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Many physical and chemical processes in a condensed phase environment exhibit non-Markovian
quantum dynamics. As such simulations are challenging on classical computers, we developed a
variational quantum algorithm that is capable of simulating non-Markovian dynamics on noisy
intermediate-scale quantum (NISQ) devices. We used a quantum system linearly coupled to its harmonic
bath as the model Hamiltonian. The non-Markovianity is captured by introducing auxiliary variables from
the bath trajectories. With Monte Carlo sampling of the bath degrees of freedom, finite temperature
dynamics is produced. We validated the algorithm on a simulator and demonstrated its performance on
an IBM quantum device. The framework developed naturally adapts to any anharmonic bath with non-
linear coupling to the system, and is also well suited for simulating spin chain dynamics in a dissipative

Received 23rd April 2024,
Accepted 8th July 2024

DOI: 10.1039/d4cp01669f

Published on 22 July 2024. Downloaded by George Mason University on 3/22/2025 3:00:27 PM.

rsc.li/pccp environment.

|. Introduction

Simulating open quantum system dynamics has received
increasing attention due to its direct relevance to condensed
phase chemistry," many-body physics,> and quantum biology®
as well as quantum error correction.” Recent advances have
uncovered many interesting phenomena in open quantum sys-
tems such as non-equilibrium phase transitions,”® entangled state
preparation through reservoir engineering,”® and information
backflow.”™ For studying quantum dynamics in a condensed
phase chemical environment ranging from solutions'**® to mole-
cular aggregates,"*” the stereotypical microscopic framework
is the spin-boson model'®'® and its multistate extension.**'
The corresponding charge and exciton dynamics often exhibit
non-Markovian behavior. To put it in descriptive terms, non-
Markovian dynamics refers to dynamics that remembers its past.
Equivalently, the dynamical behavior of the past influences
its trajectory of the present and the future. This memory effect
is manifested in the form of a non-local memory kernel in
the Feynman-Vernon’s influence functional'®*? and in the
Nakajima-Zwanzig generalized master equation.”*>* On a tech-
nical level, the degree of non-Markovianity can be quantified by
the complete positive divisibility criterion,>® or the negative

“ Department of Chemistry and Biochemistry, George Mason University, Fairfax,
Virginia 22030, USA. E-mail: fwang22@gmu.edu

b Department of Physics and Astronomy, George Mason University, Fairfax,
Virginia 22030, USA

¢ Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

4 Quantum Science and Engineering Center, George Mason University, Fairfazx,
Virginia 22030, USA

+ These authors contribute equally to the work.

20500 | Phys. Chem. Chem. Phys., 2024, 26, 20500-20510

damping rate of the generalized Lindblad equation,*® the two
of which are equivalent. With the importance of non-Markovian
quantum dynamics in chemical systems, several well-developed
numerically accurate methods are available for carrying out
such simulations.”’ > However, the resource requirement on
classical computers often grows exponentially with respect to
the system size and the degree of non-Markovianity. The bottle-
neck is always the exponentially large Hilbert space a classical
computer is trying to simulate.

Quantum computers can curb the exponential scaling by
using only a linear number of qubits. By utilizing the quantum
mechanical effects of interference and entanglement, quantum
computers can prepare states and evaluate functions in a
manner that classical computers are not capable of.*** With
clever algorithm design, quantum computers can outperform
classical computers for solving certain problems, the culmina-
tion of which are the Shor’s factoring algorithm,***® which
provides exponential speedup compared to the best known
classical algorithm, and the Grover’s search®® that offers quad-
ratic speedup for unstructured search. It is natural to think that
a quantum computer is well suited for simulating quantum
systems, and indeed, quantum chemistry and quantum
dynamics simulations are considered to be the killer applica-
tions of near term quantum computers, especially for strongly
correlated systems.*”°

As first conjectured by Feynman®® and demonstrated by
Lloyd,** quantum computer simulations of quantum dynamics
can achieve an advantage. A wealth of literature studies exist for
Hamiltonian simulation algorithms,**™*” with Low and Chuang
having realized the optimal query complexity.*® For open
quantum systems, many works have focused on Markovian
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dynamics, ranging from theoretical construction of semigroup
generators®®>® to simulating Lindblad dynamics on NISQ
devices.”**® On the other hand, the development of quantum
algorithms for non-Markovian time evolution is still in its
infancy. Notable works include the method of locally indivisible
maps,’® the ensembles of Lindblad trajectories,®® the construc-
tion of superoperators from the generalized quantum master
equation®® and the Feynman-Vernon influence functional,®>
and the path-integral-based algorithm.®®

