
 

 Broadening Participation in STEM-based Computational Modeling 
by Leveraging Alternatives to Programming 

 
Kevin W. McElhaney, Digital Promise, kmcelhaney@digitalpromise.org 

Satabdi Basu, SRI International, satabdi.basu@sri.com 

Nonye Alozie, SRI International, maggie.alozie@sri.com 

Nicole M. Hutchins, University of Florida, nicole.hutchins@ufl.edu 

Arif Rachmatullah, SRI International, arif.rachmatullah@sri.com 

Kelly Mills, Digital Promise, kmills@digitalpromise.org 

Gautam Biswas, Vanderbilt University, gautam.biswas@vanderbilt.edu 

 

Abstract: Computational models (CMs) offer pre-college students opportunities to integrate 

STEM disciplines with computational thinking in ways that reflect authentic STEM practice. 

However, not all STEM teachers and students are prepared to teach or learn programming skills 

required to construct CMs. To broaden participation in computing, we propose instructional 

approaches that integrate STEM with CMs without requiring students to program, thereby 

alleviating challenges associated with learning how to program. 

Introduction and rationale 
Computational models (CMs) offer promise for broadening participation in computing by integrating 

computational thinking (CT) with STEM disciplines (Sengupta et al., 2013) in ways that are authentic to 

professional STEM practice. A CM is a mathematical representation of a system created using a formal notation 

(e.g., programming language), enabling system behavior to be studied using computer simulations. However, 

developing CMs as part of STEM instruction may place unreasonable demands on students and teachers, such as 

adding instructional time for students to learn programming, adding professional development requirements for 

teachers, and dividing students’ attention between learning programming and STEM concepts.  

We propose two approaches to engaging students and teachers in STEM learning using CMs in ways 

that do not require programming, as programming need not necessarily be a focal learning goal in order for 

learners to engage in CT practices. Engaging students in interpreting and evaluating CMs or exploring and 

evaluating simulations leverages the affordances of decoding and critique (Wagh et al., 2017) and maintains an 

authentic focus on CT in ways that may better address some students’ and teachers’ specific needs.  

Framework for integrating STEM and computational modeling 
We adapt a framework for integrating science, engineering, and CM construction (McElhaney et al., 2020) to 

encompass learning opportunities that integrate CM with STEM phenomena more generally (Figure 1). First, 

learners identify a question or define a problem whose answer or solution necessitates a CM. This question or 

problem could be in an engineering, mathematical, or social science context. Second, learners investigate the 

phenomenon in order to develop a conceptual or mathematical model of the system behavior. This conceptual 

model must be able to be subsequently represented as a CM or simulation. The model also creates a need for 

computational affordances (e.g., automation) that address the question or problem. Third, learners engage in CM 

activities that are appropriate for their level of CT knowledge, experience, and learning context. We elaborate on 

approaches to designing CM activities below. Finally, learners use the CM or simulation to answer the overarching 

question or solve the problem, such as by generating a design, explanation, or prediction. 

CM activities typically ask students to construct a CM incrementally (Figure 1, blue box), engaging them 

in the CT practices of programming and debugging. Constructing a CM is not required for students to engage in 

other CT practices (Weintrop et al., 2016) such as recognizing computational problems, using CMs, assessing 

CMs, or analyzing data from CMs. Instead of constructing the CM, other approaches can ask students to assume 

the role of someone who does not code, but rather works adjacent to the coder, such as a scientist, economist, or 

policy official. In this role, the student can be given several versions of a CM and be asked to determine which 

one exhibits the desired behavior. New code or simulation features can be added incrementally and evaluated in 

turn, in the same sequence as students would decompose and construct the CM itself.  

The interpret and evaluate a CM approach (Figure 1, green box) places less emphasis on programming 

and more emphasis on code comprehension, relative to constructing a CM. Students may be provided with a 

simulation and its underlying code, which may be incomplete or buggy. Curriculum activities engage students in 

comprehending the code, predicting its output for different inputs, determining what parts of the code are missing 

  



 

 or incorrect, and suggesting what revisions to the code are needed in order to produce the desired model behavior. 

Students will need to engage in activities designed to promote learning of programming concepts.  

 

Figure 1 

Framework for integrating computational modeling into STEM instruction. 

 
 

The explore and evaluate a simulation approach (Figure 1, purple box) does not engage students in any 

programming (because they cannot see the code), but places high emphasis on computational practices related to 

data analysis. Students are provided with incremental versions of the simulation that exhibit only some parts of 

the desired behavior, or have bugs in the underlying code. Students must analyze data generated by running 

simulations in order to identify which behaviors work and which do not. To engage in this approach, students 

must have a method of tracking input parameters used to run the simulation and their corresponding outputs.  

Discussion and implications 
Our framework offers an alternative to established instructional sequences (e.g., Use-Modify-Create, Lee et al., 

2011), that intend to scaffold stand-alone programming activities. While such sequences are appropriate for 

supporting general program creation, they may not align with the goals of STEM-based CMs, where using the 

CM is often the end goal of the modeling process. Our proposed alternatives to programming reflect the activities 

of STEM professionals who use, assess, and modify CMs and simulations to understand scientific or social 

phenomena, but do not develop CMs themselves. Our ongoing research examines the relative affordances of these 

three CM-based approaches for integrated STEM+CT teaching and learning. Research-based insights about how 

these approaches to CM-based instruction inform STEM teaching and learning for diverse students and teachers 

are needed to improve implementation of STEM+CT instructional materials and teacher supports. 

References 
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011). 

Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37. 

McElhaney, K.W., Zhang, N., Basu, S., McBride, E., Biswas, G., & Chiu, J.L. (2020). Using Computational 

Modeling to Integrate Science and Engineering Curricular Activities. In M. Gresalfi & I.S. Horn (Eds.). 

Proceedings of the 14th International Conference of the Learning Sciences (ICLS) 2020, Volume 3 (pp. 

1357-1364). International Society of the Learning Sciences: Nashville, TN. 

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with 

K-12 science education using agent-based computation: A theoretical framework. Education and 

Information Technologies, 18, 351-380. 

Wagh, A., Cook‐Whitt, K., & Wilensky, U. (2017). Bridging inquiry‐based science and constructionism: 
Exploring the alignment between students tinkering with code of computational models and goals of 

inquiry. Journal of Research in Science Teaching, 54(5), 615-641. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and science classrooms. Journal of Science Education and 

Technology, 25, 127-147. 

Acknowledgments 
We acknowledge the support of National Science Foundation grants DRL #2055609 and #2055597. We are 

grateful for the suggestions of three anonymous reviewers.  

  


