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Inverse scattering is broadly applicable in quantum mechanics, remote sensing, geophysical, 
and medical imaging. This paper presents a robust direct non-iterative reduced order model 
(ROM) method for solving inverse scattering problems based on an efficient approximation of the 
resolvent operator, resulting in the regularized Lippmann-Schwinger-Lanczos (LSL) algorithm. We 
show that the efficiency of the method relies upon the weak dependence of the orthogonalized 
basis on the unknown potential in the Schrödinger equation by demonstrating that the Lanczos 
orthogonalization is equivalent to performing Gram-Schmidt on the ROM time snapshots. We then 
develop the LSL algorithm in the frequency domain with two levels of regularization. The proposed 
bi-level regularization of the algorithm represents a significant advancement in computational 
stability, enabling its application to real data sets that are larger than used previously with LSL 
and inherently contain errors. We show that the same procedure can be extended beyond the 
Schrödinger formulation to the diffusive Helmholtz equation, e.g., to imaging the conductivity 
using diffusive electromagnetic fields in conductive media with localized positive conductivity 
perturbations. Numerical experiments for diffusive Helmholtz and Schrödinger problems show 
that the proposed bi-level regularization scheme significantly improves the performance of the 
LSL algorithm, allowing for accurate reconstructions with noisy data and large data sets.

1. Introduction

The inverse scattering problem formulated for the Helmholtz and Schrödinger operators arises in various fields, including quantum 
mechanics, remote sensing, geophysical, and medical imaging. The goal of imaging is to find the potential or properties of the 
medium in the domain using near-field measured data. Different approaches to the inverse problem exist, starting with an original 
method based on the solution of a set of integral equations developed in the celebrated works of Gelfand & Levitan, Marchenko, 
and Krein. Many now-classical works discussed the existence and uniqueness of the solution of inverse scattering problems and 
computational approaches in different formulations appropriate for particular applications. Efficient numerical methods for inverse 
scattering have been developed in application to acoustic imaging, electromagnetic sensing, and seismic exploration; among them 
are iterative methods for full-wave inversion based on the adjoint or backpropagation method, techniques based on Born and Rytov 
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approximations, layer stripping methods, asymptotic methods specifically developed for small volume inhomogeneities, as well as 
Kirchhoff migration and solving the Lippmann-Schwinger (LS) integral equation, see for instance [44,11,23,38,12,50,13,2,21,20,48, 
40,25,1,45] and references therein. Formulated as the identification of the parameters of a layered medium, inverse scattering is 
related to cascade realizations of the transfer functions for digital filters or the minimal realization problem, actively discussed in 
electrical engineering and control theory literature [35,19,46]. Following the terminology used in that field, we refer to the inverse 
problems as single-input single-output (SISO) and multiple-input multiple-output (MIMO), depending on the problem setting.

In the present work, we develop a robust non-iterative direct reduced-order model method for solving inverse scattering problems 
for the Schrödinger and diffusive Helmholtz equations based on a Lippmann-Schwinger-Lanczos (LSL) algorithm in the frequency 
domain with two levels of regularization. This bi-level regularization presents a critical step in advancing the computational stability 
of the LSL method discussed in [29], [30]. Here, we further develop the algorithm foundation, propose a robust regularization 
scheme, and extend the method’s area of applicability. We emphasize that this is a non-iterative method of solving a nonlinear 
inverse scattering problem in one step; without the regularization proposed here, the method suffers from instabilities typical for 
ill-posed problems as well as a possible loss of structure in the construction of the ROM. The numerical experiments demonstrate 
that the bi-regularized LSL method results in accurate reconstructions with noisy data and large data sets. Incorporating the bi-level 
regularization is crucial for the algorithm’s practical utilization in various scientific and engineering applications, as real-world data 
always contain measurement errors.

Our approach is based on approximating a resolvent operator and constructing a Reduced Order Model (ROM) that allows us 
to effectively substitute a large-scale inverse problem with a problem of much smaller size. Such a reduction of the size of the 
numerical problem has irrefutable advantages in saving computational time and required memory. ROMs are generally constructed 
by projecting the solution of a large-scale problem into an appropriate subspace [4,51,37,8]; this can be achieved by different methods 
such as Krylov subspaces, proper orthogonal decomposition, truncated SVD, etc. Here, we use a truncated Lanczos representation. The 
Lanczos method is intrinsically related to Krylov subspace methods efficiently used in the iterative algorithms [32,36,53,42,43]; the 
truncation results in a reduced order solution spanned by the dominant eigenfunctions of the operator [9,52,22,6]. There is extensive 
literature discussing these approaches for particular applications; see [5,3,9,37] and references therein.

Our contribution is three-fold. First, we investigate the weak dependence of the Lanczos orthogonalized frequency domain snap-
shots on perturbations of the potential by considering the ROM as a spectral projection of the time-domain problem; this could be 
viewed as interpolatory-projection dualism [7]. This allows us to invoke the reflection cancellation properties of the time-domain 
snapshots [28] to explain the weak dependence in the frequency domain.

Next, we consider LSL regularization. Generally, the multidimensional inverse scattering problem is ill-posed and requires regu-
larization to develop a stable numerical algorithm. This ill-posedness is aggravated if the scattering data is obtained in the diffusive 
regime, as in diffuse optical tomography or control source electromagnetic exploration. In the LSL method, this ill-posedness creates 
two sources of instability. One is the conventional instability of the Lippmann-Schwinger (LS) integral equation, which, as a linear 
Fredholm integral equation, can be resolved by SVD truncation or other regularization techniques developed for linear problems 
[49,10,41,39,47,24]. We use a truncation of the spectral decomposition in the current work to deal with this type of instability. 
Among various regularization methods suggested for the solution of linear and non-linear ill-posed inverse problems, truncation of a 
spectral decomposition allows for a significant reduction in the size of the computational problem, which is paramount for large-scale 
problems.

The second instability problem is the ill-conditioning of the projection subspace. In the developed method, we construct the data-
driven ROM and Gramian directly from the data (that is why they are called data-driven); the ill-conditioning may lead to the ROM’s 
sensitivity to data errors and may cause nonphysical indefiniteness of the mass and stiffness matrices. In turn, this leads to the loss 
of the Hamiltonian property of the underlying reduced-order dynamical system. To circumvent this problem, a ROM regularization 
via data-driven Gramian truncation was introduced in [17,15] for inverse scattering problem in the time domain. In those works, 
the data-driven ROM constructed in the time domain was applied respectively to the so-called data-to-born transform (removing 
multiple echoes directly from the data) and to preconditioned full wave inversion. In both cases, regularization was performed via 
SVD truncation of the data-driven approximate Gramian to the level of the measurement error. In the current paper, we extend this 
approach to the frequency domain LSL formulation. An advantage of LSL is that it allows for the two levels of truncation. Thanks to 
this, we can relax the truncation level of the Gramian, benefiting the inversion quality. We should also mention that the approximate 
data-driven Gramian truncation developed here can be viewed as a version of the recently emerged data-driven balanced truncation 
method [34], although, for LSL, its implementation is subtle.

