(7o)

S

A Comparison of Computational Practices and Student Challenges
Across Three Types of Computational Modeling Activities
Integrating Science and Engineering

Satabdi Basu, SRI International, satabdi.basu@sri.com
Arif Rachmatullah, SRI International, arif.rachmatullah@sri.com
Kevin McElhaney, Digital Promise, kmcelhaney@digitalpromise.org
Nonye Alozie, SRI International, maggie.alozie@sri.com
Hui Yang, SRI International, hui.yang@sri.com
Nicole Hutchins, University of Florida, nicole.hutchins@ufl.edu
Gautam Biswas, Vanderbilt University, gautam.biswas@vanderbilt.edu
Kelly Mills, Digital Promise, kmills@digitalpromise.org

Abstract: Computational models (CMs) offer pre-college students opportunities to integrate
STEM disciplines with computational thinking (CT) in ways that reflect authentic STEM
practice. However, not all STEM teachers and students are prepared to teach or learn
programming skills required to construct CMs. To help broaden participation in computing and
reduce the potentially prohibitive demands of learning programming, we propose alternate
versions of computational modeling that require low or no programming. These versions rely
on code comprehension and evaluation of given code and simulations instead of code creation.
We present results from a pilot study that explores student engagement with CT practices and
student challenges in three types of computational modeling activities.

Introduction and rationale

Over the past decade, numerous science, technology, engineering, and mathematics (STEM) education research
initiatives and reforms have aimed to prepare K-12 students with the computational knowledge and skills critical
for engaging in authentic STEM practices and applying scientific knowledge to the solution of real-world
problems (National Research Council [NRC], 2012). Computational models (CMs) are widely recognized as an
effective means to forge deep connections between Computational Thinking (CT) and STEM disciplines by
providing explicit mechanisms for constructing and visualizing scientific phenomena (e.g., Sengupta et al., 2013;
Lee et al., 2020). A CM is a mathematical representation of a system created using a formal notation (e.g., a
programming language) so that the system behavior can be studied using computer simulations (Melnik, 2015).
However, developing scientific CMs by learning programming along with disciplinary content poses challenges
for students, particularly younger ones (Sengupta et al., 2013), and also poses challenges for teachers who are not
trained in programming instruction, often affecting their confidence and increasing their time needed for
preparation and teaching (Langbeheim et al., 2020).

To address these challenges with developing CMs, our study presents two additional types of
computational modeling activities: (1) evaluating CMs (instead of developing them), and (2) evaluating
simulations (without viewing the simulation code). Each type of computational modeling emphasizes different
CT practices (Weintrop et al., 2016). Using these three types of computational modeling (developing CMs,
evaluating CMs, evaluating simulations), we have developed three versions of a STEM-+computing curriculum
that integrates earth science, engineering and CT for fifth and sixth grade students. In this paper, we describe a
pilot study using these three curricular versions, examine how students engage in computational practices in each
of the versions, and identify what challenges, if any, they encounter in each version.

While CM development is an established way to integrate CT with STEM disciplines, a few alternate
approaches have been studied. For instance, in ‘decoding’ activities (Rabinowitz et al., 2023), students elucidate
connections between provided code and the represented scientific processes, thus fostering a deeper understanding
of both the code and the underlying science. Such approaches report positive impacts on CT learning, but their
effects on science learning are still unclear and their comparison with traditional CM development approaches
remain underexplored. Research also demonstrates the benefits of learning using simulations such as conceptual
understanding, inquiry skills, and knowledge acquisition (e.g., de Jong et al., 2018). However, the relative
affordances of evaluating CMs or simulations relative to using or constructing them have not yet been
investigated. Determining the unique affordances of each type of computational modeling for students’ science,
engineering, and CT learning is critical to enabling educators to implement STEM+computing instruction in ways
that meet teachers’ and students’ needs.

