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Metamaterials and composite structures are able to
manipulate waves and focus fields and currents
in desirable directions. Designs based on spatial
and temporal variation of material properties create
structures forcing fluxes into specified parts of
the domain or concentrating energy into arrays of
progressively sharpening pulses. The paper discusses
examples of focusing structures, mathematical and
intuitive considerations that influence optimal design
theory. The optimality requirement introduces zones
of optimal composites with variable microgeometry.
The observed absence of classical solutions motivates
the extension of the class of optimal partitions to
composites. Such materials also provide a solution
to the problem of optimal design of a thermal
lens focusing thermal fluxes when the incoming
fluxes are not completely known in advance. An
extension of designs to dynamical materials such
as space–time checkerboard composites introduces
metamaterials with additional capabilities that control
the accumulation of energy in the propagating waves.
The discussed mathematical methods of focusing and
suitable properties alternation targeted on optimality
are illustrated by physical examples.

1. Introduction
The demand for optimal structures grows with new
advances in computing and production. The technologies

2023 The Author(s) Published by the Royal Society. All rights reserved.
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of micro-fabrication and three-dimensional printing may produce various structures at roughly
the same price, and it is essential to know which formations are most suitable for design.
Novel types of artificially engineered metamaterials and composites are the key to further
technological advances, saving energy, environmental preservation with a variety of applications
from imaging and energy harvesting to lightweight constructions and design of sensors and
amplifiers. Theoretically investigated and experimentally verified examples of unusual properties
of such materials and unexpected behaviour of the fields and stresses, include manipulating
electromagnetic, acoustic and elastic fields [1,2], creating invisibility devices for electromagnetic
and acoustic cloaking [3–10], composites and metamaterials with exotic properties [11–14] and
design of concentrators focusing electromagnetic fields and heat fluxes [15–22]. Another type of
metamaterials is dynamic composites with the properties varying not only in space but also in
time [23–35]. Such spatio-temporal variability of the properties can be created with acousto-optic
and magneto-optic devices [36], by four-dimensional printing [37], or by switching the material
properties.

The present work discusses an approach to structural design of composites and metamaterials
based on the calculus of variations. To determine the optimal design, one formulates the
optimization goal (cost functional) and determines the optimal controls that might include
shapes of the domains, variable material properties and optimal structures subject to given
constraints. The optimal layout of materials is found by solving the corresponding variational
problem. However, these problems are often non-convex, and solving them requires relaxation,
i.e. appearance of composite structures optimizing the cost functional by focusing stresses,
directing fluxes and currents, concentrating energy or screening objects by making them invisible.
The optimality of the interfaces between materials results in their appearance as generalized or
space-filling curves.

Mathematically, the discussed approach to structural optimization is rooted in the calculus
of variations and control theory. The optimal control has taken its current shape in the
groundbreaking works by Pontryagin et al. [38], and Rozonoer [39]. Soon after, Gamkrelidze [40]
applied the theory of sliding regimes to optimization, i.e. he used infinitely often alternations of
control values. The theory is based on the Weierstrass variation: a sharp ‘triangular’ perturbation
of the tested trajectory. If such perturbation improves the cost, it is repeated infinitely many times;
the sliding controls generate the saw-like trajectories.

Extending the sliding regimes to multi-variable systems (optimal design) is non-trivial.
Physically speaking, the alternating intervals are replaced by alternating patterns, which poses
a question of their optimal shapes. Eventually, it was understood that convexification of the
Hamiltonian should be replaced by the quasi-convexification of Lagrangian [41].

Various groups of investigators worked on different aspects of these problems, doing examples
and establishing bounds for effective properties along with the optimal microgeometres. Tartar &
Murat [42], Murat [43] and Tartar [44] used homogenization to find optimal designs and the
effective property bounds based on compensated compactness. Kohn & Strang [41] generalized
the variational approaches of Morrey polyconvexity and rank-one convexity for non-convex
Lagrangians and used them for developing the optimal design methodology. Bendsoe and
Sigmund developed ‘topology optimization’ techniques for finding layouts of optimal composites
in a design domain [45–47]. Allaire [48] developed and implemented a homogenization technique
for optimal design. Milton, Francfort and other researchers significantly developed the theory
of optimal composites [49–51]. The books [45,48,51–53] and numerous papers highlighted the
development of these approaches. Optimal layouts include both original materials and their
assemblies into optimal microstructures [47,54], typically with the extremal effective properties
[14,55–58], and the distribution of the layouts on a macroscopic scale [45,48,52].

The present authors developed a control theory approach (the translation method) based
on the earlier introduced Weierstrass-type replacement test [53,59], homogenization and
G-convergence [60–62], and developed a multi-variable analogue of sliding regimes. The
Weierstrass-type test (Lurie [53]) checks the optimality of a stationary layout of several materials
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in the design domain. The following example illustrates how this test works in statics. An
infinitesimal ellipse of one of available materials is inserted into the domain occupied by the
other material. This inclusion results in the increment of the cost functional that depends on
the eccentricity and orientation of the trial ellipse. The dependence on orientation stems from
the appearance of a dipole moment due to the elliptic shape of the inclusion. Its parameters are
chosen to minimize the increment generating the ‘most dangerous’ variation. If the desired layout
is a minimizer then any increment of the functional, including the minimal (most dangerous)
increment, should be non-negative; otherwise, the variation improves the cost and disproves the
optimality of the tested layout. In the latter case, the layout can be improved by adding more
inclusions; in the limit, it becomes a composite. The shape and orientation of the trial ellipses
point to the optimal microgeometry of such a composite.

In this paper, we discuss the use of a Weierstrass-type test to analyse the structure of optimal
composites and use the results for designing devices that optimally redirect and focus vector and
tensor fields. In particular, such optimally structured materials provide a solution to the problem
of optimal design of a thermal lens [16,52] (or heat concentrator) focusing thermal fluxes entering
the domain, to a specified part of the boundary. The use of these optimally structured thermal
metamaterials allows to manipulate and control the heat flux thus making heat flow in a desired
direction. In the present paper, we extend the formulation of a thermal lens problem to the case
of design in uncertainty [63–65] when the incoming fluxes are not completely known in advance.
This is a robust optimal design problem or design for the worst-case scenario that is formulated
as a minmax or maxmin optimization problem [63–67].

Another type of focusing is discussed in the context of dynamic materials (DM). The concept of
dynamic composites with the properties variable in space and time was introduced by Blekhman
& Lurie [24]; materials with time variable electromagnetic properties have been discussed by
Morgenthaler [68]. This concept has been extrapolated to space and time-dependent variables by
Lurie et al. [26,28,29,35,69]. The introduction to the theory of optimal DM was presented in the
book [27]. This theory received further development in the papers [23,25,30–34], among others.

2. Variational problems
Consider a two-dimensional conducting domain Ω occupied by a medium of conductivity k(x).
Assume for illustration that Ω is a curved rectangle sketched in figure 1a. Two opposite sides
labelled Γ2 and Γ4 are insulated; Ω conducts current j between two other opposite sides Γ1 and
Γ3. The electric field is governed by the PDE

∇ · j= 0, j= k e, e=∇u, x ∈ Ω . (2.1)

Here, u is the potential, and k is the spatially variable conductivity that takes two values: k(x)= k1
in the subdomain Ω1, and k(x)= k2 in Ω2 =Ω \ Ω1, with 0< k1 < k2 <∞

k(χ (x))= χ (x)k1 + (1 − χ (x))k2, χ (x)=
{
1 if x ∈ Ω1,
0 if x %∈ Ω1.

(2.2)

We consider two optimal design problems. Both ask for the interface γ between Ω1 and Ω2 or for
layout of materials k1 and k2 within a given domain Ω with prescribed boundary conditions [52].

Problem A: minimal conductance. Let us fix the boundary conditions in (2.1) as follows:

u= 0 on Γ1, u= 1 on Γ3, j · n= 0 on Γ2 ∪ Γ4, (2.3)

where n is the normal to the boundary. The energy is equal to the total current through Ω

WA = 1
2

∫

Ω
k (∇u)2 dx=

∫

Γ3

j · nds. (2.4)
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Figure 1. (a) Sketch of the domain for the problem of finding the optimal composite structure providing the minimal
conductance (problem A in §2). (b, c) Optimal structures of the annulus of extremal conductance. (b) Structure minimizing
the total conductance (problem A). (c) Structure minimizing the total resistance (problem B).

The optimal problem asks for the design that minimizes WA with respect to layout χ (x). We call
Cmin(Ω) the minimal conductance of this layout.