Finally, we extend the LSL approach from the Schrödinger problem to the diffusion problem or diffusive Helmholtz variable 
coefficient formulation. Such an extension allows us to broaden the application of LSL, for example, to low-frequency quasi-stationary 
electromagnetic problems with variable conductivity. We can qualitatively (and in some cases quantitatively) map conductivity 
perturbations, provided they do not significantly affect the high-frequency asymptotics of the host models, as in the case of localized 
positive perturbations. Extensions to a more general class of Helmholtz problems could be possible with additional iterations; see 
[18] for the Lippmann-Schwinger formulation in the time-domain, however adding iterations would eliminate the great advantage 
of the direct inversion method.

The paper is organized as follows. We describe the LSL method for a SISO problem in Section 2 and summarize the steps of the LSL 
algorithm in Section 3. In Section 4, we discuss the connection between the frequency domain LSL and time domain snapshots of the 
solution; in particular, we show that Lanczos orthogonalization corresponds to Gram-Schmidt on the corresponding sequential time 
snapshots. The regularized Lippmann-Schwinger-Lanczos method is presented in Section 5. Extensions to the multidimensional MIMO 
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problem and to the Helmholtz equation modeling electromagnetic diffusion are described in Section 6 and in Section 7, respectively. 
Results of numerical experiments are shown in Section 8.

2. The LSL method for SISO problems

We give a review of the method and some necessary results from [29]. We start with considering the single input single output 
(SISO) inverse problem in one dimension. The forward problem in the frequency domain is described by the Schrödinger equation 
with a potential 𝑊(𝜏) for a scalar function ⃗

−⃗′′(𝜏) + 𝑊(𝜏)⃗(𝜏) + 𝑍⃗(𝜏) = 𝑧(𝜏) in Ω, ⃗′(0) = 0, ⃗′(𝑙) = 0, (1)
where Ω = (0,𝑙) and 0 < 𝑙 ≤ %. The source 𝑧(𝜏) could be applied in the domain or at the boundary. Here, we assume that the 
source 𝑧(𝜏) is at the boundary: it is a compactly supported real distribution localized near the origin (left boundary of the domain), 
for example, 𝑧 = 𝑘(𝜏− 𝜎) with small 𝜎 > 0 or a slightly smoothed approximation. Note that when 𝑧 is a delta function at the origin, 
this corresponds to an inhomogeneous Neumann boundary condition. We can write the solution formally using the resolvent

⃗ = (+ 𝑍𝛼)−1 𝑧, where  = −Δ+ 𝑊𝛼 ,

and where the inverse is understood to correspond to imposing homogeneous Neumann boundary conditions.
We note that ⃗ depends on 𝑍, but we will denote it explicitly only when necessary for clarity. It is known that for nonnegative 𝑊, 

the above resolvent is well defined for 𝑍 that is not on the negative real axis. The SISO transfer function is defined as

̃ (𝑍) =
𝑙 

∫
0 

𝑧(𝜏)⃗(𝜏;𝑍)𝑟𝜏 = ⟨𝑧,⃗⟩ = ⟨𝑧, (+ 𝑍𝛼)−1 𝑧⟩ (2)

The notation ⟨, ⟩ is used throughout the paper to denote the continuous 𝑙2(Ω) inner product

⟨,,𝜈⟩ = ∫
Ω 

,(𝜏)𝜈(𝜏)𝑟𝜏,

where Ω = (0,𝑙) in the one dimensional case. The data are the values of the function ̃ (𝑍) and its derivative given for specific 𝑍. ∈ℝ, 
. = 1,… ,𝐾:

̃ (𝑍)|𝑍=𝑍. ∈ℝ, 𝑟̃ (𝑍)
𝑟𝑍 |𝑍=𝑍. ∈ℝ for . = 1,… ,𝐾. (3)

The data for the inversion are the values of the transfer function ̃ (𝑍) and its derivative for specific 𝑍. ∈ ℝ. The transfer function, 
calculated as a product of the source function 𝑧 and the solution ⃗, is readily available when the applied source is known and the 
function values ⃗ are measured. The values of the derivative can be obtained, for instance, from the time domain data.

The SISO inverse problem requires to determine 𝑊(𝜏) in (1) from the data (3). Such a formulation can be obtained, for example, 
using Zolotarev-optimal [26] and data-driven 𝐺2-optimal ROMs [7] for a diffusion problem with 𝑈𝑈𝐶 in place of 𝑍 in (1). It is known that 
such approximations give the most accurate solutions to the inverse problem [31], although their data-driven construction presents 
significant computational challenges, especially for MIMO problems. Moreover, their stability for noisy data is not well-studied. We 
also note that the following discussion can be extended for complex data points outside of the spectrum of  (see [29] for a more 
thorough treatment of the case of complex data points).

The Lippmann-Schwinger (LS) integral equation is fundamental to many inverse scattering algorithms. If ̃𝑊 denotes the data (2) 
for the PDE with the unknown potential 𝑊, and ̃0 is the background transfer function corresponding to the PDE with a known 𝑊0
(here we assume 𝑊0 = 0), then the Lippmann-Schwinger equation for the unknown coefficient 𝑊 can be written as

̃𝑊 − ̃0 = −⟨⃗0,𝑊⃗𝑊⟩ (4)
where ⃗ 𝑊 is the internal PDE solution corresponding to the unknown coefficient 𝑊, and ⃗ 0 is the background internal PDE solution. It 
is assumed that ⃗ 0 can be computed by solving the PDE with known background parameters, while ⃗ 𝑊 is unknown because it depends 
on the unknown 𝑊. This dependence makes equation (4) nonlinear, which is one of the main difficulties of applying the LS approach 
to inverse problems. A conventional method [23] is the so-called distorted Born iteration, i.e., to use the background solution in 
place of ⃗𝑊 on the first iteration and successively update by using the approximation to 𝑊 obtained in the previous iteration as the 
background medium. This procedure can be quite computationally expensive and is very sensitive to the initial guess.

To circumvent these problems, the Lippmann-Schwinger-Lanczos method was introduced in [29,30]. The LSL method uses the 
data-driven internal solution �퐮𝑊 in place of ⃗𝑊:

̃𝑊 − ̃0 ( −⟨⃗0,𝑊�퐮𝑊⟩. (5)
Solution �퐮𝑊 can be computed directly from the data without knowing 𝑊; then (5) becomes linear with respect to 𝑊. This precomputing 
is based on embedding properties of the data-driven reduced order models (ROMs) developed in [28]. The LSL approximate of the 
internal solution �퐮𝑊 is computed via Lanczos orthogonalization, hence the name.
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Let ⃗. = ⃗(𝜏,𝑍. ) be solutions to (1) corresponding to 𝑍 = 𝑍. for . = 1,… ,𝐾. We consider the projection given by the matrix 1

𝐵 =
[
⃗1(𝜏),… ,⃗𝐾(𝜏)

]
∈ℝ%)𝐾.