In this work, we present a non-Markovian quantum algo-
rithm with a NISQ-friendly focus, the time-dependent varia-
tional algorithm (TDVA).**~®® In particular, we work with the
spin-boson model and use the ensemble averaged classical
path (EACP)®”® to capture the non-Markovian dynamics in a
finite temperature bath. The organization of the paper is of
the following. In Section II, we briefly discuss the EACP
approximation using Feynman’s path integral framework.
In Section III, we discuss its implementation in the TDVA
setting. In Section IV, we present results and discussion.
In Section V, we offer some concluding remarks.

Il. Ensemble averaged classical path
(EACP) approximation

The Hamiltonian for a quantum system linearly coupled to its
harmonic bath can be written in the following form:

o 2
)] o

where s and x; denote the system and bath coordinates,
respectively, and ¢; denotes the system-bath coupling strength.
The strength weighted density of modes defines the spectral
density:

= (2”;; + Vo(S)) +2 5
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The bath’s influence on the system can be seen as having a
time-dependent driving force,

Hy — 2/: ¢jsx;(1) 3)

where

xj(t) = xg,jcos w;t + P07 in w;t +
‘ ‘ T mjw; m;o;

J[dz’s(z’) sinw;(t —t')
0
(4)

The non-local memory kernel in the last part of eqn (4), termed
back-reaction”® (i.e., kicking back by the system), is partially
responsible for the non-Markovian dynamics. The other impor-
tant contributor is from the integration of the phase space
variables x,; and p,; from the bath. The effects of these two
contributions to the non-Markovianity are delineated by Makri
using path integral formulation.®” Below we briefly summarize
the main findings that have direct relevance to the current
algorithm implementation.
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In the absence of the back-reaction, the reduced density
matrix (RDM) is expressed as

ps(sh,sy) = JDS*JDS’ (55 1po(0)]sg) exp{%(S[s*] - S[s’])}

X Q[s*, 57
(5)

where

Olst,s7] = exp( ZC/XO/J dt'As(1") cos w;t’
(6)

C/P01 . /
hznl,w,J dt’As(1") sin w;t >

describes the influence of the bath on the system’s dynamics. s
and s~ denote the forward and backward path, respectively, and
As =s" — s~. S[s'] and S[s"] are the action integrals of the free
system, with (sq |py(0)|sy ) being the initial state. The integral
|Ds sums over all possible paths. Eqn (5) and (6) are time-local
in that the propagation of the RDM can be done iteratively
with time.

Integrating over the Wigner distribution,
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Immediately from eqn (8), the non-Markovian effect is mani-
fested in the double time integration. Therefore, tracing out
the bath degrees of freedom introduces non-Markovianity.
On the other hand, we can employ the reverse by introducing
additional degrees of freedom to remove the non-Markovian
effect.

When the back-reaction is included, an additional term,
R[s",s7], is introduced that further augments the system
dynamics,

. 2 1 t!
R[shs]—exp{;z G Jodt Jodt”As( NAS(") sin o (' — ¢ )}

j mjw;
)

1
where A5 = z(ﬁ + s7). Together, Q and R form the Feynman-
Vernon influence functional®

IF[sT,s7] = Q[s™,s7] x R[s*,s7] (10)
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A notable difference between Q and R is that Q has a tempera-
1
ture dependent term, coth (Ehw,ﬁ), whereas R does not. By

making the analogy with light matter interactions, Makri
pointed out®” that Q is related to the simulated emission and
absorption of phonons, and R the spontaneous emission.
Immediately following that observation, the zero-point energy
effect of this spontaneous emission has a diminished effect at
high temperature or for a low frequency bath. Therefore, with
the back-reaction properly omitted,

~ Poj
x;(1) 22 xo, cos w;t + ij/)j sinwjt (11)
With
H(t) = Hy — 3 ¢jsx;(1) (12)
j

now local in time, the dynamics can be solved by Markovian
propagation with a time-dependent Hamiltonian,

L0
i W (0) = H()l (1)) (13)