ICLS 2024 Proceedings 1778 © ISLS



\ 72
% International Society of
71sts ) theLearning Sciences

Curricular context: Three variations of the Water Runoff Challenge (WRC)

We adapt an instructional design framework for integrating science, engineering, and CT using CMs (McElhaney
et al., 2020). In this approach, an engineering design challenge is defined such that its solution is governed by a
science phenomenon. Students must model the phenomenon computationally so that the CM can be used to
design, test, and optimize solutions to the challenge. In the Water Runoff Challenge (WRC) unit, students redesign
a schoolyard to reduce water runoff while meeting criteria related to cost, accessibility, and usage. Each unit
variation spans 12 45-minute lessons where students first investigate water runoff, then engage in CM activities
to either construct or identify a functional water runoff CM, and finally use a simulation based on the CM to
design the schoolyard. The CT lessons engage students in either constructing CMs (Construct-CM); interpreting
and evaluating CMs (IE-CM); or exploring and evaluating simulations (EE-sim).

In the Construct-CM version, students engage in unplugged activities to learn requisite CT concepts such
as sequences, variables, and conditionals, then construct their CMs incrementally using a block-based, domain-
specific modeling language (Figure la). The IE-CM version reduces the programming demands by having
students interpret and analyze code (sometimes incomplete or buggy) instead of creating it. Students still engage
in unplugged activities to learn the needed CT concepts. The EE-sim version involves no programming and hides
the simulation code from students. Instead, students conduct experiments with the simulation and find patterns in
the generated data to identify a functionally correct simulation. In the IE-CM and EE-sim versions, students
assume the role of someone who works adjacent to the CM developer, iteratively providing feedback to the
developer based on their evaluation of different versions of the CM until they identify a fully functional CM.

Figure 1
(a) A Working CM underlying one Grid of Schoolyard (b) 16 Grids of Schoolyard for Engineering Design

(a) (b)

All three versions of CM activities engage students in the CT practices (Weintrop et al., 2016) of
generating and analyzing data by testing CMs and simulations and looking for patterns in the generated data to
determine condition(s) under which the CM/or simulation works. All three versions also engage students in the
CT practice of assessing CMs (either their own or one that is provided). Both Construct-CM and IE-CM engage
students in the CT practice of programming. Only the Construct-CM version addresses the CT practices of
designing CMs and constructing CMs. Construct-CM also engages students in the practice of troubleshooting and
debugging as they develop their CMs, though all three versions include a pseudocode debugging activity, thereby
engaging all students with the practice of debugging. In this activity, students are asked to interpret a 14-line
pseudocode segment, identify three lines with bugs and suggest how to fix them.

Methods

We conducted a small pilot study using a cognitive interview approach (Willis, 2005) with 15 fifth and sixth grade
students recruited individually in the Western U.S. Each student worked one-on-one with a researcher on four
WRC lessons for a total of 3-4 hours. Each interview focused on either science, engineering, or one of the three
CT versions. In this paper, we present analyses of nine interviews (seven fifth graders and two sixth graders) that
involved the CM lessons. Three students in the Construct-CM condition and two in IE-CM reported having prior
programming experience using Scratch, Code.org lessons, or Roblox. Students were randomly assigned to one of
the three CM versions such that three students worked on each version. Because the students started with the CM
lessons and did not engage with the initial science lessons, they were given a brief introduction to the runoff
problem and the relations between rainfall, absorption, and runoff. As students engaged in various CM activities,

ICLS 2024 Proceedings 1779 © ISLS



Y .
\ tNne Learnind \

they were periodically prompted by a researcher to think aloud and explain their reasoning. All interviews were
conducted virtually, and video recorded along with recordings of students’ screens. For each interview, we
conducted a qualitative thematic analysis to document the nature of students’ engagement with the CT practices
delineated by Weintrop et al. (2016) and any challenges the students faced.

