to overcome experimental bottlenecks in working with gut anaerobes. Such automated workflows hold promise to advance our understanding of gut anaerobe cultivability, expand the knowledge base of BGCs, reveal metabolic strategies of gut anaerobes, implement high-throughput heterologous systems for oxygen-sensitive biosynthetic machinery, and accelerate phenotypic screens for bioactive metabolites of interest. Overall, the latest innovations for secondary metabolite discovery from the anaerobic gut microbiome will continue to reveal the unknown natural product chemistry of the anaerobic world.

Author contribution Conceptualization; writing—review and editing: L.V.B., O.B.V., M.A.O. Writing—original draft preparation; visualization: L.V.B., O.B.V. Supervision: M.A.O. All authors read and approved the final manuscript.

Funding The authors acknowledge funding support from the U.S. Army Research Office via contracts W911NF-19-2-0026 and W911NF-19-1-0010. This research was sponsored by the U.S. Department of Energy Joint BioEnergy Institute (JBEI, <http://www.jbei.org>) through contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) and the U.S. Department of Energy, Office of Science through grants DE-SC0020420 and DE-SC0022142. This material is based on work supported by the National Science Foundation under Cooperative Agreement DBI – 2400327.

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

Adra C, Tran TD, Foster K, Tomlin R, Kurtböke D (2023) Untargeted MS-based metabolomic analysis of termite gut-associated *Streptomyces* with antifungal activity against *Pyrrhoderma noxiun*. *Antibiotics* 12. <https://doi.org/10.3390/antibiotics12091373>

Agrawal P, Amir S, Deepak, Barua D, Mohanty D (2021) RiPPMiner-genome: a web resource for automated prediction of crosslinked chemical structures of RiPPs by genome mining. *J Mol Biol* 433. <https://doi.org/10.1016/j.jmb.2021.166887>

Akbar N, Siddiqui R, Sagathevan K, Khan NA (2020) Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. *Int J Microbiol* 23:511–526. <https://doi.org/10.1007/s10123-020-00123-3>

Alam K, Hao J, Zhang Y, Li A (2021) Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. *Biotechnol Adv* 49:107759. <https://doi.org/10.1016/j.biotechadv.2021.107759>

Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD (2021) A unified catalog of 204,938 reference genomes from the human gut microbiome. *Nat Biotechnol* 39:105–114. <https://doi.org/10.1038/s41587-020-0603-3>

Ameruoso A, Kcam MCV, Cohen KP, Chappell J (2022) Activating natural product synthesis using CRISPR interference and activation systems in *Streptomyces*. *Nucleic Acids Res* 50:7751–7760. <https://doi.org/10.1093/nar/gkac556>

Bizukojc M, Ledakowicz S (2008) Biosynthesis of lovastatin and (+)-geodin by *Aspergillus terreus* in batch and fed-batch culture in the stirred tank bioreactor. *Biochem Eng J* 42:198–207. <https://doi.org/10.1016/j.bej.2008.06.022>

Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, Fetter A, Terlouw BR, Metcalf WW, Helfrich EJN, van Wezel GP, Medema MH, Weber T (2023) antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. *Nucleic Acids Res*. <https://doi.org/10.1093/nar/gkad344>

Blincoe WD, Lin S, Dreher SD, Sheng H (2020) Practical guide on MALDI-TOF MS method development for high throughput profiling of pharmaceutically relevant, small molecule chemical reactions. *Tetrahedron* 76. <https://doi.org/10.1016/j.tet.2020.131434>

Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature's chemical diversity. *ChemBioChem* 3:619. [https://doi.org/10.1002/1439-7633\(20020703\)3:7%3c619::AID-CBIC619%3e3.0.CO;2-9](https://doi.org/10.1002/1439-7633(20020703)3:7%3c619::AID-CBIC619%3e3.0.CO;2-9)

Bolourian A, Mojtabaei Z (2018) *Streptomyces*, shared microbiome member of soil and gut, as “old friends” against colon cancer. *FEMS Microbiol Ecol* 94. <https://doi.org/10.1093/FEMSEC/FIY120>

Ceccarani C, Bassanini G, Montanari C, Casiraghi MC, Ottaviano E, Morace G, Biasucci G, Paci S, Borghi E, Verduci E (2020) Proteobacteria overgrowth and butyrate-producing taxa depletion in the gut microbiota of glycogen storage disease type 1 patients. *Metabolites* 10. <https://doi.org/10.3390/metabo10040133>

Cheng L, Correia MSP, Higdon SM, Romero Garcia F, Tsiora I, Joffré E, Sjöling Å, Boulund F, Norin EL, Engstrand L, Globisch D, Du J (2024) The protective role of commensal gut microbes and their metabolites against bacterial pathogens. *Gut Microbes* 16. <https://doi.org/10.1080/19490976.2024.2356275>

Chevrette MG, Thomas CS, Hurley A, Rosario-Meléndez N, Sankaran K, Tu Y, Hall A, Magesh S, Handelsman J (2022) Microbiome composition modulates secondary metabolism in a multispecies bacterial community. *PNAS* 119. <https://doi.org/10.1073/pnas.2212930119>

Collee JG, Watt B, Fowler EB, Brown R (1972) An evaluation of the Gaspak system in the culture of anaerobic bacteria. *J Appl Bacteriol* 35:71–82. <https://doi.org/10.1111/j.1365-2672.1972.tb03675.x>

Covington BC, Xu F, Seyedsayamost MR (2021) A natural product chemist's guide to unlocking silent biosynthetic gene clusters. *Annu Rev Biochem* 90:763–788. <https://doi.org/10.1146/annurev-biochem-081420-102432>