Finally, to achieve the thermal effect, integration over the
position and momentum from eqn (7) is performed. In prac-
tice, Monte Carlo sampling”” is used for efficient integration of
the multidimensional Wigner distribution. The resulting RDM
is the ensemble average of the individual RDM originating from
a specific x, and po. Since the omitting of the back-reaction
is analogous to treating the light as classical, this approach
is termed the ensemble averaged classical path (EACP).®”~®°
It is worth noting that although the back-reaction (the zero-
point energy effect) is omitted, the zero-point energy contribu-
tion is not completely removed. The Wigner distribution pro-
vides the static zero-point energy effect, whereas the back-
reaction offers the dynamical one. Another appealing aspect
of this approach is that it is not limited to the harmonic bath
linearly coupled to the system; the framework can be equally
adapted to non-linear coupling and an anharmonic environ-
ment, provided its initial Wigner distribution is available.”

lll. Time-dependent variational
algorithm (TDVA)

Three conventional variational principles exist for time-
dependent problems, and the McLachlan’s variational princi-
ple is proved to be numerically stable for the variational
quantum algorithm.” The McLachlan’s variational principle
uses the minimization strategy as follows,

5H (g + iH) |¢(0))H =0 (14)

where the wavefunction  is determined by a set of para-
meters 0.
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In the hybrid quantum-classical algorithm, the quantum
computer calculates the following”>”*

L (O] 21y (0))

Y00, 06, ()
_oW(0)]
Ci=="rg, HIN®) (16)

The update of the parameters 6 is conducted on the classical
computer with the following differential equation,

X/_: A0, = ¢} (17)

where R and I in the superscript refer the real and the
imaginary parts, respectively. The real and imaginary parts of
eqn (15) and (16) can be extracted by the modified Hadamard
test and the circuit construction follows the work of Y. Li and S.
Benjamin.”* The exemplar circuits and their compiled version
are shown in the Appendix. In this work, we use RK4 to solve
eqn (17).

IV. Results and discussion

In the following, we use the spin-boson model to test the
algorithm. The Hamiltonian in the EACP limit can be written as

H(t) = hQo, — (Z cjxj(z)> o, (18)
J
with
— Poj
x;(t) = X0, cos w;t +——"—sin w;t (19)
m;;

We choose the bath to have the Ohmic spectral density

J(w) = ghfwe—w/wc (20)

where dimensionless ¢ is the Kondo parameter that determines
the strength of the system-bath coupling, and w, is the cutoff
frequency. We use 60 oscillators of different frequencies in the
numerical calculation, following the discretization procedure
given by Walters et al.””> We have used the atomic units so that
h=1.

For a two-level system which requires one qubit, there exits
an exact ansatz for the unitary operation that employs the ZXZ
decomposition”

U(0) = e R.(0>) R(03)R-(01) (21)
The wavefunction then can be parameterized as,
[¥(0)) = U(0)]0) (22)

With this ansatz, the matrix 4 and the vector C in eqn (17) can
be computed, and the exemplar circuits compiled by Qiskit”®
are shown in the Appendix. It is worth mentioning that instead
of propagating the vectorized density matrix, we are propagating
the wavefunction. As a consequence, it automatically saves half of
the qubits and the circuits are expected to be short. The dissipative
effect is through the average of the bath initial conditions.
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Qt
Fig. 1 Population dynamics simulated on the simulator for a symmetric
two-level system, with one bath initial condition and system initially popu-
lated in the reactant state. "P1" and "P2" label the population dynamics of
the reactant and product, respectively. Parameters: Q = 1, £ = 2, w. = 1.5,
and = 1. Each data point is obtained with 50 000 shots.

Fig. 1 shows the population dynamics simulated on the
QASM simulator’® for a particular set of initial conditions
(%0, Po) drawn from the Wigner distribution (eqn (7)). In this
simulation, we use the parameters 2 =1, £ =2, w. = 1.5, and the
inverse temperature f§ = 1. Each data point is obtained with
50 000 shots. The quantum algorithm result matches well with
the classical benchmark result (“EACP 1IC” in the plot). The
classical computing result is obtained by directly solving
eqn (13). It should be pointed out that the data in Fig. 1 are
without the Monte Carlo averaging.