To avoid a trivial solution, we prescribe amounts of each material. Domain Ω is divided into
two subdomains Ω1 and Ω2 occupied by materials k1 and k2, respectively. We introduce the cost
ν for the unit of less conducting material k1 and minimize the energy plus the cost assuming that
potential u satisfies boundary conditions (2.3)

Cmin(Ω)=min
χ (x)

min
u∈(2.3)

∫

Ω
Φ(χ ,∇u, k(χ ), ν) dx (2.5)

and

Φ(χ , e, k(χ ), ν)= k(χ )e2 + νχ , e=∇u, k(χ ) as in (2.2). (2.6)

After eliminating χ that takes only two values (see (2.2)), equation (2.5) results in the non-convex
variational problem for u:

Cmin(Ω)= min
u∈(2.3)

∫

Ω
FA(|e(x)|; k1, k2, ν) dx (2.7)

and

FA(|e|; k1, k2, ν)=min{k1e2 + ν, k2e2}, e=∇u. (2.8)

Note that the magnitudes of optimal fields are ordered

|e2(x2)|≤ |e1(x1)|, ∀x1 ∈ Ω1, ∀x2 ∈ Ω2, (2.9)

where e1 and e2 are the fields at any points of the domains Ω1 and Ω2 filled with materials k1 and
k2, respectively,

e1(x)= e(x)χ (x), ∀x ∈ Ω1, e2(x)= e(x)(1 − χ (x)), ∀x ∈ Ω2.

Problem B: minimal resistance. In this problem, we prescribe in (2.1) the constant normal
currents on the boundary components Γ1 and Γ3, assuming that the integral of these currents
over the whole boundary is zero.

j · n= 1 on Γ1, j · n=−α on Γ3, α = |Γ1|
|Γ3|

, j · n= 0 on Γ2 ∪ Γ4, (2.10)

where α is the ratio between lengths of |Γ1| and |Γ3|. The boundary components Γ2 and Γ4 are
insulated.
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The energy WB is expressed through the divergence-free currents j

WB = 1
2

∫

Ω
k−1 (j)2 dx=

∫

Γ3

u j · nds, ∇ · j= 0. (2.11)

This energy equals the integral of the difference between the potentials on Γ3 and Γ1 needed
to push a given current through Ω . The minimum of this energy with respect to layout χ (x)
corresponds to the least resistive domain. Assuming that current j satisfies boundary conditions
(2.10) and ν is the cost of the unit of more conducting material k2, we define the minimal resistance
of the domain, Rmin(Ω), similarly to (2.5), (2.6)

Rmin(Ω)=min
χ (x)

min
j∈(2.10)

∫

Ω
Φ(χ , j, k−1(χ ), ν) dx. (2.12)

As above, elimination of χ given in (2.2) results in the optimization problem with the non-convex
variational functional

Rmin(Ω)= min
j∈(2.10)

∫

Ω
FB(|j(x)|; k1, k2, ν) dx, ∇ · j= 0 (2.13)

and

FB(|j|; k1, k2, ν)=min
{
1
k1

j2,
1
k2

j2 + ν

}
. (2.14)

Similar to the ordering of the fields in problem A, the magnitudes of optimal currents should
be ordered:

|j1(x1)|≤ |j2(x2)|, ∀x1 ∈ Ω1, ∀x2 ∈ Ω2, (2.15)

where j1 and j2 are currents at any points of the domains Ω1 and Ω2, respectively,

j1(x)= j(x)χ (x), ∀x ∈ Ω1, j2(x)= j(x)(1 − χ (x)), ∀x ∈ Ω2.

3. Weierstrass-type variation of layout
The variational analysis formulates the requirements for optimal fields in material but does not
provide a direct method for finding the optimal layout. The solution to this problem requires a
combination of intuition, an educated guess, and analysis. A hint comes from theWeierstrass-type
structural variation introduced in [53]. The following replacement test can check the minimality
of the cost functional. Insert an infinitesimal inclusion of material k1 into domain Ω2 and an equal
area inclusion of material k2 into the domain Ω1. Choose the parameters of both inclusions to
minimize the energy. If the tested configuration is optimal, no such perturbation can decrease
the energy; the cost increment is always non-negative. Instead of considering the effect of two
inclusions, we can check the energy increment caused by inserting one inclusion together with
the material cost increase.

Optimal inclusions. Consider a region filled by material with conductivity k0. Assume that
the current through it is due to applied potential difference at a distant boundary. Following
[53], insert an infinitesimal inclusion with a different conductivity ki and compute the energy
increment; it depends on the shape of the inclusion. The variation caused by an elliptic inclusion
can be computed analytically (for example, using the Eshelby formulae [70]). The increment
reaches maximum if the ellipse is optimally oriented and has optimal eccentricity. For the
considered problems (2.5), (2.12), the optimal ellipse degenerates into a strip oriented across or
along the current.

Increment of the functional. Consider an infinitesimal strip of material ki inserted in a
domain occupied by the host material k0. Let n and t be, respectively, the normal and tangent
to the boundary of the strip, and let ω be the area of the strip. The inserted and replaced materials
costs are νiω and ν0ω, respectively.
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Present the vector field e=∇u at a point outside the strip infinitesimally close to the strip
boundary in the (n, t) coordinates as e= en cos θ n+ et sin θ t. The continuity conditions at the strip
boundary require continuity of the tangent component of ∇u, et =∇u · t, and continuity of the
normal component of the current j · n= k en. In the (n, t) coordinates, the field ei inside the strip is

ei = ein cos θ n+ eit sin θ t, eit = et, ein =
k0
ki
en. (3.1)

The energy densityW0 outside the strip is

W0 = k0|e|2 = k0(e2t + e2n),

and the energy density Wi inside the strip is

Wi = ki(e2it + e2in)= ki e2t +
k20
ki
e2n.

The increment *W of the energy caused by the inclusion is

*Wi0 =Wi − W0 =
[
(ki − k0)(et)2 + k0

(
k0
ki

− 1
)

(en)2
]

ω, (3.2)

and the increment in the materials’ cost is (νi − ν0)ω.
Observe that the energy increment (3.2) depends on the orientation of the strip θ . In problem

A, the maximum of *Wi0 with respect to θ is reached when θ = 0, or when the strips are oriented
so that the normal n to the strip is parallel to the electric field: n ‖ e and e2n = |e|2.

*Wmax
i0 = k0

(
k0
ki

− 1
)

|e|2ω.

We perform two variations placing the strip from material k1 into the domain Ω2 and vice
versa, keeping the areas of the strips equal; the total increment is independent of the materials
costs. The increment is

W12 +W21 =
k2 − k1
k1k2

[(|j1|)2 − (|j2|)2]ω,

where j1 and j2 are the currents at some points of the domains Ω1 and Ω2, respectively. The
increment is non-negative, W12 +W21 ≥ 0, if the magnitudes of currents j= k e in the optimal
domains are ordered together with the magnitudes of fields e, see (2.9).

Problem B can be reduced to the problem A by using 1/k1 and 1/k2 instead of k1 and k2,
respectively, and rotating the vector fields by 90◦. The 90◦ rotated field e becomes the div-free
current j. For isotropic materials, the energy keeps its form, but the materials are inversely
ordered; the optimal strip is 90◦ rotated.

Physical explanation of the optimal orientation of strips. The physical explanation of the
optimal orientation of the strips is as follows. In problem A, we insert a bad conductor k1 < k2 in
the domainΩ2 of the good conductor k2 to decrease the total conductance. Themaximal increment
of the cost functional requires a strip placed perpendicular to the current’s direction; the strip
works as a barrier. A thin strip of good conductor k2 placed perpendicular to the current in Ω1
minimally increases the conductivity.
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In problem B, the optimal inclusion of a good conductor k2 > k1 in the domain Ω1 should
maximally decrease the total resistance. The maximal increment corresponds to a strip placed
along the current j; the inclusion works as a channel (wire). The orientation of optimal inclusions
suggests that the interface should be oriented along the current. The strip from the bad conductor
hides in the domain of a good one itself if it is oriented along the current.

Convexity. The Lagrangian FA is a non-convex function of |e|, see (2.8). The Weierstrass test
shows that for an optimal design, the current magnitude j= ∂FA/∂|e| increases as a function of |e|
or the Lagrangian is convex at the solution of the variational problem. This feature implies that
argument |e| never takes values in the interval of non-convexity of FA(|e|). In this forbidden interval
(z−, z+) of ∇u, neither material is optimal. The field e=∇u in an optimal solution should avoid
the forbidden interval, |e| %∈ (z−, z+), where

z− =

√
k1
k2

ν∗, z+ =

√
k2
k1

ν∗ and ν∗ =
√

ν

k2 − k1
. (3.3)

At endpoints z−, z+ of this interval, the tangents |j| to FA(|e|) are identical.
The minimum of energy requires that if |e|≤ z−, then k= k2, and if |e|≥ z+, then k= k1. In the

intervals of convexity of FA, |j| is a monotonic function of |e|, and at the ends of the forbidden
interval of non-convexity, the current densities |j1| = k1z+ and |j2| = k2z− are equal, j1 = j2.

An optimal layout must be organized so that the density |e| jumps over the forbidden interval
at the interface γ between Ω1 and Ω2

|e|Ω1

|e|Ω2

= k2
k1

on γ .