The Galerkin system ([33]) projecting the problem (1) into the subspace 𝐵 spanned by the functions ⃗1(𝜏),… ,⃗𝐾(𝜏),

(𝜀 + 𝑍𝑛)⊂ = 𝛾, (6)
determines the data-driven Reduced Order Model (ROM). Here 𝜀,𝑛 ∈ ℝ𝐾)𝐾 in (6) are symmetric, positive definite stiffness and 
mass matrices, respectively, given by

𝜀𝜇. = ⟨⃗𝜇,⃗.⟩, 𝑛𝜇. = ⟨⃗𝜇,⃗.⟩.
The right-hand side 𝛾 ∈ℝ𝐾 in (6) is a column vector with components

𝛾𝜇 = ⟨⃗𝜇,𝑧⟩.
The Galerkin solution for the system (6) is determined by the vector-valued function of 𝑍, ⊂ ∈ℝ𝐾, where ⊂ corresponds to a column 
vector of coefficients with respect to the basis 𝐵 of exact solutions. For any 𝑍, the solution to (1) can be approximated by its Galerkin 
projection

⃗ ( ℎ⃗ = 𝐵 ⊂ = 𝐵 (𝜀 + 𝑍𝑛)−1𝛾.

A key component of the data-driven ROM approach is that even though the solutions ⃗ are unknown, the matrices 𝜀 and 𝑛 can be 
obtained from the data.

3. The data driven LSL algorithm

In the data driven algorithm, the data is assumed to be of the form (3). The mass and stiffness matrices 𝑛 and 𝜀 are computed 
directly ([33,7,16]) from the data as:

𝑛𝜇. =
̃ (𝑍𝜇)− ̃ (𝑍. )

𝑍. − 𝑍𝜇
, 𝑛𝜇𝜇 = −𝑟̃

𝑟𝑍 (𝑍𝜇), (7)

and

𝜀𝜇. =
̃ (𝑍. )𝑍. − ̃ (𝑍𝜇)𝑍𝜇

𝑍. − 𝑍𝜇
, 𝜀𝜇𝜇 =

𝑟(𝑍̃ )
𝑟𝑍 (𝑍𝜇). (8)

Indeed, multiplying by ⃗𝜇 equation (1) written for 𝑍 = 𝑍. and integrating by parts, and then switching 𝜇 and ., we obtain

(𝜀𝜇. + 𝑍.𝑛𝜇. ) = ̃ (𝑍𝜇), (𝜀𝜇. + 𝑍𝜇𝑛𝜇. ) = ̃ (𝑍. ). (9)
Subtracting the second equation from the first one and dividing by (𝑍. −𝑍𝜇) we obtain the elements of the matrix 𝑛 in (7). Similarly, 
one obtains formulas for the elements of the stiffness matrix (8) by multiplying equations in (9) by 𝑍𝜇 and 𝑍. before doing the 
subtraction step. The LSL algorithm corresponds to executing the steps below.

1. Data generated ROM. The first step of the data driven algorithm is to compute the mass and stiffness matrices 𝑛 and 𝜀
([33,7,16]) from the data using formulas (7), (8) and the right-hand side vector 𝛾 ∈ ℝ𝐾 in (6). The ROM transfer function 
corresponding to the Galerkin system is

ℎ̃ (𝑍) ∶= ⟨ ℎ⃗,𝑧⟩ = 𝛾𝑦⊂.

It can be shown that due to the data matching conditions, this projected into the Galerkin subspace ROM transfer function 
matches the data exactly.

Proposition 1. [16,29] Assume that 𝑛 and 𝜀 are generated from the data (3) by the formulas (7) and (8). Then the Galerkin projection 
of the solution of (1)

ℎ⃗(𝑍) = 𝐵 ⊂(𝑍) = 𝐵 (𝜀 + 𝑍𝑛)−1𝛾

is exact at 𝑍= 𝑍. ,

ℎ⃗(𝑍. ) = ⃗(𝑍. ),

1 Basis 𝐵 can be viewed as a matrix with infinite columns or equivalently as a row-vector of continuous functions, in either case, we use the 𝑙2 inner product ⟨, ⟩
defined earlier.
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and hence
ℎ̃ (𝑍. ) = 𝛾𝑦(𝜀 + 𝑍.𝑛)−1𝛾 = ̃ (𝑍. ).

Furthermore
𝑟 ℎ̃
𝑟𝑍 (𝑍. ) =

𝑟̃
𝑟𝑍 (𝑍. )

for . = 1,… ,𝐾.

See [16] for the proof for real 𝑍, and [29] for the corresponding result and proof for 𝑍. complex.
2. Lanczos orthogonalization. The next step is to change the basis by orthogonalizing matrix �퐴 = 𝑛−1𝜀 using the Lanczos 

algorithm. More precisely, we run 𝐾 steps of the 𝑛 -symmetric Lanczos algorithm applied to matrix �퐴 =𝑛−1𝜀 and initial vector 
𝑛−1𝛾. This yields tridiagonal matrix < ∈ℝ𝐾)𝐾 and 𝑛 -orthonormal Lanczos vectors �푞𝜇 ∈ℝ𝐾, such that

�퐴> =>< , >𝑦𝑛> = 𝛼 , (10)
where

> = [�푞1, �푞2,… , �푞𝐾] ∈ℝ𝐾)𝐾,

and

�푞1 =𝑛−1𝛾+
√
𝛾𝑦𝑛−1𝛾.

The new basis is orthonormal in 𝑙2(0,𝑙) and is given by the row vector of continuous functions

𝐵 > = [
𝐾 ∑
.=1 

�푞.1⃗. ,… ,
𝐾 ∑
.=1 

�푞.𝐾⃗. ] ∈ℝ%)𝐾.

The Galerkin solutions ℎ⃗ and transfer function ℎ̃ (𝑍) can be written in this new basis as

ℎ⃗(𝑍) =
√
𝛾𝑦𝑛−1𝛾𝐵 >(< + 𝑍𝛼)−1�푒1, (11)

ℎ̃ (𝑍) = (𝛾𝑦𝑛−1𝛾)�푒𝑦1 (< + 𝑍𝛼)−1�푒1 (12)
where �푒1 = (1,0,… ,0)< is the first coordinate column vector in ℝ𝐾.

