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ABSTRACT

Whistling thorn acacia (Acacia (Vachellia) drepanolobium) forms nearly monospecific stands among woody species in black cot-
ton soils in East Africa arid highlands. The tree defends itself against large mammal herbivores with spinescence and symbiotic
ants. While these defenses have been extensively studied, little is known about the extent to which A. drepanolobium defense may
benefit other plants growing in close association. We examined variation in herbaceous vegetation height, biomass, and compo-
sition between areas underneath A. drepanolobium canopies and the adjacent matrix in both fenced herbivore exclosures and
unfenced areas. In unfenced areas, there was more tall herbaceous vegetation and biomass underneath tree canopies than away
from tree canopies, while these differences were not significant in fenced exclosures. Both height and biomass of understory veg-
etation were negatively correlated with A. drepanolobium canopy height. Species richness was higher underneath tree canopies
in both fenced and unfenced locations. In the unfenced locations, species evenness was lower underneath tree canopies than in
the surrounding matrix, but the opposite was true in the fenced herbivore exclosures. The differences in herbaceous vegetation
composition (Bray-Curtis dissimilarity index) between underneath tree and off tree locations were more pronounced in the
unfenced areas than within the fenced herbivore exclosures. Our findings suggest that highly defended trees may moderate her-
bivore effects on herbaceous vegetation. To the extent that herbaceous vegetation underneath trees experiences protection from
herbivory, such refugia microhabitats may serve as recolonization nuclei in attempts to restore chronically overgrazed systems.

1 | Introduction heterospecific neighbours underneath their canopies (Bruno

et al. 2003; Callaway et al. 2002). Nurse plants possess specific

Spatial associations between plants strongly influence com-
munity structure and composition. While competition has
been the most studied spatial association process, facilitative
interactions among plants are common, especially in resource-
limited environments (Padilla and Pugnaire 2006). Among the
well-known benefits of spatial associations include ‘nursing
syndrome’ where stress-resistant species facilitate growth of

traits that confer them the ability to survive limiting environ-
mental or biotic conditions. Once established, they provide ben-
efits to other plants, such as ameliorating extreme conditions,
improving resource availability, or protecting against herbivory.
Beyond these benefits, nurse plants may drive a cascade of ben-
efits on ecosystem functions, including influencing moisture
regimes (Ruwanza 2019), promoting accumulation of organic
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carbon and nutrients in soils (Mitchley et al. 1996; Padilla and
Pugnaire 2006; Ren et al. 2008; Ruwanza 2019), stabilising soils
(Valiente-Banuet and Ezcurra 1991), and increasing resilience of
biotic communities (Aguiar and Sala 1994).

In East Africa's arid highlands, Acacia (Vachellia) drepanolo-
bium forms nearly monospecific stands among woody species on
black cotton soil (Goheen et al. 2004; Kenfack et al. 2021; Young
etal. 1996). Black cotton soil has a high clay content and undergoes
shrink-swell cycles, forming deep cracks during the dry season
(DeCarlo and Caylor 2019) and becoming waterlogged during the
rainy season. These stressful conditions, coupled with herbivory,
filter out most of the other plant species (Pringle et al. 2016; Young
et al. 1997). Acacia drepanolobium survives herbivory through
investment in defense by four symbiotic ant species, in addition
to spinescence. The four ant species, Crematogaster mimosae, C.
nigriceps, C. sjostedti, and Tetraponera pengzigi, form exclusive col-
onies within an individual tree or multiple adjacent trees (Madden
and Young 1992). The ants defend the host trees by swarming and
biting herbivores (Goheen and Palmer 2010; Palmer et al. 2000).
While this acacia-ant mutualism has been extensively studied, lit-
tle is known about the extent to which A. drepanolobium defense
may benefit other plants growing in close association.

We compared herbaceous vegetation height (index of grazing
pressure), biomass, and species composition underneath A. dre-
panolobium canopies with vegetation in the surrounding ma-
trix. To tease apart the effect of herbivory by large mammals, we
conducted similar comparisons in fenced herbivore exclosures
plots. Additionally, we tested the influence of canopy height
(height of the lowest branch) on the ability to nurse plants un-
derneath their canopies. We hypothesized that, if A. drepanolo-
bium protects understory herbaceous vegetation from herbivory,
(i) underneath the trees, herbaceous vegetation would be taller
and have higher biomass than in the adjacent matrix, (ii) trees
with canopies close to the ground would protect more biomass
compared to trees with higher canopies, (iii) the understory her-
baceous vegetation community underneath the tree canopies
would be more diverse than the surrounding matrix, (iv) these
effects would be largely restricted to plots from which herbi-
vores have not been excluded.