Craney A, Ahmed S, Nodwell J (2013) Towards a new science of secondary metabolism. *J Antibiot (Tokyo)* 66:387–400. <https://doi.org/10.1038/ja.2013.25>

Cruz N, Abernathy GA, Dichosa AEK, Kumar A (2022) The age of next-generation therapeutic-microbe discovery: exploiting microbe-microbe and host-microbe interactions for disease prevention. *Infect Immun* 90. <https://doi.org/10.1128/iai.00589-21>

Cueto-Rojas HF, van Maris AJA, Wahl SA, Heijnen JJ (2015) Thermodynamics-based design of microbial cell factories for anaerobic product formation. *Trends Biotechnol* 33:534–546. <https://doi.org/10.1016/j.tibtech.2015.06.010>

Delaney ML, Onderdonk AB (1997) Evaluation of the AnaeroPack system for growth of clinically significant anaerobes. *J Clin Microbiol* 35:558–562. <https://doi.org/10.1128/jcm.35.3.558-562.1997>

Donelli G, Vuotto C, Cardines R, Mastrantonio P (2012) Biofilm-growing intestinal anaerobic bacteria. *FEMS Immunol Med*

Microbiol 65:318–325. <https://doi.org/10.1111/j.1574-695X.2012.00962.x>

Donia MS, Fischbach MA (2015) Small molecules from the human microbiota. *Science* 349. <https://doi.org/10.1126/science.1254766>

Dornisch E, Pletz J, Glabonjat RA, Martin F, Lembacher-Fadum C, Neger M, Högenauer C, Francesconi K, Kroutil W, Zanger K, Breinbauer R, Zechner EL (2017) Biosynthesis of the enterotoxic pyrrolobenzodiazepine natural product tilivalline. *Angew Chem Int Ed* 56:14753–14757. <https://doi.org/10.1002/anie.201707737>

Du W, Li L, Nichols KP, Ismagilov RF (2009) SlipChip. *Lab Chip* 9:2286–2292. <https://doi.org/10.1039/b908978k>

Dueñas ME, Peltier-Heap RE, Leveridge M, Annan RS, Büttner FH, Trost M (2023) Advances in high-throughput mass spectrometry in drug discovery. *EMBO Mol Med* 15. <https://doi.org/10.15252/emmm.202114850>

Duncan SH, Conti E, Ricci L, Walker AW (2023) Links between diet, intestinal anaerobes, microbial metabolites and health. *Biomedicines* 11:1338. <https://doi.org/10.3390/biomedicines11051338>

Epelle EI, Macfarlane A, Cusack M, Burns A, Okolie JA, Vichare P, Rolland L, Yaseen M (2023) Ozone decontamination of medical and nonmedical devices: an assessment of design and implementation considerations. *Ind Eng Chem Res* 62:4191–4209

Epstein S (2013) The phenomenon of microbial uncultivability. *Curr Opin Microbiol* 16:636–642. <https://doi.org/10.1016/j.mib.2013.08.003>

Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. *Free Radic Biol Med* 55:130–140. <https://doi.org/10.1016/j.freeradbiomed.2012.10.554>

Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. *PNAS* 104:13780–13785. <https://doi.org/10.1073/pnas.0706625104>

Friedman ES, Bittinger K, Esipova TV, Hou L, Chau L, Jiang J, Mesaros C, Lund PJ, Liang X, FitzGerald GA, Goulian M, Lee D, Garcia BA, Blair IA, Vinogradov SA, Wu GD (2018) Microbes vs. chemistry in the origin of the anaerobic gut lumen. *PNAS* 115:4170–4175. <https://doi.org/10.1073/pnas.1718635115>

Galm U, Shen B (2006) Expression of biosynthetic gene clusters in heterologous hosts for natural product production and combinatorial biosynthesis. *Expert Opin Drug Discov* 1:409–437. <https://doi.org/10.1517/17460441.1.5.409>

Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. *Gut Microbes* 10:1–21. <https://doi.org/10.1080/19490976.2018.1455790>

Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D (2023) Advanced methods for natural products discovery: bioactivity screening, dereplication, metabolomics profiling, genomic sequencing, databases and informatic tools, and structure elucidation. *Mar Drugs* 21:308. <https://doi.org/10.3390/md21050308>

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. *Nat Med* 24:392–400. <https://doi.org/10.1038/nm.4517>

Gilmore SP, Lankiewicz TS, Wilken SE, Brown JL, Sexton JA, Henske JK, Theodorou MK, Valentine DL, O’Malley MA (2019) Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. *ACS Synth Biol* 8:2174–2185. <https://doi.org/10.1021/acssynbio.9b00271>

Gong X, Geng H, Yang Y, Zhang S, He Z, Fan Y, Yin F, Zhang Z, Chen GQ (2023) Metabolic engineering of commensal bacteria for gut butyrate delivery and dissection of host-microbe interaction. *Metab Eng* 80:94–106. <https://doi.org/10.1016/j.ymben.2023.09.008>

Gupta VK, Bakshi U, Chang D, Lee AR, Davis JM, Chandrasekaran S, Jin Y-S, Freeman MF, Sung J (2022) TaxiBGC: a taxonomy-guided approach for profiling experimentally characterized microbial biosynthetic gene clusters and secondary metabolite production potential in metagenomes. *mSystems* 7. <https://doi.org/10.1128/msystems.00925-22>

Gurdo N, Volke DC, McCloskey D, Nikel PI (2023) Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. *N Biotechnol* 74:1–15. <https://doi.org/10.1016/j.nbt.2023.01.002>