0.4
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o
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We noted the slight difference between the classical com-
puting result (“EACP 1IC” in the plot) and the quantum
simulator result, and verified that the error in the variational
quantum algorithm only comes from the shot error, not the
numerical instability of solving the differential eqn (17) (as the
matrix A can be singular at some time point). We plotted the
error scales using the box plot”” for different number of shots,
ranging from 100 to 1000 000. For each element in matrix A
and vector C, the statistics are taken from 1000 timesteps in
evolving eqn (17) with quantum circuits. The results are shown
in Fig. 2(a)—(c). The horizontal orange bar indicates the median,
the box encompasses 50% of the data points, and the boundary
of the whisker encloses 99% of the data. It is evident that the
error is solely the result of the sampling error of the measure-
ments, and therefore confirms the algorithm’s robustness in its
numerical convergence.

In Fig. 3, we present the simulation results on the ibmg_-
quito device, with the same parameters as in Fig. 1. The trends
show quantitative agreement. The deviation mainly comes from
the real device noise.

To incorporate the full thermal bath effect, Monte Carlo
integration of the bath degrees of freedom needs to be per-
formed. We conduct the analysis of the number of Monte Carlo
points necessary for sampling the Wigner distribution (eqn (7))
to get the converged results. The findings are shown in Fig. 4.
It turns out the number of points needed is on the order of 10°
to 10*. Therefore, it is quite promising that with the number of
qubits currently available on NISQ devices, this variational quantum
algorithm can be implemented in a parallel computing fashion,

0.4
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- =

Error = Exact - Simulator
o
o
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(b)

0.44

Error = Exact - Simulator
o
o

T T
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Fig. 2 Shot noise comparisons for different number of shots for non-zero elements in A and C. (a) Shots = 100, (b) shots = 10 000, and (c) shots =

1000000.
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1.2 P1EACP 11C P2EACP 11C
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Qt

Fig. 3 Population dynamics on the ibm_quito device for a symmetric
two-level system, with one bath initial condition and system initially
populated in the reactant state. Parameters: Q@ = 1, £ = 2, w. = 1.5, and
p = 1. Each data point is obtained with 50 000 shots.

— EACP 10ICs EACP 100 ICs
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Fig. 4 Monte Carlo convergence, with parameters Q@ =1, ¢ =0, ¢ = 1.2,
wc=25,and =02

with each set of qubits evolving along specific Monte Carlo points
and then performing the ensemble average.

To test the above idea on the performance of the current
quantum device, we conducted the simulations of the dynamics

& — QuAPI — EACP
0.9 - e TDVA = Simulator
- « Noisy Simulator

0 2 4 6 8
Ot
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under the full dissipative bath (60 oscillators; 10000 initial
conditions) with the real-time noise profile from ibm_brisbhane.
The system bath parameters in these simulations are taken
from ref. 57. In Fig. 5(a) and (b), five curves are on display. As a
reference, we include the “QuAPI” curve, which produces the
numerically exact result using quasi-adiabatic propagator path
integral method”®”® with the back-reaction fully accounted for.
The “EACP” curve omits the harmonic back-reaction. These
two comparisons confirm the validity of using EACP as a good
approximation to the exact non-Markovian quantum dynamics.
The “TDVA” curve results from numerically solving eqn (17).
The “Simulator” simulates the variational algorithm by compil-
ing eqn (15) and (16) into quantum circuits and obtaining
the measurement result. The “Noisy Simulator” simulates the
variational algorithm with the real-time noise profile from the
quantum device ibm_brisbane. Each point on the “Simulator”
and “Noisy Simulator” is obtained with 50 000 shots.

To gain further insight about the ensemble averaging effect
on the errors induced by the device noise, we performed
simulations of population dynamics with only one bath initial
condition. The representative results are shown in Fig. 6(a)-(d)
and 7(a)-(d), with each graph being the dynamics from a
randomly chosen initial condition. The parameters are the
same as those in Fig. 5. With only one initial condition, the
dynamics is highly oscillatory, as the Poincaré recursion time is
small. The average from all possible initial conditions produces
“EACP 10000 IC” result, plotted as a reference. The “TDVA”,
“Simulator” and “Noisy Simulator” results are plotted for
comparison with each other. It is very apparent from the results
of the “Noisy Simulator” that the device noise has different
effects on different initial conditions, some diverging greatly
and some bounding the accurate result to some degree, with no
consistent pattern. However, when averaging them together as
shown in Fig. 5, it eliminates much of the randomness and the
noise seems to corrupt the data with a consistent hysteresis
effect. This drift in principle can be efficiently accounted
for with a simple noise model. Since each of these one-initial-
condition dynamical simulations, equivalent to a Hamiltonian
simulation, suffers from stochastic noise, whereas the statistically