2 | Materials and Methods
2.1 | Study Area

The study was conducted at Mpala Research Centre (0.28N,
36.86 E, 1800M asl) in Laikipia County, Kenya, located on the
dry leeward side of Mt. Kenya (Figure 1). Annual rainfall in
the area averages 550-600mm and is weakly trimodal, usually
with a distinct dry season from December to March (Kimuyu
et al. 2014). Study plots were selected within homogeneous high
clay black cotton soils (vertisols). Black cotton soils occur exten-
sively throughout eastern and southern Africa. Whistling thorn
acacia (A. drepanolobium) accounts for more than 97% of woody
cover at the study site (Goheen et al. 2004; Kenfack et al. 2021;
Young et al. 1996). Other woody species in the study site include
Balanites aegyptiaca, Rhus natalensis, and Cabada farinosa.
The understory herbaceous layer is dominated by the peren-
nial grasses Pennisetum stramineum, P. mezianum, Brachiaria
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FIGURE1 | Map of the study area showing the location of the black
cotton soil at Mpala.

lachnantha, Themeda triandra, and Lintonia nutans. Common
forbs include Aspilia pleuriseta, Commelina spp., Solanum spp.,
Pseudognaphalium sp., Aerva lanata, Dyscoriste radicans, and
Rhynchosia holstii (Kimuyu et al. 2017). The Mpala is managed
for both wildlife conservation and livestock production. Cattle are
the main grazers, which have been moderately stocked (0.10-0.15
cattle/ha) for the past several decades. Wild ungulates include
Burchell's zebra (Equus burchelli Grey), Jackson's hartebeest
(Alcelaphus buselaphus jacksoni Pallas), steenbuck (Raphicerus
campestris Thunberg), Grant's gazelle (Gazella grand Brooke),
Beisa oryx (Oryx beisa Ruppell), eland (Taurotragus oryx Pallas),
elephant (Loxodonta africana Blumenbach), and giraffe (Giraffa
camelopardalis L.) (Kimuyu et al. 2017).

2.2 | Study Species

Acacia drepanolobium typically grows between 3 and 6m in
height, but can reach up to 10m under favorable conditions. It
commonly develops a rounded, umbrella-like, or flattened crown,
with a canopy diameter ranging from 2 to 5m. The species gener-
ally exhibits a single, upright trunk, though multiple stems may
arise from a single base if the tree has been damaged by brows-
ing or fire. Primary branches emerge at relatively low angles from
the trunk, extending outward before slightly drooping at the tips,
contributing to the characteristic flattened crown. Secondary
branches are shorter and arise in an irregular pattern, often re-
sulting in a dense, bushy appearance in younger trees. The tree's
bipinnate leaves consist of numerous small, oblong leaflets ar-
ranged alternately along the branches. These leaves are typically
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concentrated toward the outer canopy, creating a semi-open struc-
ture that permits some light penetration to the understory. As a
result, the dappled sunlight beneath A. drepanolobium may influ-
ence the growth of grasses and shrubs in its surroundings.

2.3 | Sampling Design

To evaluate the extent to which A. drepanolobium may affect
herbaceous vegetation, we sampled vegetation biomass and
composition underneath tree canopies and in the adjacent
open spaces. For tree canopy sites, we sampled areas under
short (< 1m tall) trees as well as areas under tall (>2m) trees.
Further, we selected control sites within an adjacent herbivore
exclosure, Kenya Long-term Exclosure Experiment (KLEE,
Young et al. 1997) where all large wild and domestic herbivores
(>15kg) have been excluded over the last 27years. Our sam-
pling design included 150 locations outside the herbivore exclo-
sures (50 underneath tall trees, 50 underneath short trees, and
50 away from tree canopies) and 60 control sites inside the her-
bivore exclosures (20 underneath tall trees, 20 underneath short
trees, and 20 away from tree canopies). We avoided sampling
in areas with other known sources of heterogeneity, termite
mounds (Fox-Dobbs et al. 2010; Sileshi et al. 2010) and previ-
ously occupied cattle bomas (Veblen 2012).