On the other hand, the compatibility condition requires that the tangent derivative of e is
continuous, and the jump of the normal derivative equals

e · n|Ω1

e · n|Ω2

= k2
k1

on γ ,

where n is normal to the interface. Comparing these conditions, we find that the interface γ must
be oriented so that |e| = e · n, hence the interface is perpendicular to vector e=∇u. The optimal
interface coincides with the level lines u= constant. It remains to investigate whether or not such
an interface exists: our analysis tacitly assumes that the interface line is differentiable and has a
normal almost everywhere.

4. Optimal structures

Optimal structures in problem A. The composite structures that are stable against the
Weierstrass-type strip variations are optimally oriented laminates (across the current), and their
volume fractions m1 and m2 of materials are optimally chosen. Adding an optimal inclusion—a
tiny strip codirected with the laminate changes only its local volume fraction. Since the fraction in
the tested laminate structure is assumed to be optimal, such variation does not improve the cost.
The effective conductivities of the laminates kh and ka across and along the layers are, respectively,
harmonic and arithmetic means:

kh =
(
m1

k1
+ m2

k2

)−1
, ka =m1k1 +m2k2, m2 = 1 − m1. (4.1)

According to Reuss–Voigt bounds, the eigenvalues κ1 and κ2 of conductivity tensor K∗ of any
mixture of materials k1, k2 in proportions m1 and m2 lie between harmonic kh and arithmetic ka
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averages,

kh ≤ κ1, κ2 ≤ ka. (4.2)

We enlarge the set of design materials, adding to the given two materials k1 and k2 all optimally
oriented laminates of them and end up with the relaxed Lagrangian

WAR = min
m1∈[0,1]

[kh(m1)e2 + ν m1]. (4.3)

The optimality condition

∂WAR

∂m1
= k2 − k1

k1k2
|khe|2 + ν = 0, if m1 ∈ (0, 1),

shows that the current density |j| = |khe| in the composite zone is constant.
We have demonstrated that the Weierstrass test reveals the deficiency of the solution of a

variational problem; it also suggests a way to relax the problem. If a problem does not satisfy the
Weierstrass-type test, one can introduce the minimal extension of Lagrangian by including fast
oscillating optimally oriented strips into the set of admissible layouts. The procedure is similar to
convexification of a non-convex Lagrangian.

Optimal structures in minimal resistance problem (problem B). In this problem, the
function FB(j) (2.14) is algebraically similar to FA(e) in (2.8). There is a forbidden interval j ∈ (j−, j+)
of non-convexity for the |j| values. The graph of FB(|j|) has a common tangent at these points,
similarly to (3.3)

|j|Ω1

|j|Ω2

= k1
k2

. (4.4)

If the value of |j| is below the forbidden interval, |j|≤ j1, then k= k1; if |j|≥ j+, then k= k2 (compare
with (3.3)). Similarly to problem A, at the end of the forbidden interval, |e| = ∂ WB/∂|j| takes equal
values.

On the other hand, the compatibility condition at the interface between Ω1 and Ω2 requires
the jump of the tangent τ derivative

j · τ |Ω1

j · τ |Ω2

= k1
k2

. (4.5)

Referring to the forbidden interval, we conclude that the tangent τ to the interface must
be collinear with j; the optimal interface coincides with a streamline. The optimal composite
structures are laminates oriented along the current.

(a) Example: axisymmetric design
Consider a plane annulus Ω , r0 ≤ r≤ 1, −π ≤ θ < π , and assume that the constant potentials are
applied at its inner and outer circular boundaries [52]. It is required to distribute two materials
with conductivities k1 < k2 taken in a fixed overall proportion within Ω to maximize or minimize
its integral conductance. Because of axial symmetry, the current j flows radially and depends on r
only, j= j(r); its density decreases inversely proportional to the radius, j(r)= j0/r.

Problem A. Place materials in Ω to minimize the total conductance. The optimality requires
placing k1 where the current density is maximal, that is near the inner radius, r ∈ [r0, r1], where
r1 is the radius of material interface. The material k2 will occupy the outer annulus r ∈ (r1, 1].
Indeed, the current lines are directed along the radii. We have seen in (4.4), (4.5) that an
optimal infinitesimal inclusion is a strip perpendicular to the current direction, i.e. along with the
concentric circles. Accordingly, the interface between Ω1 and Ω2 is perpendicular to the current’s
direction and is a circle r= r1. We check that the current is continuous at this interface. The worst
conductor is placed inside, the best one—outside.
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Problem B. Place materials in Ω to minimize the total resistance (to maximize the total
conductance). The optimality requires placing k2 where the current density is maximal, that is,
near the inner annulus, while the material k1 occupies an outer annulus. The question is how
to find the interface between them. The optimal interface γ between the subdomains should be
parallel to the current lines, i.e. along the radii. This interface can be approximated by a zigzag
‘sawlike’ curve oscillating between the inner and outer boundaries. The approximation is better
when the zigzags are denser because the oscillating interface is closer to radii. In the limit, γ turns
into a generalized curve that densely covers an annulus ra ≤ r≤ rb. Physically speaking, we come
to a composite that occupies a region ra ≤ r≤ rb; the proportion m1 of k1 varies in the laminates
from zero at the inner radius r= ra to one at the outer radius r= rb. This laminate consists of
radial ‘wires’ that conduct the current from the centre to the periphery. No parameter restricts the
thickness of the wires; they are infinitely thin, and their number is infinitely large. The behaviour
of such a composite is described in homogenized terms.

Let us determine the optimal parameters of the laminate. The current density j(r)= j0/r in
composite decreases inversely proportional to the radius; the current densities j1 and j2 in each
material stay constant at the boundaries of the forbidden interval; the total current j(r) varies with
the volume fractionm1 of k1, j(r)=m1j1 + (1 − m1)j2; this fraction depends on r and increases from
zero to one

m1(r)=
j0/r − j2
j1 − j2

.

The last feature physically means that layers from k1 of very low density enter the region occupied
by material k2 at the radius r= ra, forming thin radial bridges. The bridges’ density grows with
the radius, and at r= rb, they fill the entire domain, which becomes the region of the material k1.

Note that: (i) the current density in each material is constant in the composite zone, (ii) the
laminates that support this constancy are composed of infinitesimally fine layers, and (iii) the
average current varies only due to slow changes of m1(r). These features are typical for optimal
designs.

Smooth boundaries and generalized laminate boundaries. One may wonder why the
composite appears in problem B but does not in problem A. Problem A is exceptional because its
axial symmetry automatically provides orthogonality of the gradient to the material interfaces. If
the domains are not symmetric, the lamination appears in both solutions. Optimal structures of
the annulus of minimal conductance and minimal resistance are shown in figure 1b,c.

(b) Variational problem for multiple potentials
Consider a conducting rectangular plate Ω : a × b, a< b. It is assembled from two materials taken
in a prescribed proportion. Assume that two independent experiments are conducted. In each of
them, the propagating current is due to different boundary potentials, the a sides and b sides of
Ω . The optimization problem asks to minimize the total conductance of the domain, that is the
sum of current energies, see [44,58].

Proceeding as before, we examine the shape and orientation of the most sensitive Eshelby
inclusion. The results [52] are as follows: the shape of the ellipse filled with a better conductor (k2)
depends on the relative intensities of orthogonal currents. It does not always degenerate into a
strip. If the intensities are equal, the optimal shape is a circle. In general, the optimal shape is either
an ellipse with eccentricity dependent on the ratio of local currents, or a strip if this ratio is larger
than a threshold. The inclusion ‘hides’ itself in the surrounding material to minimize its effect
on conductance. On the contrary, the worst conducting inclusion from k1 always degenerates
into a strip oriented across the larger current. It ‘displays’ itself to minimize the conductance.
The collection of such inclusions forms a composite with the inclusions of conductivity k2 in the
matrix of material k1. This composite has a variable degree of anisotropy and volume fraction of
inclusions; it may degenerate into a laminate if one of the applied currents is much larger than
the other.
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This structure is an example of a second-rank laminar optimal structure or a laminate made
from laminates, see figure 3. It is shown in [58] that a second-rank laminate has extremal
conductivity in a chosen direction, assuming the conductivity in an orthogonal direction is given.
The optimal degree of anisotropy depends on the ratio of applied currents. Later this concept was
further developed in many works, see for example, [11,14].

The effective (homogenized) anisotropic conductivity Kl2 of second-rank laminates satisfies
the relations [44,58,71]

Tr (Kl2 − k2I)−1 =m1

(
2

k1 − k2
+ m2

2k2
N

)
, Kl2 − k2I ≥ 0, (4.6)

where I is a unit matrix, and N is a non-negatively defined matrix with unit trace, TrN= 1; the
matrix N determines the degree of anisotropy.

