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Abstract – Wave propagation in a quasiperiodic medium is modeled by a second order ho-
mogenized scalar wave equation. The multiscale asymptotic expansion method for high-order
homogenization of periodic structures in [1] is adapted to the quasiperiodic (cut-and-projection)
setting. A periodic medium in a higher spatial dimension is used to model a quasiperiodic ma-
terial by applying the cut-and-project procedure [2]. The partial differential operators (gra-
dient and divergence) in the higher dimensional space are projected onto operators acting on
quasiperiodic functions in a lower dimensional physical space. The second-order homogenized
wave equation is dispersive, which is reflected by a fourth-order Burnett tensor for quasiperiodic
structures.

I. INTRODUCTION

Wave propagation in a heterogeneous medium can be modeled by the initial value wave equation

(P)

{
−∇ · (aε(x)∇uε(t,x)) +

∂2

∂t2uε(t,x) = f(t,x) , in [0,∞)× Rn

uε(0,x) = u0(x),
∂
∂tuε(0,x) = v0(x)

Here ε > 0 is a (small) parameter that is given by the relation between the spatial macroscopic and microscopic
scales. The solution uε depends on this parameter. The aim of this paper is to replace the heterogeneous problem
in the case when the medium at the microscopic scale is quasiperiodic, modeled by (Pε) below, by an effective
anisotropic medium as ε → 0. The effective medium turns out to be dispersive. We assume u0 ∈ W 1,2(Rn), v0 ∈
L2(Rn), f ∈ W 1,2([0,∞), L2(Rn)) with compact support in Rn. We also assume that the solutions satisfy certain
radiation conditions. The original problem (P) is replaced with the following problem:

(Pε)

{
−∇ ·

(
a(Rx

ε )∇uε(t,x)
)
+ ∂2

∂t2uε(t,x) = f(t,x) , in [0,+∞)× Rn

uε(0,x) = uinit(x),
∂
∂tuε(0,x) = vinit(x)

(1)

where uinit and vinit are initial wave amplitude and velocity. We assume that a(y) is a Y m-periodic symmetric
matrix valued function such that for some 0 < α ≤ β, α | ξ |2≤ aij(y)ξiξj ≤ β | ξ |2 for all i, j = 1, · · ·n,
n < m, a.e. y ∈ Y m, with Y m =]0, 1[m a periodic cell in higher dimensional space Rm. The matrix R that maps
Rn to Rm, satisfies the criterion

RTk ̸= 0 , ∀k ∈ Zm \ {0} . (2)

The mapping R is illustrated in Figure 1 as the mapping of the oblique line to the 2-dimensional unit cube. The
scaling of a(Rx/ε), with x ∈ Rn yields a quasiperiodic function.

Following [10], [8], it is useful to decompose the higher-dimensional periodic space Y m into the n-dimensional
subspace Y m

∥ = {y ∈ Rm |
(
Im −RRT

)
y = 0} and its orthogonal complement Y m

⊥ = {y ∈ Rm | RRTy =

0}. Such decomposition is the essence of the cut-and-projection method. This is illustrated in Figure 1 where
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Y m
∥ corresponds to the blue line and Y m

⊥ is thus a line perpendicular to it (not shown). The coefficient a in (Pε)
satisfies the Carathéodory assumptions i)-ii):

i) a(x, ·) is Y -periodic in Rm, is Lebesgue measurable on Y m
∥ and continuous on Y m

⊥ , for every x ∈ Rn.

ii) a(·,y) is continuous for almost every y ∈ Rm.

Assumption i) implies that a(x, ·) = ã(x, ·, ·), where ã(x, ·, ·) is a function of Y m
⊥ × Y m

∥ such that ã(x, y⊥, ·)
is Lebesgue measurable for every y⊥ ∈ Y⊥ and ã(x, ·, y∥) is continuous for almost every y∥ ∈ Y∥. Standard
estimates yield ∥∂tu∥L∞(0,T ;L2(Rn)) ≤ C and ∥∇u∥L∞(0,T ;L2(Rn)) ≤ C uniformly with respect to ε, [5]. As ε
tends to zero, we want to replace the quasiperiodic structure with an effective anisotropic and dispersive medium.