Findings

All nine students engaged effectively with the activities across the three CM versions and reported finding the
activities interesting. Students working with the EE-sim and IE-CM versions found the activities to be
straightforward. Construct-CM students found it challenging when first constructing their CMs, but reported that
the lessons were easier once they had developed the first part of the CM. We found students’ engagement with
the CT practices to generally align with our expectations based on our design of the CM versions. Below, we
elaborate on students’ engagement with the practices of programming, troubleshooting and debugging, and
assessing CMs, where the differences among CM versions were most pronounced based on our design.

Students in the EE-Sim version did not engage in the programming practice because they could not
view the code. Students in IE-CM and Construct-CM engaged with the same programming concepts (sequences,
variables, conditionals, expressions) and same block-based representation, but their engagement varied. All three
Construct-CM students demonstrated a strong understanding of the target programming concepts during the initial
unplugged activity in a discipline-agnostic context. But, they experienced challenges in applying this
understanding to represent the relationships among rainfall, absorption and runoff while constructing their runoff
CMs. For example, while programming the condition where rainfall is equal to the absorption limit of the surface
material, one student was unsure how to represent the condition using an “if” block, where in the program
sequence to place the “if” block, and how to program variable update statements. In contrast, [E-CM students
were able to easily apply their understanding of programming concepts from a discipline-agnostic unplugged
context to a water runoff context. These students could correctly interpret given code segments, predict code
output, and iteratively identify a functional CM. We found only one instance where a student asked for help
interpreting a variable assignment statement.

As noted above, only students in the Construct-CM version engaged in the troubleshooting and
debugging practice as part of their runoff modeling activities. However, all students engaged in this practice as
part of the unplugged pseudocode debugging activity at the end of the CM lessons. We found that Construct-CM
students were more successful with this practice when debugging their own CMs compared to debugging
pseudocode written by others. For the pseudocode debugging activity, we hypothesized that the Construct-CM
students would be at an advantage after having engaged with debugging during CM development, and that the
activity would be particularly difficult for EE-sim students who had not seen code or pseudocode previously.
However, while the perceived difficulty of the activity varied (EE-sim students rated the activity to be hard
compared to other students who claimed to find the activity easy or of moderate difficulty), there was no
discernable difference in activity performance among students in the different versions. Most of the nine students
across the three WRC versions found the pseudocode debugging activity challenging. Their difficulty with
predicting the output of the pseudocode, indicates that the debugging challenges stem, among other things, from
challenges with code comprehension (the programming practice).

Students in all three CM versions had opportunities to engage in the assessing CMs practice by
analyzing data generated from the CMs/simulations. IE-CM students also assessed CMs by interpreting given
code in unplugged contexts. Similar to the debugging practice, we found that students were most successful with
this practice when they assessed the CMs they were constructing themselves (Construct-CM version) versus CMs
created by others (IE-CM and EE-sim versions). In the [E-CM and EE-sim versions, we found that students were
able to determine whether CMs provided to them matched the runoff phenomenon being modeled, but they needed
support in determining reasons for any mismatches. In particular, for the EE-sim version, students were able to
compare data generated by a buggy CM to data that should be produced by a working CM, but they were often
not able to use the data to determine the underlying reasons for why a simulation was not working correctly.
Additionally, we found that IE-CM students were better able to assess CMs when they had access to the
computational modeling environment and could use data analysis to inform their evaluation, compared to when
they had to assess CMs in an unplugged context using code comprehension alone.

Discussion and conclusion

Our study demonstrates approaches for STEM+CT integration that involve low or no programming. These
approaches leverage research on scientific discovery learning using simulations and modeling tools (de Jong et
al., 2018). In such research, learners typically interact with functional simulations with the goal of inferring the
scientific model underlying the simulation. In contrast, we provide students with incomplete or incorrect

ICLS 2024 Proceedings 1780 © ISLS



simulations that are simple enough for them to evaluate by comparing simulation results against their already
existing conceptual understanding of scientific relationships. Presenting multiple approaches for STEM+CT
integration with low or no programming requirements can provide accessible pathways for integrating CT into
STEM teaching and learning. This can, in turn, result in increased willingness among teachers to incorporate CT
in STEM education, potentially expanding the reach of CT to broader student and teacher populations.