* — QuAPI — EACP
09 \ o TDVA = Simulator
. «+ Noisy Simulator

Qt
(b)

Fig. 5 Population dynamics simulated for a symmetric two-level system, with 10 000 bath initial condition and system initially populated in the reactant
state. Parametersfor (@) Q=1¢=0,¢{=12 w.=25and f=0.2,and(b) 2=1,¢=0, ¢ = 0.3, w. =5, and = 5. Each data point on the "Simulator” and the

“Noisy Simulator” curve is obtained with 50 000 shots.
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Fig. 6 (a)-(d) Population dynamics simulated for a symmetric two-level system, with one bath initial condition and system initially populated in the
reactant state. The parametersare Q =1, ¢=0,¢ =12, o =25, and f = 0.2.

1.2 - EACP 10,0001Cs — EACP 11C
— Noisy Simulator — TDVA
— Simulator
1
0.8
0.6
0.4
0.2
2 4 6 8
Ot
(@)
1.2 e EACP 10,0001Cs — EACP1IC
— Noisy Simulator — TDVA

— Simulator

Qt
()

1.2 e~ EACP 10,000 1Cs — EACP 11C
— Noisy Simulator ~ — TDVA
1 — Simulator
0.8
0.6
0.4
0.2
2 4 6 8
Qt
(b)
1.2 - EACP 10,000ICs — EACP 11C
— Noisy Simulator — TDVA
1 — Simulator
0.8
0.6
0.4
0.2
2 4 6 8
Ot
(d)

Fig. 7 (a)-(d) Population dynamics simulated for a symmetric two-level system, with one bath initial condition and system initially populated in the

reactant state. The parametersare Q =1, ¢=0, ¢ = 0.3, oc = 5, and § = 5.
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averaged dynamics “diversifies” away much of the random noise,
it points to the advantage of using NISQ devices for simulating
open quantum systems with the ensemble average approach.

V. Conclusions

We presented a time-dependent variational quantum algorithm
based on the ensemble averaged classical path (EACP) scheme
that captures much of the non-Markovian effect in quantum
dynamics at finite temperature. It can become increasingly
accurate as temperature increases or as the system strongly
couples to the low frequency modes of the bath. We have
demonstrated its feasibility on NISQ devices for the spin-
boson model. Compared to other methods of simulating non-
Markovian quantum dynamics on quantum computers,>® ®?
this variational-EACP approach takes advantage of the strength
of the both sides: sampling Monte Carlo points on a classical
computer and evaluating the wavefunction overlap on a quan-
tum machine. The Monte Carlo sampling of the thermal
distribution can be performed efficiently on a classical compu-
ter with linear computational cost regarding the number of
Monte Carlo points. The wavefunction evaluation, although
exponential in scaling with respect to the system size on a
classical computer, can be handled with a linear number of
qubits on a quantum computer. Since in practice, the number
of Monte Carlo points needed is mild, it points to the possibi-
lity that the EACP algorithm can be implemented parallelly on
the current NISQ devices. Furthermore, the noise effect on the
dynamics is more benign compared to the Hamiltonian simu-
lations, suggesting that open quantum dynamics simulations

View Article Online

Paper

on NISQ devices with the ensemble average approach might
be more immune to the device noise. The algorithm can be
naturally extended to anharmonic bath and non-linear system-
bath coupling, and it scales linearly with the propagation time.
For its generalization to multi-site problems, such as spin chain
dissipative dynamics,®*>®' a good ansatz for the time-evolution
operator®>®® is crucial for avoiding exponential time compila-
tion and measurement overhead. An adaptive variational
approach seems to be particularly promising for finding com-
pact circuits.®>%*
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Appendix

The following shows exemplar circuit for matrix A and vector C
(Fig. 8-11).

9o ,L_j_'\‘ _._ ‘_._[L_ﬂ_

—_ o R WRe ¢4 0
aq1 4 sz I(v

1 v 0
C

Fig. 8 A;z circuit.

e | -
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- - . NN @h R -
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Fig. 9 Compiled A;3 circuit.

Fig. 10 C, circuit.
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Fig. 11 Compiled C; circuit.
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