Hao T, Xie Z, Wang M, Liu L, Zhang Y, Wang W, Zhang Z, Zhao X, Li P, Guo Z, Gao S, Lou C, Zhang G, Merritt J, Horsman GP, Chen Y (2019) An anaerobic bacterium host system for heterologous expression of natural product biosynthetic gene clusters. *Nat Commun* 10:1–13. <https://doi.org/10.1038/s41467-019-11673-0>

Hatzioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, Narbad A (2017) Discovery of a novel lantibiotic nisin O from *Blautia obeum* A2–162, isolated from the human gastrointestinal tract. *Microbiology* 163:1292–1305. <https://doi.org/10.1099/mic.0.000515>

Hillson N, Caddick M, Cai Y, Carrasco JA, Chang MW, Curach NC, Bell DJ, Le Feuvre R, Friedman DC, Fu X, Gold ND, Herrgård MJ, Holowko MB, Johnson JR, Johnson RA, Keasling JD, Kitney RI, Kondo A, Liu C, Martin VJJ, Menolascina F, Ogino C, Patron NJ, Pavan M, Poh CL, Pretorius IS, Rosser SJ, Scrutton NS, Storch M, Tekotte H, Travník E, Vickers CE, Yew WS, Yuan Y, Zhao H, Freemont PS (2019) Building a global alliance of biofoundries. *Nat Commun* 10:2040. <https://doi.org/10.1038/s41467-019-10079-2>

Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O (2021) Unlocking nature’s biosynthetic power—metabolic engineering for the fermentative production of chemicals. *Angew Chem Int Ed* 60:2258–2278

Holowko MB, Frow EK, Reid JC, Rourke M, Vickers CE (2021) Building a biofoundry. *Synth Biol* 6. <https://doi.org/10.1093/synbio/ysaa026>

Huang Y, Sheth RU, Zhao S, Cohen LA, Dabaghi K, Moody T, Sun Y, Ricaurte D, Richardson M, Velez-Cortes F, Blazejewski T, Kaufman A, Ronda C, Wang HH (2023) High-throughput microbial culturomics using automation and machine learning. *Nat Biotechnol* 41:1424–1433. <https://doi.org/10.1038/s41587-023-01674-2>

Humbird D, Davis R, McMillan JD (2017) Aeration costs in stirred-tank and bubble column bioreactors. *Biochem Eng J* 127:161–166. <https://doi.org/10.1016/j.bej.2017.08.006>

Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, Fitzgerald MG, Fulton RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, Worley KC, Wortman JR, Young SK, Zeng Q, Aagaard KM, Abolude OO, Allen-Vercoe E, Alm EJ, Alvarado L, Andersen GL, Anderson S, Appelbaum E, Arachchi HM, Armitage G, Arze CA, Ayvaz T, Baker CC, Begg L, Belachew T, Bhowmik V, Bihani M, Blaser MJ, Bloom T, Bonazzi V, Paul Brooks J, Buck GA, Buhay CJ, Busam DA, Campbell JL, Canon SR, Cantarel BL, Chain PSG, Chen IMA, Chen L, Chhhibba S, Chu K, Ciulla DM, Clemente JC, Clifton SW, Conlan S, Crabtree J, Cutting MA, Davidovics NJ, Davis CC, Desantis TZ, Deal C, Delehaunty KD, Dewhirst FE, Deych E, Ding Y, Dooling DJ, Dugan SP, Michael Dunne W, Scott Durkin A, Edgar RC, Erlich RL, Farmer CN, Farrell RM, Faust K, Feldgarden M, Felix VM, Fisher S, Fodor AA, Forney LJ, Foster L, Di Francesco V, Friedman J, Friedrich DC, Fronick CC, Fulton LL, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni MY, Goldberg JM, Goll

J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas BJ, Hamilton HA, Harris EL, Hepburn TA, Herter B, Hoffmann DE, Holder ME, Howarth C, Huang KH, Huse SM, Izard J, Jansson JK, Jiang H, Jordan C, Joshi V, Katancik JA, Keitel WA, Kelley ST, Kells C, King NB, Knights D, Kong HH, Koren O, Koren S, Kota KC, Kovar CL, Kyrpides NC, La Rosa PS, Lee SL, Lemon KP, Lennon N, Lewis CM, Lewis L, Ley RE, Li K, Liolios K, Liu B, Liu Y, Lo CC, Lozupone CA, Dwayne Lunsford R, Madden T, Mahurkar AA, Mannon PJ, Mardis ER, Markowitz VM, Mavromatis K, McCollum JM, McDonald D, McEwen J, McGuire AL, McInnes P, Mehta T, Mihindukulasuriya KA, Miller JR, Minx PJ, Newsham I, Nusbaum C, O'Glaughlin M, Orvis J, Pagani I, Palaniappan K, Patel SM, Pearson M, Peterson J, Podar M, Pohl C, Pollard KS, Pop M, Priest ME, Proctor LM, Qin X, Raes J, Ravel J, Reid JG, Rho M, Rhodes R, Riehle KP, Rivera MC, Rodriguez-Mueller B, Rogers YH, Ross MC, Russ C, Sanka RK, Sankar P, Fah Sathirapongsasuti J, Schloss JA, Schloss PD, Schmidt TM, Scholz M, Schriml L, Schubert AM, Segata N, Segre JA, Shannon WD, Sharp RR, Sharpton TJ, Shenoy N, Sheth NU, Simone GA, Singh I, Smillie CS, Sobel JD, Sommer DD, Spicer P, Sutton GG, Sykes SM, Tabbaa DG, Thiagarajan M, Tomlinson CM, Torralba M, Treangen TJ, Truty RM, Vishnivetskaya TA, Walker J, Wang L, Wang Z, Ward DV, Warren W, Watson MA, Wellington C, Wetterstrand KA, White JR, Wilczek-Boney K, Wu Y, Wylie KM, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans BP, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker JD, Birren BW, Gibbs RA, Highlander SK, Methé BA, Nelson KE, Petrosino JF, Weinstock GM, Wilson RK, White O (2012) Structure, function and diversity of the healthy human microbiome. *Nature* 486:207–214. <https://doi.org/10.1038/nature11234>