2.4 | Herbaceous Vegetation Sampling

We used the canopy intercept method (Dunkerley 2000; Frank
and McNaughton 1990) to assess vegetation composition. This
method involves the number of contacts (“hits”) a lowered pin
makes with each plant species. A 1-m-wide pin frame with
10 equally spaced pins was placed at three random locations
within each sampling site and all pin hits by species were re-
corded. After conducting the herbaceous vegetation compo-
sition survey, the aboveground plant material within 1 X1m
quadrats in the sampled sites was clipped. The clipped bio-
mass was collected in bags, air-dried to a constant weight, and
weighed. For each of the sampled tree locations, we measured
the height of the lowest point of the tree canopy, hereafter re-
ferred to as canopy height.

2.5 | Data Analyses

From the pin frame data, we calculated species richness
and evenness. We tested for significant differences in her-
baceous vegetation height, biomass, species richness, and
evenness between sampling sites using general linear mixed-
effect (GLMM) models in the lme4 package (Douglas Bates
et al. 2015) in R program version 4.2.3 (Team 2020). We spec-
ified location (under tree and off tree), herbivore treatment
(fenced and unfenced) and their interaction as the main ef-
fect, and each sampling site as a random intercept to account
for potential spatial autocorrelation between adjacent sites.
Further, we used general linear models to test for the relation-
ship between both herbaceous vegetation height and biomass
and tree canopy height, between fenced and unfenced areas.
For all significant effects, we performed multiple comparisons
using the emmeans package (Lenth et al. 2020).

FIGURE2 | Tall grassunderneath acacia drepanolobium tree. Areas
farther from the tree canopy tend to have shorter grass and less biomass
due to intensive grazing.
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FIGURE 3 | Variation in (A) height and (B) biomass of understory
vegetation between under tree locations and off tree locations in both
fenced and unfenced areas. The error bars depict standard error.

3 | Results

3.1 | Variation in Herbaceous Vegetation Height
and Biomass

Herbaceous vegetation height and biomass were generally higher
within the herbivore exclosures than in the unfenced areas, and
underneath trees than away from tree canopies (Figure 2). The
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FIGURE4 | Influence of canopy height on understory vegetation (A) height and (B) biomass on both fenced and unfenced areas.

difference in herbaceous vegetation height between under tree
and off-tree locations was more prominent in unfenced areas
than in the herbivore exclosures (tree X herbivore interaction:
x>=4.80, p=0.029). In the unfenced areas, herbaceous vegeta-
tion was 2.2 times taller underneath trees (22.3+1.20cm) than
off trees (7.0+1.70cm), while within the herbivore exclosures,
herbaceous vegetation underneath tree canopies was only 20%
taller (43.4+1.70cm) than off tree canopies (35.9+2.36cm)
(Figure 3a). Similarly, the difference in herbaceous vegeta-
tion biomass underneath trees and away from tree canopies
depended on herbivore presence (tree X herbivore interaction:
x*>=38.03, p<0.001). In the unfenced areas, herbaceous vege-
tation biomass was 5.9 times higher underneath tree canopies
(178.9+£9.86 g) than away from the tree canopies (26.1 +£14.00g),
while these differences were not significant within the herbi-
vore exclosures (Figure 3b).

Across all sampling sites located under trees, effects of tree
canopy height on both herbaceous vegetation height (y*=6.07,
p=0.014) and herbaceous biomass (y>*=7.76, p=0.005) de-
pended on whether herbivores were fenced out or not. In un-
fenced plots, both vegetation height and biomass were highest
under trees with canopies close to the ground and decreased
with increasing canopy height (Figure 4). Within the herbivore
exclosures, canopy height did not have a significant influence on
either vegetation height or biomass (Figure 4).

3.2 | Variation in Species Diversity
and Composition

Herbaceous vegetation diversity and composition varied mark-
edly across the sampling sites, depending on whether herbivores
were allowed or not. In both fenced and unfenced areas, species
richness was significantly higher underneath trees than away
from tree canopies (F=24.21, p<0.001, Figure 5a). Species rich-
ness also varied across herbivore treatments, with fenced areas
having higher richness than unfenced areas (F=9.54, p=0.002).
There was a significant interaction effect of location and herbi-
vore treatment on species evenness (F=20.83, p <0.001). Within
the herbivore exclosures, under tree locations had 16% higher
species evenness than off tree locations (Figure 5b). In the un-
fenced areas, species evenness was 14% higher in the off-tree
locations than underneath trees. We found greater differences
in species assemblage between under tree locations and off-tree
locations for sampling sites in the unfenced areas (Bray-Curtis
Dissimilarity index =0.84) than sites within the herbivore exclo-
sures (Bray-Curtis Dissimilarity index=0.41) (Figure 5c).