The geometry of optimal composites is not unique. Several other equivalent microstructures
are known to be optimal. Examples of such structures are the Hashin–Shtrikman coated circles
[72], and, for anisotropic loading, coated ellipses [73] and other structures [51,73]. They have the
same effective conductivity as the second-rank laminates. More complex problems require more
advanced optimal structures, some examples of them are shown in [12,14,51,56,74].

5. Structural optimization
(a) Constrained variational problem
Consider optimal design of a conducting body [52,53]. It is required to minimize a functional of
the type

P=min
k(x)

∫

Ω
G(u,∇u) dx+

∫

Γ
g(u, un) ds; un =

∂u
∂n

, (5.1)

where n is the normal to Γ , k is as in (2.2) and u is the potential in the boundary value problem

∇ · q= 0, q= k(x)∇u in Ω , Ψ (u,un)= 0 on Γ , (5.2)

where q is an electric current, k is a varying conductivity of material in the domain Ω .
Equation (5.2) is a differential constraint on potential u. We account for this constraint by

adding it to the functional with the Lagrange multiplier λ= λ(x), which is a solution of the adjoint
boundary value problem

∇ ·
[
k(x)∇λ + ∂G

∂(∇u)

]
− ∂G

∂u
= 0 in Ω , λ + ∂g

∂u
− λn − ∂g

∂un
= 0 on Γ . (5.3)

Assuming that (5.2) and (5.3) are satisfied, and the optimal layout of materials in the domain
might be provided by the microstructure of a possibly anisotropic composite with the effective
tensor K∗, we arrive at the cost P defined as the value of the minimax functional

P=min
K∗(x)

I(K∗, λ, u), I(K∗)=min
u

max
λ

∫

Ω
∇λ · K∗∇udx. (5.4)

The problem (5.4) introduces a locally optimal tensor K∗ as a function of ∇λ and ∇u.

Weierstrass-type test. The structural Weierstrass test [53] consisting of insertion of inclusion
in domain occupied by an isotropic material, also hints for an optimal structural design. We
assume that the values of ∇u and ∇λ are fixed, and minimize the increment of integral in (5.4)
caused by this inclusion. The result of this test shows that (a) optimal inclusion is a strip, and (b)
it is oriented along the bisector of the angle between ∇u and ∇λ. The test suggests that optimal
design includes laminates and hints on their orientation.

It has been shown in [53] that the Weierstrass test leads to contradiction in the original
formulation: the optimal orientation of the trial strip shows the normal to the interface, whereas
the orientation of the interface is defined by an independent Weierstrass–Erdmann condition.
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Generally, these two conditions contradict each other andmake the problem overdetermined. The
inconsistency arises because the critical orientation of a trial strip is dictated by the requirement
of optimality. It may be overcome if the class of admissible materials is extended to include all
anisotropic composites assembled from the original constituents (see more details below).

(b) Example: coil
This example [52] demonstrates the optimal design with some counterintuitive features. Consider
a conducting thin hollow cylinder Ω of unit height z= 1 and unit radius; its surface in cylindrical
coordinates z, θ is: Ω = [0, 1] × [−π ,π ]. Assume that the potentials at the bottom and top of the
cylinder are equal to zero and one, respectively: u(0, θ )= 0, u(1, θ )= 1. The surface is assembled
from two conductors; their amounts are not prescribed. The problem is to maximize the
surface integral of the circumferential component jθ = J · iθ of the current, that is the component
perpendicular to the potential gradient, ∇u= iz.

We putG(u,∇u)=−∇u · iθ and g(u, un)= 0 in (5.1). The boundary value problem for λ becomes

∇ · K∗(x)∇(λ + iθ )= 0 in Ω , λn = 0 on z= 0, 1.

It has a constant solution ∇λ=−iθ .
A pure material is not optimal because jθ is zero on a homogeneous cylindrical surface: the

current flows along the cylinder’s rulings. The optimal design is a composite. It is clear that (i)
the conductivity tensor K∗ of an optimal composite is constant in Ω , and (ii) the most anisotropic
composite is optimal. Such composite is a laminate. It directs the current to maximal possible
degree because its effective conductivities kh and ka are extremal, see (4.2). Optimal tensor KL of
laminate conductivities depends on the volume fraction m1 of material k1 and the orientation φ

of its eigenvectors (the angle between the laminate and the cylinder’s rulings), KL =KL(m1,φ).
It remains to calculate these parameters from (5.4). Since the integrand is constant, the problem
becomes algebraic

min
m1,φ

iθ · KL(m1,φ) iz.

The calculation shows that one of the eigenvectors bisects the angle between iθ and iz. The optimal
layers are directed at 45◦ to the rulings. The direction corresponds to the optimal orientation of
the trial strip in the Weierstass test. The optimal volume fraction is computed as

mopt =
√
k1√

k1 +
√
k2

.

The optimal structure that most effectively rotates the current is a coil.

Thermal lens. Usually, the heat dissipates in materials. The optimal design can resist
dissipation by making a ‘thermal lens’ [16], which focuses heat flux into a specified region.
Figure 2b shows an example of an optimal focusing thermal lens. Consider a plane rectangular
domain Ω : [−a, a] × [0, 1], see figure 2a. The domain is divided into two parts Ω =Ω1 ∪ Ω2
occupied, respectively, by two conductors of conductivity k= k1 and k= k2, 0< k1 < k2. Assume
that unit heat flux q=−k∇u enters Ω across its top boundary Γ1, the lateral sides Γ2 and Γ4
are insulated, and constant temperature u= 0 is maintained along the bottom boundary Γ3. The
temperature field u= u(x) in Ω is governed by equations (5.2)

∇ · q= 0, q=−k∇u, k= k1χ (x)+ k2(1 − χ (x)) in Ω (5.5)

and
n · q|Γ1 =−1, n · q|Γ2∪Γ4 = 0, u|Γ3 = 0, (5.6)

where n is the outer normal. We are interested in finding an arrangement of materials in the
domain Ω (or finding the regions Ω1 and Ω2) that maximizes the heat flux through the window
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(a)
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(b) (c) (d)

Figure 2. (a) Funnel-type (intuitively) rational layout of materials k1 and k2 in thermal lens directing heat from the top surface
Γ1 to thewindow [−d, d] at the bottompart of the boundaryΓ3. This design is not optimal. (b) A sketch of the optimal thermal
lens design with zones of pure isotropic materials k1 and k2 and anisotropic composite zones. (c) Cartoon of the composite zone
between the regions filled with materials k1 and k2 with the black broken lines showing the direction of the heat flux in each
of the materials. The slopes of these lines change at each interface, directing the heat flux into the desired region. (d) A sketch
of the robust design of optimal thermal lens with zones of pure isotropic materials k1 and k2 and anisotropic composite zones
forcing the heat to flux in the desired direction. The robust design maximizes the heat flux out of the window [−d, d] located
at Γ3 for any of the fluxes (not known in advance) through the parts of the boundary Γ2 or Γ4 at the opposite sides of the
domainΩ .

(a) (b)

Figure 3. (a and b) First-rank and second-rank laminates used in optimal minimax design.

|x|≤ d on Γ3

I=max
χ

j, j=
∫

Γ3

ρ q · ndx, ρ(x)=
{
1, |x|≤ d,
0, d< |x|< a,

(5.7)

where q satisfies (5.5), (5.6). This problem becomes the one described in §a if we put G= 0, g=
ρ q · n|Γ3 .

Analysis. Referring to the previous examples, see §4c, we assume that the optimal layout
includes a binary composite characterized by an effective conductivity tensor K∗ with the
eigenvalues satisfying the Reuss–Foigt bounds (4.2). The system of optimality conditions consists
of equations (5.5) and (5.6), equations for the adjoint function λ,

∇ · K∗∇λ= 0 in Ω (5.8)

and
n · K∗∇λ= 0 on Γ1,Γ2,Γ4, λ= ρ on Γ3, (5.9)

and for the optimal effective tensor Kopt

Kopt = argmax
K∗

(∇λ)TK∗ ∇u. (5.10)

Note that the adjoint variable differs from zero, λ %= 0, due to the boundary condition λ= ρ on Γ3;
in other words, it accounts for the cost functional, see (5.7).
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Analysis of the necessary condition of optimality shows that the eigenvectors of Kopt are
parallel and orthogonal to the bisector of the angle between ∇λ and ∇u. The eigenvalue κ1 related
to the eigenvector along the bisector has the maximal value, κ1 = ka, and the other eigenvalue has
the minimal value, κ2 = kh (4.1). Both of these extremes are achieved by an effective conductivity
tensor of a laminate.

Finally, we find an optimal value of volume fraction m1 in the laminate. Call 2φ the angle
between ∇λ and ∇u and rewrite (5.10)

Kopt = argmax
KL

(∇λ)TKL ∇u= |∇λ| |∇u| max
m1

(−kh(m1) sin2 φ + ka(m1) cos2 φ). (5.11)

The volume fraction mopt of m1 in Kopt depends on the angle between ∇λ and ∇u but does not
depend on their magnitudes. We have

mopt =






0 if tanφ ≤

√
k1
k2

,

√
k1k2

k2 − k1

(

tanφ −

√
k1
k2

)

if tanφ ∈
[√

k1
k2

,

√
k2
k1

]

,

1 if tanφ ≥

√
k2
k1

.