Hwang S, Le Luu LTH, Il JS, Shin J, Lee MJ, Oh DC (2020) Pentamomycins c–e: cyclic pentapeptides as autophagy inducers from a mealworm beetle gut bacterium. *Microorganisms* 8:1–16. <https://doi.org/10.3390/microorganisms8091390>

Isah T (2019) Stress and defense responses in plant secondary metabolites production. *Biol Res* 52:39. <https://doi.org/10.1186/s40659-019-0246-3>

Jian X, Guo X, Cai Z, Wei L, Wang L, Xing XH, Zhang C (2023) Single-cell microliter-droplet screening system (MISS Cell): an integrated platform for automated high-throughput microbial monoclonal cultivation and picking. *Biotechnol Bioeng* 120:778–792. <https://doi.org/10.1002/bit.28300>

Jung H, Kim D, Choi H, Lee C (2022) A review of technologies for in-situ sulfide control in anaerobic digestion. *Renew Sustain Energy Rev* 157:112068

Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. *Nat Commun* 3. <https://doi.org/10.1038/ncomms2266>

Kautsar SA, Blin K, Shaw S, Weber T, Medema MH (2021) BiG-FAM: the biosynthetic gene cluster families database. *Nucleic Acids Res* 49:D490–D497. <https://doi.org/10.1093/nar/gkaa812>

Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E (2021) Microbial production of advanced biofuels. *Nat Rev Microbiol* 19:701–715. <https://doi.org/10.1038/s41579-021-00577-w>

Keswani C, Singh HB, García-Estrada C, Caradus J, He Y-W, Mezaache-Aichour S, Glare TR, Borriss R, Sansinenea E (2020) Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. *Appl Microbiol Biotechnol* 104:1013–1034. <https://doi.org/10.1007/s00253-019-10300-8>

Kim CY, Lee M, Yang S, Kim K, Yong D, Kim HR, Lee I (2021a) Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes. *Genome Med* 13. <https://doi.org/10.1186/s13073-021-00950-7>

Kim LJ, Ohashi M, Zhang Z, Tan D, Asay M, Cascio D, Rodriguez JA, Tang Y, Nelson HM (2021b) Prospecting for natural products by genome mining and microcrystal electron diffraction. *Nat Chem Biol* 17:872–877. <https://doi.org/10.1038/s41589-021-00834-2>

Klau LJ, Podell S, Creamer KE, Demko AM, Singh HW, Allen EE, Moore BS, Ziemert N, Letzel AC, Jensen PR (2022) The Natural Product Domain Seeker version 2 (NaPDoS2) webtool relates ketosynthase phylogeny to biosynthetic function. *Journal of Biological Chemistry* 298. <https://doi.org/10.1016/j.jbc.2022.102480>

Kontou EE, Walter A, Alka O, Pfeuffer J, Sachsenberg T, Mohite OS, Nuhamunada M, Kohlbacher O, Weber T (2023) UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis. *J Cheminform* 15. <https://doi.org/10.1186/s13321-023-00724-w>

Krüger A, Mueller AP, Rybnicky GA, Engle NL, Yang ZK, Tschaplinski TJ, Simpson SD, Köpke M, Jewett MC (2020) Development of a *Clostridia*-based cell-free system for prototyping genetic parts and metabolic pathways. *Metab Eng* 62:95–105. <https://doi.org/10.1016/j.ymben.2020.06.004>

Lauer I, Philipp G, Jennewein S (2022) Metabolic engineering of *Clostridium ljungdahlii* for the production of hexanol and butanol from CO₂ and H₂. *Microb Cell Fact* 21. <https://doi.org/10.1186/s12934-022-01802-8>

Letzel A-C, Pidot SJ, Hertweck C (2013) A genomic approach to the cryptic secondary metabolome of the anaerobic world. *Nat Prod Rep* 30:392–428. <https://doi.org/10.1039/C2NP20103H>

Letzel A-C, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. *BMC Genomics* 15:983. <https://doi.org/10.1186/1471-2164-15-983>

Li L (2023) Accessing hidden microbial biosynthetic potential from underexplored sources for novel drug discovery. *Biotechnol Adv* 66:108176. <https://doi.org/10.1016/j.biotechadv.2023.108176>

Liew F, Martin ME, Tappel RC, Heijstra BD, Mihalcea C, Köpke M (2016) Gas fermentation—a flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. *Front Microbiol* 7. <https://doi.org/10.3389/fmicb.2016.00694>

Lim HJ, An JS, Bae ES, Cho E, Hwang S, Nam SJ, Oh KB, Lee SK, Oh DC (2022) Ligiamycins A and B, decalin-amino-maleimides from the co-culture of *Streptomyces* sp. and *Achromobacter* sp. isolated from the marine wharf roach, *Ligia exotica*. *Mar Drugs* 20(2):83. <https://doi.org/10.3390/md2020083>

Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthalamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium *Clostridium cellulolyticum*. *Angew Chem* 122:2055–2057. <https://doi.org/10.1002/ange.200906114>