Asymptotic expansion, using the same scaling as for coefficient a, of the solutions uε(t,x) of the PDE takes
the form

uε(t,x) = u0(t,x,Rx/ε) + εu1(t,x,Rx/ε) + ε2u2(t,x,Rx/ε) + ... , (3)

where ui(t,x,y), i = 0, 1, ..., are Y -periodic functions in y with enough regularity in t, x and y. We note that
the rescaled gradient acting on two-scale functions ui is such that

∇ ui(t,x,Rx/η) = ∇x ui(t,x,Rx/η) + η−1∇R ui(t,x,Rx/η) , (4)

where we have defined the so-called cut-and-projection gradient operator ∇R ui(t,x,y) := RT∇y ui(t,x,y).
Note that the gradient operator gradR := ∇R = RT∇ is a directional derivative given by the projection on Rn

of the usual gradient in Rm. The divergence is obtained using the same projection in combination with the usual
nabla rules. We shall see that one can then carry out an asymptotic analysis of the wave equation in a way similar
to what was done in [11] for the periodic case. The leading order homogenized wave equation reads

(Phom) =

{
−∇ · (ahom∇u) = − ∂2

∂t2u(t,x) + f(t,x) , in [0,∞)× Rn

u(0,x) = uinit(x),
∂
∂tu(0,x) = vinit(x)

with the homogenized coefficient given by

ahom = ⟨a(y)(Id −∇RW (1)(y))⟩Y m (5)

where ⟨·⟩Y m is the average over Y m, i.e., ⟨g⟩Y m =
∫
Y m g(y) dy and the projected gradients RT∇yW

j , j ∈
{1, · · · , n} of the potential W (1) = (W 1, · · · ,Wn), are unique solutions in L2

♯ (Y
m)n of one of the following n

problems
divR

(
a(y)∇RW i(y)

)
= divR (a(y)ei) (6)

The homogenized equation can be improved by adding higher-order correction terms. This has been done in the
periodic case [11], here extended to the quasiperiodic case. We get

−∇ · (ahom∇vε(t,x)) + ε2Dhom∇4vε(t,x) = − ∂2

∂t2
vε(t,x) + f(t,x) + ε2∇ · (dhom∇f(t,x)) +O(ε4)

where Dhom is a fourth-order tensor, known as the Burnett tensor in the periodic case, and dhom is a second-order
tensor. Note that the coefficients are constant; hence, it is a model of an effective metamaterial, in contrast to the
original equation (Pε). Notice that as in the periodic case [11], it is essential to take into account the corrector
ε2∇ · (dhom∇f(t,x)) for modeling the long-time behavior of the solution of the second order homogenized wave
equation. The notation D∇4 means the full contraction

D∇4 =
d∑

i,j,k,l=1

Di,j,k,l
∂4

∂xi∂xj∂xk∂xl
(7)

This term is not only important from a purely theoretical and numerical standpoint (as it allows for a better ap-
proximation of the solution at long times), but it also indicates the effective medium is inherently dispersive [11].
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Fig. 1: Principle of cut-and-projection method: the projection of a periodic structure in higher dimensional space
Rm (m = 2 here) onto a hyperplane (represented by a straight line) or a lower dimensional space Rn (n = 1
here), generates a quasiperiodic structure in Rn, when the slope is irrational. With a rational slope, the line is
folded back onto a finite number of segments in the periodic cell Y m, whereas with an irrational slope, as shown
here, the set of segments is countable and dense in Y m, as a consequence of Kronecker’s approximation theorem
[Theorem 444 in [14]], as noted in [13]).

II. CONCLUSION

The paper discusses a higher-order homogenized model of scalar wave propagation in a quasiperiodic metama-
terial with dispersion represented by a fourth-order Burnett tensor. This dispersion is not captured by the leading
order approximation achieved in our former works [6, 7, 2]. The present work opens up a path for higher-order
homogenized models of electromagnetic and mechanical quasiperiodic metamaterials.
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