(5.12)

The optimal laminate becomes an isotropic material with maximal conductivity k2 when the
directions of ∇λ (what we want) and ∇u (what we have) are close to each other, it becomes
an isotropic material with minimal conductivity k1 if those directions are close to opposite. The
conductivity is anisotropic when ∇λ and ∇u are close to orthogonal. The thermal lens focuses
the flux into the target region and expels it from unwanted domain. In the region in between, it
guides the flux in the desired direction due to its refraction in the anisotropic laminates.

Remarks about the optimal design of thermal lens. An intuitive draft of the focusing device
is sketched in figure 2a. However, from the analysis presented in the previous part, the optimal
design of thermal lens should have composite zones. The optimal distribution of materials in the
domain Ω is shown in figure 2b. A similar conclusion can be derived using the Weierstrass-type
variation. By optimizing parameters of a trial ellipse [53], one finds that it (a) degenerates into
a strip, and (b) this strip is oriented along the bisector of the angle between ∇u and ∇λ [16,52].
These two features suggest that the optimal composite is a laminate, and the layers are oriented
along the optimal trial strip.

The optimal thermolens combines the features of the already discussed designs. Similar to the
axisymmetric domain of minimal resistance, it is a laminate with volume fractions varying along
the layers. At the opposite boundaries of the composite zone where m→ 1 or m→ 0 the effective
conductivity coincides with the conductivity k1 or k2, respectively; the effective conductivity is
continuous everywhere. Similarly to the coil design, the anisotropic laminates affect the direction
of the flux; they work as a focusing instrument. To better understand this effect, examine a
magnified element of the laminate shown in figure 2c. Consider a bundle of vector lines of the
heat flux passing through a magnified piece of laminate. There are discontinuities (kinks) of the
slope of those lines as they intersect the material interfaces; in the limit, there are infinitely many
kinks. Each one contributes to the final orientation of vector lines targeted towards the window.

There is another (heuristic) argument in favour of zigzag (composite) material geometry in
a transitional zone separating original isotropic materials k1 and k2. This argument is based
on an assumption of the existence of a smooth differentiable curve between the pure materials
and a demonstration that this leads to a contradiction [53]. Indeed, analysis of the Weierstrass–
Erdmann conditions and the most ‘dangerous’ orientation of the trial inclusion located close to
the boundary, shows that the boundary should frequently oscillate between the areas occupied by
pure materials (figure 2c). This contradiction can be avoided by introducing a space-filling curve
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as the transition boundary instead of a simple curve. The microstructure may occupy a domain
in the (x, y)-plane, in which case it requires homogenization.

In both cases, the Weierstrass-type variation suggests an extension of the set of admissible
designs by creating an anisotropic composite controlling the direction and intensity of the heat
flux. In optimal design, the interface Γ becomes a space-filling curve that densely covers a part of
Ω . This region is occupied by laminated composite assembled from original materials, figure 2c.
The varying volume fractions of materials and orientation of the layers represent controls.

6. Minimax robust design
Let us return to the problem of extremal conductance and assume that constant potentials u0 = 0
and u1 = 1 are applied to opposite boundaries of a rectangular domain Ω ; the other boundaries
are insulated. Assume also that a priori we do not know whether the potentials are applied to
vertical or horizontal sides, a and b, respectively.

The problem is to minimize the effective conductivity of the domain. To deal with this
uncertainty in the boundary conditions, we reformulate the problem as optimization in a worst-
case scenario—as the problem of minimization of the maximal of two effective conductivities.

Following described principles, we assume that the rectangle is filled with a homogeneous
anisotropic composite with effective tensor Kl2 in (4.6). Let its principal conductivities
(eigenvalues of Kl2) be κ1 and κ2. According to Reuss–Voigt inequalities (4.2), κ1 and κ2 are
bounded by the eigenvalues κa and κh of the laminated composite, in the directions along
and across the electric field, respectively. As we are interested in the minimal and maximal
conductivities, we can assume that the eigenvectors of Kl2 are oriented along the sides of the
rectangular domain Ω . If the potential difference is applied between the sides a, then laminated
composite oriented along a has the minimal conductivity kh, and the conductance Ca of the
rectangle is

Ca =
b
a
kh.

When the potential difference is applied between the sides b, the conductance of that laminated
rectangle Cb is

Cb =
a
b
ka,

because the conductivity of laminate is ka > kh. If Ca ≤Cb, that is

a2

b2
≤ kh

ka
,

then the optimal composite is a simple (first-rank) laminate, figure 3a. The conductance of Ca is
still larger than Cb and the conductivity along the current line is the minimal possible.

If Ca ≥Cb, then an optimal solution corresponds to equal conductivities in both cases. The
optimal composite, figure 3b, is a second-rank laminate (4.6) with the eigenvalues satisfying the
additional relation

a
b
κ1 =

b
a
κ2.

The optimal designs are shown in figure 3.

Robust design of thermal lens. The discussed optimal structures are designed to conduct
and direct given boundary flux q. Their performance is no longer optimal if this flux is applied at
a different part of the boundary. In various applications, it is of interest to design a robust project
that works well for several boundary fluxes q1, . . . , qn imposed on the boundary of the domain.
A robust max-min design problem determines a layout K∗ that maximizes the cost I(q,K∗) for the
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flux in the most unfortunate case

I= max
K∗∈GK

min
k=1,..,n

I(qk,K∗).

Here, GK is the set of effective properties of all composites assembled from materials with
properties k1 and k2. This set is called G-closure of {k1, k2}, see [54,58]. The problem of robust
optimal design (or optimal design in uncertainty) was formulated in elasticity setting in [63] and
further studied in [64,65,75].

To illustrate the approach to robust design using the thermal lens example, we assume that the
boundary fluxes are only partially known. Specifically, we assume that the heat flux may enter
either through the boundary component Γa located on lateral side Γ2 or through Γb located on the
opposite lateral side Γ4 (figure 2d). The lower boundary Γ3 is kept at zero temperature, and the
rest of the boundary Γins is insulated. The design aims to maximize the flux through the window
Γ0 located at Γ3, for the most undesirable choice of the applied fluxes. The design should provide
the channelling of the heat toward the window, but the heat flux could be caused by one of two
fluxes (not known in advance) entering at the opposite sides of Ω .

Let K∗ be the tensor of the effective conductivity and Ia(K∗) and Ib(K∗) be the total fluxes
through the window Γ0 corresponding to the fluxes at Γa and Γb, respectively. The optimization
problem is formulated as

I=max
K∗

min{Ia(K∗), Ib(K∗)}.

The boundary value problems for the temperature distributions ua and ub in the two described
cases of loading are, respectively

∇ · q= 0 in Ω , q=−k∇u, q · n|Γins = 0, u|Γ3 = 0, (6.1)

with different conditions in the cases (a) and (b) on the parts of the boundary Γa, Γb

(a) q · n|Γa = 1, q · n|Γb = 0, (b) q · n|Γa = 0, q · n|Γb = 1. (6.2)

We are looking for the layout Kopt(x) that maximizes the integral of the smallest of the fluxes
through the window on the lower side of Ω , see the problem (5.7),

I=max
K∗

min{Ia, Ib} and Ia,b =
∫

Γ3

ρ qa,b · ndx. (6.3)

Here, the symbols ()a,b refer to the corresponding problem for ua and ub in (6.1)–(6.2), respectively.

What structure is optimal in this robust problem? The minimum of the energy of the
domain corresponding to one of the two different heat sources is provided by second-rank
laminates (inclusions of the bad conductor into the good conductor) that conducts heat well in
both directions. Surprisingly, the optimal layout in the current problem is a simple (first-rank)
laminate. Indeed, the optimality condition (5.11) for the present problem takes the form

Sm =max
K∗

[(∇λa)TK∗(∇ua)+ (∇λb)TK∗(∇ub)], (6.4)

where λa and λb are conjugate variables that account for differential constraints for ua and ub in
(6.1)–(6.2), respectively.

However, the problems for λa and λb are independent of the position of entering flux, as in (5.8),
(5.9), and so are their solutions, λa = λb = λ. Therefore, the optimality condition (6.4) is similar to
(5.11) applied to ua + ub instead of u

Sm =max
K∗

[∇λTK∗∇(ua + ub)]. (6.5)

The optimal layers bisect the angle between ∇λ and ∇(ua + ub). The volume fraction depends on
the value of this angle, as above, see (5.12). The design depends only on the sum of solutions ua
and ub, that is, the solution to the thermolens with the sum of the incoming boundary fluxes.
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Symmetric heat sources. Assume now that the sources are symmetric against the y-axis as
shown in figure 2d. Because of this symmetry, optimal values of I1 and I2 are equal, the optimal
composite layout is symmetric as well, K∗(x, y)=K∗(−x, y), and α = 1. Optimal structures are
laminates symmetric with respect to the y-axis.