Liu N, Kattan WE, Mead BE, Kummerlowe C, Cheng T, Ingabire S, Cheah JH, Soule CK, Vrcic A, McIninch JK, Triana S, Guzman M, Dao TT, Peters JM, Lowder KE, Crawford L, Amini AP, Blainey PC, Hahn WC, Cleary B, Bryson B, Winter PS, Raghavan S, Shalek AK (2024) Scalable, compressed phenotypic screening using pooled perturbations. *Nat Biotechnol*. <https://doi.org/10.1038/s41587-024-02403-z>

Lu Z, Imlay JA (2021) When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. *Nat Rev Microbiol* 19:774–785. <https://doi.org/10.1038/s41579-021-00583-y>

Ma Y, Guo Z, Xia B, Zhang Y, Liu X, Yu Y, Tang N, Tong X, Wang M, Ye X, Feng J, Chen Y, Wang J (2022) Identification of antimicrobial peptides from the human gut microbiome using deep learning. *Nat Biotechnol* 40:921–931. <https://doi.org/10.1038/s41587-022-01226-0>

Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME (2024) The role of animal hosts in shaping gut microbiome variation.

Philos Trans R Soc B 379. <https://doi.org/10.1098/rstb.2023.0071>

McCallum G, Tropini C (2024) The gut microbiota and its biogeography. *Nat Rev Microbiol* 22:105–118. <https://doi.org/10.1038/s41579-023-00969-0>

Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, Gevers D, Petrosino JF, Abubucker S, Badger JH, Chinwalla AT, Earl AM, Fitzgerald MG, Fulton RS, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, Worley KC, Wortman JR, Young SK, Zeng Q, Aagaard KM, Abolude OO, Allen-Vercoe E, Alm EJ, Alvarado L, Andersen GL, Anderson S, Appelbaum E, Arachchi HM, Armitage G, Arze CA, Ayvaz T, Baker CC, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser MJ, Bloom T, Bonazzi VR, Brooks P, Buck GA, Buhay CJ, Busam DA, Campbell JL, Canon SR, Cantarel BL, Chain PS, Chen IMA, Chen L, Chhhiba S, Chu K, Ciulli DM, Clemente JC, Clifton SW, Conlan S, Crabtree J, Cutting MA, Davidovics NJ, Davis CC, Desantis TZ, Deal C, Delehaunty KD, Dewhurst FE, Deych E, Ding Y, Dooling DJ, Dugan SP, Michael Dunne W, Scott Durkin A, Edgar RC, Erlich RL, Farmer CN, Farrell RM, Faust K, Feldgarden M, Felix VM, Fisher S, Fodor AA, Forney L, Foster L, Di Francesco V, Friedman J, Friedrich DC, Fronick CC, Fulton LL, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni MY, Goldberg JM, Goll J, Gonzalez A, Griggs A, Gujja S, Haas BJ, Hamilton HA, Harris EL, Hepburn TA, Herter B, Hoffmann DE, Holder ME, Howarth C, Huang KH, Huse SM, Izard J, Jansson JK, Jiang H, Jordan C, Joshi V, Katancik JA, Keitel WA, Kelley ST, Kells C, Kinder-Haake S, King NB, Knight R, Knights D, Kong HH, Koren O, Koren S, Kota KC, Kovar CL, Kyripides NC, La Rosa PS, Lee SL, Lemon KP, Lennon N, Lewis CM, Lewis L, Ley RE, Li K, Liolios K, Liu B, Liu Y, Lo CC, Lozupone CA, Dwayne Lunsford R, Madden T, Mahurkar AA, Mannon PJ, Mardis ER, Markowitz VM, Mavrommatis K, McCollum JM, McDonald D, McEwen J, McGuire AL, McInnes P, Mehta T, Mihindukulasuriya KA, Miller JR, Minx PJ, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel SM, Pearson M, Peterson J, Podar M, Pohl C, Pollard KS, Priest ME, Proctor LM, Qin X, Raes J, Ravel J, Reid JG, Rho M, Rhodes R, Riehle KP, Rivera MC, Rodriguez-Mueller B, Rogers YH, Ross MC, Russ C, Sanka RK, Sankar P, Fah Sathirapongsasuti J, Schloss JA, Schloss PD, Schmidt TM, Scholz M, Schriml L, Schubert AM, Segata N, Segre JA, Shannon WD, Sharp RR, Sharpton TJ, Shenoy N, Sheth NU, Simone GA, Singh I, Smillie CS, Sobel JD, Sommer DD, Spicer P, Sutton GG, Sykes SM, Tabbaa DG, Thiagarajan M, Tomlinson CM, Torralba M, Treangen TJ, Truty RM, Vishnivetskaya TA, Walker J, Wang L, Wang Z, Ward DV, Warren W, Watson MA, Wellington C, Wetterstrand KA, White JR, Wilczek-Boney K, Qing Wu Y, Wylie KM, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans BP, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker JD, Birren BW, Gibbs RA, Highlander SK, Weinstock GM, Wilson RK, White O (2012) A framework for human microbiome research. *Nature* 486:215–221. <https://doi.org/10.1038/nature11209>

Morato NM, Le MPT, Holden DT, Graham Cooks R (2021) Automated high-throughput system combining small-scale synthesis with bioassays and reaction screening. *SLAS Technol* 26:555–571. <https://doi.org/10.1177/24726303211047839>

Mosquera MG, Jiménez G, Tabernero V, Vinuela-Vaca J, García-Estrada C, Kosalková K, Sola-Landa A, Monje B, Acosta C, Alonso R, Valera MÁ (2021) Terpenes and terpenoids: building blocks to produce biopolymers. *Sustain Chem* 2:467–492. <https://doi.org/10.3390/suschem2030026>

Mulder KCL, Mulinari F, Franco OL, Soares MSF, Magalhães BS, Parachin NS (2015) Lovastatin production: from molecular basis to industrial process optimization. *Biotechnol Adv* 33:648–665. <https://doi.org/10.1016/j.biotechadv.2015.04.001>