3. Internal solutions. The orthogonalized ROM is used to produce internal solutions. As the true potential 𝑊 and the basis 𝐵
consisting of exact solutions are not known, we replace the unknown orthogonalized internal solutions 𝐵 > with orthogonalized 
background solutions 𝐵0>0 corresponding to background 𝑊0 = 0. Here 𝐵0 is the row vector of background solutions

𝐵0 = [⃗01,… ,⃗0𝐾]

to (1) corresponding to 𝑊 = 𝑊0 = 0 and the same spectral points 𝑍 = 𝑍1,…𝑍𝐾. A ROM for the background problem is computed 
in the same way, and >0 is computed using Lanczos orthogonalization. The approximation

𝐵 > ( 𝐵0>0 (13)
is the crucial step - it is used in (11) to compute an approximation �풖 to the unknown internal solution ⃗(𝜏,𝑍)

⃗ ( �풖 =
√
𝛾𝑦𝑛−1𝛾𝐵0>0(< + 𝑍𝛼)−1�푒1. (14)

4. Lippmann-Schwinger. In the Lippmann-Schwinger formulation, one needs to solve the nonlinear inverse problem. However, 
the data driven approach allows us to reformulate it as a linear problem. From (2) and its background counterpart, we obtain 
the Lippmann-Schwinger equation

̃0(𝑍. )− ̃ (𝑍. ) = ∫ ⃗0. (𝜏)⃗. (𝜏)𝑊(𝜏)𝑟𝜏 (15)

for . = 1,… ,𝐾. Here ̃0 is the transfer function corresponding to the background problem

̃0(𝑍) =
𝑙 

∫
0 

𝑧(𝜏)⃗0(𝜏;𝑍)𝑟𝜏. (16)

For real 𝑍. ∈ℝ we have the following 2𝐾 equations

̃0(𝑍. )− ̃ (𝑍. ) = ∫ ⃗0. (𝜏)⃗. (𝜏)𝑊(𝜏)𝑟𝜏 (17)
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and
𝑟
𝑟𝑍

(̃0 − ̃ )|𝑍=𝑍. = ∫ 𝑟
𝑟𝑍

[⃗0(𝜏;𝑍)⃗(𝜏;𝑍)]𝑍=𝑍. 𝑊(𝜏)𝑟𝜏, (18)

for . = 1,… ,𝐾. The internal solutions ⃗. (𝜏) and their derivatives with respect to 𝑍 are unknown and depend on unknown 𝑊, 
which makes the LS problem (15) nonlinear. To reduce it to a linear problem we replace ⃗ in (17), (18) with its approximation 
⃗ ( �풖 computed using (14) [29]. The new system for 𝑊 is

𝑘̃ = ∫ �푊 (𝜏)𝑊(𝜏)𝑟𝜏 (19)

where

𝑘̃ = [(̃0 − ̃ )(𝑍1),… , (̃0 − ̃ )(𝑍𝐾),
𝑟
𝑟𝑍

(̃0 − ̃ )(𝑍1),… , 𝑟
𝑟𝑍

(̃0 − ̃ )(𝑍𝐾)],

and

�푊 = [�풖⃗0(𝑍1),… ,�풖⃗0(𝑍𝐾),
𝑟
𝑟𝑍

(�풖⃗0)|𝑍=𝑍1 ,… , 𝑟
𝑟𝑍

(�풖⃗0)|𝑍=𝑍𝐾 ]

are 2𝐾-dimensional vectors of functions on (0,𝑙). Recall that �풖 is computed by (14) directly from the data without knowing 𝑊; 
thus, the nonlinear system (15) becomes linear. We refer to (19) as a Lippmann-Schwinger-Lanczos system.

4. Connection between frequency domain LSL and time snapshots

Consider the time domain wave problem corresponding to  from equation (1)

,(𝜏, 𝐶) +,𝐶𝐶(𝜏, 𝐶) = 0

with the same boundary condition as equation (1) and initial conditions

,|𝐶=0 = 𝑧, ,𝐶|𝐶=0 = 0.

Given regular enough 𝑊 and a localized initial pulse, 𝑧(𝜏) ( 𝑘(𝜏), we have that

, ( 𝑘(𝜏− 𝐶) + ð(𝜏, 𝐶),
where ð(𝜏, 𝐶) is a smooth function and satisfies the causality principle, that is, ð = 0 for 𝜏 ≥ 𝐶, and ð ≡ 0 if and only if 𝑊 ≡ 0. Consider 
time snapshots ,(𝜏, �휏𝜇) for 𝜇 = 1,… ,𝐾, for �휏 consistent with the effective width of 𝑧(𝜏). Let us perform Gram-Schmidt orthogonal-
ization on these snapshots in sequential order. This is the foundation of all data-driven inversion algorithms in the time domain: due 
to causality, the orthogonalized time snapshots are approximately 𝑘(𝜏 − �휏𝜇) [28], the same as those from the background medium. 
Therefore, the orthogonalized time snapshots depend only weakly on ð, and likewise on 𝑊. Although the snapshots are unknown, the 
transformation that orthogonalizes them is obtained from the data generated Gramian.

In the frequency domain, the snapshots are not causal, so sequential Gram-Schmidt orthogonalization will not lead to weak 
dependence on 𝑊. In [16], weak dependence on 𝑊 was extended to the frequency domain by instead using Lanczos orthogonalization. 
To see why this works, consider the approximation of the time snapshots , in the Galerkin framework as

,(𝜏, 𝐶) ( 𝐵 (𝜏)𝑟(𝐶),

where the time dependent coefficients 𝑟 ∈ℝ𝐾 satisfy

𝜀𝑟(𝐶) +𝑛𝑟(𝐶)𝐶𝐶 = 0, 𝑟(0) =𝑛−1𝛾, 𝑟𝐶|𝐶=0 = 0, (20)
which is a time-domain (wave) variant of equation (6). Thus, snapshots of its solution,

𝐵 𝑟(�휏𝜇) ( 𝑘(𝜏− �휏𝜇) + ð(𝜏, �휏𝜇),
similarly to the full time domain discussed above. Their orthogonalization creates a basis of approximate delta functions, however, 
their peaks, 𝐶𝜇, are not equidistantly spaced. This is because the approximation properties of the basis 𝐵 deteriorate away from the 
origin. It was observed in [16] that each peak 𝐶𝜇 is located within 𝜇-th dual volume of the corresponding optimal finite-difference 
grid. We note that it was also observed and proven for a model case in [14] that the corresponding optimal grids are only weakly 
dependent on the medium.

Consider 𝑟𝜇 ( 𝑟(�휏𝜇), the second order finite-difference approximation to (20) satisfying

𝑟𝜇+1 = (2𝛼 − �휏�퐴)𝑟𝜇 − 𝑟𝜇−1, for 𝜇 = 1,… ,𝐾− 1, (21)
𝑟0 =𝑛−1𝛾, 𝑟1 = 𝑟−1,
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where �퐴 =𝑛−1𝜀 . Thus, by construction, each 𝑟𝜇 is from the Krylov subspace since it is a combination of previous vectors with a 
factor of �퐴. Hence for each 𝜇,

span{𝑟0,𝑟1,… ,𝑟𝜇} = span{𝑛−1𝛾,�퐴𝑛−1𝛾,… ,�퐴𝜇𝑛−1𝛾}.

So when we do the Lanczos algorithm as described in Step 2, we are performing exactly the sequential Gram-Schmidt orthogonalization 
of the ROM projected finite difference time snapshots.