7. Optimization of dynamic materials
(a) Dynamic materials
DM are defined as media that can change their material properties in space and time. This change
is governed by a controller. A composite assembled from such materials becomes a dynamic
composite, see [26,27,76].

Consider a transmission line characterized by density ρ and stiffness k. Assume that the wave
u(x, t) propagates along the line. The equation of the motion of the wave is

∂

∂t
ρ(x, t)

∂u
∂t

− ∂

∂x
k(x, t)

∂u
∂x

= 0, (7.1)

where properties ρ(x, t) and k(x, t) are variable in space and time. Specifically, we have two
materials available (one and two), characterized each by a pair of constant properties ρi and ki,
i= 1, 2. These materials have different phase velocities vi(x, t)=

√
ki/ρi, i= 1, 2. Let v1 < v2, so that

the first material is slow and the second is fast. We assume that materials have the same wave
impedance 1/

√
k ρ in order to eliminate reflections from their interfaces and work with waves

that propagate unidirectionally.
Equation (7.1) can be represented as the following system:

∂u
∂t

= 1
ρ

∂v

∂x
and

∂v

∂t
= k

∂u
∂x

(7.2)

for functions u and v, which are continuous across the interfaces between the materials.
Parameters ρ and k take values ρi, ki in material i, i= 1, 2, periodically alternating along the line
so that

k(x, t)= χ (x, t)k1 + (1 − χ (x, t))k2 and ρ(x, t)= χ (x, t)ρ1 + (1 − χ (x, t))ρ2, (7.3)

where

χ (x, t)= χx(x)χt(t)+ (1 − χx(x))(1 − χt(t)) (7.4)

and

χx(x)=
{
1 if 0≤ x<m1δ,
0 if m1δ ≤ x< δ,

χt(t)=
{
1 if 0≤ t< n1τ
0 if n1τ ≤ t< τ .

(7.5)

Here, m1 and n1 are spatial and temporal fractions in the double space–time period (δ, τ ). Note
that besides spatial changes in the properties, the materials (or subregions occupied by these
materials) also periodically switch their properties in time. These spatial and temporal property
switches are represented by a doubly periodic material distribution in the (x, t)-plane shown by
rectangular grid in figure 4a,b. In figure 4b, ‘1’ and ‘2’ indicate cells filled by materials with the
slow and fast velocity, respectively, and δ and τ are spatial and temporal periods of the doubly
periodic lattice. We discuss construction of this lattice below.

Temporal and spatial laminates. Let us first consider one-dimensional composites
(laminates) of materials with properties changing separately in time and in space. Assume that
temporal switching of material properties occurs everywhere in space; in the presence of wave, it
requires work performed by an external controller. The switch is accompanied by the change of
phase velocity and wave energy; dynamic materials are thermodynamically open systems. The
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Figure 4. Concentration of the wave paths. (a) Stable (boldface line) and unstable (dashed line) limit cycles in a double
periodic space–time problem corresponding to the checkerboard formed by materials with two different properties. The space
coordinate is given on the horizontal axis and time is shown along the vertical axis. Stable limit cycles attract all trajectories
in the corresponding basins of attraction separated by the unstable cycles representing the boundaries of the attraction basins
[28]. (b) A stable limit cycle (a trajectory shown by the boldface line) attracts trajectories starting in the cell filled by the slow
material indicated by ‘1’, as well as in the cell with fast material denoted by ‘2’. (c) Trajectories of double-periodic system (7.2)
mapped onto topologically equivalent torus [77].

temporal switch from a slow material to the fast increases the wave energy W1 toW2, so that

W2

W1
= v2

v1
.

The opposite jump decreases the wave energy in the same proportion. The energy from the
controller is absorbed by the wave in the first case and released in the second [68].

As for the controller’s energy, it decreases in the first case and increases in the second due
to its exchange with the wave. Two sequential temporal property switches can be depicted as a
horizontal strip in the space–time diagram. A periodic array of temporal switches can be viewed
as a laminate with horizontal layers, and the wave trajectory through it is a broken line with
alternating slopes.

For a spatial laminate, we consider a transmission line as an array of alternating spatial
intervals filled by the materials with phase velocities v1 and v2. The velocity jumps at the interface
between these intervals, but the energy flux remains continuous for every bunch of wave routes.
The wave energy is preserved in the absence of temporal property switches. In the space–time
diagram, the wave trajectory is also a broken line with alternating slopes as in the case of temporal
property switches.

(b) Dynamic composites: checkerboard
Below, we design a structure that can focus and accumulate the wave energy. Notice that neither
spatial nor temporal laminate alone can perform this task. We need the features of both types
to create the required design by combining them in a doubly periodic checkerboard structure in
space–time, figure 4.

Consider a doubly periodic rectangular lattice in (x, t)-plane, figure 4b. A double period is a
unit square divided in four quadrants. The first and the third quadrants are occupied by the fast
material (v2) and the second and the fourth by the slow material (v1) [27,28]. This construction
results in the checkerboard material assembly in space–time. Each rectangle occupied by one
material has all its faces contacting rectangles occupied by another material.

As the waves travel through this checkerboard lattice, their routes cross both types of
interfaces, but these crossings differ from each other in energy performance. The energy flux stays
continuous at spatial interfaces but the energy density jumps at temporal crossings, as described
above. Based on that, we design a space–time geometry that accumulates and concentrates energy
in travelling waves. This geometry is a checkerboard described above. It avoids energy losses
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along the wave routes if all of the crossings either leave the wave energy continuous or add
energy to wave. This is possible if

(i) the waves enter the slow material from fast across a spatial interface where energy flux is
preserved;

(ii) the waves enter the fast material from slow across temporal transients when it gains
energy;

(iii) the wave routes never intersect each other and therefore avoid collision. A remarkable
property of the checkerboard is that it allows for a desired performance of waves.

Design of the energy concentrators. We use four controls, the fractions m1 and n1 and the
wave speeds v1, and v2, to construct the required structure. It has been shown in [29] that there
exist ranges of these parameters that support the desirable wave routes and maintain the energy
accumulation; this is visible in figure 4. Exact bounds for parameters found in [29] specify such
ranges.

Below, we illustrate the results of numerical analysis described in [27–29]. In figure 4a, there
are boldface and dashed lines. Both lines are special periodic wave routes represented by closed
trajectories in space–time which are stable and unstable limit cycles. The boldface lines represent
stable cycles, whereas the interrupted lines represent unstable cycles. We clearly see the difference
between these cycles in figure 4. Every pair of consecutive stable cycles has an unstable cycle in
between. The reason is that the trajectories (the wave routes) are attracted by stable and repelled
by unstable cycles. No stable cycle enters the slow material from across the temporal interface
where it would lose energy; and this is a specific feature of a checkerboard. The stable cycles are
parallel because the geometry of a checkerboard in figure 4a is doubly periodic. The stable cycle
attracting other trajectories mapped onto topologically equivalent torus [77] is shown in figure 4c.
Figure 4b presents several trajectories on the space–time checkerboardwith the cells formed by the
regions occupied by the two materials with slow and fast velocity. The boldface line in figure 4b
shows a stable limit cycle that attracts trajectories starting in the neighbouring cells.

Sharpening pulses. Another feature of the energy concentrating structure is that the wave
routes never intersect; instead, are densely compressed and tend to the stable periodic limit
circles. Accordingly, the energy is accumulated in the array of progressively sharpening pulses,
figure 4a (limit cycles in the corresponding phase space) composed from densely compressed
wave routes, see [27,28]. Remarkably, such constructions need no more than Snell’s Law plus the
analysis of kinematics of the wave routes that merge towards each other to be compressed in
pulses as time evolves.

If the energy stored in the controlling mechanism is limited, it becomes exhausted at some
instant. From that point on, the horizontal material interfaces disappear because they are no
longer supported, and the checkerboard turns into a spatial laminate. The accumulated energy
waves propagate through such laminate without any energy loss.

The checkerboard appearance in both linear and nonlinear cases. The previous example
is related to a linear system demonstrating the motion of energy pulses through a given
checkerboard material pattern in space–time. The velocity of pulses is prescribed by parameters
of the pattern. A similar type of motion is observed in a nonlinear system when we deal with
a spring-load (SL) unit moving on the ground in the presence of dry friction due to a constant
velocity V applied to SL from outside. In this situation, periodic limit cycles also arise [78],
but their spatial and temporal periods are defined by the system itself, not coming from the
environment. The motion of the SL occurs in space–time in a fashion similar to the motion of
pulses supported by a prescribed checkerboard. We see a similarity, not the identity of these
mechanisms, and this similarity reveals that the checkerboard principle goes beyond the linear
situation, now due to the loss of stability that produces self-induced oscillations.
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8. Conclusion

1. Inmulti-material design, the structure is created by a distribution of the interface between
domains filled with different materials. The optimal design asks for the best location
of this interface. The solutions admit that the interfaces may densely cover a region
between domains of pure materials, creating composite zones. The variable structure of
this composite must be optimal at every point. The optimal composites are characterized
by relatively simple parametrized structures that keep components of the fields in each
material constant. The optimal composites can best focus and direct the currents and
fluxes due to their anisotropy. Optimal design of a thermal lens demonstrates how these
composite zones follow from analysis of necessary conditions of optimality.