Mungan MD, Alanjary M, Blin K, Weber T, Medema MH, Ziemert N (2020) ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. *Nucleic Acids Res* 48:546–552. <https://doi.org/10.1093/nar/gkaa374>

Narsing Rao MP, Xiao M, Li W-J (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. *Front Microbiol* 8. <https://doi.org/10.3389/fmicb.2017.01113>

Neuwirth T, Letzel A, Tank C, Ishida K, Cyrulies M, Schmöllz L, Lorkowski S, Hertweck C (2020) Induced production, synthesis, and immunomodulatory action of clostrisulfone, a diarylsulfone from *Clostridium acetobutylicum*. *Chem - Eur J* 26:15855–15858. <https://doi.org/10.1002/chem.202003500>

Neveu V, Nicolas G, Amara A, Salek RM, Scalbert A (2023) The human microbial exposome: expanding the Exposome-Explorer database with gut microbial metabolites. *Sci Rep* 13. <https://doi.org/10.1038/s41598-022-26366-w>

Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. *J Nat Prod* 83:770–803. <https://doi.org/10.1021/acs.jnatprod.9b01285>

Otero-Muras I, Carbonell P (2021) Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. *Metab Eng* 63:61–80. <https://doi.org/10.1016/j.ymben.2020.11.012>

Overmann J (2013) Principles of enrichment, isolation, cultivation, and preservation of prokaryotes. *The prokaryotes*. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 149–207

Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. *Nat Rev Microbiol* 12:355–367. <https://doi.org/10.1038/nrmicro3240>

Pan R, Bai X, Chen J, Zhang H, Wang H (2019) Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. *Front Microbiol* 10:1–20. <https://doi.org/10.3389/fmicb.2019.00294>

Pascal Andreu V, Augustijn HE, Chen L, Zhernakova A, Fu J, Fischbach MA, Dodd D, Medema MH (2023) gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota. *Nat Biotechnol* 41:1416–1423. <https://doi.org/10.1038/s41587-023-01675-1>

Phelan VV, Liu W-T, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange—the chemotype-to-phenotype link. *Nat Chem Biol* 8:26–35. <https://doi.org/10.1038/nchembio.739>

Pidot S, Ishida K, Cyrulies M, Hertweck C (2014) Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. *Angew Chem* 126:7990–7993. <https://doi.org/10.1002/ange.201402632>

Plomp N, Liu L, Walters L, Bus-Spoor C, Khan MT, Sheridan PO, Veloo ACM, Walker AW, Harmsen HJM, Tsompanidou E (2024) A convenient and versatile culturomics platform to expand the human gut culturomome of *Lachnospiraceae* and *Oscillspiraceae*. *Benef Microbes*. <https://doi.org/10.1163/18762891-bja00042>

Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, Buck GA, Snyder MP, Strauss JF, Weinstock GM, White O, Huttenhower C (2019) The Integrative Human Microbiome Project. *Nature* 569:641–648. <https://doi.org/10.1038/s41586-019-1238-8>

Rangel LI, Bolton MD (2022) The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. *Curr Opin Plant Biol* 68:102233. <https://doi.org/10.1016/j.pbi.2022.102233>

Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. *Nat Rev Mol Cell Biol* 20:353–367. <https://doi.org/10.1038/s41580-019-0108-4>

Ro DK, Paradise EM, Quellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. *Nature* 440:940–943. <https://doi.org/10.1038/nature04640>

Rosch TM, Tenhaef J, Stoltmann T, Redeker T, Kösters D, Hollmann N, Krumbach K, Wiechert W, Bott M, Matamouros S, Marienhausen J, Noack S (2024) AutoBioTech—a versatile biofoundry for automated strain engineering. *ACS Synth Biol* 13:2227–2237. <https://doi.org/10.1021/acssynbio.4c00298>

Sanford PA, Blaby I, Yoshikuni Y, Woolston BM (2024) An efficient cre-based workflow for genomic integration and expression of large biosynthetic pathways in *Eubacterium limosum*. *Biotechnol Bioeng*. <https://doi.org/10.1002/bit.28796>

Sarker SD, Latif Z, Gray AI (2006) Natural product isolation. Natural products isolation. Humana Press, Totowa, NJ, pp 1–25

Schieferdecker S, Shabuer G, Knuepfer U, Hertweck C (2019) Clostridol is an antimycobacterial pyrone alkaloid from: *Clostridium beijerinckii*. *Org Biomol Chem* 17:6119–6121. <https://doi.org/10.1039/c9ob00968j>

Scott AJ, Alexander JL, Merrifield CA, Cunningham D, Jobin C, Brown R, Alverdy J, O'Keefe SJ, Gaskins HR, Teare J, Yu J, Hughes DJ, Verstraelen H, Burton J, O'Toole PW, Rosenberg DW, Marchesi JR, Kinross JM (2019) International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. *Gut* 68:1624–1632. <https://doi.org/10.1136/gutjnl-2019-318556>

Selegato DM, Castro-Gamboa I (2023) Enhancing chemical and biological diversity by co-cultivation. *Front Microbiol* 14. <https://doi.org/10.3389/fmicb.2023.1117559>

Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. *PLoS Biol* 14. <https://doi.org/10.1371/journal.pbio.1002533>

Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, Eloe-Fadros EA, Pavlopoulos GA, Hadjithomas M, Varghese NJ, Paez-Espino D, Perry R, Henderson G, Creevey CJ, Terrapon N, Lapebie P, Drula E, Lombard V, Rubin E, Kyripides NC, Henrissat B, Woyke T, Ivanova NN, Kelly WJ, Palevici N, Janssen PH, Ronimus RS, Noel S, Soni P, Reilly K, Atherly T, Ziemer C, Wright AD, Ishaq S, Cotta M, Thompson S, Crosley K, McKain N, Wallace JJ, Flint HJ, Martin JC, Forster RJ, Gruninger RJ, McAllister T, Gilbert R, Ouwerkerk DJ, Klieve AJ, Al JR, Denman S, McSweeney C, Rosewarne C, Koike S, Kobayashi Y, Mitsumori M, Shinkai T, Cravero S, Cerón Cucchi M (2018) Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. *Nat Biotechnol* 36:359–367. <https://doi.org/10.1038/nbt.4110>

Siddiqui R, Akbar N, Soares NC, Al-Hroub HM, Semreen MH, Maciver SK, Khan NA (2023) Mass spectrometric analysis of bioactive conditioned media of bacteria isolated from reptilian gut. *Future Sci OA* 9. <https://doi.org/10.2144/fsoa-2023-0030>

Singleton C, Gilman J, Rollit J, Zhang K, Parker DA, Love J (2019) A design of experiments approach for the rapid formulation of a chemically defined medium for metabolic profiling of industrially important microbes. *PLoS One* 14. <https://doi.org/10.1371/journal.pone.0218208>

Skinnider MA, Johnston CW, Gunabalasingam M, Merwin NJ, Kieliszek AM, MacLellan RJ, Li H, Ranieri MRM, Webster ALH, Cao MPT, Pfeifle A, Spencer N, To QH, Wallace DP, DeJong CA, Magarvey NA (2020) Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences. *Nat Commun* 11. <https://doi.org/10.1038/s41467-020-19986-1>

Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. *Science* 307:1955–1959. <https://doi.org/10.1126/science.1109051>

Sugimoto Y, Camacho FR, Wang S, Chankhamjon P, Odabas A, Biswas A, Jeffrey PD, Donia MS (2019) A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. *Science* 366. <https://doi.org/10.1126/science.aax9176>

Swift CL, Brown JL, Seppälä S, O'Malley MA (2019) Co-cultivation of the anaerobic fungus *Anaeromyces robustus* with *Methanobacterium bryantii* enhances transcription of carbohydrate active enzymes. *J Ind Microbiol Biotechnol* 46:1427–1433. <https://doi.org/10.1007/s10295-019-02188-0>

Swift CL, Louie KB, Bowen BP, Hooker CA, Solomon K V, Singan V, Daum C, Pennacchio CP, Barry K, Shutthanandan V, Evans JE, Grigoriev I V, Northen TR, O'Malley MA (2021a) Cocultivation of anaerobic fungi with rumen bacteria establishes an antagonistic relationship. *mBio* 12. <https://doi.org/10.1128/mbio.01442-21>

Swift CL, Louie KB, Bowen BP, Olson HM, Purvine SO, Salamov A, Mondo SJ, Solomon KV, Wright AT, Northen TR, Grigoriev IV, Keller NP, O'Malley MA (2021b) Anaerobic gut fungi are an untapped reservoir of natural products. *PNAS* 118:1–10. <https://doi.org/10.1073/pnas.2019855118>

Tabima JF, Trautman IA, Chang Y, Wang Y, Mondo S, Kuo A, Salamov A, Grigoriev IV, Stajich JE, Spatafora JW (2020) Phylogenomic analyses of non-dikarya fungi supports horizontal gene transfer driving diversification of secondary metabolism in the amphibian gastrointestinal symbiont, *Basidiobolus*. *G3: Genes Genomes Genet* 10:3417–3433. <https://doi.org/10.1534/g3.120.401516>

Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, Egbert S, Lee S, Meijer D, Recchia MJ, Reitz ZL, van Santen JA, Selem-Mojica N, Tørring T, Zaroubi L, Alanjary M, Aleti G, Aguilar C, Al-Salih SAA, Augustijn HE, Avelar-Rivas JA, Avitia-Domínguez LA, Barona-Gómez F, Bernaldo-Agüero J, Bielinski VA, Biermann F, Booth TJ, Carrion Bravo VJ, Castelobranco R, Chagas FO, Cruz-Morales P, Du C, Duncan KR, Gavrilidou A, Gayrard D, Gutiérrez-García K, Haslinger K, Helfrich EJN, van der Hooft JJJ, Jati AP, Kalkreuter E, Kalyvas N, Bin KK, Kautsar S, Kim W, Kunjapur AM, Li YX, Lin GM, Loureiro C, Louwen JJR, Louwen NLL, Lund G, Parra J, Philmus B, Pourmohsenin B, Pronk L, Rego A, Rex DAB, Robinson S, Rosas-Becerra LR, Roxborough ET, Schorn MA, Scobie DJ, Singh KS, Sokolova N, Tang X, Udwyar D, Vigneshwari A, Vind K, Vromans SPJM, Waschulin V, Williams SE, Winter JM, Witte TE, Xie H, Yang D, Yu J, Zdouc M, Zhong Z, Collemare J, Linington RG, Weber T, Medema MH (2023) MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. *Nucleic Acids Res* 51:D603–D610. <https://doi.org/10.1093/nar/gkac1049>

Thompson AW, Crow MJ, Wadey B, Arens C, Turkarslan S, Stolyar S, Elliott N, Petersen TW, van den Engh G, Stahl DA, Baliga NS (2015) A method to analyze, sort, and retain viability of obligate anaerobic microorganisms from complex microbial communities. *J Microbiol Methods* 117:74–77. <https://doi.org/10.1016/j.mimet.2015.07.009>