5. The regularized Lippmann-Schwinger-Lanczos method

Data-driven formulas for mass and stiffness matrices (7), (8) are only valid up to the error in the data. In exact arithmetic 
eigenvalues of 𝑛 and 𝜀 are the squares of the singular values of 𝐵 and 

√𝐵 respectively. For ill-conditioned snapshot spaces, 
the singular values may not be estimated well by the eigenvalues of 𝑛 and 𝜀 due to measurement errors. Furthermore, 𝑛 and 
𝜀 may even become indefinite, which would lead to losing the Hermitian property of the matrix pencil (𝜀,𝑛), fundamental to 
ROM imaging methods. To avoid the resulting instability, we regularize the problem by truncating the spectral decomposition of 
the Gramian matrix 𝑛 and projecting the problem onto the subspace spanned by the dominant eigenvectors. Truncated SVD is an 
efficient regularization method that allows constructing a reduced order model using only the eigenvectors corresponding to the 
dominant eigenvalues as the basis of the projection subspace. Gramian truncation was used for inverse scattering in the time domain 
[17] and for balanced truncation of data-driven ROMs in the frequency domain [34].

5.1. ROM regularization via Gramian truncation

Let �푍 be a matrix of the dominant eigenvectors of the mass matrix 𝑛 :

�푍 = [�푧1,… ,�푧�푙] ∈ℝ𝐾)�푙, (22)
with �푧�푘,�푘 = 1,… , �푙, for �푙 ≤ 𝐾, being the eigenvectors of 𝑛 corresponding to its positive eigenvalues �휎�푘, 1 ≤ �푘 ≤ �푙, that are greater 
than a threshold �훼, �휎�푘 ≥ �훼. The parameter �훼 is related to the level of noise in the data and determines the size of the ROM by the 
number of basis vectors �푙.

We will use the subspace spanned by these eigenvectors for constructing the reduced order model by projecting the problem into 
this subspace. Let

𝑛̃ =�푍∗𝑛�푍 = 𝐵 ∗𝐵 , 𝜀̃ =�푍∗𝜀�푍 = 𝐵 ∗𝐵 , (23)
𝛾̃ =�푍∗𝛾, and 𝐵 = 𝐵 �푍 ∈ℝ%)�푙. (24)

Then, the Galerkin system (6) determining the truncated ROM can be written as

(𝜀̃ + 𝑍𝑛̃)⊂̃ = 𝛾̃, (25)
and the Galerkin solution for the truncated problem can be expressed as

⃗(𝑍) ( ̃⃗(𝑍) = 𝐵 ⊂̃(𝑍) = 𝐵
(
𝜀̃ + 𝑍𝑛̃

)−1 𝛾̃. (26)
Due to the truncation, ̃⃗ does not exactly match the data. We observe computationally that this misfit does not exceed the order of 
the measurement error, however, a more detailed error analysis is needed.

Since 𝑛̃ is the diagonal matrix of positive eigenvalues of 𝑛 , this truncation guarantees the Hermitian property of the matrix 
pencil (𝜀̃,𝑛̃) and allows to use the 𝑛̃ -Hermitian Lanczos algorithm with positive-definite 𝑛̃ . This algorithm is isomorphic to the 
standard real symmetric Lanczos method with matrix 𝑛̃−1+2𝜀̃𝑛̃−1+2 and results in the computation of the internal solution without 
the Lanczos algorithm breaking down.

5.2. Regularization of the background model

In principle, there is less need to regularize the ROM for the background model since it can be computed exactly from the simulated 
data, and all the eigenvalues of the corresponding mass matrix must be positive definite up to the precision of the computation. 
However, for the LSL approach, we need it to be consistent with the data-generated ROM. Hence we need to project it on the same 
�푍 as above (22) to obtain 𝑛̃0, 𝜀̃0 ∈ℝ�푙)�푙 and 𝛾̃0 ∈ℝ�푙 where

𝑛̃0 =�푍∗𝑛0�푍 = 𝐵 ∗
0 𝐵0, 𝜀̃0 =�푍∗𝜀0�푍 = 𝐵 ∗

0 0𝐵0, (27)
𝛾̃0 =�푍∗𝛾0, and 𝐵0 = 𝐵0�푍 ∈ℝ%)�푙. (28)

Then, performing 𝐾 steps of the 𝑛̃0-Hermitian Lanczos algorithm corresponding to matrix �̃퐴0 = 𝑛̃−1
0 𝜀̃0 and initial vector 𝑛̃−1

0 𝛾̃0, 
we compute the orthogonalized snapshot basis for the background

𝐵0>0 = 𝐵0�푍>0.

Journal�of�Computational�Physics�525��������113725�

7�



J. Baker, E. Cherkaev, V. Druskin et al. 

5.3. Internal solutions for the truncated problem

As we discussed in subsection 4, the orthogonalized snapshot columns are weakly dependent on 𝑊. That is,

𝐵 �푍> ( 𝐵0�푍>0,

from which we have that

𝐵 �푍�푍∗ ( 𝐵0�푍>0>−1�푍∗.

Assuming that the projector �푍�푍∗ has good approximation properties on 𝐵 , i.e., 𝐵 �푍�푍∗ ( 𝐵 , this implies that

𝐵 ( 𝐵0�푍>0>−1�푍∗. (29)
This approximation is obtained directly from the data and used to construct the internal solutions.

5.4. Inversion using Lippmann-Schwinger

We consider the Lippmann - Schwinger formulation in order to solve the inverse problem by using the internal snapshots described 
above. Recall that

̃0(𝑍. )− ̃ (𝑍. ) = ∫ ⃗0. (𝜏)⃗. (𝜏)𝑊(𝜏)𝑟𝜏, . = 1,… ,𝐾 (30)

where ⃗. and ⃗0. are the perturbed (unknown) and background solutions, respectively. Here

�풖. = �푒∗. 𝐵0�푍>0>−1�푍∗

can be directly computed from the data without knowing 𝑊. We can write the system equation (30) in operator form as

𝑘�퐅 = ⟨�푊 ,𝑊⟩ (31)
where

𝑘�퐅 = [̃0(𝑍1)− ̃ (𝑍1),… ,̃0(𝑍𝐾)− ̃ (𝑍𝐾)]∗ ∈ℝ𝐾,

and

�푊 = [�풖1(𝜏)⃗01(𝜏),… ,�풖𝐾(𝜏)⃗0𝐾(𝜏)]

is an 𝐾-dimensional vector valued function on (0,𝑙).

Remark 1. In the original LSL method, both ̃ (𝑍. ) and their derivatives were used to construct the ROM and solve equation (31). In 
the regularized formulation, the derivatives are used for the ROM construction; however, their addition as data in equation (31) is 
not necessary as this does not improve the quality of the solution. This simplifies the regularized LSL formulation, further reducing 
the size of the problem.

6. Regularized LSL for multidimensional MIMO problems

We consider a partial differential equation in the domain Ω ∈ℝ𝑟 for a scalar functions ⃗�푟

(+ 𝑍𝛼)⃗�푟 = 𝑧�푟 in Ω, 𝑈⃗�푟
𝑈�휈

|𝑈Ω = 0, (32)
for �푟 = 1,… ,�퐾 , where

 = −Δ+ 𝑊𝛼 ,

�휈 is the normal to the boundary of Ω, and the sources 𝑧�푟 are localized and supported near or at an accessible part of the boundary 
𝑈Ω. As in the SISO case, for simplicity, we assume that 𝑍 is real, as extension to the complex case is straightforward [29].