4 | Discussion

Our study demonstrates that A. drepanolobium moderates the
effect of herbivores on understorey vegetation community by
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FIGURE 5 | Variation in (A) herbaceous species diversity and (B)
composition (Bray-Curtis dissimilarity) between under tree locations
and off tree locations in both fenced and unfenced areas.

creating refugia microhabitats. Generally, we found taller vege-
tation and more biomass underneath trees than away from trees
canopies, and these differences were negatively correlated to tree
canopy height. Areas beneath A. drepanolobium canopies were
also associated with higher species richness. The difference in
species composition between tree and off-tree locations was
greater in unfenced locations than within herbivore exclosures.

The observed differences in herbaceous vegetation height and
biomass between tree locations and off-tree locations suggest
that areas underneath A. drepanolobium canopies experience
reduced herbivory pressure. Similar “nurse plant” effects have
been demonstrated elsewhere (Perea and Gil 2014; Manning
et al. 2006; Scholes and Archer 1997; Belsky et al. 1989; Shannon
and Morris 2001). The mechanism for such plant associations has
often been linked to the nurse plants providing suitable micro-
environments for germination and growth (Munguia-Rosas and
Sosa 2008; Schupp 1995), or protecting other plants from herbivory

through chemical and olfactory deterrents (Feeny 1976; Finnerty
et al. 2024; Tahvanainen and Root 1972), physical defenses such
as thorns and spines (Coverdale et al. 2018), or caged architecture
(Garcia and Ramon Obeso 2003). Additionally, we suggest that
symbiotic ants that protect trees against herbivores may mediate
the nursing effect by A. drepanolobium. Being a highly palatable
tree species (Birkett 2002), the survival of Acacia drepanolobium is
strongly influenced by any symbionts (Goheen and Palmer 2010).

The relationship between nurse plants and the herbaceous vege-
tation growing underneath their canopies might even be mutually
beneficial. First, increased herbaceous biomass can enhance soil
quality through organic matter deposition (Navarro-Cano et al.
2019) and improve nutrient cycling by altering soil microbiota
(Lozano et al. 2014). Secondly, herbaceous vegetation cover, in-
cluding tall grass, can protect the progeny of the nurse plant by
obstructing the visual and physical access of herbivores (Riginos
and Young 2007). Moreover, tall grass can create a microclimate
that is less favorable for browsers, potentially deterring them from
the area (Goheen and Palmer 2010). These protective effects of tall
grass have been observed across various ecosystems, indicating it
can potentially enhance tree seedling survival in the presence of
herbivores. On the other hand, the increase in understory biomass
may promote high-intensity fire (Kimuyu et al. 2014) to the detri-
ment of the nurse plants (LaMalfa et al. 2019; Ngugi et al. 2022;
Werner et al. 2021). Our study demonstrated that trees with their
canopies closer to the ground (saplings and coppicing trees) protect
more herbaceous vegetation underneath their canopies than taller
trees. However, shorter trees are also the most vulnerable to the
frequent ground fires that characterize most arid and semi-arid
savannas (Hoffmann et al. 2019; LaMalfa et al. 2019). In addition
to increasing fire risk, facilitated plants may intensify competition
for nutrients and water. Riginos (2009) demonstrated that grass
competition may limit the growth of A. drepanolobium as much
as rainfall and fire.

The canopies of A. drepanolobium trees have a strong effect
on biomass and composition of understory plant communities.
In the presence of herbivores (outside the exclosures), under
tree locations had remarkably higher herbaceous biomass and
different species composition than off tree locations, but these
differences were less pronounced in the absence of herbivores
(inside the exclosures). These findings suggest that protection
against herbivory by nurse plants can be crucial for the main-
tenance of a diverse community assemblage in areas facing
chronic herbivory pressure. Similar herbivory-mediated facil-
itation has been reported elsewhere (Cock and Hierro 2020;
Graff et al. 2007; Rebollo et al. 2002; Verwijmeren et al. 2019).
A. drepanolobium is one of the few tree species that thrives
in heavy clay black cotton soils. To the extent that A. drepa-
nolobium can protect other plant species from herbivory, areas
underneath the trees may serve as refugia microhabitats. In
chronically overgrazed systems, these refugia microhabitats
may be important islands of biodiversity, providing a recolo-
nization nucleus.
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