Tong Y, Jørgensen TS, Whitford CM, Weber T, Lee SY (2021) A versatile genetic engineering toolkit for *E. coli* based on CRISPR-prime editing. *Nat Commun* 12. <https://doi.org/10.1038/s41467-021-25541-3>

Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D (2024) Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. *Nat Prod Rep* 41:885–904. <https://doi.org/10.1039/D3NP00050H>

Vogt SL, Peña-Díaz J, Finlay BB (2015) Chemical communication in the gut: effects of microbiota-generated metabolites on

gastrointestinal bacterial pathogens. *Anaerobe* 34:106–115. <https://doi.org/10.1016/j.anaerobe.2015.05.002>

von Martels JZH, Sadaghian Sadabadi M, Bourgonje AR, Blokzijl T, Dijkstra G, Faber KN, Harmsen HJM (2017) The role of gut microbiota in health and disease: *in vitro* modeling of host-microbe interactions at the aerobic-anaerobic interphase of the human gut. *Anaerobe* 44:3–12. <https://doi.org/10.1016/j.anaerobe.2017.01.001>

Wagner AO, Markt R, Mutschlechner M, Lackner N, Prem EM, Praeg N, Illmer P (2019) Medium preparation for the cultivation of microorganisms under strictly anaerobic/anoxic conditions. *J vis Exp.* <https://doi.org/10.3791/60155>

Wang J, Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, Lechatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. *Nature* 490:55–60. <https://doi.org/10.1038/nature11450>

Wang L, Ravichandran V, Yin Y, Yin J, Zhang Y (2019) Natural products from mammalian gut microbiota. *Trends Biotechnol* 37:492–504. <https://doi.org/10.1016/j.tibtech.2018.10.003>

Wang M, Chen L, Zhang Z, Wang Q (2024) Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. *Crit Rev Biotechnol* 1–21. <https://doi.org/10.1080/07388551.2024.2383754>

Watterson WJ, Tanyeri M, Watson AR, Cham CM, Shan Y, Chang EB, Eren AM, Tay S (2020) Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes. *Elife* 9:1–22. <https://doi.org/10.7554/elife.56998>

Weusthuis RA, Lamot I, van der Oost J, Sanders JPM (2011) Microbial production of bulk chemicals: development of anaerobic processes. *Trends Biotechnol* 29:153–158. <https://doi.org/10.1016/j.tibtech.2010.12.007>

Winter SE, Bäumler AJ (2023) Gut dysbiosis: ecological causes and causative effects on human disease. *PNAS* 120. <https://doi.org/10.1073/pnas.2316579120>

Xu F, Wu Y, Zhang C, Davis KM, Moon K, Bushin LB, Seyedsayamost MR (2019) A genetics-free method for high-throughput discovery of cryptic microbial metabolites. *Nat Chem Biol* 15:161–168. <https://doi.org/10.1038/s41589-018-0193-2>

Xu M-Q, Pan F, Peng L-H, Yang Y-S (2024) Advances in the isolation, cultivation, and identification of gut microbes. *Mil Med Res* 11:34. <https://doi.org/10.1186/s40779-024-00534-7>

Yang J, Park J, Jung Y, Chun J (2022) AMDB: a database of animal gut microbial communities with manually curated metadata. *Nucleic Acids Res* 50:D729–D735. <https://doi.org/10.1093/nar/gkab1009>

Yang W, Cong Y (2021) Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. *Cell Mol Immunol* 18:866–877. <https://doi.org/10.1038/s41423-021-00661-4>

Zhang H, Liu C, Hua W, Ghislain LP, Liu J, Aschenbrenner L, Noell S, Dirico KJ, Lanyon LF, Steppan CM, West M, Arnold DW, Covey TR, Datwani SS, Troutman MD (2021) Acoustic ejection mass spectrometry for high-throughput analysis. *Anal Chem* 93:10850–10861. <https://doi.org/10.1021/acs.analchem.1c01137>

Zhang JJ, Tang X, Zhang M, Nguyen D, Moore BS (2017) Broad-host-range expression reveals native and host regulatory elements that influence heterologous antibiotic production in gram-negative bacteria. *mBio* 8. <https://doi.org/10.1128/mBio.01291-17>

Zhang J-Z, Li Y-Z, Xi Z-N, Gao H-P, Zhang Q, Liu L-C, Li F-L, Ma X-Q (2024a) Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals. *Front Bioeng Biotechnol* 12. <https://doi.org/10.3389/fbioe.2024.1395540>

Zhang M, Chen B, Dai H, Sun J, Liu H, Han J (2024b) Discovery of antifungal secondary metabolites from an intestinal fungus *Fusarium* sp. *J Antibiot* 77:193–198. <https://doi.org/10.1038/s41429-023-00692-1>

Zhao J-X, Yue J-M (2023) Frontier studies on natural products: moving toward paradigm shifts. *Sci China Chem* 66:928–942. <https://doi.org/10.1007/s11426-022-1512-0>

Zoffmann S, Vercruyse M, Benmansour F, Maunz A, Wolf L, Blum Marti R, Heckel T, Ding H, Truong HH, Prummer M, Schmucki R, Mason CS, Bradley K, Jacob AI, Lerner C, Araujo del Rosario A, Burcin M, Amrein KE, Prunotto M (2019) Machine learning-powered antibiotics phenotypic drug discovery. *Sci Rep* 9. <https://doi.org/10.1038/s41598-019-39387-9>

Zou H, Sun T, Jin B, Wang S (2023) sBGC-hm: an atlas of secondary metabolite biosynthetic gene clusters from the human gut microbiome. *Bioinformatics* 39. <https://doi.org/10.1093/bioinformatics/btad131>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.