Define the vector of source functions

�퐺 = [𝑧1,𝑧2,… ,𝑧�퐾 ]

and corresponding solutions

�푈 = [⃗1,⃗2,… ,⃗�퐾 ],
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which are understood as semi-infinite matrices or vectors of continuous source and solution functions, respectively. Let the vector of 
functions �푈. ∈ℝ%)�퐾 correspond to a particular spectral value 𝑍. , and let ⃗�푟. = ⃗�푟(𝑍. ) be the solution corresponding to source �푟 and 
spectral value .. Then the multiple-input multiple-output (MIMO) transfer function is a �퐾 )�퐾 matrix-valued function of 𝑍

̃ (𝑍) =<�퐺,�푈 >=<�퐺, (+ 𝑍𝛼)−1�퐺 >∈ℝ�퐾)�퐾 , (33)
where <,> represents the continuous 𝑙2(Ω) matrix-valued inner product,

<�퐺,�푈 >= ∫
Ω 

�퐺∗�푈𝑟𝜏.

We consider the inverse problem with data given by 2𝐾 real symmetric �퐾 )�퐾 matrices. That is, for real 𝑍, the data is given by

̃ (𝑍)|𝑍=𝑍. ∈ℝ�퐾)�퐾 , and ̃ (𝑍)
𝑟𝑍 |𝑍=𝑍. ∈ℝ�퐾)�퐾 , . = 1,⋯ ,𝐾.

6.1. Construction of the MIMO data-driven ROM

The Galerkin projected system for the MIMO data-driven Reduced Order Model is given by the block analog of (6)

(𝜀 + 𝑍𝑛)�퐶 =�퐵. (34)
Here 𝜀,𝑛 ∈ ℝ𝐾�퐾)𝐾�퐾 are Hermitian positive definite matrices, �퐵 ∈ ℝ𝐾�퐾)�퐾 , and �퐶 = �퐶(𝑍) ∈ ℝ𝐾�퐾)�퐾 is a matrix-valued function of 
𝑍, corresponding to coefficients of the solutions with respect to the basis 𝐵 of exact solutions. Stiffness and mass matrices consist of 
𝐾 )𝐾 blocks 𝜀 = {𝜀𝜇.} and 𝑛 = {𝑛𝜇.} of size �퐾 )�퐾 given by

𝜀𝜇. =<∇�푈𝜇,∇�푈. > + < 𝑊�푈𝜇,�푈. >, 𝑛𝜇. =<�푈𝜇,�푈. > . (35)
They can be computed directly from the data by the block versions of (7), (8). Similar to the SISO case, the Galerkin projected system 
(34) results in the reduced order model and the ROM transfer function

ℎ̃ (𝑍) =�퐵∗�퐶(𝑍)

which matches the data exactly. The regularization leads to the truncated ROM

(𝜀̃ + 𝑍𝑛̃)�̃퐶 = �̃퐵 (36)
where

𝑛̃ =�푍∗𝑛�푍 = 𝐵 ∗𝐵 , (37)
𝜀̃ =�푍∗𝜀�푍 = 𝐵 ∗𝑙𝐵 , (38)

and

�̃퐵 =�푍∗�퐵, 𝐵 = 𝐵 �푍 ∈ℝ%)�푙 (39)
are the MIMO analogues of (23) and (25), and �푙 is the dimension of the reduced problem, �푙 ≤ 𝐾�퐾 . In practice the dimension �푙 is 
selected by truncating all eigenvalues of 𝐵 smaller than �휀 where �휀 is taken to be near machine precision. Truncation of the eigenvalues 
below the level of machine precision enhances the numerical stability and conditioning of the LSL algorithm. Furthermore, the SVD 
can be computed efficiently due to the positive definite and block structure of the matrix 𝑛̃ .

6.2. Data-generated internal solutions for the MIMO case

The data-generated solutions for the MIMO case are constructed following similar steps as in the SISO case but performed block-
wise. The localization properties for this case were investigated in [27]. It can be performed via 𝐾 steps of the 𝑛 -Hermitian block-
Lanczos algorithm with matrix

�퐴 = 𝑛̃−1𝜀̃

and initial block vector 𝑛̃−1�̃퐵.

Remark 2. The orthogonalization in the block-Lanczos algorithm is not unique; the blocks can be constructed in different ways. Here 
we use the version with a polar decomposition within the blocks [27].

From the orthogonalization we obtain the 𝑛 -orthonormal Lanczos block-vectors �푞𝜇 ∈ℝ𝐾�퐾)�퐾 which are the block counterparts of 
(10)
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> = [�푞1, �푞2,… , �푞𝐾] ∈ℝ𝐾�퐾)𝐾�퐾 ,

where

�푞1 = 𝑛̃−1�̃퐵(�̃퐵∗𝑛̃−1�̃퐵)−1+2.

From this, we obtain the block-equivalent of equation (29)

𝐵 ( 𝐵0�푍>0>−1�푍∗, (40)
which gives us the data-generated matrix of internal snapshots:

�퐔 = 𝐵0�푍>0>−1�푍∗. (41)

6.3. MIMO inverse problem

From the MIMO variant of (2), we obtain the block Lippmann-Schwinger equation

̃0(𝑍. )− ̃ (𝑍. ) = ∫ �푈∗
0 (𝜏,𝑍. )𝑊(𝜏)�푈 (𝜏,𝑍. )𝑟𝜏, . = 1,… ,𝐾, (42)

where the subscript 0 corresponds to background solutions with 𝑊 = 0. Similar to the SISO case, precomputing �퐔 via the data-driven 
equation (41) results in the linear system for 𝑊:

(̃0 − ̃ )|𝑍=𝑍. = ∫ �푈∗
0 (𝜏,𝑍. )𝑊(𝜏)�퐔(𝜏,𝑍. )𝑟𝜏, . = 1,… ,𝐾. (43)

We note that the regularization allows us to use more spectral points and considerably reduce the size of the linear system in (42) at 
this step of LSL by not using the derivative data. Although the derivative data was necessary to construct the ROM, adding it at this 
step does not improve the quality of reconstructions.

7. Extension to the diffusive Helmholtz problem

The Helmholtz equation governs steady-state oscillations of the fields in homogeneous or non-homogeneous media; these oscilla-
tions could be electromagnetic, mechanical, or acoustic and arise in ultrasound, acoustics, electromagnetics, seismology, and other 
applications. As a model, consider the 2D diffusive Helmholtz problem2 with positive 𝑍

−Δ⃗�푟(𝜏) + 𝑍�푛(𝜏)⃗�푟(𝜏) = 𝑧�푟 in Ω ⊂ℝ2, 𝑈⃗�푟
𝑈�휈

|𝑈Ω=0 (44)
where the sources 𝑧�푟 for �푟 = 1,…�퐾 are localized distributions supported near or at an accessible part of 𝑈Ω.