2. In the case of spatio-temporal composites with properties varying in both space and time,
focusing is achieved by concentrating the energy of the wave into sharp pulses. For a
special range of structural parameters, the described time–space checkerboard structures
can concentrate the wave energy. The wave routes are gradually concentrated in discrete
paths as time tends to infinity; the paths never intersect. The paths accumulate energy
and tend to a series of pulses parallel to each other.

Data accessibility. This article has no additional data.
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. A.C.: conceptualization, formal analysis, investigation, writing—original draft, writing—
review and editing; E.C.: conceptualization, formal analysis, investigation, writing—original draft, writing—
review and editing; K.L.: conceptualization, formal analysis, investigation, writing—original draft, writing—
review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. The work of A.C. was supported by the NSF DMS (grant no. 1515125). E.C. acknowledges support
from the NSF (grant no. DMS-2111117).
Acknowledgements. The authors are thankful to Graeme Milton for providing additional references.

References
1. Milton GW, Briane M, Willis JR. 2006 On cloaking for elasticity and physical equations with a

transformation invariant form. N. J. Phys. 8, 248–268. (doi:10.1088/1367-2630/8/10/248)
2. Pendry JB, Schurig D, Smith DR. 2006 Controlling electromagnetic fields. Science 312, 1780.

(doi:10.1126/science.1125907)
3. Alu A, Engheta N. 2005 Achieving transparency with plasmonic and metamaterial coatings.

Phys. Rev. E 95, 016623. (doi:10.1103/PhysRevE.72.016623)
4. Chen H, Chan CT. 2007 Acoustic cloaking in three dimensions using acoustic metamaterials.

Appl. Phys. Lett. 91, 183518. (doi:10.1063/1.2803315)
5. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G. 2007 Full-wave invisibility of active devices

at all frequencies. Commun. Math. Phys. 275, 749–789. (doi:10.1007/s00220-007-0311-6)
6. Greenleaf A, Kurylev Y, Lassas M, Uhlmann G. 2012 Schrodinger’s hat: electromagnetic,

acoustic and quantum amplifiers via transformation optics. Proc. Natl Acad. Sci. USA 109,
10 169–10 174. (doi:10.1073/pnas.1116864109)

7. Kohn RV, ShenH, VogeliusMS,WeinsteinMI. 2008 Cloaking via change of variables in electric
impedance tomography. Inverse Probl. 24, 015016. (doi:10.1088/0266-5611/24/1/015016)

8. Milton GW, Nicorovici NA. 2006 On the cloaking effects associated with anomalous localised
resonance. Proc. R. Soc. A 462, 3027–3059. (doi:10.1098/rspa.2006.1715)

9. Norris A. 2008 Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434.
(doi:10.1098/rspa.2008.0076)

10. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. 2006
Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980.
(doi:10.1126/science.1133628)

11. Cherkaev A, Kadic M, Milton GW, Wegener M. 2019 Pentamode materials: from underwater
cloaking to cushioned sneakers. SIAM News 52, 1–2.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 Ja

nu
ar

y 
20

24
 



20
royalsocietypublishing.org/journal/rspa

Proc.R.Soc.A479:20220342
..........................................................
12. Cherkaev A, Dzierzhanowski G. 2013 Three-phase plane composites of minimal

elastic stress energy: high-porosity structures. Int. J. Solids Struct. 50, 4145–4160.
(doi:10.1016/j.ijsolstr.2013.08.010)

13. Kadic M, Milton GW, van Hecke M, Wegener M. 2019 3D metamaterials. Nat. Rev. Phys. 1,
198–210. (doi:10.1038/s42254-018-0018-y)

14. Milton GW, Cherkaev AV. 1995 Which elasticity tensors are realizable? J. Eng. Mater. Technol.
117, 483–493. (doi:10.1115/1.2804743)

15. Chen F, Lei DY. 2015 Experimental realization of extreme heat flux concentration with easy-
to-make thermal metamaterials. Sci. Rep. 5, 11552. (doi:10.1038/srep11552)

16. Cherkaev AV, Gibianski LV, Lurie KA. 1985 Optimum focusing of heat flux by means of a
non-homogeneous heat-conducting medium. The Technical University of Denmark, Report
No. 305 (Gibiansky LV, Lurie KA, Cherkaev AV. 1988 Optimal focusing of a heat flow by
inhomogeneous heat-conducting media (The thermal-lens problem). J. Tech. Physics (Zhurnal
Tekhnicheskoi Fiziki), 58(1), 67–74. In Russian.

17. Guenneau S, Amra C, Veynante D. 2012 Transformation thermodynamics: cloaking and
concentrating heat flux. Opt. Express 20, 8207–8218. (doi:10.1364/OE.20.008207)

18. Narayana S, Sato Y. 2012 Heat flux manipulation with engineered thermal materials. Phys.
Rev. Lett. 108, 214303. (doi:10.1103/PhysRevLett.108.214303)

19. Peralta I, Fachinotti V, Ciarbonetti A. 2017 Optimization-based design of a heat flux
concentrator. Sci. Rep. 7, 40591. (doi:10.1038/srep40591)

20. Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB. 2008
Design of electromagnetic cloaks and concentrators using form-invariant coordinate
transformations of Maxwell’s equations. Photonics Nanostruct. Fundam. Appl. 6, 87–95.
(doi:10.1016/j.photonics.2007.07.013)

21. Schittny R, Kadic M, Guenneau S, Wegener M. 2013 Experiments on transformation
thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901.
(doi:10.1103/PhysRevLett.110.195901)

22. Yago D, Cante J, Lloberas-Valls O, Oliver J. 2020 Topology optimization of thermal problems
in a nonsmooth variational setting: closed-form optimality criteria. Comput. Mech. 66, 259–286.
(doi:10.1007/s00466-020-01850-0)

23. Biancalana F, AmannA, UskovAV, O’Reilly EP. 2007 Dynamics of light propagation in spatio-
temporal dielectric structures. Phys. Rev. E 75, 046607. (doi:10.1103/PhysRevE.75.046607)

24. Blekhman II, Lurie KA. 2000 On dynamic materials. Proc. Rus. Acad. Sci. (Doklady) 37, 182–185.
25. Huidobro PA, Galiffi E, Guennau S, Craster RV, Pendry JB. 2019 Fresnel drag in

space-time modulated metamaterials. Proc. Natl Acad. Sci. USA 116, 24 943–24 948.
(doi:10.1073/pnas.1915027116)

26. Lurie KA. 2009 On homogenization of activated laminates in 1D space and time. ZAMM
J. Appl. Math. Mech./Zeitschrift fur Angewandte Mathematik und Mechanik. 89, 333–40.
(doi:10.1002/zamm.200800185)

27. Lurie KA. 2007 An introduction to the mathematical theory of dynamic materials. New York, NY:
Springer.

28. Lurie KA, Weekes SL. 2006 Wave propagation and energy exchange in a spatio-temporal
material composite with rectangular microstructure. J. Math. Anal. Appl. 314, 286–310.
(doi:10.1016/j.jmaa.2005.03.093)

29. Lurie KA, Onofrei D, Weekes SL. 2009 Mathematical analysis of the waves propagation
through a rectangular material structure in space-time. J. Math. Anal. Appl. 355, 180–194.
(doi:10.1016/j.jmaa.2009.01.031)

30. Milton GW, Mattei O. 2017 Field patterns: a new mathematical object. Proc. R. Soc. A 473,
20160819. (doi:10.1098/rspa.2016.0819)

31. Shui LQ, Yue ZF, Liu YS, Liu QC, Guo JJ. 2014 One-dimensional linear elastic waves at moving
property interface. Wave Motion 51, 1179–1192. (doi:10.1016/j.wavemoti.2014.07.005)

32. Shui LQ, Yue ZF, Liu YS, Liu QC, Guo JJ, He XD. 2015 Novel composites
with asymmetrical elastic wave properties. Compos. Sci. Technol. 113, 19–30.
(doi:10.1016/j.compscitech.2015.03.007)

33. Taravati S. 2018 Giant linear nonreciprocity, zero reflection, and zero band gap in equilibrated
space-time-varyingmedia. Phys. Rev. Appl. 9, 064012. (doi:10.1103/PhysRevApplied.9.064012)

34. To HT. 2009 Homogenization of dynamic laminates. J. Math. Anal. Appl. 354, 518–538.
(doi:10.1016/j.jmaa.2008.12.058)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 Ja

nu
ar

y 
20

24
 



21
royalsocietypublishing.org/journal/rspa

Proc.R.Soc.A479:20220342
..........................................................
35. Weekes SL. 2001 Numerical computation of wave propagation in dynamic materials. Appl.