Proposing new approaches for STEM+CT integration requires examining students’ learning processes
and challenges in such activities so that learning environments can adequately support student learning. Our pilot
study revealed unique affordances and challenges associated with three types of CM activities that engage students
in CT practices differently. Our findings revealed that programming was one of the most challenging CT practices
for students. Hence, practices that relied on programming in any way (constructing CMs, debugging CMs by
looking at pseudocode only, assessing CMs by looking at code only) were also challenging for students. Students
found it easier to engage in CT practices in a CM environment versus an unplugged context where they had to
rely on programming alone. Not surprisingly, EE-sim students who could not see the code, faced the fewest
challenges with CT practices overall. However, when students programmed their own CMs, they found it easier
to engage in assessing and debugging those CMs compared to CMs created by others.

However, the relative affordances of the three CM-based approaches for integrated STEM—+CT teaching
and learning need to be explored further. For example, learning programming may be challenging, but does it
offer benefits for science and engineering learning, and if so, who benefits? Building on the insights from this
pilot study, we are refining our curriculum materials and the teacher resources to equip teachers with strategies to
better support student learning and assist students in navigating the identified challenges. Additionally, we are
updating the student facing materials—incorporating additional scaffolding and modifying some of the code-
based representations to pseudocode-like plain language—to facilitate deeper engagement with the CT practices
introduced. Although the three versions of the WRC unit demonstrate promise for integrating CT with STEM
education in novel ways, the specific effects on students’ CT, science, and engineering learning outcomes need
to be systematically studied. Our next steps include collecting data on students’ disciplinary learning across the
different CM versions, as well as understanding the dynamics of teacher confidence and instructional methods
when implementing these three curriculum versions.

References

de Jong, T., Lazonder, A., Pedaste, M., & Zacharia, Z. (2018). Simulations, games, and modeling tools for
learning. In the International handbook of the learning sciences (pp. 256-266). Routledge.

Rabinowitz, G., Lee, 1., Gupta, P., & Chaffee, R. (2023). Deepening the Integration of Computational Thinking
and Science Through Decoding in a Middle School Summer Program. In Proceedings of the 17th
International Conference of the Learning Sciences-ICLS 2023, pp. 2243-2246. International Society of
the Learning Sciences.

Lee, 1., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary
perspective: Integrating computational thinking in K-12 science, technology, engineering, and
mathematics education. Journal of Science Education and Technology, 29, 1-8.

McElhaney, K.W., Zhang, N., Basu, S., McBride, E., Biswas, G., & Chiu, J.L. (2020). Using Computational
Modeling to Integrate Science and Engineering Curricular Activities. In M. Gresalfi & 1.S. Horn (Eds.).
Proceedings of the 14th International Conference of the Learning Sciences (ICLS) 2020, Volume 3 (pp.
1357-1364). International Society of the Learning Sciences: Nashville, TN.

Melnik, R. (Ed.). (2015). Mathematical and computational modeling: With applications in natural and social
sciences, engineering, and the arts. John Wiley & Sons.

National Research Council. (2012). A4 framework for K-12 science education: Practices, crosscutting concepts,
and core ideas. National Academies Press.

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with
K-12 science education using agent-based computation: A theoretical framework. Education and
Information Technologies, 18, 351-380.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining
computational thinking for mathematics and science classrooms. Journal of science education and
technology, 25, 127-147.

Willis, G. B. (2015). Analysis of the cognitive interview in questionnaire design. Oxford University Press.

Acknowledgments

We acknowledge the support of National Science Foundation DRL #2055609 and #2055597. We also thank the
students who participated in our study and the anonymous reviewers whose suggestions improved our paper.

ICLS 2024 Proceedings 1781 © ISLS