With imaginary 𝑍, equation (44) can be viewed as a quasistatic diffusive Maxwell equation or Laplace-transformed diffusion 
equation for the low-frequency electric field in a conducting medium; the data may correspond to 𝐺2 optimal or another optimal 
approximation of the time-domain problem, e.g., [31,26]. In this case, (44) is sometimes called diffusion approximation, ⃗ represents 
the electric field polarized normally to the plane ℝ2 , and �푛 is the product of constant magnetic permeability and spatially varying 
conductivity. Equation (44) can also be viewed as Laplace transformed wave equation (with 𝑍 being the square of the Laplace 
frequency), then �푛(𝜏) is a variable index of refraction or the inverse square of the variable wave speed. The latter analogy will be 
useful in the explanation of the numerical results.

The MIMO regularized LSL algorithm for this problem follows similar steps as for the Schrödinger LSL problem (32), with two 
important distinctions:

1. The mass 𝑛 and stiffness 𝜀 matrices are computed by the same formulas (7) and (8) directly from the data; the algorithm does 
not change here. However, constructing variational Galerkin approximation, we see that the unknown coefficient �푛(𝜏) appears 
in 𝑛 = {𝑛𝜇.} instead of 𝜀 = {𝜀𝜇.} (compare with (35)):

𝜀𝜇. =<∇�푈𝜇,∇�푈. > + <�푈𝜇,�푈. > 𝑛𝜇. =< �푛 �푈𝜇,�푈. > . (45)
At the Lanczos orthogonalization step, the M-symmetric Lanczos algorithm is applied to matrix �퐴 = 𝑛−1𝜀 and initial vector 
𝑛−1𝛾 to produce tridiagonal matrix < and 𝑛 -orthonormal Lanczos vectors �푞𝜇. However, in the Helmholtz case, the basis func-
tions need to be orthogonalized with respect to the inner product with unknown weight �푛, see (45), different from the background 
inner product, where we assume �푛0 = 1. Hence, we expect to see some errors that result in larger errors in the data generated 
internal solutions.

2 More precisely, it is a diffusion problem. It will become Helmholtz for negative 𝑍. The reason we differentiate it from Schrödinger is that the variation of the 
coefficient is only in the frequency dependent term, which for the Helmholtz problem leads to geometrical optic asymptotics with factor exp(−< (𝜏)

√
𝑍), where < (𝜏)

is the travel time to point 𝜏. This dependence makes the reconstruction problem harder.
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Fig. 1. Perturbation (black-solid) and the RegLSL reconstructed perturbation (red-dashed) for a) the Schrödinger problem and b) the Helmholtz problem. (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Comparison of three internal basis functions (black-solid) and their reconstructed counterparts (colored-dashed). 

2. In the case of the Helmholtz problem, the Lippmann-Schwinger equation is slightly different from the LS equation for the 
Schrödinger equation (43); to be consistent with the Helmholtz model, the data-driven Lippmann - Schwinger - Lanczos equation 
should be changed to:

(̃0 − ̃ )|𝑍. = 𝑍. ∫ �푈∗
0 (𝜏,𝑍. )(�푛(𝜏)− 1)�퐔(𝜏,𝑍. )𝑟𝜏, (46)

with 𝑍. present in front of the integral. In the next section, we demonstrate reconstruction examples for the Helmholtz equation 
using the regularized LSL algorithm.

8. Numerical results

In this section, we demonstrate the use of the Regularized Lippmann-Schwinger-Lanczos method (denoted Reg-LSL) for coefficient 
reconstruction. We show that the improved stability of the Regularized Lippmann-Schwinger-Lanczos method allows us to use larger 
data sets and reconstruct the unknown potential in the presence of noise. We also compare its performance for both the Schrödinger 
and Helmholtz problems.

8.1. Reconstructions in one dimension

We first apply Reg-LSL to the SISO problem for both the Schrödinger and Helmholtz problems (the Helmholtz equation with 
positive 𝑍 modeling diffusive electromagnetic problem). We compare the bases after Lanczos orthogonalization to those from the 
background, the corresponding internal solutions, and the reconstructions of the perturbation. Both problems are discretized on 
the interval 𝜏 ∈ [0,1] with a background perturbation of 𝑊0(𝜏) = 0 for the Schrödinger problem and �푛0(𝜏) = 1 in the Helmholtz 
problem. The internal perturbation follows a Gaussian distribution scaled by a constant factor �훾 = .125, centered at �휇 = 0.25 and with 
standard deviation �휎 = 0.07. The Dirichlet data is collected at a single point source located at the origin for 𝑍 = {2,4,8,16,32,48}
in the Schrödinger case and 𝑍 = {2,4,8,16,32,48,64,96} in the Helmholtz case. The synthetic data is computed by solving the 
forward problem using a centered finite difference scheme with step size ℎ = 0.002. The regularization is enforced in both problems 
by truncating the singular values of the mass matrix for 𝑍𝑛 ≤ 5�푒-12. For the linear inverse problem in equation (30), we use the 
Moore-Penrose pseudo inverse with a truncation level of 6�푒-5 for both the Schrödinger and Helmholtz problems.

Fig. 1 illustrates the perturbation and reconstructed solutions for the a) Schrödinger problem and the b) Helmholtz problem. 
In both problems, we observe excellent reconstructions of the perturbation with few oscillations near the source. The Helmholtz 
reconstruction is more accurate outside of the support of the perturbation, at which point it begins to deviate due to the difference 
in conductivity, or equivalently, in the wave speed, affecting the slowness metric.

The Lanczos orthogonalized basis functions for the SISO problems are shown in Fig. 2. We observe that the basis functions for the 
perturbed Schrodinger problem are almost exactly the same as those for the background problem; however, the basis functions for 
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Fig. 3. The background solution (black-solid) and the internal solution (blue-solid) with its reconstruction (yellow-dashed). 

Fig. 4. Perturbation reconstructions for the MIMO Schrödinger problem. 

the Helmholtz equation deviate from the background basis in the area of the perturbation, again, due to the difference in the travel 
time metric.

Fig. 3 shows the reconstruction of the internal solutions from data using the orthogonalized basis functions. The data generated 
solution for the Schrödinger problem shown in Fig. 3a, is nearly exact. In Fig. 3b, the internal solution deviates from the true one 
at the perturbation. Travel time is not affected in the interval between the source and perturbation, which is why we have an exact 
reconstruction of the internal solution there. Similarly, a good accuracy of the reconstructions is achieved in the multidimensional 
setting (see below) with localized conductive perturbations (corresponding to lower wave speed) since they do not affect travel time 
outside of the perturbation. Low conductivity (high wave-speed) perturbations, however, may work as waveguides, affecting the 
metrics globally. For this reason, direct LSL would not be applicable for such problems, for which one has to implement iterations 
[18].

8.2. Reconstructions for the MIMO problem

In this section, we compare reconstructions for the MIMO Schrödinger and Helmholtz problems using Born, LSL, and Reg-LSL. 
The MIMO problems presented in this work were solved using centered finite difference schemes with symmetrized Laplacian on the 
domain (𝜏,�푦) ∈ [−1,1] ) [−1,1] using a grid step ℎ𝜏 = ℎ�푦 = 0.04. The Dirichlet data is collected at eight boundary source locations 
(two at each boundary) at evenly spaced intervals. As a remark, we notice that if data are not available on the whole boundary and 
only collected on a part of it, the presented method will still work, however, the accuracy of the reconstruction will deteriorate in 
the regions facing parts of the boundary lacking the measured data.