Numer. Math. 37, 417–440. (doi:10.1016/S0168-9274(00)00045-3)
36. Tsai CS. 1990 Guided-wave acousto-optics interactions, devices, and applications. Springer Series in

Electronics and Photonics, (SSEP, volume 23).
37. Zhou W et al. 2020 4D-Printed dynamic materials in biomedical applications: chemistry,

challenges, and their future perspectives in the clinical sector. J. Med. Chem. 63, 8003–8024.
(doi:10.1021/acs.jmedchem.9b02115)

38. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mischenko EF. 1962 The mathematical theory
of optimal processes. New York, NY: John Wiley and Sons, Inc.

39. Rozonoer LI. 1959 Pontryagin’s maximum principle in the theory of optimal systems. I, II, III.
Automat. Remote Control 20, 11–12.

40. Gamkrelidze RV. 1978 Principles of optimal control theory. Boston, MA: Springer.
41. Kohn RV, Strang G. 1986 Optimal design and relaxation of variational problems, I, II, III.

Commun. Pure Appl. Math. 39, 113–137, 139–182, 353–377. (doi:10.1002/cpa.3160390107)
42. Murat F, Tartar L. 1985 Calculus of variations and homogenization. Les Methodes

de l’Homogeneisation: Theorie et Applications en Physique, Eyrolles, 319–369. English
translation in: Topics in the Mathematical Modelling of Composite Materials. Cherkaev A,
Kohn RV, eds, Birkhauser, Boston, 1997, 139–173.

43. Murat F, Tartar L. 1975 On the control of coefficients in partial differential equations. Lecture Notes
in Economics and Mathematical Systems, 107. Springer, pp. 420–426. English translation in:
Topics in the Mathematical Modelling of Composite Materials. Cherkaev A, Kohn RV, eds,
Birkhauser, Boston, 1997, 1–8.

44. Tartar L. 1985 Estimation fines des coefficients homogeneises. Ennio de Giorgi Colloquium,
Kree P (ed), Pitman Research Notes in Math. 125, 168–187. English translation in: Topics in the
Mathematical Modelling of Composite Materials. Cherkaev A, Kohn RV (eds), Birkhauser,
Boston, 1997, 9–20.

45. Bendsoe MP, Sigmund O. 2003 Topology optimization: theory, methods, and applications. Springer.
46. Sigmund O. 1994 Materials with prescribed constitutive parameters: an inverse

homogenization problem. Int. J. Solids Struct. 31, 2313–2329. (doi:10.1016/0020-
7683(94)90154-6)

47. Sigmund O. 1995 Tailoring materials with prescribed elastic properties. Mech. Mater. 20,
351–368. (doi:10.1016/0167-6636(94)00069-7)

48. Allaire G. 2002 Shape optimization by the homogenization method. Springer.
49. Francfort GA, Milton GW. 1994 Sets of conductivity and elasticity tensors stable under

lamination. Comm. Pure Appl. Math. 47, 257–279. (doi:10.1002/cpa.3160470302)
50. Milton GW. 1986 Modelling the properties of composites by laminates. In Homogenization and

effective moduli of materials and media (eds JL Ericksen, D Kinderlehrer, RV Kohn, JL Lions),
pp. 150–174. New York, NY: Springer.

51. Milton GW. 2002 Theory of composites. Cambridge, UK: Cambridge University Press.
52. Cherkaev A. 2000 Variational methods for structural optimization. Springer.
53. Lurie KA. 2013 Applied optimal control theory of distributed systems. Springer Science & Business

Media.
54. Lurie KA, Cherkaev AV, Fedorov AV. 1982 Regularization of optimal design problems for

bars and plates. J. Optim. Theory Appl. 37, 499–522. (doi:10.1007/BF00934953)
55. Cherkaev A. 1994 Relaxation of problems of optimal structural design. Int. J. Solids Struct. 31,

2251–2280. (doi:10.1016/0020-7683(94)90209-7)
56. Cherkaev A, Gibiansky L. 1992 The exact coupled bounds for effective tensors of electrical

and magnetic properties of two-component, two-dimensional composites. Proc. R. Soc. Edin.
A, 122, 93–125. (doi:10.1017/S0308210500020990)

57. Cherkaev A, Gibiansky L. 1993 Coupled estimates for the bulk and shear moluli
of a two-dimensional isotropic elastic composite. J. Mech. Phys. Solids 41, 937–980.
(doi:10.1016/0022-5096(93)90006-2)

58. Lurie KA, Cherkaev AV. 1984 Exact estimates of conductivity of composites formed by two
isotropically conducting media taken in prescribed proportion. Proc. R. Soc. Edin. A 99, 71–87.
(doi:10.1017/S030821050002597X)

59. Lurie KA, Cherkaev AV, Fedorov AV. 1984 On the existence of solutions to some
problems of optimal design for bars and plates. J. Optim. Theory Appl. 42, 247–281.
(doi:10.1007/BF00934299)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 Ja

nu
ar

y 
20

24
 



22
royalsocietypublishing.org/journal/rspa

Proc.R.Soc.A479:20220342
..........................................................
60. Braides A. 2002 Gamma-convergence for beginners. Oxford, UK: Oxford University Press.
61. Jikov VV, Kozlov SM, Oleinik OA. 1994 Homogenization of differential operators and integral

functionals. Springer.
62. Papanicolaou G, Bensoussan A, Lions JL. 1978 Asymptotic analysis for periodic structures.

Amsterdam, the Netherlands: Elsevier.
63. Cherkaev A, Cherkaev E. 1999 Optimal design for uncertain loading conditions. In

Homogenization (eds V Berdichevsky, V Jikov, G Papanicolaou), pp. 193–213. World Scientific.
64. Cherkaev E, Cherkaev A. 2003 Principal compliance and robust optimal design. J. Elast. 72,

71–98. (doi:10.1023/B:ELAS.0000018772.09023.6c)
65. Cherkaev E, Cherkaev A. 2008 Minimax optimization problem of structural design. Int.

J. Comput. Struct. 86, 1426–1435. (doi:10.1016/j.compstruc.2007.05.026)
66. Brittain K, Silva M, Tortorelli DA. 2012 Minmax topology optimization. Struct. Multidisc.

Optim. 45, 657–668. (doi:10.1007/s00158-011-0715-y)
67. de Gournay F, Allaire G, Jouve F. 2008 Shape and topology optimization of the robust

compliance via the level set method. ESAIM: Control, Optim. Calc. Variat. 14, 43–70.
(doi:10.1051/cocv:2007048)

68. Morgenthaler FR. 1958 Velocity modulation of electromagnetic waves. IRE Trans. Microwave
Theory Tech. 6, 167–172. (doi:10.1109/TMTT.1958.1124533)

69. Lurie KA. 1997 Effective properties of smart elastic laminates and the screening phenomenon.
Int. J. Solids Struct. 34, 1633–1643. (doi:10.1016/S0020-7683(96)00105-9)

70. Eshelby JD. 1959 The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252,
561–569. (doi:10.1098/rspa.1959.0173)

71. Lurie KA, Cherkaev AV. 1986 Exact estimates of the conductivity of a binary mixture of
isotropic materials. Proc. R. Soc. Edin. A 104, 21–38. (doi:10.1017/S0308210500019041)

72. Hashin Z, Shtrikman S. 1963 A variational approach to the elastic behavior of multiphase
minerals. J. Mech. Phys. Solids 11, 127–140. (doi:10.1016/0022-5096(63)90060-7)

73. Benveniste Y,Milton GW. 2003 New exact results for the effective electric, elastic, piezoelectric
and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids 51, 1773–1813.
(doi:10.1016/S0022-5096(03)00074-7)

74. Cherkaev A. 2012 Optimal three-material wheel assemblage of conducting and elastic
composites. Int. J. Eng. Sci. 59, 27–39. (doi:10.1016/j.ijengsci.2012.03.007)

75. Cherkaev A, Cherkaev E. 1999 Structural optimization and biological ‘designs’. In IUTAM
Symp. on Synthesis in Bio Solid Mechanics (eds P Pedersen, M Bendsoe), pp. 247–264. Dordrecht,
the Netherlands: Springer Science and Business Media.

76. Blekhman II. 2007 On vibratory dynamic materials and composites. Proc. Rus. Acad. Sci.
(Doklady) 52, 335–338. (doi:10.1134/S1028335807060110)

77. Sanguinet WC, Lurie KA. 2013 Propagation of dilatation and shear waves through a
dynamic checkerboard material geometry in 1D space + time. ZAMM 93, 937–943.
(doi:10.1002/zamm.201200249)

78. Panovko YG. 1980 An introduction to the theory of mechanical vibrations. Moscow: Nauka
(in Russian).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 Ja

nu
ar

y 
20

24
 