8.2.1. Schrödinger equation
The Schrödinger problem has a background 𝑊0 = 0.0 and a perturbation 𝑊 consisting of two Gaussian distributions. The first 

perturbation is centered at �휇1 = (0.2,0.5) with deviation �휎1 = (0.26,0.25), and the second is centered at �휇2 = (−0.3,−0.5) with �휎2 =
(0.2,0.18). For Reg-LSL, the level of regularization is 5�푒-14 for the Grammian truncation and 5�푒-4 for the LS equation. For Born, the 
regularization level is 7�푒-4, while the regularization level is 5�푒-3 for LSL. The data consists of the frequency set 𝑍 = {2,4,6,8,16,32,48}.

Fig. 4 shows the reconstructions of the perturbations using each of the algorithms. We observe that since this is a large number 
of frequencies for LSL, the standard LSL algorithm has reduced reconstruction quality. Additionally, since this is a moderate contrast 
problem, the Born reconstruction has significant artifacts. By contrast, Reg-LSL has the lowest level of artifacts and has the highest 
fidelity to the true perturbation.

8.2.2. Helmholtz problem
For the quasi-stationary inverse conductivity problem modeled by the Helmholtz equation, we use the background �푛0 = 1.0, 

with a perturbation consisting of three Gaussian distributions. The first distribution is centered at �휇1 = (−0.4,0.5) with standard 
deviation �휎1 = (0.16,0.15), the second is centered at �휇2 = (−0.3,−0.4) with standard deviation �휎2 = (0.2,0.18), and the third is 
centered at �휇3 = (0.4,0.2) with standard deviation �휎3 = (0.2,0.18). For Reg-LSL, the Gramian truncation level is 1�푒-16, and the 
level of regularization for its LS equation is 3�푒 − 4. The regularization levels for inverse Born and standard LSL are 2�푒-3 and 1�푒-3, 
respectively.

Journal�of�Computational�Physics�525��������113725�

12�



J. Baker, E. Cherkaev, V. Druskin et al. 

Fig. 5. Perturbation reconstructions for the MIMO Helmholtz problem. 

Fig. 6. Perturbation reconstructions using different levels of regularization in the MIMO Schrödinger problem. 

Fig. 7. Perturbation reconstructions using different levels of regularization in the MIMO Helmholtz problem. 

Fig. 5 shows the reconstructions of the perturbation in �푛 using each of the algorithms. The Born reconstruction has the lowest 
quality, followed by the standard LSL reconstruction. By contrast, Reg-LSL achieves the best reconstruction of the true perturbation.

8.3. Effects of regularization

In this section, we analyze the effects of the regularization level on the quality of the reconstructions. The regularization parameter 
�훼 is determined by the noise level that is usually approximately known in practice. However, even in calculations without noise, the 
threshold is not zero, �훼 ≠ 0, it is determined by machine precision; this allows to eliminate spurious negative eigenvalues and preserve 
the Hermitian structure.

As the problem is ill-posed, the numerical inversion algorithm can construct a model fitting the data with arbitrary accuracy. 
However, this model might have (arbitrarily large) oscillations and be very far from the true solution. The truncated model does not 
exactly match the data; we deal here with the standard trade-off between the stability of the reconstruction and the “over-fitting” of 
the data that corresponds to too small parameter �훼.

Using the same MIMO problem configurations, we consider various thresholds for the regularization of the mass matrix. For both 
the Schrödinger and Helmholtz problems, we used mass matrix regularization thresholds of 1�푒-4, 1�푒-8, 1�푒-12, and 1�푒-16. For each of 
these thresholds, the levels of truncation for the linear part of the Schrödinger are 5�푒-4, 5�푒-4, 5�푒-3, 2�푒-3 respectively. The levels of 
truncation for the linear inverse of the Helmholtz problem are 1�푒-3, 1�푒-3, 3�푒-4, and 3�푒-4, respectively.

Fig. 6 compares the increased level of regularization for the Schrödinger problem. We observe that artifacts begin to appear for 
high and low thresholds. However, the quality is consistent for each of the regularization thresholds.

Fig. 7 compares the increased level of regularization for the Helmholtz problem. For high regularization thresholds, the resolution 
is relatively low. As the threshold decreases, the accuracy of the reconstruction increases, and the resolution improves.

8.4. Sensitivity analysis

In this section, we add noise to the data and analyze the sensitivity of the reconstruction to the noise. The perturbation and 
selection of frequencies are the same as above. The level of truncation for the mass matrix is fixed to 5�푒-14 for both Schrödinger and 
Helmholtz problems. The truncation for the linear inverse problem with 1%,2% and 5% noise was chosen to be 5�푒-4, 8�푒-3 and 4�푒-3
for the Schrödinger problem and a fixed 5�푒-4 for the Helmholtz problem. The noise is sampled from the uniform distribution with a 
range of [−1,1] and centered at 0. The percentage of noise is the percent scaling of |̃0 − ̃ | added to each component of the data.
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Fig. 8. Perturbation reconstructions from noisy data in the MIMO Schrödinger problem. 

Fig. 9. Perturbation reconstruction from noisy data in the MIMO Helmholtz problem. 

Fig. 8 compares the reconstruction of the perturbation as the noise level is increased in the MIMO Schrödinger problem. We 
observe that as the level of noise increases, there are significant artifacts in the image of the perturbation. However, the Reg-LSL 
algorithm is able to reconstruct the perturbation well until 5% noise is added.

Fig. 9 illustrates the reconstructed perturbation using Reg-LSL when noise is added to the data in the MIMO Helmholtz problem.

9. Conclusion

The paper presents the direct data-driven reduced order Lippman-Schwinger- Lanczos (LSL) method for solving inverse scattering 
problems for Schrödinger and diffusive Helmholtz equations in the frequency domain. The method is direct and does not require 
iterations. The approach is based on an efficient reduced order model approximation of the resolvent operator used in the Lippman-
Schwinger equation that reduces it to a linear, though ill-posed, integral equation. To stabilize the solution of the ill-posed problem, 
we introduced a double-step regularization procedure. This includes a data driven truncation of the mass matrix along with the 
regularization of the linear integral equation. This allows us to improve reconstructions with larger data sets and handle noisy data. 
We confirmed this with several numerical experiments.

We also showed here that the Lanczos orthogonalization of the data driven ROM to orthogonalize the frequency domain solutions 
corresponds precisely to sequential Gram-Schmidt on the corresponding ROM time snapshots. This explains the weak dependence 
of the orthogonalized snapshots on the medium perturbations for the Schrödinger problem and suggests that the LSL method may 
work directly for more general formulations. We analyzed several cases of localized conductivity perturbations (corresponding to 
lower wave speed) in our numerical experiments and showed that while the data-generated internal solutions deviate from the true 
solutions, the direct reconstructions can still be of high quality.
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